* numeric.c (num_step): Default the limit argument to infinity and
  allow it to be omitted.  Keyword arguments (by: and to:) are
  introduced for ease of use. [Feature #8838] [ruby-dev:47662]
  [ruby-dev:42194]

* numeric.c (num_step): Optimize for infinite loop.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@42781 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
knu 2013-09-02 14:56:06 +00:00
Родитель a94833eb50
Коммит fd4b5b8dc8
4 изменённых файлов: 141 добавлений и 67 удалений

Просмотреть файл

@ -1,3 +1,12 @@
Mon Sep 2 23:46:29 2013 Akinori MUSHA <knu@iDaemons.org>
* numeric.c (num_step): Default the limit argument to infinity and
allow it to be omitted. Keyword arguments (by: and to:) are
introduced for ease of use. [Feature #8838] [ruby-dev:47662]
[ruby-dev:42194]
* numeric.c (num_step): Optimize for infinite loop.
Mon Sep 2 23:46:10 2013 Nobuyoshi Nakada <nobu@ruby-lang.org>
* parse.y (parser_str_options): use valid suffix word only, as well as

6
NEWS
Просмотреть файл

@ -72,6 +72,12 @@ with all sufficient information, see the ChangeLog file.
* misc
* Mutex#owned? is no longer experimental.
* Numeric
* extended methods:
* Numeric#step allows the limit argument to be omitted, in which
case an infinite sequence of numbers is generated. Keyword
arguments `to` and `by` are introduced for ease of use.
* Process
* New methods:
* alternative methods to $0/$0=:

116
numeric.c
Просмотреть файл

@ -115,6 +115,8 @@ VALUE rb_cFixnum;
VALUE rb_eZeroDivError;
VALUE rb_eFloatDomainError;
static VALUE sym_to, sym_by;
void
rb_num_zerodiv(void)
{
@ -1844,24 +1846,59 @@ ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl)
}
}
#define NUM_STEP_SCAN_ARGS(argc, argv, to, step, hash, desc, inf) do { \
argc = rb_scan_args(argc, argv, "02:", &to, &step, &hash); \
if (!NIL_P(hash)) { \
step = rb_hash_aref(hash, sym_by); \
to = rb_hash_aref(hash, sym_to); \
} \
else { \
/* compatibility */ \
if (rb_equal(step, INT2FIX(0))) { \
rb_raise(rb_eArgError, "step can't be 0"); \
} \
} \
if (NIL_P(step)) step = INT2FIX(1); \
desc = negative_int_p(step); \
if (NIL_P(to)) to = desc ? DBL2NUM(-INFINITY) : DBL2NUM(INFINITY); \
if (TYPE(to) == T_FLOAT) { \
double f = RFLOAT_VALUE(to); \
inf = isinf(f) && (signbit(f) ? desc : !desc); \
} \
else inf = 0; \
} while (0)
static VALUE
num_step_size(VALUE from, VALUE args, VALUE eobj)
{
VALUE to = RARRAY_AREF(args, 0);
VALUE step = (RARRAY_LEN(args) > 1) ? RARRAY_AREF(args, 1) : INT2FIX(1);
VALUE to, step, hash;
int desc, inf;
int argc = args ? RARRAY_LENINT(args) : 0;
VALUE *argv = args ? RARRAY_PTR(args) : 0;
NUM_STEP_SCAN_ARGS(argc, argv, to, step, hash, desc, inf);
return ruby_num_interval_step_size(from, to, step, FALSE);
}
/*
* call-seq:
* num.step(limit[, step]) {|i| block } -> self
* num.step(limit[, step]) -> an_enumerator
* num.step(by: step, to: limit]) {|i| block } -> self
* num.step(by: step, to: limit]) -> an_enumerator
* num.step(limit=nil, step=1) {|i| block } -> self
* num.step(limit=nil, step=1) -> an_enumerator
*
* Invokes the given block with the sequence of numbers starting at +num+,
* incremented by +step+ (defaulted to +1+) on each call.
*
* The loop finishes when the value to be passed to the block is greater than
* +limit+ (if +step+ is positive) or less than +limit+ (if +step+ is
* negative).
* negative), where <i>limit</i> is defaulted to infinity.
*
* In the recommended keyword argument style, either or both of
* +step+ and +limit+ (default infinity) can be omitted. In the
* fixed position argument style, integer zero as a step
* (i.e. num.step(limit, 0)) is not allowed for historical
* compatibility reasons.
*
* If all the arguments are integers, the loop operates using an integer
* counter.
@ -1882,11 +1919,17 @@ num_step_size(VALUE from, VALUE args, VALUE eobj)
*
* For example:
*
* p 1.step.take(4)
* p 10.step(by: -1).take(4)
* 3.step(to: 5) { |i| print i, " " }
* 1.step(10, 2) { |i| print i, " " }
* Math::E.step(Math::PI, 0.2) { |f| print f, " " }
* Math::E.step(to: Math::PI, by: 0.2) { |f| print f, " " }
*
* Will produce:
*
* [1, 2, 3, 4]
* [10, 9, 8, 7]
* 3 4 5
* 1 3 5 7 9
* 2.71828182845905 2.91828182845905 3.11828182845905
*/
@ -1894,56 +1937,46 @@ num_step_size(VALUE from, VALUE args, VALUE eobj)
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
VALUE to, step, hash;
int desc, inf;
RETURN_SIZED_ENUMERATOR(from, argc, argv, num_step_size);
if (argc == 1) {
to = argv[0];
step = INT2FIX(1);
}
else {
rb_check_arity(argc, 1, 2);
to = argv[0];
step = argv[1];
if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
}
if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
long i, end, diff;
NUM_STEP_SCAN_ARGS(argc, argv, to, step, hash, desc, inf);
i = FIX2LONG(from);
end = FIX2LONG(to);
diff = FIX2LONG(step);
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
long i = FIX2LONG(from);
long diff = FIX2LONG(step);
if (diff > 0) {
while (i <= end) {
if (inf) {
for (;; i += diff)
rb_yield(LONG2FIX(i));
i += diff;
}
}
else {
while (i >= end) {
rb_yield(LONG2FIX(i));
i += diff;
long end = FIX2LONG(to);
if (desc) {
for (; i >= end; i += diff)
rb_yield(LONG2FIX(i));
}
else {
for (; i <= end; i += diff)
rb_yield(LONG2FIX(i));
}
}
}
else if (!ruby_float_step(from, to, step, FALSE)) {
VALUE i = from;
ID cmp;
if (positive_int_p(step)) {
cmp = '>';
if (inf) {
for (;; i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
else {
cmp = '<';
}
for (;;) {
if (RTEST(rb_funcall(i, cmp, 1, to))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, step);
ID cmp = desc ? '<' : '>';
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
}
return from;
@ -4041,4 +4074,7 @@ Init_Numeric(void)
rb_define_method(rb_cFloat, "nan?", flo_is_nan_p, 0);
rb_define_method(rb_cFloat, "infinite?", flo_is_infinite_p, 0);
rb_define_method(rb_cFloat, "finite?", flo_is_finite_p, 0);
sym_to = ID2SYM(rb_intern("to"));
sym_by = ID2SYM(rb_intern("by"));
}

Просмотреть файл

@ -193,41 +193,64 @@ class TestNumeric < Test::Unit::TestCase
end
end
def assert_step(expected, (from, *args), inf: false)
enum = from.step(*args)
size = enum.size
xsize = expected.size
if inf
assert_send [size, :infinite?], "step size: +infinity"
assert_send [size, :>, 0], "step size: +infinity"
a = []
from.step(*args) { |x| a << x; break if a.size == xsize }
assert_equal expected, a, "step"
a = []
enum.each { |x| a << x; break if a.size == xsize }
assert_equal expected, a, "step enumerator"
else
assert_equal expected.size, size, "step size"
a = []
from.step(*args) { |x| a << x }
assert_equal expected, a, "step"
a = []
enum.each { |x| a << x }
assert_equal expected, a, "step enumerator"
end
end
def test_step
a = []
1.step(10) {|x| a << x }
assert_equal([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], a)
a = []
1.step(10, 2) {|x| a << x }
assert_equal([1, 3, 5, 7, 9], a)
assert_raise(ArgumentError) { 1.step(10, 1, 0) { } }
assert_raise(ArgumentError) { 1.step(10, 1, 0).size }
assert_raise(ArgumentError) { 1.step(10, 0) { } }
assert_raise(ArgumentError) { 1.step(10, 0).size }
assert_nothing_raised { 1.step(by: 0) }
assert_nothing_raised { 1.step(by: 0).size }
a = []
10.step(1, -2) {|x| a << x }
assert_equal([10, 8, 6, 4, 2], a)
assert_step [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1, 10]
assert_step [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1, to: 10]
assert_step [1, 3, 5, 7, 9], [1, 10, 2]
assert_step [1, 3, 5, 7, 9], [1, to: 10, by: 2]
a = []
1.0.step(10.0, 2.0) {|x| a << x }
assert_equal([1.0, 3.0, 5.0, 7.0, 9.0], a)
assert_step [10, 8, 6, 4, 2], [10, 1, -2]
assert_step [10, 8, 6, 4, 2], [10, to: 1, by: -2]
assert_step [1.0, 3.0, 5.0, 7.0, 9.0], [1.0, 10.0, 2.0]
assert_step [1.0, 3.0, 5.0, 7.0, 9.0], [1.0, to: 10.0, by: 2.0]
assert_step [1], [1, 10, 2**32]
assert_step [1], [1, to: 10, by: 2**32]
a = []
1.step(10, 2**32) {|x| a << x }
assert_equal([1], a)
assert_step [3, 3, 3, 3], [3, by: 0], inf: true
assert_step [10], [10, 1, -(2**32)]
a = []
10.step(1, -(2**32)) {|x| a << x }
assert_equal([10], a)
assert_step [], [1, 0, Float::INFINITY]
assert_step [], [0, 1, -Float::INFINITY]
assert_step [10], [10, to: 1, by: -(2**32)]
a = []
1.step(0, Float::INFINITY) {|x| a << x }
assert_equal([], a)
a = []
0.step(1, -Float::INFINITY) {|x| a << x }
assert_equal([], a)
assert_step [10, 11, 12, 13], [10], inf: true
assert_step [10, 9, 8, 7], [10, by: -1], inf: true
end
def test_num2long