There is an integer underflow when the environment variable
RUBY_GC_HEAP_INIT_SLOTS is less than the number of slots currently
in the Ruby heap.
[Bug #19284]
If a size pooll is small, then `min_free_slots < heap_init_slots` is true.
This means that min_free_slots will be set to heap_init_slots. This
causes `swept_slots < min_free_slots` to be true in a later if statement.
The if statement could trigger a major GC which could cause major GC
thrashing.
gc_compact_move incorrectly returns false when destination heap is full
after sweeping. It returns false even if destination heap is different
than source heap (returning false means that the source heap has
finished compacting). This causes the source page to get locked, which
causes a read barrier fire when we try to compact the source heap again.
We eagerly set the new shape of an object when moving an object during
compaction. This new shape may have a different capacity than the
current original shape capacity. This means that we cannot copy from the
original buffer using size of the new capacity. Instead, we should use
the ivar count (which is less than or equal to both the new and original
capacities).
Co-Authored-By: Matt Valentine-House <matt@eightbitraptor.com>
Allocating memory (xmalloc and xrealloc) during GC could cause GC to
trigger, which would crash with `[BUG] during_gc != 0`. This is an
intermittent bug which could be hard to debug.
This commit changes it so that any memory allocation during GC will
emit a warning. When debug flags are enabled it will also cause a crash.
When moving Objects between size pools we have to assign a new shape.
This happened during updating references - we tried to create a new shape
tree that mirrored the existing tree, but based on the root shape of the
new size pool.
This causes allocations to happen if the new tree doesn't already exist,
potentially triggering a GC, during GC.
This commit changes object movement to look for a pre-existing new tree
during object movement, and if that tree does not exist, we don't move
the object to the new pool.
This allows us to remove the shape allocation from update references.
Co-Authored-By: Peter Zhu <peter@peterzhu.ca>
When an object becomes "too complex" (in other words it has too many
variations in the shape tree), we transition it to use a "too complex"
shape and use a hash for storing instance variables.
Without this patch, there were rare cases where shape tree growth could
"explode" and cause performance degradation on what would otherwise have
been cached fast paths.
This patch puts a limit on shape tree growth, and gracefully degrades in
the rare case where there could be a factorial growth in the shape tree.
For example:
```ruby
class NG; end
HUGE_NUMBER.times do
NG.new.instance_variable_set(:"@unique_ivar_#{_1}", 1)
end
```
We consider objects to be "too complex" when the object's class has more
than SHAPE_MAX_VARIATIONS (currently 8) leaf nodes in the shape tree and
the object introduces a new variation (a new leaf node) associated with
that class.
For example, new variations on instances of the following class would be
considered "too complex" because those instances create more than 8
leaves in the shape tree:
```ruby
class Foo; end
9.times { Foo.new.instance_variable_set(":@uniq_#{_1}", 1) }
```
However, the following class is *not* too complex because it only has
one leaf in the shape tree:
```ruby
class Foo
def initialize
@a = @b = @c = @d = @e = @f = @g = @h = @i = nil
end
end
9.times { Foo.new }
``
This case is rare, so we don't expect this change to impact performance
of most applications, but it needs to be handled.
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
When moving Objects between size pools we have to assign a new shape.
This happened during updating references - we tried to create a new shape
tree that mirrored the existing tree, but based on the root shape of the
new size pool.
This causes allocations to happen if the new tree doesn't already exist,
potentially triggering a GC, during GC.
This commit changes object movement to look for a pre-existing new tree
during object movement, and if that tree does not exist, we don't move
the object to the new pool.
This allows us to remove the shape allocation from update references.
Co-Authored-By: Peter Zhu <peter@peterzhu.ca>
We can loosely predict the number of ivar sets on a class based on the
number of iv set instructions in the initialize method. This should give
us a more accurate estimate to use for initial size pool allocation,
which should in turn give us more cache hits.
This commit adds RVALUE_OVERHEAD for storing metadata at the end of the
slot. This commit moves the ractor_belonging_id in debug builds from the
flags to RVALUE_OVERHEAD which frees the 16 bits in the headers for
object shapes.
We would like to differentiate types of objects via their shape. This
commit adds a special T_OBJECT shape when we allocate an instance of
T_OBJECT. This allows us to avoid testing whether an object is an
instance of a T_OBJECT or not, we can just check the shape.
Since object shapes store the capacity of an object, we no longer
need the numiv field on RObjects. This gives us one extra slot which
we can use to give embedded objects one more instance variable (for a
total of 3 ivs). This commit removes the concept of numiv from RObject.
This commit adds a `capacity` field to shapes, and adds shape
transitions whenever an object's capacity changes. Objects which are
allocated out of a bigger size pool will also make a transition from the
root shape to the shape with the correct capacity for their size pool
when they are allocated.
This commit will allow us to remove numiv from objects completely, and
will also mean we can guarantee that if two objects share shapes, their
IVs are in the same positions (an embedded and extended object cannot
share shapes). This will enable us to implement ivar sets in YJIT using
object shapes.
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
fiber machine stack is placed outside of C stack allocated by wasm-ld,
so highest stack address recorded by `rb_wasm_record_stack_base` is
invalid when running on non-main fiber.
Therefore, we should scan `stack_{start,end}` which always point a valid
stack range in any context.
We were previously incrementing the max_iv_count on a class in gc
freeing. By the time we free an object though, we're not guaranteed its
class is still valid. Instead, we can do this when marking and we're
guaranteed the object still knows its class.
* Avoid RCLASS_IV_TBL in marshal.c
* Avoid RCLASS_IV_TBL for class names
* Avoid RCLASS_IV_TBL for autoload
* Avoid RCLASS_IV_TBL for class variables
* Avoid copying RCLASS_IV_TBL onto ICLASSes
* Use object shapes for Class and Module IVs
`iv_count` is a misleading name because when IVs are unset, the new
shape doesn't decrement this value. `next_iv_count` is an accurate, and
more descriptive name.
Before object shapes, we were using class serial to invalidate
inline caches. Now that we use shape_id for inline cache keys,
the class serial is unnecessary.
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Shapes gives us an almost exact count of instance variables on an
object. Since we know the number of instance variables that have been
set, we will never access slots that haven't been initialized with an
IV.
Shapes provides us with an (almost) exact count of instance variables.
We only need to check for Qundef when an IV has been "undefined"
Prefer to use ROBJECT_IV_COUNT when iterating IVs
GCC 12 introduced a new warning flag `-Wuse-after-free`, however it
has a false positive at `realloc` when optimization is disabled, since
the memory requested for reallocation is guaranteed to not be touched.
This workaround is very unclear why the false warning is suppressed by
a statement-expression GCC extension.
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects. Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness"). Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree. Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.
For example:
```ruby
class Foo
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
class Bar
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```
Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.
This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.
This commit also adds some methods for debugging shapes on objects. See
`RubyVM::Shape` for more details.
For more context on Object Shapes, see [Feature: #18776]
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
Tabs were expanded because the file did not have any tab indentation in unedited lines.
Please update your editor config, and use misc/expand_tabs.rb in the pre-commit hook.
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects. Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness"). Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree. Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.
For example:
```ruby
class Foo
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
class Bar
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```
Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.
This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.
This commit also adds some methods for debugging shapes on objects. See
`RubyVM::Shape` for more details.
For more context on Object Shapes, see [Feature: #18776]
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
Poisoned regions cannot be accessed without unpoisoning outside gc.c.
Specifically, debug.gem is terminated by AddressSanitizer.
```
SUMMARY: AddressSanitizer: use-after-poison iseq_collector.c:39 in iseq_i
```