Граф коммитов

17 Коммитов

Автор SHA1 Сообщение Дата
Koichi Sasada d578684989 `rb_thread_lock_native_thread()`
Introduce `rb_thread_lock_native_thread()` to allocate dedicated
native thread to the current Ruby thread for M:N threads.
This C API is similar to Go's `runtime.LockOSThread()`.

Accepted at https://github.com/ruby/dev-meeting-log/blob/master/2023/DevMeeting-2023-08-24.md
(and missed to implement on Ruby 3.3.0)
2024-02-21 15:38:29 +09:00
KJ Tsanaktsidis 807714447e Pass down "stack start" variables from closer to the top of the stack
This commit changes how stack extents are calculated for both the main
thread and other threads. Ruby uses the address of a local variable as
part of the calculation for machine stack extents:

* pthreads uses it as a lower-bound on the start of the stack, because
  glibc (and maybe other libcs) can store its own data on the stack
  before calling into user code on thread creation.
* win32 uses it as an argument to VirtualQuery, which gets the extent of
  the memory mapping which contains the variable

However, the local being used for this is actually too low (too close to
the leaf function call) in both the main thread case and the new thread
case.

In the main thread case, we have the `INIT_STACK` macro, which is used
for pthreads to set the `native_main_thread->stack_start` value. This
value is correctly captured at the very top level of the program (in
main.c). However, this is _not_ what's used to set the execution context
machine stack (`th->ec->machine_stack.stack_start`); that gets set as
part of a call to `ruby_thread_init_stack` in `Init_BareVM`, using the
address of a local variable allocated _inside_ `Init_BareVM`. This is
too low; we need to use a local allocated closer to the top of the
program.

In the new thread case, the lolcal is allocated inside
`native_thread_init_stack`, which is, again, too low.

In both cases, this means that we might have VALUEs lying outside the
bounds of `th->ec->machine.stack_{start,end}`, which won't be marked
correctly by the GC machinery.

To fix this,

* In the main thread case: We already have `INIT_STACK` at the right
  level, so just pass that local var to `ruby_thread_init_stack`.
* In the new thread case: Allocate the local one level above the call to
  `native_thread_init_stack` in `call_thread_start_func2`.

[Bug #20001]

fix
2024-01-19 09:55:12 +11:00
KJ Tsanaktsidis 396e94666b Revert "Pass down "stack start" variables from closer to the top of the stack"
This reverts commit 4ba8f0dc99.
2024-01-12 17:58:54 +11:00
KJ Tsanaktsidis 4ba8f0dc99 Pass down "stack start" variables from closer to the top of the stack
The implementation of `native_thread_init_stack` for the various
threading models can use the address of a local variable as part of the
calculation of the machine stack extents:

* pthreads uses it as a lower-bound on the start of the stack, because
  glibc (and maybe other libcs) can store its own data on the stack
  before calling into user code on thread creation.
* win32 uses it as an argument to VirtualQuery, which gets the extent of
  the memory mapping which contains the variable

However, the local being used for this is actually allocated _inside_
the `native_thread_init_stack` frame; that means the caller might
allocate a VALUE on the stack that actually lies outside the bounds
stored in machine.stack_{start,end}.

A local variable from one level above the topmost frame that stores
VALUEs on the stack must be drilled down into the call to
`native_thread_init_stack` to be used in the calculation. This probably
doesn't _really_ matter for the win32 case (they'll be in the same
memory mapping so VirtualQuery should return the same thing), but
definitely could matter for the pthreads case.

[Bug #20001]
2024-01-12 17:29:48 +11:00
Koichi Sasada cdb36dfe7d fix `native_thread_destroy()` timing
With M:N thread scheduler, the native thread (NT) related resources
should be freed when the NT is no longer needed. So the calling
`native_thread_destroy()` at the end of `is will be freed when
`thread_cleanup_func()` (at the end of Ruby thread) is not correct
timing. Call it when the corresponding Ruby thread is collected.
2023-10-13 09:19:31 +09:00
Koichi Sasada be1bbd5b7d M:N thread scheduler for Ractors
This patch introduce M:N thread scheduler for Ractor system.

In general, M:N thread scheduler employs N native threads (OS threads)
to manage M user-level threads (Ruby threads in this case).
On the Ruby interpreter, 1 native thread is provided for 1 Ractor
and all Ruby threads are managed by the native thread.

From Ruby 1.9, the interpreter uses 1:1 thread scheduler which means
1 Ruby thread has 1 native thread. M:N scheduler change this strategy.

Because of compatibility issue (and stableness issue of the implementation)
main Ractor doesn't use M:N scheduler on default. On the other words,
threads on the main Ractor will be managed with 1:1 thread scheduler.

There are additional settings by environment variables:

`RUBY_MN_THREADS=1` enables M:N thread scheduler on the main ractor.
Note that non-main ractors use the M:N scheduler without this
configuration. With this configuration, single ractor applications
run threads on M:1 thread scheduler (green threads, user-level threads).

`RUBY_MAX_CPU=n` specifies maximum number of native threads for
M:N scheduler (default: 8).

This patch will be reverted soon if non-easy issues are found.

[Bug #19842]
2023-10-12 14:47:01 +09:00
Nobuyoshi Nakada c1432a4816
Compile disabled code for thread cache always 2023-06-30 23:59:05 +09:00
Koichi Sasada f803bcfc87 pass `th` to `thread_sched_to_waiting()`
for future extension
2023-03-31 18:50:10 +09:00
Jean Boussier 704dd25812 TestThreadInstrumentation: emit the EXIT event sooner
```
  1) Failure:
TestThreadInstrumentation#test_thread_instrumentation [/tmp/ruby/src/trunk-repeat20-asserts/test/-ext-/thread/test_instrumentation_api.rb:33]:
Call counters[4]: [3, 4, 4, 4, 0].
Expected 0 to be > 0.
```

We fire the EXIT hook after the call to `thread_sched_to_dead` which
mean another thread might be running before the `EXIT` hook have been
executed.
2023-03-06 13:10:42 +01:00
Yuta Saito 3a6cdeda89 [wasm] Scan machine stack based on `ec->machine.stack_{start,end}`
fiber machine stack is placed outside of C stack allocated by wasm-ld,
so highest stack address recorded by `rb_wasm_record_stack_base` is
invalid when running on non-main fiber.
Therefore, we should scan `stack_{start,end}` which always point a valid
stack range in any context.
2022-11-06 05:03:21 +09:00
Jean Boussier 664c23db79 GVL Instrumentation: remove the EXITED count assertion
It's very flaky for some unknown reason. Something we have
an extra EXITED event. I suspect some other test is causing this.
2022-07-13 19:39:31 +02:00
Jean Boussier b6c1e1158d GVL Instrumentation API: add STARTED and EXITED events
[Feature #18339]

After experimenting with the initial version of the API I figured there is a need
for an exit event to cleanup instrumentation data. e.g. if you record data in a
{thread_id -> data} table, you need to free associated data when a thread goes away.
2022-06-17 09:08:26 +02:00
Koichi Sasada 62e08d4b84 remove `DEBUG_OUT()` macro
This macro is no longer used ([GH-5933]).
2022-05-24 16:28:07 +09:00
Koichi Sasada d9984f39d3 remove `NON_SCALAR_THREAD_ID` support
`NON_SCALAR_THREAD_ID` shows `pthread_t` is non-scalar (non-pointer)
and only s390x is known platform. However, the supporting code is
very complex and it is only used for deubg print information.

So this patch removes the support of `NON_SCALAR_THREAD_ID`
and make the code simple.
2022-05-24 10:06:51 +09:00
Koichi Sasada 03d21a4fb0 introduce struct `rb_native_thread`
`rb_thread_t` contained `native_thread_data_t` to represent
thread implementation dependent data. This patch separates
them and rename it `rb_native_thread` and point it from
`rb_thraed_t`.

Now, 1 Ruby thread (`rb_thread_t`) has 1 native thread (`rb_native_thread`).
2022-04-23 03:08:27 +09:00
Koichi Sasada 1c4fc0241d rename thread internal naming
Now GVL is not process *Global* so this patch try to use
another words.

* `rb_global_vm_lock_t` -> `struct rb_thread_sched`
  * `gvl->owner` -> `sched->running`
  * `gvl->waitq` -> `sched->readyq`
* `rb_gvl_init` -> `rb_thread_sched_init`
* `gvl_destroy` -> `rb_thread_sched_destroy`
* `gvl_acquire` -> `thread_sched_to_running` # waiting -> ready -> running
* `gvl_release` -> `thread_sched_to_waiting` # running -> waiting
* `gvl_yield`   -> `thread_sched_yield`
* `GVL_UNLOCK_BEGIN` -> `THREAD_BLOCKING_BEGIN`
* `GVL_UNLOCK_END` -> `THREAD_BLOCKING_END`

* removed
  * `rb_ractor_gvl`
  * `rb_vm_gvl_destroy` (not used)

There are GVL functions such as `rb_thread_call_without_gvl()` yet
but I don't have good name to replace them. Maybe GVL stands for
"Greate Valuable Lock" or something like that.
2022-04-22 07:54:09 +09:00
Yuta Saito 420622b5a7 [wasm] add no thread variant for freestanding environment
This implementation does nothing around preemptive context switching
because there is no native thread.
2022-01-19 11:19:06 +09:00