Module#include should only be able to insert modules after the origin,
otherwise it ends up working like Module#prepend.
This fixes the case where one of the modules in the included module
chain is included in a module that is already prepended to the receiver.
Fixes [Bug #7844]
Before this commit, `clone` gave different results depending on whether the original object
had an attached singleton class or not.
Consider the following setup:
```
class Foo; end
Foo.singleton_class.define_method(:foo) {}
obj = Foo.new
obj.singleton_class if $call_singleton
clone = obj.clone
```
When `$call_singleton = false`, neither `obj.singleton_class.singleton_class` nor
`clone.singleton_class.singleton_class` own any methods.
However, when `$call_singleton = true`, `clone.singleton_class.singleton_class` would own a copy of
`foo` from `Foo.singleton_class`, even though `obj.singleton_class.singleton_class` does not.
The latter case is unexpected and results in a visibly different clone, depending on if the original object
had an attached class or not.
Co-authored-by: Ufuk Kayserilioglu <ufuk.kayserilioglu@shopify.com>
Before this commit, iclasses were "shady", or not protected by write
barriers. Because of that, the GC needs to spend more time marking these
objects than otherwise.
Applications that make heavy use of modules should see reduction in GC
time as they have a significant number of live iclasses on the heap.
- Put logic for iclass method table ownership into a function
- Remove calls to WB_UNPROTECT and insert write barriers for iclasses
This commit relies on the following invariant: for any non oirigin
iclass `I`, `RCLASS_M_TBL(I) == RCLASS_M_TBL(RBasic(I)->klass)`. This
invariant did not hold prior to 98286e9 for classes and modules that
have prepended modules.
[Feature #16984]
98286e9850 made it so that
`Module#include` allocates an origin iclass on each use. Since `include`
is widely used, the extra allocation can contribute significantly to
memory usage.
Instead of always allocating in anticipation of prepend, this change
takes a different approach. The new setup inserts a origin iclass into
the super chains of all the children of the module when prepend happens
for the first time.
rb_ensure_origin is made static again since now that adding an origin
now means walking over all usages, we want to limit the number of places
where we do it.
3556a834a2 added support for
Module#include to affect the iclasses of the module. It didn't add
support for Module#prepend because there were bugs in the object model
and GC at the time that prevented it. Those problems have been
addressed in ad729a1d11 and
98286e9850, and now adding support for
it is straightforward and does not break any tests or specs.
Fixes [Bug #9573]
This fixes various issues when a module is included in or prepended
to a module or class, and then refined, or refined and then included
or prepended to a module or class.
Implement by renaming ensure_origin to rb_ensure_origin, making it
non-static, and calling it when refining a module.
Fix Module#initialize_copy to handle origins correctly. Previously,
Module#initialize_copy did not handle origins correctly. For example,
this code:
```ruby
module B; end
class A
def b; 2 end
prepend B
end
a = A.dup.new
class A
def b; 1 end
end
p a.b
```
Printed 1 instead of 2. This is because the super chain for
a.singleton_class was:
```
a.singleton_class
A.dup
B(iclass)
B(iclass origin)
A(origin) # not A.dup(origin)
```
The B iclasses would not be modified, so the includer entry would be
still be set to A and not A.dup.
This modifies things so that if the class/module has an origin,
all iclasses between the class/module and the origin are duplicated
and have the correct includer entry set, and the correct origin
is created.
This requires other changes to make sure all tests still pass:
* rb_undef_methods_from doesn't automatically handle classes with
origins, so pass it the origin for Comparable when undefing
methods in Complex. This fixed a failure in the Complex tests.
* When adding a method, the method cache was not cleared
correctly if klass has an origin. Clear the method cache for
the klass before switching to the origin of klass. This fixed
failures in the autoload tests related to overridding require,
without breaking the optimization tests. Also clear the method
cache for both the module and origin when removing a method.
* Module#include? is fixed to skip origin iclasses.
* Refinements are fixed to use the origin class of the module that
has an origin.
* RCLASS_REFINED_BY_ANY is removed as it was only used in a single
place and is no longer needed.
* Marshal#dump is fixed to skip iclass origins.
* rb_method_entry_make is fixed to handled overridden optimized
methods for modules that have origins.
Fixes [Bug #16852]
If a module has an origin, and that module is included in another
module or class, previously the iclass created for the module had
an origin pointer to the module's origin instead of the iclass's
origin.
Setting the origin pointer correctly requires using a stack, since
the origin iclass is not created until after the iclass itself.
Use a hidden ruby array to implement that stack.
Correctly assigning the origin pointers in the iclass caused a
use-after-free in GC. If a module with an origin is included
in a class, the iclass shares a method table with the module
and the iclass origin shares a method table with module origin.
Mark iclass origin with a flag that notes that even though the
iclass is an origin, it shares a method table, so the method table
should not be garbage collected. The shared method table will be
garbage collected when the module origin is garbage collected.
I've tested that this does not introduce a memory leak.
This change caused a VM assertion failure, which was traced to callable
method entries using the incorrect defined_class. Update
rb_vm_check_redefinition_opt_method and find_defined_class_by_owner
to treat iclass origins different than class origins to avoid this
issue.
This also includes a fix for Module#included_modules to skip
iclasses with origins.
Fixes [Bug #16736]
If a module has an origin, and that module is included in another
module or class, previously the iclass created for the module had
an origin pointer to the module's origin instead of the iclass's
origin.
Setting the origin pointer correctly requires using a stack, since
the origin iclass is not created until after the iclass itself.
Use a hidden ruby array to implement that stack.
Correctly assigning the origin pointers in the iclass caused a
use-after-free in GC. If a module with an origin is included
in a class, the iclass shares a method table with the module
and the iclass origin shares a method table with module origin.
Mark iclass origin with a flag that notes that even though the
iclass is an origin, it shares a method table, so the method table
should not be garbage collected. The shared method table will be
garbage collected when the module origin is garbage collected.
I've tested that this does not introduce a memory leak.
This also includes a fix for Module#included_modules to skip
iclasses with origins.
Fixes [Bug #16736]
When calling Module#include, if the receiver is a module,
walk the subclasses list and include the argument module in each
iclass.
This does not affect Module#prepend, as fixing that is significantly
more involved.
Fixes [Bug #9573]
This patch contains several ideas:
(1) Disposable inline method cache (IMC) for race-free inline method cache
* Making call-cache (CC) as a RVALUE (GC target object) and allocate new
CC on cache miss.
* This technique allows race-free access from parallel processing
elements like RCU.
(2) Introduce per-Class method cache (pCMC)
* Instead of fixed-size global method cache (GMC), pCMC allows flexible
cache size.
* Caching CCs reduces CC allocation and allow sharing CC's fast-path
between same call-info (CI) call-sites.
(3) Invalidate an inline method cache by invalidating corresponding method
entries (MEs)
* Instead of using class serials, we set "invalidated" flag for method
entry itself to represent cache invalidation.
* Compare with using class serials, the impact of method modification
(add/overwrite/delete) is small.
* Updating class serials invalidate all method caches of the class and
sub-classes.
* Proposed approach only invalidate the method cache of only one ME.
See [Feature #16614] for more details.
1. By substituting `n_var` with its initializer, `0 < n_var` is
equivalent to `argc > argi + n_trail`.
2. As `argi` is non-negative, so `argi + n_trail >= n_trail`, and
the above expression is equivalent to `argc > n_trail`.
3. Therefore, `f_last` is always false, and `last_hash` is no
longer used.
http://ci.rvm.jp/results/trunk_gcc7@silicon-docker/2539622
```
/tmp/ruby/v2/src/trunk_gcc7/class.c: In function 'rb_scan_args_parse':
/tmp/ruby/v2/src/trunk_gcc7/class.c:1971:12: warning: unused variable 'tmp_buffer' [-Wunused-variable]
VALUE *tmp_buffer = arg->tmp_buffer;
^~~~~~~~~~
```
```
In file included from /tmp/ruby/v2/src/trunk_gcc7/vm_insnhelper.c:1895:0,
from /tmp/ruby/v2/src/trunk_gcc7/vm.c:349:
/tmp/ruby/v2/src/trunk_gcc7/vm_args.c:212:1: warning: 'args_stored_kw_argv_to_hash' defined but not used [-Wunused-function]
args_stored_kw_argv_to_hash(struct args_info *args)
^~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This removes the warnings added in 2.7, and changes the behavior
so that a final positional hash is not treated as keywords or
vice-versa.
To handle the arg_setup_block splat case correctly with keyword
arguments, we need to check if we are taking a keyword hash.
That case didn't have a test, but it affects real-world code,
so add a test for it.
This removes rb_empty_keyword_given_p() and related code, as
that is not needed in Ruby 3. The empty keyword case is the
same as the no keyword case in Ruby 3.
This changes rb_scan_args to implement keyword argument
separation for C functions when the : character is used.
For backwards compatibility, it returns a duped hash.
This is a bad idea for performance, but not duping the hash
breaks at least Enumerator::ArithmeticSequence#inspect.
Instead of having RB_PASS_CALLED_KEYWORDS be a number,
simplify the code by just making it be rb_keyword_given_p().
Saves comitters' daily life by avoid #include-ing everything from
internal.h to make each file do so instead. This would significantly
speed up incremental builds.
We take the following inclusion order in this changeset:
1. "ruby/config.h", where _GNU_SOURCE is defined (must be the very
first thing among everything).
2. RUBY_EXTCONF_H if any.
3. Standard C headers, sorted alphabetically.
4. Other system headers, maybe guarded by #ifdef
5. Everything else, sorted alphabetically.
Exceptions are those win32-related headers, which tend not be self-
containing (headers have inclusion order dependencies).
(old)
test.rb:4: warning: The last argument is used as the keyword parameter
test.rb:1: warning: for `foo' defined here; maybe ** should be added to the call?
(new)
test.rb:4: warning: The last argument is used as keyword parameters; maybe ** should be added to the call
test.rb:1: warning: The called method `foo' is defined here
This makes behavior the same as super in instance_eval in method
in class. The reason this wasn't implemented before is that
there is a check to determine if the self in the current context
is of the expected class, and a module itself can be included
in multiple classes, so it doesn't have an expected class.
Implementing this requires giving iclasses knowledge of which
class created them, so that super call in the module method
knows the expected class for super calls. This reference
is called includer, and should only be set for iclasses.
Note that the approach Ruby uses in this check is not robust. If
you instance_eval another object of the same class and call super,
instead of an TypeError, you get super called with the
instance_eval receiver instead of the method receiver. Truly
fixing super would require keeping a reference to the super object
(method receiver) in each frame where scope has changed, and using
that instead of current self when calling super.
Fixes [Bug #11636]
After the previous commit, this was still broken. The reason it
was broken is that a refined module that hasn't been prepended to
yet keeps the refined methods in the module's method table. When
prepending, the module's method table is moved to the origin
iclass, and then the refined methods are moved from the method
table to a new method table in the module itself.
Unfortunately, that means that if a class has included the module,
prepending breaks the refinements, because when the methods are
moved from the origin iclass method table to the module method
table, they are removed from the method table from the iclass
created when the module was included earlier.
Fix this by always creating an origin class when including a
module that has any refinements, even if the refinements are
not currently used. I wasn't sure the best way to do that.
The approach I choose was to use an object flag. The flag is
set on the module when Module#refine is called, and if the
flag is present when the module is included in another module
or class, an origin iclass is created for the module.
Fixes [Bug #13446]
This previously did not work, and the reason it did not work is
that:
1) Refining a module or class that prepends other modules places
the refinements in the class itself and not the origin iclass.
2) Inclusion of a module that prepends other modules skips the
module itself, including only iclasses for the prepended modules
and the origin iclass.
Those two behaviors combined meant that the method table for the
refined methods for the included module never ends up in the
method lookup chain for the class including the module.
Fix this by not skipping the module itself when the module is
included. This requires some code rearranging in
rb_include_class_new to make sure the correct method tables and
origin settings are used for the created iclass.
As origin iclasses shouldn't be exposed to Ruby, this also
requires skipping modules that have origin iclasses in
Module#ancestors (classes that have origin iclasses were already
skipped).
Fixes [Bug #16242]
This removes the related tests, and puts the related specs behind
version guards. This affects all code in lib, including some
libraries that may want to support older versions of Ruby.
This reverts commits: 10d6a3aca78ba48c1b85fba8627dc1dd883de5ba6c6a25feca167e6b48f17cb96d41a53207979278595b3c4fdd1521f7cf89c11c5e69accf336082033632a812c0f56506be0d86427a3219 .
The reason for the revert is that we observe ABA problem around
inline method cache. When a cache misshits, we search for a
method entry. And if the entry is identical to what was cached
before, we reuse the cache. But the commits we are reverting here
introduced situations where a method entry is freed, then the
identical memory region is used for another method entry. An
inline method cache cannot detect that ABA.
Here is a code that reproduce such situation:
```ruby
require 'prime'
class << Integer
alias org_sqrt sqrt
def sqrt(n)
raise
end
GC.stress = true
Prime.each(7*37){} rescue nil # <- Here we populate CC
class << Object.new; end
# These adjacent remove-then-alias maneuver
# frees a method entry, then immediately
# reuses it for another.
remove_method :sqrt
alias sqrt org_sqrt
end
Prime.each(7*37).to_a # <- SEGV
```