Similar to the bmethod optimization, this avoids using
CALLER_ARG_SPLAT if not necessary. As long as the method argument
can be shifted off, other arguments are passed through as-is.
This optimizes the following types of calls:
* send(meth, arg) ~5%
* send(meth, *args) ~75% for args.length == 200
* send(meth, *args, **kw) ~50% for args.length == 200
* send(meth, **kw) ~25%
* send(meth, kw: 1) ~115%
Note that empty argument splats do get slower with this approach,
by about 20%. This is probably because iseq argument setup is
slower for empty argument splats than CALLER_SETUP_ARG is. Other
than non-empty argument splats, other argument splats are faster,
with the speedup depending on the number of arguments.
The following types of calls are not optimized:
* send(*args)
* send(*args, **kw)
This is because the you cannot shift the method argument off
without first splatting the arg.
This optimizes the following calls:
* ~10-15% for f(*a) when a does not end with a flagged keywords hash
* ~10-15% for f(*a) when a ends with an empty flagged keywords hash
* ~35-40% for f(*a, **kw) if kw is empty
This still copies the array contents to the VM stack, but avoids some
overhead. It would be faster to use the array pointer directly,
but that could cause problems if the array was modified during
the call to the function. You could do that optimization for frozen
arrays, but as splatting frozen arrays is uncommon, and the speedup
is minimal (<5%), it doesn't seem worth it.
The vm_send_cfunc benchmark has been updated to test additional cfunc
call types, and the numbers above were taken from the benchmark results.
Currently, bmethod arguments are copied from the VM stack to the
C stack in vm_call_bmethod, then copied from the C stack to the VM
stack later in invoke_iseq_block_from_c. This is inefficient.
This adds vm_call_iseq_bmethod and vm_call_noniseq_bmethod.
vm_call_iseq_bmethod is an optimized method that skips stack
copies (though there is one copy to remove the receiver from
the stack), and avoids calling vm_call_bmethod_body,
rb_vm_invoke_bmethod, invoke_block_from_c_proc,
invoke_iseq_block_from_c, and vm_yield_setup_args.
Th vm_call_iseq_bmethod argument handling is similar to the
way normal iseq methods are called, and allows for similar
performance optimizations when using splats or keywords.
However, even in the no argument case it's still significantly
faster.
A benchmark is added for bmethod calling. In my environment,
it improves bmethod calling performance by 38-59% for simple
bmethod calls, and up to 180% for bmethod calls passing
literal keywords on both sides.
```
./miniruby-iseq-bmethod: 18159792.6 i/s
./miniruby-m: 13174419.1 i/s - 1.38x slower
bmethod_simple_1
./miniruby-iseq-bmethod: 15890745.4 i/s
./miniruby-m: 10008972.7 i/s - 1.59x slower
bmethod_simple_0_splat
./miniruby-iseq-bmethod: 13142804.3 i/s
./miniruby-m: 11168595.2 i/s - 1.18x slower
bmethod_simple_1_splat
./miniruby-iseq-bmethod: 12375791.0 i/s
./miniruby-m: 8491140.1 i/s - 1.46x slower
bmethod_no_splat
./miniruby-iseq-bmethod: 10151258.8 i/s
./miniruby-m: 8716664.1 i/s - 1.16x slower
bmethod_0_splat
./miniruby-iseq-bmethod: 8138802.5 i/s
./miniruby-m: 7515600.2 i/s - 1.08x slower
bmethod_1_splat
./miniruby-iseq-bmethod: 8028372.7 i/s
./miniruby-m: 5947658.6 i/s - 1.35x slower
bmethod_10_splat
./miniruby-iseq-bmethod: 6953514.1 i/s
./miniruby-m: 4840132.9 i/s - 1.44x slower
bmethod_100_splat
./miniruby-iseq-bmethod: 5287288.4 i/s
./miniruby-m: 2243218.4 i/s - 2.36x slower
bmethod_kw
./miniruby-iseq-bmethod: 8931358.2 i/s
./miniruby-m: 3185818.6 i/s - 2.80x slower
bmethod_no_kw
./miniruby-iseq-bmethod: 12281287.4 i/s
./miniruby-m: 10041727.9 i/s - 1.22x slower
bmethod_kw_splat
./miniruby-iseq-bmethod: 5618956.8 i/s
./miniruby-m: 3657549.5 i/s - 1.54x slower
```
Originally, when 2e7bceb34e fixed cfuncs to no
longer use the VM stack for large array splats, it was thought to have fully
fixed Bug #4040, since the issue was fixed for methods defined in Ruby (iseqs)
back in Ruby 2.2.
After additional research, I determined that same issue affects almost all
types of method calls, not just iseq and cfunc calls. There were two main
types of remaining issues, important cases (where large array splat should
work) and pedantic cases (where large array splat raised SystemStackError
instead of ArgumentError).
Important cases:
```ruby
define_method(:a){|*a|}
a(*1380888.times)
def b(*a); end
send(:b, *1380888.times)
:b.to_proc.call(self, *1380888.times)
def d; yield(*1380888.times) end
d(&method(:b))
def self.method_missing(*a); end
not_a_method(*1380888.times)
```
Pedantic cases:
```ruby
def a; end
a(*1380888.times)
def b(_); end
b(*1380888.times)
def c(_=nil); end
c(*1380888.times)
c = Class.new do
attr_accessor :a
alias b a=
end.new
c.a(*1380888.times)
c.b(*1380888.times)
c = Struct.new(:a) do
alias b a=
end.new
c.a(*1380888.times)
c.b(*1380888.times)
```
This patch fixes all usage of CALLER_SETUP_ARG with splatting a large
number of arguments, and required similar fixes to use a temporary
hidden array in three other cases where the VM would use the VM stack
for handling a large number of arguments. However, it is possible
there may be additional cases where splatting a large number
of arguments still causes a SystemStackError.
This has a measurable performance impact, as it requires additional
checks for a large number of arguments in many additional cases.
This change is fairly invasive, as there were many different VM
functions that needed to be modified to support this. To avoid
too much API change, I modified struct rb_calling_info to add a
heap_argv member for storing the array, so I would not have to
thread it through many functions. This struct is always stack
allocated, which helps ensure sure GC doesn't collect it early.
Because of how invasive the changes are, and how rarely large
arrays are actually splatted in Ruby code, the existing test/spec
suites are not great at testing for correct behavior. To try to
find and fix all issues, I tested this in CI with
VM_ARGC_STACK_MAX to -1, ensuring that a temporary array is used
for all array splat method calls. This was very helpful in
finding breaking cases, especially ones involving flagged keyword
hashes.
Fixes [Bug #4040]
Co-authored-by: Jimmy Miller <jimmy.miller@shopify.com>
I previously left a comment stating I didn't know why a certain method existed. In investigating the code in `CaptureCodeContext#capture_before_after_kws` I found that it was added as to give a slightly less noisy output.
The docs for AroundBlockScan#capture_neighbor_context only describe keywords as being a primary concern. I modified that code to only include lines that are keywords or ends. This reduces the output noise even more.
This allows me to remove that `start_at_next_line` method.
One weird side effect of the prior logic is it would cause this code to produce this output:
```
class OH
def hello
def hai
end
end
```
```
1 class OH
> 2 def hello
4 def hai
5 end
6 end
```
But this code to produce this output:
```
class OH
def hello
def hai
end
end
```
```
1 class OH
> 2 def hello
4 end
5 end
```
Note the missing `def hai`. The only difference between them is that space.
With this change, they're now both consistent.
https://github.com/ruby/syntax_suggest/commit/4a54767a3e
(https://github.com/ruby/reline/pull/535)
This PR was an effort to address #321 (ed_quoted_insert doesn't work
properly) but per the reporter it did not work correctly.
Moreover, it introduced a major regression: Shell job control stopped
working in all applications that use reline, notably IRB.
Bash and other shells send SIGTSTP in response to C-z to implement job
suspension. Handling SIGSTP opts out of this functionality. For a
line oriented terminal program this should be avoided (not to mention,
this behavior diverges from readline's)
https://github.com/ruby/reline/commit/26383d25b8
Co-authored-by: Carl Brasic <cbrasic@drwholdings.com>
(https://github.com/ruby/irb/pull/564)
The current method-redefining approach brings little benefit, makes it
harder to understand the code, and causes warnings like:
> warning: method redefined; discarding old execute
This patch simplifies it while displaying more helpful message when rdoc
couldn't be loaded.
<Class/Module>`
(https://github.com/ruby/irb/pull/562)
Instead of always printing methods inherited from Class or Module, IRB by
default should filter them out unless `<Class/Module>` is specified to be
either of those.
`GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID` clock uses `getrusage`
always if available as the name states. That is if it is implemented
`getrusage` is available, regardless microseconds in its results.
Prior to commit 5806c54447, it was "at
least one result with precision beyond milliseconds (with none-zero
microseconds) should exist"; after this commit, "at least one result
should have zero microseconds". This chance is lower than the
previous condition.
This check was introduced to match an assertion in the C YJIT when this
was originally introduced. I don't believe it's necessary for
correctness of the generated code.
Co-authored-by: Adam Hess <HParker@github.com>
Co-authored-by: Daniel Colson <danieljamescolson@gmail.com>
Co-authored-by: Luan Vieira <luanzeba@github.com>
* YJIT: Avoid splitting mov for small values on arm64
* Fix a comment
Co-authored-by: Alan Wu <XrXr@users.noreply.github.com>
* YJIT: Test the 0xffff boundary
---------
Co-authored-by: Alan Wu <XrXr@users.noreply.github.com>