Redo of 34a2acdac788602c14bf05fb616215187badd504 and
931138b00696419945dc03e10f033b1f53cd50f3 which were reverted.
GitHub PR #4340.
This change implements a cache for class variables. Previously there was
no cache for cvars. Cvar access is slow due to needing to travel all the
way up th ancestor tree before returning the cvar value. The deeper the
ancestor tree the slower cvar access will be.
The benefits of the cache are more visible with a higher number of
included modules due to the way Ruby looks up class variables. The
benchmark here includes 26 modules and shows with the cache, this branch
is 6.5x faster when accessing class variables.
```
compare-ruby: ruby 3.1.0dev (2021-03-15T06:22:34Z master 9e5105c) [x86_64-darwin19]
built-ruby: ruby 3.1.0dev (2021-03-15T12:12:44Z add-cache-for-clas.. c6be009) [x86_64-darwin19]
| |compare-ruby|built-ruby|
|:--------|-----------:|---------:|
|vm_cvar | 5.681M| 36.980M|
| | -| 6.51x|
```
Benchmark.ips calling `ActiveRecord::Base.logger` from within a Rails
application. ActiveRecord::Base.logger has 71 ancestors. The more
ancestors a tree has, the more clear the speed increase. IE if Base had
only one ancestor we'd see no improvement. This benchmark is run on a
vanilla Rails application.
Benchmark code:
```ruby
require "benchmark/ips"
require_relative "config/environment"
Benchmark.ips do |x|
x.report "logger" do
ActiveRecord::Base.logger
end
end
```
Ruby 3.0 master / Rails 6.1:
```
Warming up --------------------------------------
logger 155.251k i/100ms
Calculating -------------------------------------
```
Ruby 3.0 with cvar cache / Rails 6.1:
```
Warming up --------------------------------------
logger 1.546M i/100ms
Calculating -------------------------------------
logger 14.857M (± 4.8%) i/s - 74.198M in 5.006202s
```
Lastly we ran a benchmark to demonstate the difference between master
and our cache when the number of modules increases. This benchmark
measures 1 ancestor, 30 ancestors, and 100 ancestors.
Ruby 3.0 master:
```
Warming up --------------------------------------
1 module 1.231M i/100ms
30 modules 432.020k i/100ms
100 modules 145.399k i/100ms
Calculating -------------------------------------
1 module 12.210M (± 2.1%) i/s - 61.553M in 5.043400s
30 modules 4.354M (± 2.7%) i/s - 22.033M in 5.063839s
100 modules 1.434M (± 2.9%) i/s - 7.270M in 5.072531s
Comparison:
1 module: 12209958.3 i/s
30 modules: 4354217.8 i/s - 2.80x (± 0.00) slower
100 modules: 1434447.3 i/s - 8.51x (± 0.00) slower
```
Ruby 3.0 with cvar cache:
```
Warming up --------------------------------------
1 module 1.641M i/100ms
30 modules 1.655M i/100ms
100 modules 1.620M i/100ms
Calculating -------------------------------------
1 module 16.279M (± 3.8%) i/s - 82.038M in 5.046923s
30 modules 15.891M (± 3.9%) i/s - 79.459M in 5.007958s
100 modules 16.087M (± 3.6%) i/s - 81.005M in 5.041931s
Comparison:
1 module: 16279458.0 i/s
100 modules: 16087484.6 i/s - same-ish: difference falls within error
30 modules: 15891406.2 i/s - same-ish: difference falls within error
```
Co-authored-by: Aaron Patterson <tenderlove@ruby-lang.org>
This change implements a cache for class variables. Previously there was
no cache for cvars. Cvar access is slow due to needing to travel all the
way up th ancestor tree before returning the cvar value. The deeper the
ancestor tree the slower cvar access will be.
The benefits of the cache are more visible with a higher number of
included modules due to the way Ruby looks up class variables. The
benchmark here includes 26 modules and shows with the cache, this branch
is 6.5x faster when accessing class variables.
```
compare-ruby: ruby 3.1.0dev (2021-03-15T06:22:34Z master 9e5105ca45) [x86_64-darwin19]
built-ruby: ruby 3.1.0dev (2021-03-15T12:12:44Z add-cache-for-clas.. c6be0093ae) [x86_64-darwin19]
| |compare-ruby|built-ruby|
|:--------|-----------:|---------:|
|vm_cvar | 5.681M| 36.980M|
| | -| 6.51x|
```
Benchmark.ips calling `ActiveRecord::Base.logger` from within a Rails
application. ActiveRecord::Base.logger has 71 ancestors. The more
ancestors a tree has, the more clear the speed increase. IE if Base had
only one ancestor we'd see no improvement. This benchmark is run on a
vanilla Rails application.
Benchmark code:
```ruby
require "benchmark/ips"
require_relative "config/environment"
Benchmark.ips do |x|
x.report "logger" do
ActiveRecord::Base.logger
end
end
```
Ruby 3.0 master / Rails 6.1:
```
Warming up --------------------------------------
logger 155.251k i/100ms
Calculating -------------------------------------
```
Ruby 3.0 with cvar cache / Rails 6.1:
```
Warming up --------------------------------------
logger 1.546M i/100ms
Calculating -------------------------------------
logger 14.857M (± 4.8%) i/s - 74.198M in 5.006202s
```
Lastly we ran a benchmark to demonstate the difference between master
and our cache when the number of modules increases. This benchmark
measures 1 ancestor, 30 ancestors, and 100 ancestors.
Ruby 3.0 master:
```
Warming up --------------------------------------
1 module 1.231M i/100ms
30 modules 432.020k i/100ms
100 modules 145.399k i/100ms
Calculating -------------------------------------
1 module 12.210M (± 2.1%) i/s - 61.553M in 5.043400s
30 modules 4.354M (± 2.7%) i/s - 22.033M in 5.063839s
100 modules 1.434M (± 2.9%) i/s - 7.270M in 5.072531s
Comparison:
1 module: 12209958.3 i/s
30 modules: 4354217.8 i/s - 2.80x (± 0.00) slower
100 modules: 1434447.3 i/s - 8.51x (± 0.00) slower
```
Ruby 3.0 with cvar cache:
```
Warming up --------------------------------------
1 module 1.641M i/100ms
30 modules 1.655M i/100ms
100 modules 1.620M i/100ms
Calculating -------------------------------------
1 module 16.279M (± 3.8%) i/s - 82.038M in 5.046923s
30 modules 15.891M (± 3.9%) i/s - 79.459M in 5.007958s
100 modules 16.087M (± 3.6%) i/s - 81.005M in 5.041931s
Comparison:
1 module: 16279458.0 i/s
100 modules: 16087484.6 i/s - same-ish: difference falls within error
30 modules: 15891406.2 i/s - same-ish: difference falls within error
```
Co-authored-by: Aaron Patterson <tenderlove@ruby-lang.org>
We can take advantage of fstrings to de-duplicate the defined strings.
This means we don't need to keep the list of defined strings on the VM
(or register them as mark objects)
rb_funcall* (rb_funcall(), rb_funcallv(), ...) functions invokes
Ruby's method with given receiver. Ruby 2.7 introduced inline method
cache with static memory area. However, Ruby 3.0 reimplemented the
method cache data structures and the inline cache was removed.
Without inline cache, rb_funcall* searched methods everytime.
Most of cases per-Class Method Cache (pCMC) will be helped but
pCMC requires VM-wide locking and it hurts performance on
multi-Ractor execution, especially all Ractors calls methods
with rb_funcall*.
This patch introduced Global Call-Cache Cache Table (gccct) for
rb_funcall*. Call-Cache was introduced from Ruby 3.0 to manage
method cache entry atomically and gccct enables method-caching
without VM-wide locking. This table solves the performance issue
on multi-ractor execution.
[Bug #17497]
Ruby-level method invocation does not use gccct because it has
inline-method-cache and the table size is limited. Basically
rb_funcall* is not used frequently, so 1023 entries can be enough.
We will revisit the table size if it is not enough.
constant cache `IC` is accessed by non-atomic manner and there are
thread-safety issues, so Ruby 3.0 disables to use const cache on
non-main ractors.
This patch enables it by introducing `imemo_constcache` and allocates
it by every re-fill of const cache like `imemo_callcache`.
[Bug #17510]
Now `IC` only has one entry `IC::entry` and it points to
`iseq_inline_constant_cache_entry`, managed by T_IMEMO object.
`IC` is atomic data structure so `rb_mjit_before_vm_ic_update()` and
`rb_mjit_after_vm_ic_update()` is not needed.
separate some fields from rb_ractor_t to rb_ractor_pub and put it
at the beggining of rb_ractor_t and declare it in vm_core.h so
vm_core.h can access rb_ractor_pub fields.
Now rb_ec_ractor_hooks() is a complete inline function and no
MJIT related issue.
Ractor has several restrictions to keep each ractor being isolated
and some operation such as `CONST="foo"` in non-main ractor raises
an exception. This kind of operation raises an error but there is
confusion (some code raises RuntimeError and some code raises
NameError).
To make clear we introduce Ractor::IsolationError which is raised
when the isolation between ractors is violated.
`cd` is passed to method call functions to method invocation
functions, but `cd` can be manipulated by other ractors simultaneously
so it contains thread-safety issue.
To solve this issue, this patch stores `ci` and found `cc` to `calling`
and stops to pass `cd`.
On windows, MJIT doesn't work without this patch because of
the declaration of ruby_single_main_ractor. This patch fix this
issue and move the definition of it from ractor.c to vm.c to locate
near place of ruby_current_vm_ptr.
ruby_multi_ractor was a flag that indicates the interpreter doesn't
make any additional ractors (single ractor mode).
Instead of boolean flag, ruby_single_main_ractor pointer is introduced
which keeps main ractor's pointer if single ractor mode. If additional
ractors are created, ruby_single_main_ractor becomes NULL.
C extensions can violate the ractor-safety, so only ractor-safe
C extensions (C methods) can run on non-main ractors.
rb_ext_ractor_safe(true) declares that the successive
defined methods are ractor-safe. Otherwiwze, defined methods
checked they are invoked in main ractor and raise an error
if invoked at non-main ractors.
[Feature #17307]
The timer function used on windows system set timer interrupt
flag of current main ractor's executing ec and thread can detect
the end of time slice. However, to set all ec->interrupt_flag for
all running ractors, it is requires to synchronize with other ractors.
However, timer thread can not acquire the ractor-wide lock because
of some limitation.
To solve this issue, this patch introduces USE_VM_CLOCK compile option
to introduce rb_vm_t::clock. This clock will be incremented by the
timer thread and each thread can check the incrementing by comparison
with previous checked clock. At last, on windows platform this patch
introduces some overhead, but I think there is no critical performance
issue because of this modification.
Ractor.make_shareable() supports Proc object if
(1) a Proc only read outer local variables (no assignments)
(2) read outer local variables are shareable.
Read local variables are stored in a snapshot, so after making
shareable Proc, any assignments are not affeect like that:
```ruby
a = 1
pr = Ractor.make_shareable(Proc.new{p a})
pr.call #=> 1
a = 2
pr.call #=> 1 # `a = 2` doesn't affect
```
[Feature #17284]
Setting this to true disables the deadlock detector. It should
only be used in cases where the deadlock could be broken via some
external means, such as via a signal.
Now that $SAFE is no longer used, replace the safe_level_ VM flag
with ignore_deadlock for storing the setting.
Fixes [Bug #13768]
To access TLS, it is faster to use language TLS specifier instead
of using pthread_get/setspecific functions.
Original proposal is: Use native thread locals. #3665
iv_index_tbl manages instance variable indexes (ID -> index).
This data structure should be synchronized with other ractors
so introduce some VM locks.
This patch also introduced atomic ivar cache used by
set/getinlinecache instructions. To make updating ivar cache (IVC),
we changed iv_index_tbl data structure to manage (ID -> entry)
and an entry points serial and index. IVC points to this entry so
that cache update becomes atomically.
(1) recorded_lock_rec > current_lock_rec should not be occurred
on rb_ec_vm_lock_rec_release().
(2) should be release VM lock at EXEC_TAG(), not POP_TAG().
(3) some refactoring.
If a ractor getting a VM lock (monitor) raises an exception,
unlock can be skipped. To release VM lock correctly on exception
(or other jumps with JUMP_TAG), EC_POP_TAG() releases VM lock.
This commit introduces Ractor mechanism to run Ruby program in
parallel. See doc/ractor.md for more details about Ractor.
See ticket [Feature #17100] to see the implementation details
and discussions.
[Feature #17100]
This commit does not complete the implementation. You can find
many bugs on using Ractor. Also the specification will be changed
so that this feature is experimental. You will see a warning when
you make the first Ractor with `Ractor.new`.
I hope this feature can help programmers from thread-safety issues.
If the thread for the current EC has been killed, don't check
the VM ptr for the EC (which gets it via the thread), as that will
have already been freed.
Fixes [Bug #16907]
According to MSVC manual (*1), cl.exe can skip including a header file
when that:
- contains #pragma once, or
- starts with #ifndef, or
- starts with #if ! defined.
GCC has a similar trick (*2), but it acts more stricter (e. g. there
must be _no tokens_ outside of #ifndef...#endif).
Sun C lacked #pragma once for a looong time. Oracle Developer Studio
12.5 finally implemented it, but we cannot assume such recent version.
This changeset modifies header files so that each of them include
strictly one #ifndef...#endif. I believe this is the most portable way
to trigger compiler optimizations. [Bug #16770]
*1: https://docs.microsoft.com/en-us/cpp/preprocessor/once
*2: https://gcc.gnu.org/onlinedocs/cppinternals/Guard-Macros.html
A new (not-initialized-yet) pthread attempts to allocate sigaltstack by
using xmalloc. It may cause GC, but because the thread is not
initialized yet, ruby_native_thread_p() returns false, which leads to
"[FATAL] failed to allocate memory" and exit.
In fact, we can observe the error message in the log of OpenBSD CI:
https://rubyci.org/logs/rubyci.s3.amazonaws.com/openbsd-current/ruby-master/log/20200306T083005Z.log.html.gz
This changeset allocates sigaltstack before pthread is created.