Граф коммитов

11 Коммитов

Автор SHA1 Сообщение Дата
Jemma Issroff ad63b668e2
Revert "Revert "This commit implements the Object Shapes technique in CRuby.""
This reverts commit 9a6803c90b.
2022-10-11 08:40:56 -07:00
Aaron Patterson 9a6803c90b
Revert "This commit implements the Object Shapes technique in CRuby."
This reverts commit 68bc9e2e97d12f80df0d113e284864e225f771c2.
2022-09-30 16:01:50 -07:00
Jemma Issroff d594a5a8bd
This commit implements the Object Shapes technique in CRuby.
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects.  Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness").  Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree.  Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.

For example:

```ruby
class Foo
  def initialize
    # Starts with shape id 0
    @a = 1 # transitions to shape id 1
    @b = 1 # transitions to shape id 2
  end
end

class Bar
  def initialize
    # Starts with shape id 0
    @a = 1 # transitions to shape id 1
    @b = 1 # transitions to shape id 2
  end
end

foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```

Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.

This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.

This commit also adds some methods for debugging shapes on objects.  See
`RubyVM::Shape` for more details.

For more context on Object Shapes, see [Feature: #18776]

Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
2022-09-28 08:26:21 -07:00
Aaron Patterson 06abfa5be6
Revert this until we can figure out WB issues or remove shapes from GC
Revert "* expand tabs. [ci skip]"

This reverts commit 830b5b5c35.

Revert "This commit implements the Object Shapes technique in CRuby."

This reverts commit 9ddfd2ca00.
2022-09-26 16:10:11 -07:00
Jemma Issroff 9ddfd2ca00 This commit implements the Object Shapes technique in CRuby.
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects.  Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness").  Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree.  Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.

For example:

```ruby
class Foo
  def initialize
    # Starts with shape id 0
    @a = 1 # transitions to shape id 1
    @b = 1 # transitions to shape id 2
  end
end

class Bar
  def initialize
    # Starts with shape id 0
    @a = 1 # transitions to shape id 1
    @b = 1 # transitions to shape id 2
  end
end

foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```

Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.

This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.

This commit also adds some methods for debugging shapes on objects.  See
`RubyVM::Shape` for more details.

For more context on Object Shapes, see [Feature: #18776]

Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
2022-09-26 09:21:30 -07:00
卜部昌平 daf0c04a47 internal/*.h: skip doxygen
These contents are purely implementation details, not worth appearing in
CAPI documents. [ci skip]
2021-09-10 20:00:06 +09:00
Koichi Sasada d741c77b5f fix ivar with shareable objects issue
Instance variables of sharable objects are accessible only from
main ractor, so we need to check it correctly.
2020-12-12 06:19:18 +09:00
Koichi Sasada fad97f1f96 sync generic_ivtbl
generic_ivtbl is a process global table to maintain instance variables
for non T_OBJECT/T_CLASS/... objects. So we need to protect them
for multi-Ractor exection.

Hint: we can make them Ractor local for unshareable objects, but
      now it is premature optimization.
2020-10-14 16:36:55 +09:00
Koichi Sasada 79df14c04b Introduce Ractor mechanism for parallel execution
This commit introduces Ractor mechanism to run Ruby program in
parallel. See doc/ractor.md for more details about Ractor.
See ticket [Feature #17100] to see the implementation details
and discussions.

[Feature #17100]

This commit does not complete the implementation. You can find
many bugs on using Ractor. Also the specification will be changed
so that this feature is experimental. You will see a warning when
you make the first Ractor with `Ractor.new`.

I hope this feature can help programmers from thread-safety issues.
2020-09-03 21:11:06 +09:00
卜部昌平 4ff3f20540 add #include guard hack
According to MSVC manual (*1), cl.exe can skip including a header file
when that:

- contains #pragma once, or
- starts with #ifndef, or
- starts with #if ! defined.

GCC has a similar trick (*2), but it acts more stricter (e. g. there
must be _no tokens_ outside of #ifndef...#endif).

Sun C lacked #pragma once for a looong time.  Oracle Developer Studio
12.5 finally implemented it, but we cannot assume such recent version.

This changeset modifies header files so that each of them include
strictly one #ifndef...#endif.  I believe this is the most portable way
to trigger compiler optimizations. [Bug #16770]

*1: https://docs.microsoft.com/en-us/cpp/preprocessor/once
*2: https://gcc.gnu.org/onlinedocs/cppinternals/Guard-Macros.html
2020-04-13 16:06:00 +09:00
Koichi Sasada dd723771c1 fastpath for ivar read of FL_EXIVAR objects.
vm_getivar() provides fastpath for T_OBJECT by caching an index
of ivar. This patch also provides fastpath for FL_EXIVAR objects.
FL_EXIVAR objects have an each ivar array and index can be cached
as T_OBJECT. To access this ivar array, generic_iv_tbl is exposed
by rb_ivar_generic_ivtbl() (declared in variable.h which is newly
introduced).

Benchmark script:

Benchmark.driver(repeat_count: 3){|x|
  x.executable name: 'clean', command: %w'../clean/miniruby'
  x.executable name: 'trunk', command: %w'./miniruby'

  objs = [Object.new, 'str', {a: 1, b: 2}, [1, 2]]

  objs.each.with_index{|obj, i|
    rep = obj.inspect
    rep = 'Object.new' if /\#/ =~ rep
    x.prelude str = %Q{
      v#{i} = #{rep}
      def v#{i}.foo
        @iv # ivar access method (attr_reader)
      end
      v#{i}.instance_variable_set(:@iv, :iv)
    }
    puts str
    x.report %Q{
      v#{i}.foo
    }
  }
}

Result:

      v0.foo # T_OBJECT

               clean:  85387141.8 i/s
               trunk:  85249373.6 i/s - 1.00x  slower

      v1.foo # T_STRING

               trunk:  57894407.5 i/s
               clean:  39957178.6 i/s - 1.45x  slower

      v2.foo # T_HASH

               trunk:  56629413.2 i/s
               clean:  39227088.9 i/s - 1.44x  slower

      v3.foo # T_ARRAY

               trunk:  55797530.2 i/s
               clean:  38263572.9 i/s - 1.46x  slower
2019-11-29 03:11:04 +09:00