RARRAY_AREF has been a macro for reasons. We might not be able to
change that for public APIs, but why not relax the situation internally
to make it an inline function.
This fixes various issues when a module is included in or prepended
to a module or class, and then refined, or refined and then included
or prepended to a module or class.
Implement by renaming ensure_origin to rb_ensure_origin, making it
non-static, and calling it when refining a module.
Fix Module#initialize_copy to handle origins correctly. Previously,
Module#initialize_copy did not handle origins correctly. For example,
this code:
```ruby
module B; end
class A
def b; 2 end
prepend B
end
a = A.dup.new
class A
def b; 1 end
end
p a.b
```
Printed 1 instead of 2. This is because the super chain for
a.singleton_class was:
```
a.singleton_class
A.dup
B(iclass)
B(iclass origin)
A(origin) # not A.dup(origin)
```
The B iclasses would not be modified, so the includer entry would be
still be set to A and not A.dup.
This modifies things so that if the class/module has an origin,
all iclasses between the class/module and the origin are duplicated
and have the correct includer entry set, and the correct origin
is created.
This requires other changes to make sure all tests still pass:
* rb_undef_methods_from doesn't automatically handle classes with
origins, so pass it the origin for Comparable when undefing
methods in Complex. This fixed a failure in the Complex tests.
* When adding a method, the method cache was not cleared
correctly if klass has an origin. Clear the method cache for
the klass before switching to the origin of klass. This fixed
failures in the autoload tests related to overridding require,
without breaking the optimization tests. Also clear the method
cache for both the module and origin when removing a method.
* Module#include? is fixed to skip origin iclasses.
* Refinements are fixed to use the origin class of the module that
has an origin.
* RCLASS_REFINED_BY_ANY is removed as it was only used in a single
place and is no longer needed.
* Marshal#dump is fixed to skip iclass origins.
* rb_method_entry_make is fixed to handled overridden optimized
methods for modules that have origins.
Fixes [Bug #16852]
It is useful for a program that dumps and load arguments (like drb).
In future, they should deal with both positional arguments and keyword
ones explicitly, but until ruby2_keywords is deprecated, it is good to
support the flag in marshal.
The implementation is similar to String's encoding; it is dumped as a
hidden instance variable.
[Feature #16501]
Saves comitters' daily life by avoid #include-ing everything from
internal.h to make each file do so instead. This would significantly
speed up incremental builds.
We take the following inclusion order in this changeset:
1. "ruby/config.h", where _GNU_SOURCE is defined (must be the very
first thing among everything).
2. RUBY_EXTCONF_H if any.
3. Standard C headers, sorted alphabetically.
4. Other system headers, maybe guarded by #ifdef
5. Everything else, sorted alphabetically.
Exceptions are those win32-related headers, which tend not be self-
containing (headers have inclusion order dependencies).
This removes the related tests, and puts the related specs behind
version guards. This affects all code in lib, including some
libraries that may want to support older versions of Ruby.
We can check the function pointer passed to rb_define_module_function
like how we do so in rb_define_method. The difference is that this
changeset reveales lots of atiry mismatches.
After 5e86b005c0, I now think ANYARGS is
dangerous and should be extinct. This commit adds function prototypes
for rb_hash_foreach / st_foreach_safe. Also fixes some prototype
mismatches.
After 5e86b005c0, I now think ANYARGS is
dangerous and should be extinct. This commit deletes ANYARGS from
st_foreach. I strongly believe that this commit should have had come
with b0af0592fd, which added extra
parameter to st_foreach callbacks.
On ar_table, Do not keep a full-length hash value (FLHV, 8 bytes)
but keep a 1 byte hint from a FLHV (lowest byte of FLHV).
An ar_table only contains at least 8 entries, so hints consumes
8 bytes at most. We can store hints in RHash::ar_hint.
On 32bit CPU, we use 4 entries ar_table.
The advantages:
* We don't need to keep FLHV so ar_table only consumes
16 bytes (VALUEs of key and value) * 8 entries = 128 bytes.
* We don't need to scan ar_table, but only need to check hints
in many cases. Especially we don't need to access ar_table
if there is no match entries (in many cases).
It will increase memory cache locality.
The disadvantages:
* This technique can increase `#eql?` time because hints can
conflicts (in theory, it conflicts once in 256 times).
It can introduce incompatibility if there is a object x where
x.eql? returns true even if hash values are different.
I believe we don't need to care such irregular case.
* We need to re-calculate FLHV if we need to switch from ar_table
to st_table (e.g. exceeds 8 entries).
It also can introduce incompatibility, on mutating key objects.
I believe we don't need to care such irregular case too.
Add new debug counters to measure the performance:
* artable_hint_hit - hint is matched and eql?#=>true
* artable_hint_miss - hint is not matched but eql?#=>false
* artable_hint_notfound - lookup counts
* marshal.c (rb_marshal_dump_limited): new function for extension
libraries to dump object with limited nest level.
* marshal.c (rb_marshal_load_with_proc): new function for extension
libraries to load object with hook proc.
* hash.c, internal.h: support theap for small Hash.
Introduce RHASH_ARRAY (li_table) besides st_table and small Hash
(<=8 entries) are managed by an array data structure.
This array data can be managed by theap.
If st_table is needed, then converting array data to st_table data.
For st_table using code, we prepare "stlike" APIs which accepts hash value
and are very similar to st_ APIs.
This work is based on the GSoC achievement
by tacinight <tacingiht@gmail.com> and refined by ko1.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@65454 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
* encoding.c (rb_enc_capable): make it extern to check enc_capable.
enc_index can be set to limited types such as T_STRING, T_REGEX
and so on. This function check an object is this kind of types.
* include/ruby/encoding.h: ditto.
* encoding.c (enc_set_index): check a given object is enc_capable.
* include/ruby/encoding.h (PUREFUNC):
* marshal.c (encoding_name): check `rb_enc_capable` first.
* marshal.c (r_ivar): ditto. If it is not enc_capable, it should be
malformed data.
* spec/ruby/optional/capi/encoding_spec.rb: remove tests depending
on the wrong feature: all objects can set enc_index.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@63777 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
instead of scattering #ifdef HAVE_NANF here and there define our
own nan() unless defined elsewhere.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@61971 b2dd03c8-39d4-4d8f-98ff-823fe69b080e