The main impetus for this change is to fix [Bug #13392]. Previously, we
fired the "return" TracePoint event after popping the stack frame for
the block running as method (BMETHOD). This gave undesirable source
location outputs as the return event normally fires right before the
frame going away.
The iseq for each block can run both as a block and as a method. To
accommodate that, this commit makes vm_trace() fire call/return events for
instructions that have b_call/b_return events attached when the iseq is
running as a BMETHOD. The logic for rewriting to "trace_*" instruction
is tweaked so that when the user listens to call/return events,
instructions with b_call/b_return become trace variants.
To continue to provide the return value for non-local returns done using
the "return" or "break" keyword inside BMETHODs, the stack unwinding
code is tweaked. b_return events now provide the same return value as
return events for these non-local cases. A pre-existing test deemed not
providing a return value for these b_return events as a limitation.
This commit removes the checks for call/return TracePoint events that
happen when calling into BMETHODs when no TracePoints are active.
Technically, migrating just the return event is enough to fix the bug,
but migrating both call and return removes our reliance on
`VM_FRAME_FLAG_FINISH` and re-entering the interpreter when the caller
is already in the interpreter.
Compare with the C methods, A built-in methods written in Ruby is
slower if only mandatory parameters are given because it needs to
check the argumens and fill default values for optional and keyword
parameters (C methods can check the number of parameters with `argc`,
so there are no overhead). Passing mandatory arguments are common
(optional arguments are exceptional, in many cases) so it is important
to provide the fast path for such common cases.
`Primitive.mandatory_only?` is a special builtin function used with
`if` expression like that:
```ruby
def self.at(time, subsec = false, unit = :microsecond, in: nil)
if Primitive.mandatory_only?
Primitive.time_s_at1(time)
else
Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in))
end
end
```
and it makes two ISeq,
```
def self.at(time, subsec = false, unit = :microsecond, in: nil)
Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in))
end
def self.at(time)
Primitive.time_s_at1(time)
end
```
and (2) is pointed by (1). Note that `Primitive.mandatory_only?`
should be used only in a condition of an `if` statement and the
`if` statement should be equal to the methdo body (you can not
put any expression before and after the `if` statement).
A method entry with `mandatory_only?` (`Time.at` on the above case)
is marked as `iseq_overload`. When the method will be dispatch only
with mandatory arguments (`Time.at(0)` for example), make another
method entry with ISeq (2) as mandatory only method entry and it
will be cached in an inline method cache.
The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254
but it only checks mandatory parameters or more, because many cases
only mandatory parameters are given. If we find other cases (optional
or keyword parameters are used frequently and it hurts performance),
we can extend the feature.
`RubyVM.keep_script_lines` enables to keep script lines
for each ISeq and AST. This feature is for debugger/REPL
support.
```ruby
RubyVM.keep_script_lines = true
RubyVM::keep_script_lines = true
eval("def foo = nil\ndef bar = nil")
pp RubyVM::InstructionSequence.of(method(:foo)).script_lines
```
This change fixes some cases where YJIT fails to fire tracing events.
Most of the situations YJIT did not handle correctly involves enabling
tracing while running inside generated code.
A new operation to invalidate all generated code is added, which uses
patching to make generated code exit at the next VM instruction
boundary. A new routine called `jit_prepare_routine_call()` is
introduced to facilitate this and should be used when generating code
that could allocate, or could otherwise use `RB_VM_LOCK_ENTER()`.
The `c_return` event is fired in the middle of an instruction as opposed
to at an instruction boundary, so it requires special handling. C method
call return points are patched to go to a fucntion which does everything
the interpreter does, including firing the `c_return` event. The
generated code for C method calls normally does not fire the event.
Invalided code should not change after patching so the exits are not
clobbered. A new variable is introduced to track the region of code that
should not change.
* Tie lifetime of uJIT blocks to iseqs
Blocks weren't being freed when iseqs are collected.
* Add rb_dary. Use it for method dependency table
* Keep track of blocks per iseq
Remove global version_tbl
* Block version bookkeeping fix
* dary -> darray
* free ujit_blocks
* comment about size of ujit_blocks
Insert generated addresses into st_table for mapping native code
addresses back to info about VM instructions. Export `encoded_insn_data`
to do this. Also some style fixes.
In vm_call_method_each_type, check for c_call and c_return events before
dispatching to vm_call_ivar and vm_call_attrset. With this approach, the
call cache will still dispatch directly to those functions, so this
change will only decrease performance for the first (uncached) call, and
even then, the performance decrease is very minimal.
This approach requires that we clear the call caches when tracing is
enabled or disabled. The approach currently switches all vm_call_ivar
and vm_call_attrset call caches to vm_call_general any time tracing is
enabled or disabled. So it could theoretically result in a slowdown for
code that constantly enables or disables tracing.
This approach does not handle targeted tracepoints, but from my testing,
c_call and c_return events are not supported for targeted tracepoints,
so that shouldn't matter.
This includes a benchmark showing the performance decrease is minimal
if detectable at all.
Fixes [Bug #16383]
Fixes [Bug #10470]
Co-authored-by: Takashi Kokubun <takashikkbn@gmail.com>
This changes Thread::Location::Backtrace#absolute_path to return
nil for methods/procs defined in eval. If the realpath of an iseq
is nil, that indicates it was defined in eval, in which case you
cannot use RubyVM::AbstractSyntaxTree.of.
Fixes [Bug #16983]
Co-authored-by: Koichi Sasada <ko1@atdot.net>
This broke coverage CI
```
1) Failure:
TestRequire#test_load_syntax_error [/home/runner/work/actions/actions/ruby/test/ruby/test_require.rb:228]:
Exception(SyntaxError) with message matches to /unexpected/.
[SyntaxError] exception expected, not #<TypeError: no implicit conversion of false into Integer>.
```
https://github.com/ruby/actions/runs/2914743968?check_suite_focus=true
RubyVM::AST.of(Thread::Backtrace::Location) returns a node that
corresponds to the location. Typically, the node is a method call, but
not always.
This change also includes iseq's dump/load support of node_ids for each
instructions.
by merging `rb_ast_body_t#line_count` and `#script_lines`.
Fortunately `line_count == RARRAY_LEN(script_lines)` was always
satisfied. When script_lines is saved, it has an array of lines, and
when not saved, it has a Fixnum that represents the old line_count.
... then, new_insn_core extracts nd_line(node).
Also, if a macro "EXPERIMENTAL_ISEQ_NODE_ID" is defined, this changeset
keeps nd_node_id(node) for each instruction. This is intended for
TypeProf to identify what AST::Node corresponds to each instruction.
This patch is originally authored by @yui-knk for showing which column a
NoMethodError occurred.
https://github.com/ruby/ruby/compare/master...yui-knk:feature/node_id
Co-Authored-By: Yuichiro Kaneko <yui-knk@ruby-lang.org>
We can take advantage of fstrings to de-duplicate the defined strings.
This means we don't need to keep the list of defined strings on the VM
(or register them as mark objects)
constant cache `IC` is accessed by non-atomic manner and there are
thread-safety issues, so Ruby 3.0 disables to use const cache on
non-main ractors.
This patch enables it by introducing `imemo_constcache` and allocates
it by every re-fill of const cache like `imemo_callcache`.
[Bug #17510]
Now `IC` only has one entry `IC::entry` and it points to
`iseq_inline_constant_cache_entry`, managed by T_IMEMO object.
`IC` is atomic data structure so `rb_mjit_before_vm_ic_update()` and
`rb_mjit_after_vm_ic_update()` is not needed.
This switches the internal function from rb_parser_compile_file_path
to rb_parser_load_file, which is the same internal method that
Kernel#load uses.
Fixes [Bug #17308]
If two or more tracepoints enabled with the same target and with
different target lines, the only last line is activated.
This patch fixes this issue by remaining existing trace instructions.
[Bug #17302]
iv_index_tbl manages instance variable indexes (ID -> index).
This data structure should be synchronized with other ractors
so introduce some VM locks.
This patch also introduced atomic ivar cache used by
set/getinlinecache instructions. To make updating ivar cache (IVC),
we changed iv_index_tbl data structure to manage (ID -> entry)
and an entry points serial and index. IVC points to this entry so
that cache update becomes atomically.
Use ID instead of GENTRY for gvars.
Global variables are compiled into GENTRY (a pointer to struct
rb_global_entry). This patch replace this GENTRY to ID and
make the code simple.
We need to search GENTRY from ID every time (st_lookup), so
additional overhead will be introduced.
However, the performance of accessing global variables is not
important now a day and this simplicity helps Ractor development.
If :return event is specified for a opt_invokebuiltin_delegate_leave
and leave combination, the instructions should be
opt_invokebuiltin_delegate
trace_return
instructions. To make it, opt_invokebuiltin_delegate_leave
instruction will be changed to opt_invokebuiltin_delegate even if
it is not an event target instruction.