With this change, we're storing the iv name on an inline cache on
setinstancevariable instructions. This allows us to check the inline
cache to count instance variables set in initialize and give us an
estimate of iv capacity for an object.
For the purpose of estimating the number of instance variables required
for an object, we're assuming that all initialize methods will call
`super`.
This change allows us to estimate the number of instance variables
required without disassembling instruction sequences.
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Commit dba61f4 fixes a crash when GC'ing a iseq that failed to compile.
However, if we turn on RGENGC_CHECK_MODE then rb_iseq_memsize crashes
since it cannot handle an iseq without is_entries.
If there is a compilation error, is_entries may not be allocated, but
ic_size could be greater than 0. If we don't have a buffer to iterate
over, just return early. Otherwise GC could segv
[Bug #19173]
We can loosely predict the number of ivar sets on a class based on the
number of iv set instructions in the initialize method. This should give
us a more accurate estimate to use for initial size pool allocation,
which should in turn give us more cache hits.
This patch pushes dummy frames when loading code for the
profiling purpose.
The following methods push a dummy frame:
* `Kernel#require`
* `Kernel#load`
* `RubyVM::InstructionSequence.compile_file`
* `RubyVM::InstructionSequence.load_from_binary`
https://bugs.ruby-lang.org/issues/18559
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects. Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness"). Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree. Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.
For example:
```ruby
class Foo
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
class Bar
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```
Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.
This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.
This commit also adds some methods for debugging shapes on objects. See
`RubyVM::Shape` for more details.
For more context on Object Shapes, see [Feature: #18776]
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects. Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness"). Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree. Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.
For example:
```ruby
class Foo
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
class Bar
def initialize
# Starts with shape id 0
@a = 1 # transitions to shape id 1
@b = 1 # transitions to shape id 2
end
end
foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```
Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.
This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.
This commit also adds some methods for debugging shapes on objects. See
`RubyVM::Shape` for more details.
For more context on Object Shapes, see [Feature: #18776]
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
Previously YARV bytecode implemented constant caching by having a pair
of instructions, opt_getinlinecache and opt_setinlinecache, wrapping a
series of getconstant calls (with putobject providing supporting
arguments).
This commit replaces that pattern with a new instruction,
opt_getconstant_path, handling both getting/setting the inline cache and
fetching the constant on a cache miss.
This is implemented by storing the full constant path as a
null-terminated array of IDs inside of the IC structure. idNULL is used
to signal an absolute constant reference.
$ ./miniruby --dump=insns -e '::Foo::Bar::Baz'
== disasm: #<ISeq:<main>@-e:1 (1,0)-(1,13)> (catch: FALSE)
0000 opt_getconstant_path <ic:0 ::Foo::Bar::Baz> ( 1)[Li]
0002 leave
The motivation for this is that we had increasingly found the need to
disassemble the instructions between the opt_getinlinecache and
opt_setinlinecache in order to determine the constant we are fetching,
or otherwise store metadata.
This disassembly was done:
* In opt_setinlinecache, to register the IC against the constant names
it is using for granular invalidation.
* In rb_iseq_free, to unregister the IC from the invalidation table.
* In YJIT to find the position of a opt_getinlinecache instruction to
invalidate it when the cache is populated
* In YJIT to register the constant names being used for invalidation.
With this change we no longe need disassemly for these (in fact
rb_iseq_each is now unused), as the list of constant names being
referenced is held in the IC. This should also make it possible to make
more optimizations in the future.
This may also reduce the size of iseqs, as previously each segment
required 32 bytes (on 64-bit platforms) for each constant segment. This
implementation only stores one ID per-segment.
There should be no significant performance change between this and the
previous implementation. Previously opt_getinlinecache was a "leaf"
instruction, but it included a jump (almost always to a separate cache
line). Now opt_getconstant_path is a non-leaf (it may
raise/autoload/call const_missing) but it does not jump. These seem to
even out.
catch_excep_t is a field that exists for MJIT. In the process of
rewriting MJIT in Ruby, I added API to convert 1/0 of _Bool to
true/false, and it seemed confusing and hard to maintain if you
don't use _Bool for *_p fields.
* Simplify around `USE_YJIT` macro
- Use `USE_YJIT` macro only instead of `YJIT_BUILD`.
- An intermediate macro `YJIT_SUPPORTED_P` is no longer used.
* Bail out if YJIT is enabled on unsupported platforms
rb_ary_tmp_new suggests that the array is temporary in some way, but
that's not true, it just creates an array that's hidden and not on the
transient heap. This commit renames it to rb_ary_hidden_new.
We need to dump relative offsets for inline storage entries so that
loading iseqs as an array works as well. This commit also has some
minor refactoring to make computing relative ISE information easier.
This should fix the iseq dump / load as array tests we're seeing fail in
CI.
Co-Authored-By: John Hawthorn <john@hawthorn.email>
This commit adds a bitfield to the iseq body that stores offsets inside
the iseq buffer that contain values we need to mark. We can use this
bitfield to mark objects instead of disassembling the instructions.
This commit also groups inline storage entries and adds a counter for
each entry. This allows us to iterate and mark each entry without
disassembling instructions
Since we have a bitfield and grouped inline caches, we can mark all
VALUE objects associated with instructions without actually
disassembling the instructions at mark time.
[Feature #18875] [ruby-core:109042]
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
1fd9573d8b
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
This commit reintroduces finer-grained constant cache invalidation.
After 8008fb7 got merged, it was causing issues on token-threaded
builds (such as on Windows).
The issue was that when you're iterating through instruction sequences
and using the translator functions to get back the instruction structs,
you're either using `rb_vm_insn_null_translator` or
`rb_vm_insn_addr2insn2` depending if it's a direct-threading build.
`rb_vm_insn_addr2insn2` does some normalization to always return to
you the non-trace version of whatever instruction you're looking at.
`rb_vm_insn_null_translator` does not do that normalization.
This means that when you're looping through the instructions if you're
trying to do an opcode comparison, it can change depending on the type
of threading that you're using. This can be very confusing. So, this
commit creates a new translator function
`rb_vm_insn_normalizing_translator` to always return the non-trace
version so that opcode comparisons don't have to worry about different
configurations.
[Feature #18589]
This reverts commits for [Feature #18589]:
* 8008fb7352
"Update formatting per feedback"
* 8f6eaca2e1
"Delete ID from constant cache table if it becomes empty on ISEQ free"
* 629908586b
"Finer-grained inline constant cache invalidation"
MSWin builds on AppVeyor have been crashing since the merger.
Current behavior - caches depend on a global counter. All constant mutations cause caches to be invalidated.
```ruby
class A
B = 1
end
def foo
A::B # inline cache depends on global counter
end
foo # populate inline cache
foo # hit inline cache
C = 1 # global counter increments, all caches are invalidated
foo # misses inline cache due to `C = 1`
```
Proposed behavior - caches depend on name components. Only constant mutations with corresponding names will invalidate the cache.
```ruby
class A
B = 1
end
def foo
A::B # inline cache depends constants named "A" and "B"
end
foo # populate inline cache
foo # hit inline cache
C = 1 # caches that depend on the name "C" are invalidated
foo # hits inline cache because IC only depends on "A" and "B"
```
Examples of breaking the new cache:
```ruby
module C
# Breaks `foo` cache because "A" constant is set and the cache in foo depends
# on "A" and "B"
class A; end
end
B = 1
```
We expect the new cache scheme to be invalidated less often because names aren't frequently reused. With the cache being invalidated less, we can rely on its stability more to keep our constant references fast and reduce the need to throw away generated code in YJIT.
Use ISEQ_BODY macro to get the rb_iseq_constant_body of the ISeq. Using
this macro will make it easier for us to change the allocation strategy
of rb_iseq_constant_body when using Variable Width Allocation.
It free `rb_hook_list_t` itself if needed. To recognize the
need, this patch introduced `rb_hook_list_t::is_local` flag.
This patch is succession of https://github.com/ruby/ruby/pull/4652