Previously, the following crashes with
`CFLAGS=-DRGENGC_CHECK_MODE=2 -DRUBY_DEBUG=1 -fno-inline`:
$ ./miniruby -e 'GC.stress = true; Marshal.dump({})'
It crashes with a write barrier (WB) miss assertion on an edge from the
`Hash` class object to a newly allocated negative method entry.
This is due to usages of vm_ccs_create() running the WB too early,
before the method entry is inserted into the cc table, so before the
reference edge is established. The insertion can trigger GC and promote
the class object, so running the WB after the insertion is necessary.
Move the insertion into vm_ccs_create() and run the WB after the
insertion.
Discovered on CI:
http://ci.rvm.jp/results/trunk-asserts@ruby-sp2-docker/4391770
I noticed this while running test_yjit with --mjit-call-threshold=1,
which redefines `Integer#<`. When Ruby is monkey-patched,
MJIT itself could be broken.
Similarly, Ruby scripts could break MJIT in many different ways. I
prepared the same set of hooks as YJIT so that we could possibly
override it and disable it on those moments. Every constant under
RubyVM::MJIT is private and thus it's an unsupported behavior though.
Previously, the frozen check happened on `RCLASS_ORIGIN(self)`, which
can return an iclass. The frozen check is supposed to respond to objects
that users can call methods on while iclasses are hidden from users.
Other mutation methods like Module#{define_method,alias_method,public}
don't do this. Check frozen status on the module itself.
Fixes [Bug #19164] and [Bug #19166].
Co-authored-by: Alan Wu <XrXr@users.noreply.github.com>
Other functions are already type-punned elsewhere. rb_f_notimplement is
the only exceptional function that appear literally. We have to take
care of it by hand.
df317151a5 removed the code to free
rb_hook_list_t, so repeated targeting of the same bmethod started
to leak the hook list. You can observe how the maximum memory use
scales with input size in the following script with `/usr/bin/time -v`.
```ruby
o = Object.new
o.define_singleton_method(:foo) {}
trace = TracePoint.new(:return) {}
bmethod = o.method(:foo)
ARGV.first.to_i.times { trace.enable(target:bmethod){} }
4.times {GC.start}
```
After this change the maximum doesn't grow as quickly.
To plug the leak, check whether the hook list is already allocated
when enabling the targeting TracePoint for the bmethod. This fix
also allows multiple TracePoints to target the same bmethod, similar
to other valid TracePoint targets.
Finally, free the rb_hook_list_t struct when freeing the method
definition it lives on. Freeing in the GC is a good way to avoid
lifetime problems similar to the one fixed in df31715.
[Bug #18031]
In December 2021, we opened an [issue] to solicit feedback regarding the
porting of the YJIT codebase from C99 to Rust. There were some
reservations, but this project was given the go ahead by Ruby core
developers and Matz. Since then, we have successfully completed the port
of YJIT to Rust.
The new Rust version of YJIT has reached parity with the C version, in
that it passes all the CRuby tests, is able to run all of the YJIT
benchmarks, and performs similarly to the C version (because it works
the same way and largely generates the same machine code). We've even
incorporated some design improvements, such as a more fine-grained
constant invalidation mechanism which we expect will make a big
difference in Ruby on Rails applications.
Because we want to be careful, YJIT is guarded behind a configure
option:
```shell
./configure --enable-yjit # Build YJIT in release mode
./configure --enable-yjit=dev # Build YJIT in dev/debug mode
```
By default, YJIT does not get compiled and cargo/rustc is not required.
If YJIT is built in dev mode, then `cargo` is used to fetch development
dependencies, but when building in release, `cargo` is not required,
only `rustc`. At the moment YJIT requires Rust 1.60.0 or newer.
The YJIT command-line options remain mostly unchanged, and more details
about the build process are documented in `doc/yjit/yjit.md`.
The CI tests have been updated and do not take any more resources than
before.
The development history of the Rust port is available at the following
commit for interested parties:
1fd9573d8b
Our hope is that Rust YJIT will be compiled and included as a part of
system packages and compiled binaries of the Ruby 3.2 release. We do not
anticipate any major problems as Rust is well supported on every
platform which YJIT supports, but to make sure that this process works
smoothly, we would like to reach out to those who take care of building
systems packages before the 3.2 release is shipped and resolve any
issues that may come up.
[issue]: https://bugs.ruby-lang.org/issues/18481
Co-authored-by: Maxime Chevalier-Boisvert <maximechevalierb@gmail.com>
Co-authored-by: Noah Gibbs <the.codefolio.guy@gmail.com>
Co-authored-by: Kevin Newton <kddnewton@gmail.com>
Before the new constant cache behavior, caches were invalidated by a
single global variable. You could inspect the value of this variable
with RubyVM.stat(:global_constant_state). This was mostly useful to
verify the behavior of the VM or to test constant loading like in Rails.
With the new constant cache behavior, we introduced
RubyVM.stat(:constant_cache) which returned a hash with symbol keys and
integer values that represented the number of live constant caches
associated with the given symbol. Additionally, we removed the old
RubyVM.stat(:global_constant_state).
This was proven to be not very useful, so it doesn't help you diagnose
constant loading issues. So, instead we added the global constant state
back into the RubyVM output. However, that number can be misleading as
now when you invalidate something like `Foo::Bar::Baz` you're actually
invalidating 3 different lists of inline caches.
This commit attempts to get the best of both worlds. We remove
RubyVM.stat(:global_constant_state) like we did originally, as it
doesn't have the same semantic meaning and it could be confusing going
forward. Instead we add RubyVM.stat(:constant_cache_invalidations) and
RubyVM.stat(:constant_cache_misses). These two metrics should provide
enough information to diagnose any constant loading issues, as well as
provide a replacement for the old global constant state.
This was removed as part of [Feature #18589]. But some applications were relying on this behavior. So bringing this back to make it better for backward compatibility going forward.
This commit reintroduces finer-grained constant cache invalidation.
After 8008fb7 got merged, it was causing issues on token-threaded
builds (such as on Windows).
The issue was that when you're iterating through instruction sequences
and using the translator functions to get back the instruction structs,
you're either using `rb_vm_insn_null_translator` or
`rb_vm_insn_addr2insn2` depending if it's a direct-threading build.
`rb_vm_insn_addr2insn2` does some normalization to always return to
you the non-trace version of whatever instruction you're looking at.
`rb_vm_insn_null_translator` does not do that normalization.
This means that when you're looping through the instructions if you're
trying to do an opcode comparison, it can change depending on the type
of threading that you're using. This can be very confusing. So, this
commit creates a new translator function
`rb_vm_insn_normalizing_translator` to always return the non-trace
version so that opcode comparisons don't have to worry about different
configurations.
[Feature #18589]
This reverts commits for [Feature #18589]:
* 8008fb7352
"Update formatting per feedback"
* 8f6eaca2e1
"Delete ID from constant cache table if it becomes empty on ISEQ free"
* 629908586b
"Finer-grained inline constant cache invalidation"
MSWin builds on AppVeyor have been crashing since the merger.
Current behavior - caches depend on a global counter. All constant mutations cause caches to be invalidated.
```ruby
class A
B = 1
end
def foo
A::B # inline cache depends on global counter
end
foo # populate inline cache
foo # hit inline cache
C = 1 # global counter increments, all caches are invalidated
foo # misses inline cache due to `C = 1`
```
Proposed behavior - caches depend on name components. Only constant mutations with corresponding names will invalidate the cache.
```ruby
class A
B = 1
end
def foo
A::B # inline cache depends constants named "A" and "B"
end
foo # populate inline cache
foo # hit inline cache
C = 1 # caches that depend on the name "C" are invalidated
foo # hits inline cache because IC only depends on "A" and "B"
```
Examples of breaking the new cache:
```ruby
module C
# Breaks `foo` cache because "A" constant is set and the cache in foo depends
# on "A" and "B"
class A; end
end
B = 1
```
We expect the new cache scheme to be invalidated less often because names aren't frequently reused. With the cache being invalidated less, we can rely on its stability more to keep our constant references fast and reduce the need to throw away generated code in YJIT.
Use ISEQ_BODY macro to get the rb_iseq_constant_body of the ISeq. Using
this macro will make it easier for us to change the allocation strategy
of rb_iseq_constant_body when using Variable Width Allocation.
`rb_f_notimplement` has a similar signature with arity=-1, but it has an
extra marker argument to distinguish it from other methods in
compile-time type check in rb_define_method.
This trick is introduced to override a given arity to be -1 since
9ef51b0b89
However, the trailing extra argument introduces a signature mismatch
between caller and callee expectation.
This patch adds rb_f_notimplement_internal, which has canonical arity=-1
signature, and makes rb_define_method family to inserts a method entry
with rb_f_notimplement_internal instead of rb_f_notimplement.
When aliasing a method to the same name method, set a separate bit
flag on that method definition, instead of the reference count
increment. Although this kind of alias has no actual effect at
runtime, is used as the hack to suppress the method re-definition
warning.
Some callable method entries (cme) can be a key of `overloaded_cme_table`
and the keys should be pinned because the table is numtable (VALUE is a key).
Before the patch GC checks the cme is in `overloaded_cme_table` by looking up
the table, but it needs VM locking.
It works well in normal GC marking because it is protected by the VM lock,
but it doesn't work on `rb_objspace_reachable_objects_from` because it doesn't
use VM lock.
Now, the number of target cmes are small enough, I decide to pin down
all possible cmes instead of using looking up the table.
`overloaded_cme_table` keeps cme -> monly_cme pairs to manage
corresponding `monly_cme` for `cme`. The lifetime of the `monly_cme`
should be longer than `monly_cme`, but the previous patch losts the
reference to the living `monly_cme`.
Now `overloaded_cme_table` values are always root (keys are only weak
reference), it means `monly_cme` does not freed until corresponding
`cme` is invalidated.
To make managing easy, move `overloaded_cme_table` to `rb_vm_t`.
`def` (`rb_method_definition_t`) is shared by multiple callable
method entries (cme, `rb_callable_method_entry_t`).
There are two issues:
* old -> young reference: `cme1->def->mandatory_only_cme = monly_cme`
if `cme1` is young and `monly_cme` is young, there is no problem.
Howevr, another old `cme2` can refer `def`, in this case, old `cme2`
points young `monly_cme` and it violates gengc assumption.
* cme can have different `defined_class` but `monly_cme` only has
one `defined_class`. It does not make sense and `monly_cme`
should be created for a cme (not `def`).
To solve these issues, this patch allocates `monly_cme` per `cme`.
`cme` does not have another room to store a pointer to the `monly_cme`,
so this patch introduces `overloaded_cme_table`, which is weak key map
`[cme] -> [monly_cme]`.
`def::body::iseqptr::monly_cme` is deleted.
The first issue is reported by Alan Wu.
Previously, each of these methods returned self, but it is
more useful to return arguments, to allow for simpler method
decorators, such as:
```ruby
cached private def foo; some_long_calculation; end
```
Where cached sets up caching for the method.
For each of these methods, the following behavior is used:
1) No arguments returns nil
2) Single argument is returned
3) Multiple arguments are returned as an array
The single argument case is really the case we are trying to
optimize for, for the same reason that def was changed to return
a symbol for the method.
Idea and initial patch from Herwin Quarantainenet.
Implements [Feature #12495]
Builtin methods do not always have their mandatory_only_cme created (it
is only created when called with only mandatory parameters), so it could
be null. If we try to clear the cme, it will crash because it is null.
Co-authored-by: Aaron Patterson <tenderlove@ruby-lang.org>
Compare with the C methods, A built-in methods written in Ruby is
slower if only mandatory parameters are given because it needs to
check the argumens and fill default values for optional and keyword
parameters (C methods can check the number of parameters with `argc`,
so there are no overhead). Passing mandatory arguments are common
(optional arguments are exceptional, in many cases) so it is important
to provide the fast path for such common cases.
`Primitive.mandatory_only?` is a special builtin function used with
`if` expression like that:
```ruby
def self.at(time, subsec = false, unit = :microsecond, in: nil)
if Primitive.mandatory_only?
Primitive.time_s_at1(time)
else
Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in))
end
end
```
and it makes two ISeq,
```
def self.at(time, subsec = false, unit = :microsecond, in: nil)
Primitive.time_s_at(time, subsec, unit, Primitive.arg!(:in))
end
def self.at(time)
Primitive.time_s_at1(time)
end
```
and (2) is pointed by (1). Note that `Primitive.mandatory_only?`
should be used only in a condition of an `if` statement and the
`if` statement should be equal to the methdo body (you can not
put any expression before and after the `if` statement).
A method entry with `mandatory_only?` (`Time.at` on the above case)
is marked as `iseq_overload`. When the method will be dispatch only
with mandatory arguments (`Time.at(0)` for example), make another
method entry with ISeq (2) as mandatory only method entry and it
will be cached in an inline method cache.
The idea is similar discussed in https://bugs.ruby-lang.org/issues/16254
but it only checks mandatory parameters or more, because many cases
only mandatory parameters are given. If we find other cases (optional
or keyword parameters are used frequently and it hurts performance),
we can extend the feature.
I'm looking through the places where YJIT needs notifications. It looks
like these changes to gc.c and vm_callinfo.h have become unnecessary
since 84ab77ba59. This commit just makes the diff against upstream
smaller, but otherwise shouldn't change any behavior.
Added UJIT_CHECK_MODE. Set to 1 to double check method dispatch in
generated code.
It's surprising to me that we need to watch both cc and cme. There might
be opportunities to simplify there.
Point out that the method should be used for backwards compatibility
with code prior to Ruby 3.0 instead of Ruby 2.7. It's still needed
in Ruby 2.7. It isn't needed in Ruby 3.0, as the methods using it
could switch to delegating both positional and keyword arguments.
Add a link to the www.ruby-lang.org web page that goes into detail
describing when and how ruby2_keywords should be used.
Since refinement search is always performed, these entries should always
be public. The method entry that the refinement search returns decides
the visibility.
Fixes [Bug #17822]
To invalidate some callable method entries, we replace the entry in the
class. Most types of method entries are on the method table of the
origin class, but refinement entries without an orig_me are housed in
the method table of the class itself. They are there because refinements
take priority over prepended methods.
By unconditionally inserting a copy of the refinement entry into the
origin class, clearing the method cache created situations where there
are refinement entry duplicates in the lookup chain, leading to infinite
loops and other problems.
Update the replacement logic to use the right class that houses the
method entry. Also, be more selective about cache invalidation when
moving refinement entries for prepend. This avoids calling
clear_method_cache_by_id_in_class() before refinement entries are in the
place it expects.
[Bug #17806]
If a class has been refined but does not have an origin class,
there is a single method entry marked with VM_METHOD_TYPE_REFINED,
but it contains the original method entry. If the original method
entry is present, we shouldn't skip the method when searching even
when skipping refined methods.
Fixes [Bug #17519]