Граф коммитов

27 Коммитов

Автор SHA1 Сообщение Дата
Jemma Issroff 41bacd9b0d Remove unused rb_shape_flag_shift and rb_shape_flag_mask 2022-12-02 12:53:51 -08:00
Jemma Issroff 4c5e89791b Extracted rb_shape_id_offset 2022-12-02 12:53:51 -08:00
Aaron Patterson 17f9bcd7d7 implement IV writes 2022-12-02 12:53:51 -08:00
John Hawthorn f0cf70c840 Add a macro for SHAPE_DEBUG
Like before, default to VM_CHECK_MODE > 0, but this allows just enabling
shape debug helpers without the rest of VM_CHECK_MODE.
2022-12-01 15:37:15 -08:00
Peter Zhu 1f0888ab3e Speed up shape transitions
This commit significantly speeds up shape transitions as it changes
get_next_shape_internal to not perform a lookup (and instead require
the caller to perform the lookup). This avoids double lookups during
shape transitions.

There is a significant (~2x) speedup in the following micro-benchmark:

    puts(Benchmark.measure do
      o = Object.new

      100_000.times do |i|
        o.instance_variable_set(:"@a#{i}", 0)
      end
    end)

Before:

    22.393194   0.201639  22.594833 ( 22.684237)

After:

    11.323086   0.022284  11.345370 ( 11.389346)
2022-11-21 10:22:29 -05:00
Aaron Patterson 9e067df76b 32 bit comparison on shape id
This commit changes the shape id comparisons to use a 32 bit comparison
rather than 64 bit.  That means we don't need to load the shape id to a
register on x86 machines.

Given the following program:

```ruby
class Foo
  def initialize
    @foo = 1
    @bar = 1
  end

  def read
    [@foo, @bar]
  end
end

foo = Foo.new
foo.read
foo.read
foo.read
foo.read
foo.read

puts RubyVM::YJIT.disasm(Foo.instance_method(:read))
```

The machine code we generated _before_ this change is like this:

```
== BLOCK 1/4, ISEQ RANGE [0,3), 65 bytes ======================
  # getinstancevariable
  0x559a18623023: mov rax, qword ptr [r13 + 0x18]
  # guard object is heap
  0x559a18623027: test al, 7
  0x559a1862302a: jne 0x559a1862502d
  0x559a18623030: cmp rax, 4
  0x559a18623034: jbe 0x559a1862502d
  # guard shape, embedded, and T_OBJECT
  0x559a1862303a: mov rcx, qword ptr [rax]
  0x559a1862303d: movabs r11, 0xffff00000000201f
  0x559a18623047: and rcx, r11
  0x559a1862304a: movabs r11, 0xb000000002001
  0x559a18623054: cmp rcx, r11
  0x559a18623057: jne 0x559a18625046
  0x559a1862305d: mov rax, qword ptr [rax + 0x18]
  0x559a18623061: mov qword ptr [rbx], rax

== BLOCK 2/4, ISEQ RANGE [3,6), 0 bytes =======================
== BLOCK 3/4, ISEQ RANGE [3,6), 47 bytes ======================
  # gen_direct_jmp: fallthrough
  # getinstancevariable
  # regenerate_branch
  # getinstancevariable
  # regenerate_branch
  0x559a18623064: mov rax, qword ptr [r13 + 0x18]
  # guard shape, embedded, and T_OBJECT
  0x559a18623068: mov rcx, qword ptr [rax]
  0x559a1862306b: movabs r11, 0xffff00000000201f
  0x559a18623075: and rcx, r11
  0x559a18623078: movabs r11, 0xb000000002001
  0x559a18623082: cmp rcx, r11
  0x559a18623085: jne 0x559a18625099
  0x559a1862308b: mov rax, qword ptr [rax + 0x20]
  0x559a1862308f: mov qword ptr [rbx + 8], rax
```

After this change, it's like this:

```
== BLOCK 1/4, ISEQ RANGE [0,3), 41 bytes ======================
  # getinstancevariable
  0x5560c986d023: mov rax, qword ptr [r13 + 0x18]
  # guard object is heap
  0x5560c986d027: test al, 7
  0x5560c986d02a: jne 0x5560c986f02d
  0x5560c986d030: cmp rax, 4
  0x5560c986d034: jbe 0x5560c986f02d
  # guard shape
  0x5560c986d03a: cmp word ptr [rax + 6], 0x19
  0x5560c986d03f: jne 0x5560c986f046
  0x5560c986d045: mov rax, qword ptr [rax + 0x10]
  0x5560c986d049: mov qword ptr [rbx], rax

== BLOCK 2/4, ISEQ RANGE [3,6), 0 bytes =======================
== BLOCK 3/4, ISEQ RANGE [3,6), 23 bytes ======================
  # gen_direct_jmp: fallthrough
  # getinstancevariable
  # regenerate_branch
  # getinstancevariable
  # regenerate_branch
  0x5560c986d04c: mov rax, qword ptr [r13 + 0x18]
  # guard shape
  0x5560c986d050: cmp word ptr [rax + 6], 0x19
  0x5560c986d055: jne 0x5560c986f099
  0x5560c986d05b: mov rax, qword ptr [rax + 0x18]
  0x5560c986d05f: mov qword ptr [rbx + 8], rax
```

The first ivar read is a bit more complex, but the second ivar read is
much simpler.  I think eventually we could teach the context about the
shape, then emit only one shape guard.
2022-11-18 12:04:10 -08:00
Aaron Patterson 6582f34831 rename SHAPE_BITS to SHAPE_ID_NUM_BITS 2022-11-18 12:04:10 -08:00
Aaron Patterson 10788166e7 Differentiate T_OBJECT shapes from other objects
We would like to differentiate types of objects via their shape.  This
commit adds a special T_OBJECT shape when we allocate an instance of
T_OBJECT.  This allows us to avoid testing whether an object is an
instance of a T_OBJECT or not, we can just check the shape.
2022-11-18 08:31:56 -08:00
Peter Zhu 4b29eb17f2 Fix indentation of switch statement in shape.c 2022-11-17 14:43:46 -05:00
Peter Zhu 5dcbe58833 Fix buffer overrun in ivars when rebuilding shapes
In rb_shape_rebuild_shape, we need to increase the capacity when
capacity == next_iv_index since the next ivar will be writing at index
next_iv_index.

This bug can be reproduced when assertions are turned on and you run the
following code:

    class Foo
      def initialize
        @a1 = 1
        @a2 = 1
        @a3 = 1
        @a4 = 1
        @a5 = 1
        @a6 = 1
        @a7 = 1
      end

      def add_ivars
        @a8 = 1
        @a9 = 1
      end
    end

    class Bar < Foo
    end

    foo = Foo.new
    foo.add_ivars
    bar = Bar.new
    GC.start
    bar.add_ivars
    bar.clone

You will get the following crash:

    Assertion Failed: object.c:301:rb_obj_copy_ivar:src_num_ivs <= shape_to_set_on_dest->capacity
2022-11-15 08:53:46 -05:00
Peter Zhu 6dd1a5f532 Remove unused function rb_shape_transition_shape 2022-11-14 11:25:41 -05:00
Jemma Issroff 7ee1cacb84 Extract `rb_shape_get_parent` helper
Extract an `rb_shape_get_parent` method instead of continually calling
`rb_shape_get_shape_by_id(shape->parent_id)`
2022-11-10 13:02:50 -05:00
Jemma Issroff 5246f4027e Transition shape when object's capacity changes
This commit adds a `capacity` field to shapes, and adds shape
transitions whenever an object's capacity changes. Objects which are
allocated out of a bigger size pool will also make a transition from the
root shape to the shape with the correct capacity for their size pool
when they are allocated.

This commit will allow us to remove numiv from objects completely, and
will also mean we can guarantee that if two objects share shapes, their
IVs are in the same positions (an embedded and extended object cannot
share shapes). This will enable us to implement ivar sets in YJIT using
object shapes.

Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
2022-11-10 10:11:34 -05:00
John Hawthorn 02f1554224
Implement object shapes for T_CLASS and T_MODULE (#6637)
* Avoid RCLASS_IV_TBL in marshal.c
* Avoid RCLASS_IV_TBL for class names
* Avoid RCLASS_IV_TBL for autoload
* Avoid RCLASS_IV_TBL for class variables
* Avoid copying RCLASS_IV_TBL onto ICLASSes
* Use object shapes for Class and Module IVs
2022-10-31 14:05:37 -07:00
Jemma Issroff a11952dac1 Rename `iv_count` on shapes to `next_iv_index`
`iv_count` is a misleading name because when IVs are unset, the new
shape doesn't decrement this value. `next_iv_count` is an accurate, and
more descriptive name.
2022-10-21 14:57:34 -07:00
Jemma Issroff 0aaa6133ed Transition frozen string to frozen root shape
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
2022-10-19 11:06:19 -07:00
Aaron Patterson e5058b58c2
Only expose Ruby Shape API if VM_CHECK_MODE is enabled 2022-10-13 13:11:01 -07:00
Aaron Patterson 107531583c Unwrap shape id as unsigned int
Shape IDs are unsigned.  This commit unwraps the shape id as an unsigned
int, which will automatically raise an argument error and also eliminate
a compilation warning.
2022-10-12 09:56:11 -07:00
Nobuyoshi Nakada 70bc8cc6c2
Adjust indents [ci skip] 2022-10-12 22:22:04 +09:00
Jemma Issroff 913979bede
Make inline cache reads / writes atomic with object shapes
Prior to this commit, we were reading and writing ivar index and
shape ID in inline caches in two separate instructions when
getting and setting ivars. This meant there was a race condition
with ractors and these caches where one ractor could change
a value in the cache while another was still reading from it.

This commit instead reads and writes shape ID and ivar index to
inline caches atomically so there is no longer a race condition.

Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
2022-10-11 08:40:56 -07:00
Jemma Issroff ad63b668e2
Revert "Revert "This commit implements the Object Shapes technique in CRuby.""
This reverts commit 9a6803c90b.
2022-10-11 08:40:56 -07:00
Aaron Patterson 9a6803c90b
Revert "This commit implements the Object Shapes technique in CRuby."
This reverts commit 68bc9e2e97d12f80df0d113e284864e225f771c2.
2022-09-30 16:01:50 -07:00
eileencodes 0ab0229c11 Fix frozen object inspect
In the rails/rails CI build for Ruby master we found that some tests
were failing due to inspect on a frozen object being incorrect.

An object's instance variable count was incorrect when frozen causing
the object's inspect to not splat out the object.

This fixes the issue and adds a test for inspecting frozen objects.

Co-Authored-By: Jemma Issroff <jemmaissroff@gmail.com>
Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
2022-09-30 13:57:59 -07:00
Aaron Patterson 3e7c42a239
Shapes wrappers shouldn't mark the shape
We don't allocate shapes out of the GC anymore, so we shouldn't mark
those pointers.
2022-09-28 09:24:35 -07:00
Jemma Issroff d594a5a8bd
This commit implements the Object Shapes technique in CRuby.
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects.  Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness").  Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree.  Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.

For example:

```ruby
class Foo
  def initialize
    # Starts with shape id 0
    @a = 1 # transitions to shape id 1
    @b = 1 # transitions to shape id 2
  end
end

class Bar
  def initialize
    # Starts with shape id 0
    @a = 1 # transitions to shape id 1
    @b = 1 # transitions to shape id 2
  end
end

foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```

Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.

This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.

This commit also adds some methods for debugging shapes on objects.  See
`RubyVM::Shape` for more details.

For more context on Object Shapes, see [Feature: #18776]

Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
2022-09-28 08:26:21 -07:00
Aaron Patterson 06abfa5be6
Revert this until we can figure out WB issues or remove shapes from GC
Revert "* expand tabs. [ci skip]"

This reverts commit 830b5b5c35.

Revert "This commit implements the Object Shapes technique in CRuby."

This reverts commit 9ddfd2ca00.
2022-09-26 16:10:11 -07:00
Jemma Issroff 9ddfd2ca00 This commit implements the Object Shapes technique in CRuby.
Object Shapes is used for accessing instance variables and representing the
"frozenness" of objects.  Object instances have a "shape" and the shape
represents some attributes of the object (currently which instance variables are
set and the "frozenness").  Shapes form a tree data structure, and when a new
instance variable is set on an object, that object "transitions" to a new shape
in the shape tree.  Each shape has an ID that is used for caching. The shape
structure is independent of class, so objects of different types can have the
same shape.

For example:

```ruby
class Foo
  def initialize
    # Starts with shape id 0
    @a = 1 # transitions to shape id 1
    @b = 1 # transitions to shape id 2
  end
end

class Bar
  def initialize
    # Starts with shape id 0
    @a = 1 # transitions to shape id 1
    @b = 1 # transitions to shape id 2
  end
end

foo = Foo.new # `foo` has shape id 2
bar = Bar.new # `bar` has shape id 2
```

Both `foo` and `bar` instances have the same shape because they both set
instance variables of the same name in the same order.

This technique can help to improve inline cache hits as well as generate more
efficient machine code in JIT compilers.

This commit also adds some methods for debugging shapes on objects.  See
`RubyVM::Shape` for more details.

For more context on Object Shapes, see [Feature: #18776]

Co-Authored-By: Aaron Patterson <tenderlove@ruby-lang.org>
Co-Authored-By: Eileen M. Uchitelle <eileencodes@gmail.com>
Co-Authored-By: John Hawthorn <john@hawthorn.email>
2022-09-26 09:21:30 -07:00