/********************************************************************** class.c - $Author$ created at: Tue Aug 10 15:05:44 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ /*! * \addtogroup class * \{ */ #include "ruby/internal/config.h" #include #include "constant.h" #include "debug_counter.h" #include "id_table.h" #include "internal.h" #include "internal/class.h" #include "internal/eval.h" #include "internal/hash.h" #include "internal/object.h" #include "internal/string.h" #include "internal/variable.h" #include "ruby/st.h" #include "vm_core.h" #include "yjit.h" /* Flags of T_CLASS * * 0: RCLASS_IS_ROOT * The class has been added to the VM roots. Will always be marked and pinned. * This is done for classes defined from C to allow storing them in global variables. * 1: RUBY_FL_SINGLETON * This class is a singleton class. * 2: RCLASS_SUPERCLASSES_INCLUDE_SELF * The RCLASS_SUPERCLASSES contains the class as the last element. * This means that this class owns the RCLASS_SUPERCLASSES list. * if !SHAPE_IN_BASIC_FLAGS * 4-19: SHAPE_FLAG_MASK * Shape ID for the class. * endif */ /* Flags of T_ICLASS * * 0: RICLASS_IS_ORIGIN * 3: RICLASS_ORIGIN_SHARED_MTBL * The T_ICLASS does not own the method table. * if !SHAPE_IN_BASIC_FLAGS * 4-19: SHAPE_FLAG_MASK * Shape ID. This is set but not used. * endif */ /* Flags of T_MODULE * * 0: RCLASS_IS_ROOT * The class has been added to the VM roots. Will always be marked and pinned. * This is done for classes defined from C to allow storing them in global variables. * 1: RMODULE_ALLOCATED_BUT_NOT_INITIALIZED * Module has not been initialized. * 2: RCLASS_SUPERCLASSES_INCLUDE_SELF * See RCLASS_SUPERCLASSES_INCLUDE_SELF in T_CLASS. * 3: RMODULE_IS_REFINEMENT * Module is used for refinements. * if !SHAPE_IN_BASIC_FLAGS * 4-19: SHAPE_FLAG_MASK * Shape ID for the module. * endif */ #define METACLASS_OF(k) RBASIC(k)->klass #define SET_METACLASS_OF(k, cls) RBASIC_SET_CLASS(k, cls) RUBY_EXTERN rb_serial_t ruby_vm_global_cvar_state; static rb_subclass_entry_t * push_subclass_entry_to_list(VALUE super, VALUE klass) { rb_subclass_entry_t *entry, *head; entry = ZALLOC(rb_subclass_entry_t); entry->klass = klass; head = RCLASS_SUBCLASSES(super); if (!head) { head = ZALLOC(rb_subclass_entry_t); RCLASS_SUBCLASSES(super) = head; } entry->next = head->next; entry->prev = head; if (head->next) { head->next->prev = entry; } head->next = entry; return entry; } void rb_class_subclass_add(VALUE super, VALUE klass) { if (super && !UNDEF_P(super)) { rb_subclass_entry_t *entry = push_subclass_entry_to_list(super, klass); RCLASS_SUBCLASS_ENTRY(klass) = entry; } } static void rb_module_add_to_subclasses_list(VALUE module, VALUE iclass) { rb_subclass_entry_t *entry = push_subclass_entry_to_list(module, iclass); RCLASS_MODULE_SUBCLASS_ENTRY(iclass) = entry; } void rb_class_remove_subclass_head(VALUE klass) { rb_subclass_entry_t *head = RCLASS_SUBCLASSES(klass); if (head) { if (head->next) { head->next->prev = NULL; } RCLASS_SUBCLASSES(klass) = NULL; xfree(head); } } void rb_class_remove_from_super_subclasses(VALUE klass) { rb_subclass_entry_t *entry = RCLASS_SUBCLASS_ENTRY(klass); if (entry) { rb_subclass_entry_t *prev = entry->prev, *next = entry->next; if (prev) { prev->next = next; } if (next) { next->prev = prev; } xfree(entry); } RCLASS_SUBCLASS_ENTRY(klass) = NULL; } void rb_class_remove_from_module_subclasses(VALUE klass) { rb_subclass_entry_t *entry = RCLASS_MODULE_SUBCLASS_ENTRY(klass); if (entry) { rb_subclass_entry_t *prev = entry->prev, *next = entry->next; if (prev) { prev->next = next; } if (next) { next->prev = prev; } xfree(entry); } RCLASS_MODULE_SUBCLASS_ENTRY(klass) = NULL; } void rb_class_foreach_subclass(VALUE klass, void (*f)(VALUE, VALUE), VALUE arg) { // RCLASS_SUBCLASSES should always point to our head element which has NULL klass rb_subclass_entry_t *cur = RCLASS_SUBCLASSES(klass); // if we have a subclasses list, then the head is a placeholder with no valid // class. So ignore it and use the next element in the list (if one exists) if (cur) { RUBY_ASSERT(!cur->klass); cur = cur->next; } /* do not be tempted to simplify this loop into a for loop, the order of operations is important here if `f` modifies the linked list */ while (cur) { VALUE curklass = cur->klass; cur = cur->next; // do not trigger GC during f, otherwise the cur will become // a dangling pointer if the subclass is collected f(curklass, arg); } } static void class_detach_subclasses(VALUE klass, VALUE arg) { rb_class_remove_from_super_subclasses(klass); } void rb_class_detach_subclasses(VALUE klass) { rb_class_foreach_subclass(klass, class_detach_subclasses, Qnil); } static void class_detach_module_subclasses(VALUE klass, VALUE arg) { rb_class_remove_from_module_subclasses(klass); } void rb_class_detach_module_subclasses(VALUE klass) { rb_class_foreach_subclass(klass, class_detach_module_subclasses, Qnil); } /** * Allocates a struct RClass for a new class. * * @param flags initial value for basic.flags of the returned class. * @param klass the class of the returned class. * @return an uninitialized Class object. * @pre `klass` must refer `Class` class or an ancestor of Class. * @pre `(flags | T_CLASS) != 0` * @post the returned class can safely be `#initialize` 'd. * * @note this function is not Class#allocate. */ static VALUE class_alloc(VALUE flags, VALUE klass) { size_t alloc_size = sizeof(struct RClass) + sizeof(rb_classext_t); flags &= T_MASK; if (RGENGC_WB_PROTECTED_CLASS) flags |= FL_WB_PROTECTED; NEWOBJ_OF(obj, struct RClass, klass, flags, alloc_size, 0); memset(RCLASS_EXT(obj), 0, sizeof(rb_classext_t)); /* ZALLOC RCLASS_CONST_TBL(obj) = 0; RCLASS_M_TBL(obj) = 0; RCLASS_IV_INDEX_TBL(obj) = 0; RCLASS_SET_SUPER((VALUE)obj, 0); RCLASS_SUBCLASSES(obj) = NULL; RCLASS_PARENT_SUBCLASSES(obj) = NULL; RCLASS_MODULE_SUBCLASSES(obj) = NULL; */ RCLASS_SET_ORIGIN((VALUE)obj, (VALUE)obj); RB_OBJ_WRITE(obj, &RCLASS_REFINED_CLASS(obj), Qnil); RCLASS_SET_ALLOCATOR((VALUE)obj, 0); return (VALUE)obj; } static void RCLASS_M_TBL_INIT(VALUE c) { RCLASS_M_TBL(c) = rb_id_table_create(0); } /** * A utility function that wraps class_alloc. * * allocates a class and initializes safely. * @param super a class from which the new class derives. * @return a class object. * @pre `super` must be a class. * @post the metaclass of the new class is Class. */ VALUE rb_class_boot(VALUE super) { VALUE klass = class_alloc(T_CLASS, rb_cClass); RCLASS_SET_SUPER(klass, super); RCLASS_M_TBL_INIT(klass); return (VALUE)klass; } static VALUE * class_superclasses_including_self(VALUE klass) { if (FL_TEST_RAW(klass, RCLASS_SUPERCLASSES_INCLUDE_SELF)) return RCLASS_SUPERCLASSES(klass); size_t depth = RCLASS_SUPERCLASS_DEPTH(klass); VALUE *superclasses = xmalloc(sizeof(VALUE) * (depth + 1)); if (depth > 0) memcpy(superclasses, RCLASS_SUPERCLASSES(klass), sizeof(VALUE) * depth); superclasses[depth] = klass; RCLASS_SUPERCLASSES(klass) = superclasses; FL_SET_RAW(klass, RCLASS_SUPERCLASSES_INCLUDE_SELF); return superclasses; } void rb_class_update_superclasses(VALUE klass) { VALUE super = RCLASS_SUPER(klass); if (!RB_TYPE_P(klass, T_CLASS)) return; if (UNDEF_P(super)) return; // If the superclass array is already built if (RCLASS_SUPERCLASSES(klass)) return; // find the proper superclass while (super != Qfalse && !RB_TYPE_P(super, T_CLASS)) { super = RCLASS_SUPER(super); } // For BasicObject and uninitialized classes, depth=0 and ary=NULL if (super == Qfalse) return; // Sometimes superclasses are set before the full ancestry tree is built // This happens during metaclass construction if (super != rb_cBasicObject && !RCLASS_SUPERCLASS_DEPTH(super)) { rb_class_update_superclasses(super); // If it is still unset we need to try later if (!RCLASS_SUPERCLASS_DEPTH(super)) return; } RCLASS_SUPERCLASSES(klass) = class_superclasses_including_self(super); RCLASS_SUPERCLASS_DEPTH(klass) = RCLASS_SUPERCLASS_DEPTH(super) + 1; } void rb_check_inheritable(VALUE super) { if (!RB_TYPE_P(super, T_CLASS)) { rb_raise(rb_eTypeError, "superclass must be an instance of Class (given an instance of %"PRIsVALUE")", rb_obj_class(super)); } if (RCLASS_SINGLETON_P(super)) { rb_raise(rb_eTypeError, "can't make subclass of singleton class"); } if (super == rb_cClass) { rb_raise(rb_eTypeError, "can't make subclass of Class"); } } VALUE rb_class_new(VALUE super) { Check_Type(super, T_CLASS); rb_check_inheritable(super); VALUE klass = rb_class_boot(super); if (super != rb_cObject && super != rb_cBasicObject) { RCLASS_EXT(klass)->max_iv_count = RCLASS_EXT(super)->max_iv_count; } return klass; } VALUE rb_class_s_alloc(VALUE klass) { return rb_class_boot(0); } static void clone_method(VALUE old_klass, VALUE new_klass, ID mid, const rb_method_entry_t *me) { if (me->def->type == VM_METHOD_TYPE_ISEQ) { rb_cref_t *new_cref; rb_vm_rewrite_cref(me->def->body.iseq.cref, old_klass, new_klass, &new_cref); rb_add_method_iseq(new_klass, mid, me->def->body.iseq.iseqptr, new_cref, METHOD_ENTRY_VISI(me)); } else { rb_method_entry_set(new_klass, mid, me, METHOD_ENTRY_VISI(me)); } } struct clone_method_arg { VALUE new_klass; VALUE old_klass; }; static enum rb_id_table_iterator_result clone_method_i(ID key, VALUE value, void *data) { const struct clone_method_arg *arg = (struct clone_method_arg *)data; clone_method(arg->old_klass, arg->new_klass, key, (const rb_method_entry_t *)value); return ID_TABLE_CONTINUE; } struct clone_const_arg { VALUE klass; struct rb_id_table *tbl; }; static int clone_const(ID key, const rb_const_entry_t *ce, struct clone_const_arg *arg) { rb_const_entry_t *nce = ALLOC(rb_const_entry_t); MEMCPY(nce, ce, rb_const_entry_t, 1); RB_OBJ_WRITTEN(arg->klass, Qundef, ce->value); RB_OBJ_WRITTEN(arg->klass, Qundef, ce->file); rb_id_table_insert(arg->tbl, key, (VALUE)nce); return ID_TABLE_CONTINUE; } static enum rb_id_table_iterator_result clone_const_i(ID key, VALUE value, void *data) { return clone_const(key, (const rb_const_entry_t *)value, data); } static void class_init_copy_check(VALUE clone, VALUE orig) { if (orig == rb_cBasicObject) { rb_raise(rb_eTypeError, "can't copy the root class"); } if (RCLASS_SUPER(clone) != 0 || clone == rb_cBasicObject) { rb_raise(rb_eTypeError, "already initialized class"); } if (RCLASS_SINGLETON_P(orig)) { rb_raise(rb_eTypeError, "can't copy singleton class"); } } struct cvc_table_copy_ctx { VALUE clone; struct rb_id_table * new_table; }; static enum rb_id_table_iterator_result cvc_table_copy(ID id, VALUE val, void *data) { struct cvc_table_copy_ctx *ctx = (struct cvc_table_copy_ctx *)data; struct rb_cvar_class_tbl_entry * orig_entry; orig_entry = (struct rb_cvar_class_tbl_entry *)val; struct rb_cvar_class_tbl_entry *ent; ent = ALLOC(struct rb_cvar_class_tbl_entry); ent->class_value = ctx->clone; ent->cref = orig_entry->cref; ent->global_cvar_state = orig_entry->global_cvar_state; rb_id_table_insert(ctx->new_table, id, (VALUE)ent); RB_OBJ_WRITTEN(ctx->clone, Qundef, ent->cref); return ID_TABLE_CONTINUE; } static void copy_tables(VALUE clone, VALUE orig) { if (RCLASS_CONST_TBL(clone)) { rb_free_const_table(RCLASS_CONST_TBL(clone)); RCLASS_CONST_TBL(clone) = 0; } if (RCLASS_CVC_TBL(orig)) { struct rb_id_table *rb_cvc_tbl = RCLASS_CVC_TBL(orig); struct rb_id_table *rb_cvc_tbl_dup = rb_id_table_create(rb_id_table_size(rb_cvc_tbl)); struct cvc_table_copy_ctx ctx; ctx.clone = clone; ctx.new_table = rb_cvc_tbl_dup; rb_id_table_foreach(rb_cvc_tbl, cvc_table_copy, &ctx); RCLASS_CVC_TBL(clone) = rb_cvc_tbl_dup; } rb_id_table_free(RCLASS_M_TBL(clone)); RCLASS_M_TBL(clone) = 0; if (!RB_TYPE_P(clone, T_ICLASS)) { st_data_t id; rb_iv_tbl_copy(clone, orig); CONST_ID(id, "__tmp_classpath__"); rb_attr_delete(clone, id); CONST_ID(id, "__classpath__"); rb_attr_delete(clone, id); } if (RCLASS_CONST_TBL(orig)) { struct clone_const_arg arg; arg.tbl = RCLASS_CONST_TBL(clone) = rb_id_table_create(0); arg.klass = clone; rb_id_table_foreach(RCLASS_CONST_TBL(orig), clone_const_i, &arg); } } static bool ensure_origin(VALUE klass); /** * If this flag is set, that module is allocated but not initialized yet. */ enum {RMODULE_ALLOCATED_BUT_NOT_INITIALIZED = RUBY_FL_USER1}; static inline bool RMODULE_UNINITIALIZED(VALUE module) { return FL_TEST_RAW(module, RMODULE_ALLOCATED_BUT_NOT_INITIALIZED); } void rb_module_set_initialized(VALUE mod) { FL_UNSET_RAW(mod, RMODULE_ALLOCATED_BUT_NOT_INITIALIZED); /* no more re-initialization */ } void rb_module_check_initializable(VALUE mod) { if (!RMODULE_UNINITIALIZED(mod)) { rb_raise(rb_eTypeError, "already initialized module"); } } /* :nodoc: */ VALUE rb_mod_init_copy(VALUE clone, VALUE orig) { switch (BUILTIN_TYPE(clone)) { case T_CLASS: case T_ICLASS: class_init_copy_check(clone, orig); break; case T_MODULE: rb_module_check_initializable(clone); break; default: break; } if (!OBJ_INIT_COPY(clone, orig)) return clone; /* cloned flag is refer at constant inline cache * see vm_get_const_key_cref() in vm_insnhelper.c */ RCLASS_EXT(clone)->cloned = true; RCLASS_EXT(orig)->cloned = true; if (!RCLASS_SINGLETON_P(CLASS_OF(clone))) { RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig)); rb_singleton_class_attached(METACLASS_OF(clone), (VALUE)clone); } RCLASS_SET_ALLOCATOR(clone, RCLASS_ALLOCATOR(orig)); copy_tables(clone, orig); if (RCLASS_M_TBL(orig)) { struct clone_method_arg arg; arg.old_klass = orig; arg.new_klass = clone; RCLASS_M_TBL_INIT(clone); rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg); } if (RCLASS_ORIGIN(orig) == orig) { RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig)); } else { VALUE p = RCLASS_SUPER(orig); VALUE orig_origin = RCLASS_ORIGIN(orig); VALUE prev_clone_p = clone; VALUE origin_stack = rb_ary_hidden_new(2); VALUE origin[2]; VALUE clone_p = 0; long origin_len; int add_subclass; VALUE clone_origin; ensure_origin(clone); clone_origin = RCLASS_ORIGIN(clone); while (p && p != orig_origin) { if (BUILTIN_TYPE(p) != T_ICLASS) { rb_bug("non iclass between module/class and origin"); } clone_p = class_alloc(RBASIC(p)->flags, METACLASS_OF(p)); /* We should set the m_tbl right after allocation before anything * that can trigger GC to avoid clone_p from becoming old and * needing to fire write barriers. */ RCLASS_SET_M_TBL(clone_p, RCLASS_M_TBL(p)); RCLASS_SET_SUPER(prev_clone_p, clone_p); prev_clone_p = clone_p; RCLASS_CONST_TBL(clone_p) = RCLASS_CONST_TBL(p); RCLASS_SET_ALLOCATOR(clone_p, RCLASS_ALLOCATOR(p)); if (RB_TYPE_P(clone, T_CLASS)) { RCLASS_SET_INCLUDER(clone_p, clone); } add_subclass = TRUE; if (p != RCLASS_ORIGIN(p)) { origin[0] = clone_p; origin[1] = RCLASS_ORIGIN(p); rb_ary_cat(origin_stack, origin, 2); } else if ((origin_len = RARRAY_LEN(origin_stack)) > 1 && RARRAY_AREF(origin_stack, origin_len - 1) == p) { RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), clone_p); RICLASS_SET_ORIGIN_SHARED_MTBL(clone_p); rb_ary_resize(origin_stack, origin_len); add_subclass = FALSE; } if (add_subclass) { rb_module_add_to_subclasses_list(METACLASS_OF(p), clone_p); } p = RCLASS_SUPER(p); } if (p == orig_origin) { if (clone_p) { RCLASS_SET_SUPER(clone_p, clone_origin); RCLASS_SET_SUPER(clone_origin, RCLASS_SUPER(orig_origin)); } copy_tables(clone_origin, orig_origin); if (RCLASS_M_TBL(orig_origin)) { struct clone_method_arg arg; arg.old_klass = orig; arg.new_klass = clone; RCLASS_M_TBL_INIT(clone_origin); rb_id_table_foreach(RCLASS_M_TBL(orig_origin), clone_method_i, &arg); } } else { rb_bug("no origin for class that has origin"); } rb_class_update_superclasses(clone); } return clone; } VALUE rb_singleton_class_clone(VALUE obj) { return rb_singleton_class_clone_and_attach(obj, Qundef); } // Clone and return the singleton class of `obj` if it has been created and is attached to `obj`. VALUE rb_singleton_class_clone_and_attach(VALUE obj, VALUE attach) { const VALUE klass = METACLASS_OF(obj); // Note that `rb_singleton_class()` can create situations where `klass` is // attached to an object other than `obj`. In which case `obj` does not have // a material singleton class attached yet and there is no singleton class // to clone. if (!(RCLASS_SINGLETON_P(klass) && RCLASS_ATTACHED_OBJECT(klass) == obj)) { // nothing to clone return klass; } else { /* copy singleton(unnamed) class */ bool klass_of_clone_is_new; VALUE clone = class_alloc(RBASIC(klass)->flags, 0); if (BUILTIN_TYPE(obj) == T_CLASS) { klass_of_clone_is_new = true; RBASIC_SET_CLASS(clone, clone); } else { VALUE klass_metaclass_clone = rb_singleton_class_clone(klass); // When `METACLASS_OF(klass) == klass_metaclass_clone`, it means the // recursive call did not clone `METACLASS_OF(klass)`. klass_of_clone_is_new = (METACLASS_OF(klass) != klass_metaclass_clone); RBASIC_SET_CLASS(clone, klass_metaclass_clone); } RCLASS_SET_SUPER(clone, RCLASS_SUPER(klass)); rb_iv_tbl_copy(clone, klass); if (RCLASS_CONST_TBL(klass)) { struct clone_const_arg arg; arg.tbl = RCLASS_CONST_TBL(clone) = rb_id_table_create(0); arg.klass = clone; rb_id_table_foreach(RCLASS_CONST_TBL(klass), clone_const_i, &arg); } if (!UNDEF_P(attach)) { rb_singleton_class_attached(clone, attach); } RCLASS_M_TBL_INIT(clone); { struct clone_method_arg arg; arg.old_klass = klass; arg.new_klass = clone; rb_id_table_foreach(RCLASS_M_TBL(klass), clone_method_i, &arg); } if (klass_of_clone_is_new) { rb_singleton_class_attached(METACLASS_OF(clone), clone); } FL_SET(clone, FL_SINGLETON); return clone; } } void rb_singleton_class_attached(VALUE klass, VALUE obj) { if (RCLASS_SINGLETON_P(klass)) { RCLASS_SET_ATTACHED_OBJECT(klass, obj); } } /*! * whether k is a meta^(n)-class of Class class * @retval 1 if \a k is a meta^(n)-class of Class class (n >= 0) * @retval 0 otherwise */ #define META_CLASS_OF_CLASS_CLASS_P(k) (METACLASS_OF(k) == (k)) static int rb_singleton_class_has_metaclass_p(VALUE sklass) { return RCLASS_ATTACHED_OBJECT(METACLASS_OF(sklass)) == sklass; } int rb_singleton_class_internal_p(VALUE sklass) { return (RB_TYPE_P(RCLASS_ATTACHED_OBJECT(sklass), T_CLASS) && !rb_singleton_class_has_metaclass_p(sklass)); } /** * whether k has a metaclass * @retval 1 if \a k has a metaclass * @retval 0 otherwise */ #define HAVE_METACLASS_P(k) \ (FL_TEST(METACLASS_OF(k), FL_SINGLETON) && \ rb_singleton_class_has_metaclass_p(k)) /** * ensures `klass` belongs to its own eigenclass. * @return the eigenclass of `klass` * @post `klass` belongs to the returned eigenclass. * i.e. the attached object of the eigenclass is `klass`. * @note this macro creates a new eigenclass if necessary. */ #define ENSURE_EIGENCLASS(klass) \ (HAVE_METACLASS_P(klass) ? METACLASS_OF(klass) : make_metaclass(klass)) /** * Creates a metaclass of `klass` * @param klass a class * @return created metaclass for the class * @pre `klass` is a Class object * @pre `klass` has no singleton class. * @post the class of `klass` is the returned class. * @post the returned class is meta^(n+1)-class when `klass` is a meta^(n)-klass for n >= 0 */ static inline VALUE make_metaclass(VALUE klass) { VALUE super; VALUE metaclass = rb_class_boot(Qundef); FL_SET(metaclass, FL_SINGLETON); rb_singleton_class_attached(metaclass, klass); if (META_CLASS_OF_CLASS_CLASS_P(klass)) { SET_METACLASS_OF(klass, metaclass); SET_METACLASS_OF(metaclass, metaclass); } else { VALUE tmp = METACLASS_OF(klass); /* for a meta^(n)-class klass, tmp is meta^(n)-class of Class class */ SET_METACLASS_OF(klass, metaclass); SET_METACLASS_OF(metaclass, ENSURE_EIGENCLASS(tmp)); } super = RCLASS_SUPER(klass); while (RB_TYPE_P(super, T_ICLASS)) super = RCLASS_SUPER(super); RCLASS_SET_SUPER(metaclass, super ? ENSURE_EIGENCLASS(super) : rb_cClass); // Full class ancestry may not have been filled until we reach here. rb_class_update_superclasses(METACLASS_OF(metaclass)); return metaclass; } /** * Creates a singleton class for `obj`. * @pre `obj` must not be an immediate nor a special const. * @pre `obj` must not be a Class object. * @pre `obj` has no singleton class. */ static inline VALUE make_singleton_class(VALUE obj) { VALUE orig_class = METACLASS_OF(obj); VALUE klass = rb_class_boot(orig_class); FL_SET(klass, FL_SINGLETON); RBASIC_SET_CLASS(obj, klass); rb_singleton_class_attached(klass, obj); rb_yjit_invalidate_no_singleton_class(orig_class); SET_METACLASS_OF(klass, METACLASS_OF(rb_class_real(orig_class))); return klass; } static VALUE boot_defclass(const char *name, VALUE super) { VALUE obj = rb_class_boot(super); ID id = rb_intern(name); rb_const_set((rb_cObject ? rb_cObject : obj), id, obj); rb_vm_register_global_object(obj); return obj; } /*********************************************************************** * * Document-class: Refinement * * Refinement is a class of the +self+ (current context) inside +refine+ * statement. It allows to import methods from other modules, see #import_methods. */ #if 0 /* for RDoc */ /* * Document-method: Refinement#import_methods * * call-seq: * import_methods(module, ...) -> self * * Imports methods from modules. Unlike Module#include, * Refinement#import_methods copies methods and adds them into the refinement, * so the refinement is activated in the imported methods. * * Note that due to method copying, only methods defined in Ruby code can be imported. * * module StrUtils * def indent(level) * ' ' * level + self * end * end * * module M * refine String do * import_methods StrUtils * end * end * * using M * "foo".indent(3) * #=> " foo" * * module M * refine String do * import_methods Enumerable * # Can't import method which is not defined with Ruby code: Enumerable#drop * end * end * */ static VALUE refinement_import_methods(int argc, VALUE *argv, VALUE refinement) { } # endif /*! *-- * \private * Initializes the world of objects and classes. * * At first, the function bootstraps the class hierarchy. * It initializes the most fundamental classes and their metaclasses. * - \c BasicObject * - \c Object * - \c Module * - \c Class * After the bootstrap step, the class hierarchy becomes as the following * diagram. * * \image html boottime-classes.png * * Then, the function defines classes, modules and methods as usual. * \ingroup class *++ */ void Init_class_hierarchy(void) { rb_cBasicObject = boot_defclass("BasicObject", 0); rb_cObject = boot_defclass("Object", rb_cBasicObject); rb_vm_register_global_object(rb_cObject); /* resolve class name ASAP for order-independence */ rb_set_class_path_string(rb_cObject, rb_cObject, rb_fstring_lit("Object")); rb_cModule = boot_defclass("Module", rb_cObject); rb_cClass = boot_defclass("Class", rb_cModule); rb_cRefinement = boot_defclass("Refinement", rb_cModule); #if 0 /* for RDoc */ // we pretend it to be public, otherwise RDoc will ignore it rb_define_method(rb_cRefinement, "import_methods", refinement_import_methods, -1); #endif rb_const_set(rb_cObject, rb_intern_const("BasicObject"), rb_cBasicObject); RBASIC_SET_CLASS(rb_cClass, rb_cClass); RBASIC_SET_CLASS(rb_cModule, rb_cClass); RBASIC_SET_CLASS(rb_cObject, rb_cClass); RBASIC_SET_CLASS(rb_cRefinement, rb_cClass); RBASIC_SET_CLASS(rb_cBasicObject, rb_cClass); ENSURE_EIGENCLASS(rb_cRefinement); } /** * @internal * Creates a new *singleton class* for an object. * * @pre `obj` has no singleton class. * @note DO NOT USE the function in an extension libraries. Use @ref rb_singleton_class. * @param obj An object. * @param unused ignored. * @return The singleton class of the object. */ VALUE rb_make_metaclass(VALUE obj, VALUE unused) { if (BUILTIN_TYPE(obj) == T_CLASS) { return make_metaclass(obj); } else { return make_singleton_class(obj); } } VALUE rb_define_class_id(ID id, VALUE super) { VALUE klass; if (!super) super = rb_cObject; klass = rb_class_new(super); rb_make_metaclass(klass, METACLASS_OF(super)); return klass; } /** * Calls Class#inherited. * @param super A class which will be called #inherited. * NULL means Object class. * @param klass A Class object which derived from `super` * @return the value `Class#inherited` returns * @pre Each of `super` and `klass` must be a `Class` object. */ VALUE rb_class_inherited(VALUE super, VALUE klass) { ID inherited; if (!super) super = rb_cObject; CONST_ID(inherited, "inherited"); return rb_funcall(super, inherited, 1, klass); } VALUE rb_define_class(const char *name, VALUE super) { VALUE klass; ID id; id = rb_intern(name); if (rb_const_defined(rb_cObject, id)) { klass = rb_const_get(rb_cObject, id); if (!RB_TYPE_P(klass, T_CLASS)) { rb_raise(rb_eTypeError, "%s is not a class (%"PRIsVALUE")", name, rb_obj_class(klass)); } if (rb_class_real(RCLASS_SUPER(klass)) != super) { rb_raise(rb_eTypeError, "superclass mismatch for class %s", name); } /* Class may have been defined in Ruby and not pin-rooted */ rb_vm_register_global_object(klass); return klass; } if (!super) { rb_raise(rb_eArgError, "no super class for '%s'", name); } klass = rb_define_class_id(id, super); rb_vm_register_global_object(klass); rb_const_set(rb_cObject, id, klass); rb_class_inherited(super, klass); return klass; } VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super) { return rb_define_class_id_under(outer, rb_intern(name), super); } VALUE rb_define_class_id_under_no_pin(VALUE outer, ID id, VALUE super) { VALUE klass; if (rb_const_defined_at(outer, id)) { klass = rb_const_get_at(outer, id); if (!RB_TYPE_P(klass, T_CLASS)) { rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a class" " (%"PRIsVALUE")", outer, rb_id2str(id), rb_obj_class(klass)); } if (rb_class_real(RCLASS_SUPER(klass)) != super) { rb_raise(rb_eTypeError, "superclass mismatch for class " "%"PRIsVALUE"::%"PRIsVALUE"" " (%"PRIsVALUE" is given but was %"PRIsVALUE")", outer, rb_id2str(id), RCLASS_SUPER(klass), super); } return klass; } if (!super) { rb_raise(rb_eArgError, "no super class for '%"PRIsVALUE"::%"PRIsVALUE"'", rb_class_path(outer), rb_id2str(id)); } klass = rb_define_class_id(id, super); rb_set_class_path_string(klass, outer, rb_id2str(id)); rb_const_set(outer, id, klass); rb_class_inherited(super, klass); return klass; } VALUE rb_define_class_id_under(VALUE outer, ID id, VALUE super) { VALUE klass = rb_define_class_id_under_no_pin(outer, id, super); rb_vm_register_global_object(klass); return klass; } VALUE rb_module_s_alloc(VALUE klass) { VALUE mod = class_alloc(T_MODULE, klass); RCLASS_M_TBL_INIT(mod); FL_SET(mod, RMODULE_ALLOCATED_BUT_NOT_INITIALIZED); return mod; } static inline VALUE module_new(VALUE klass) { VALUE mdl = class_alloc(T_MODULE, klass); RCLASS_M_TBL_INIT(mdl); return (VALUE)mdl; } VALUE rb_module_new(void) { return module_new(rb_cModule); } VALUE rb_refinement_new(void) { return module_new(rb_cRefinement); } // Kept for compatibility. Use rb_module_new() instead. VALUE rb_define_module_id(ID id) { return rb_module_new(); } VALUE rb_define_module(const char *name) { VALUE module; ID id; id = rb_intern(name); if (rb_const_defined(rb_cObject, id)) { module = rb_const_get(rb_cObject, id); if (!RB_TYPE_P(module, T_MODULE)) { rb_raise(rb_eTypeError, "%s is not a module (%"PRIsVALUE")", name, rb_obj_class(module)); } /* Module may have been defined in Ruby and not pin-rooted */ rb_vm_register_global_object(module); return module; } module = rb_module_new(); rb_vm_register_global_object(module); rb_const_set(rb_cObject, id, module); return module; } VALUE rb_define_module_under(VALUE outer, const char *name) { return rb_define_module_id_under(outer, rb_intern(name)); } VALUE rb_define_module_id_under(VALUE outer, ID id) { VALUE module; if (rb_const_defined_at(outer, id)) { module = rb_const_get_at(outer, id); if (!RB_TYPE_P(module, T_MODULE)) { rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a module" " (%"PRIsVALUE")", outer, rb_id2str(id), rb_obj_class(module)); } /* Module may have been defined in Ruby and not pin-rooted */ rb_vm_register_global_object(module); return module; } module = rb_module_new(); rb_const_set(outer, id, module); rb_set_class_path_string(module, outer, rb_id2str(id)); rb_vm_register_global_object(module); return module; } VALUE rb_include_class_new(VALUE module, VALUE super) { VALUE klass = class_alloc(T_ICLASS, rb_cClass); RCLASS_SET_M_TBL(klass, RCLASS_M_TBL(module)); RCLASS_SET_ORIGIN(klass, klass); if (BUILTIN_TYPE(module) == T_ICLASS) { module = METACLASS_OF(module); } RUBY_ASSERT(!RB_TYPE_P(module, T_ICLASS)); if (!RCLASS_CONST_TBL(module)) { RCLASS_CONST_TBL(module) = rb_id_table_create(0); } RCLASS_CVC_TBL(klass) = RCLASS_CVC_TBL(module); RCLASS_CONST_TBL(klass) = RCLASS_CONST_TBL(module); RCLASS_SET_SUPER(klass, super); RBASIC_SET_CLASS(klass, module); return (VALUE)klass; } static int include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super); static void ensure_includable(VALUE klass, VALUE module) { rb_class_modify_check(klass); Check_Type(module, T_MODULE); rb_module_set_initialized(module); if (!NIL_P(rb_refinement_module_get_refined_class(module))) { rb_raise(rb_eArgError, "refinement module is not allowed"); } } void rb_include_module(VALUE klass, VALUE module) { int changed = 0; ensure_includable(klass, module); changed = include_modules_at(klass, RCLASS_ORIGIN(klass), module, TRUE); if (changed < 0) rb_raise(rb_eArgError, "cyclic include detected"); if (RB_TYPE_P(klass, T_MODULE)) { rb_subclass_entry_t *iclass = RCLASS_SUBCLASSES(klass); // skip the placeholder subclass entry at the head of the list if (iclass) { RUBY_ASSERT(!iclass->klass); iclass = iclass->next; } int do_include = 1; while (iclass) { VALUE check_class = iclass->klass; /* During lazy sweeping, iclass->klass could be a dead object that * has not yet been swept. */ if (!rb_objspace_garbage_object_p(check_class)) { while (check_class) { RUBY_ASSERT(!rb_objspace_garbage_object_p(check_class)); if (RB_TYPE_P(check_class, T_ICLASS) && (METACLASS_OF(check_class) == module)) { do_include = 0; } check_class = RCLASS_SUPER(check_class); } if (do_include) { include_modules_at(iclass->klass, RCLASS_ORIGIN(iclass->klass), module, TRUE); } } iclass = iclass->next; } } } static enum rb_id_table_iterator_result add_refined_method_entry_i(ID key, VALUE value, void *data) { rb_add_refined_method_entry((VALUE)data, key); return ID_TABLE_CONTINUE; } static enum rb_id_table_iterator_result clear_module_cache_i(ID id, VALUE val, void *data) { VALUE klass = (VALUE)data; rb_clear_method_cache(klass, id); return ID_TABLE_CONTINUE; } static bool module_in_super_chain(const VALUE klass, VALUE module) { struct rb_id_table *const klass_m_tbl = RCLASS_M_TBL(RCLASS_ORIGIN(klass)); if (klass_m_tbl) { while (module) { if (klass_m_tbl == RCLASS_M_TBL(module)) return true; module = RCLASS_SUPER(module); } } return false; } // For each ID key in the class constant table, we're going to clear the VM's // inline constant caches associated with it. static enum rb_id_table_iterator_result clear_constant_cache_i(ID id, VALUE value, void *data) { rb_clear_constant_cache_for_id(id); return ID_TABLE_CONTINUE; } static int do_include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super, bool check_cyclic) { VALUE p, iclass, origin_stack = 0; int method_changed = 0; long origin_len; VALUE klass_origin = RCLASS_ORIGIN(klass); VALUE original_klass = klass; if (check_cyclic && module_in_super_chain(klass, module)) return -1; while (module) { int c_seen = FALSE; int superclass_seen = FALSE; struct rb_id_table *tbl; if (klass == c) { c_seen = TRUE; } if (klass_origin != c || search_super) { /* ignore if the module included already in superclasses for include, * ignore if the module included before origin class for prepend */ for (p = RCLASS_SUPER(klass); p; p = RCLASS_SUPER(p)) { int type = BUILTIN_TYPE(p); if (klass_origin == p && !search_super) break; if (c == p) c_seen = TRUE; if (type == T_ICLASS) { if (RCLASS_M_TBL(p) == RCLASS_M_TBL(module)) { if (!superclass_seen && c_seen) { c = p; /* move insertion point */ } goto skip; } } else if (type == T_CLASS) { superclass_seen = TRUE; } } } VALUE super_class = RCLASS_SUPER(c); // invalidate inline method cache RB_DEBUG_COUNTER_INC(cvar_include_invalidate); ruby_vm_global_cvar_state++; tbl = RCLASS_M_TBL(module); if (tbl && rb_id_table_size(tbl)) { if (search_super) { // include if (super_class && !RB_TYPE_P(super_class, T_MODULE)) { rb_id_table_foreach(tbl, clear_module_cache_i, (void *)super_class); } } else { // prepend if (!RB_TYPE_P(original_klass, T_MODULE)) { rb_id_table_foreach(tbl, clear_module_cache_i, (void *)original_klass); } } method_changed = 1; } // setup T_ICLASS for the include/prepend module iclass = rb_include_class_new(module, super_class); c = RCLASS_SET_SUPER(c, iclass); RCLASS_SET_INCLUDER(iclass, klass); if (module != RCLASS_ORIGIN(module)) { if (!origin_stack) origin_stack = rb_ary_hidden_new(2); VALUE origin[2] = {iclass, RCLASS_ORIGIN(module)}; rb_ary_cat(origin_stack, origin, 2); } else if (origin_stack && (origin_len = RARRAY_LEN(origin_stack)) > 1 && RARRAY_AREF(origin_stack, origin_len - 1) == module) { RCLASS_SET_ORIGIN(RARRAY_AREF(origin_stack, (origin_len -= 2)), iclass); RICLASS_SET_ORIGIN_SHARED_MTBL(iclass); rb_ary_resize(origin_stack, origin_len); } VALUE m = module; if (BUILTIN_TYPE(m) == T_ICLASS) m = METACLASS_OF(m); rb_module_add_to_subclasses_list(m, iclass); if (BUILTIN_TYPE(klass) == T_MODULE && FL_TEST(klass, RMODULE_IS_REFINEMENT)) { VALUE refined_class = rb_refinement_module_get_refined_class(klass); rb_id_table_foreach(RCLASS_M_TBL(module), add_refined_method_entry_i, (void *)refined_class); RUBY_ASSERT(BUILTIN_TYPE(c) == T_MODULE); } tbl = RCLASS_CONST_TBL(module); if (tbl && rb_id_table_size(tbl)) rb_id_table_foreach(tbl, clear_constant_cache_i, NULL); skip: module = RCLASS_SUPER(module); } return method_changed; } static int include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super) { return do_include_modules_at(klass, c, module, search_super, true); } static enum rb_id_table_iterator_result move_refined_method(ID key, VALUE value, void *data) { rb_method_entry_t *me = (rb_method_entry_t *)value; if (me->def->type == VM_METHOD_TYPE_REFINED) { VALUE klass = (VALUE)data; struct rb_id_table *tbl = RCLASS_M_TBL(klass); if (me->def->body.refined.orig_me) { const rb_method_entry_t *orig_me = me->def->body.refined.orig_me, *new_me; RB_OBJ_WRITE(me, &me->def->body.refined.orig_me, NULL); new_me = rb_method_entry_clone(me); rb_method_table_insert(klass, tbl, key, new_me); rb_method_entry_copy(me, orig_me); return ID_TABLE_CONTINUE; } else { rb_method_table_insert(klass, tbl, key, me); return ID_TABLE_DELETE; } } else { return ID_TABLE_CONTINUE; } } static enum rb_id_table_iterator_result cache_clear_refined_method(ID key, VALUE value, void *data) { rb_method_entry_t *me = (rb_method_entry_t *) value; if (me->def->type == VM_METHOD_TYPE_REFINED && me->def->body.refined.orig_me) { VALUE klass = (VALUE)data; rb_clear_method_cache(klass, me->called_id); } // Refined method entries without an orig_me is going to stay in the method // table of klass, like before the move, so no need to clear the cache. return ID_TABLE_CONTINUE; } static bool ensure_origin(VALUE klass) { VALUE origin = RCLASS_ORIGIN(klass); if (origin == klass) { origin = class_alloc(T_ICLASS, klass); RCLASS_SET_M_TBL(origin, RCLASS_M_TBL(klass)); RCLASS_SET_SUPER(origin, RCLASS_SUPER(klass)); RCLASS_SET_SUPER(klass, origin); RCLASS_SET_ORIGIN(klass, origin); RCLASS_M_TBL_INIT(klass); rb_id_table_foreach(RCLASS_M_TBL(origin), cache_clear_refined_method, (void *)klass); rb_id_table_foreach(RCLASS_M_TBL(origin), move_refined_method, (void *)klass); return true; } return false; } void rb_prepend_module(VALUE klass, VALUE module) { int changed; bool klass_had_no_origin; ensure_includable(klass, module); if (module_in_super_chain(klass, module)) rb_raise(rb_eArgError, "cyclic prepend detected"); klass_had_no_origin = ensure_origin(klass); changed = do_include_modules_at(klass, klass, module, FALSE, false); RUBY_ASSERT(changed >= 0); // already checked for cyclic prepend above if (changed) { rb_vm_check_redefinition_by_prepend(klass); } if (RB_TYPE_P(klass, T_MODULE)) { rb_subclass_entry_t *iclass = RCLASS_SUBCLASSES(klass); // skip the placeholder subclass entry at the head of the list if it exists if (iclass) { RUBY_ASSERT(!iclass->klass); iclass = iclass->next; } VALUE klass_origin = RCLASS_ORIGIN(klass); struct rb_id_table *klass_m_tbl = RCLASS_M_TBL(klass); struct rb_id_table *klass_origin_m_tbl = RCLASS_M_TBL(klass_origin); while (iclass) { /* During lazy sweeping, iclass->klass could be a dead object that * has not yet been swept. */ if (!rb_objspace_garbage_object_p(iclass->klass)) { const VALUE subclass = iclass->klass; if (klass_had_no_origin && klass_origin_m_tbl == RCLASS_M_TBL(subclass)) { // backfill an origin iclass to handle refinements and future prepends rb_id_table_foreach(RCLASS_M_TBL(subclass), clear_module_cache_i, (void *)subclass); RCLASS_M_TBL(subclass) = klass_m_tbl; VALUE origin = rb_include_class_new(klass_origin, RCLASS_SUPER(subclass)); RCLASS_SET_SUPER(subclass, origin); RCLASS_SET_INCLUDER(origin, RCLASS_INCLUDER(subclass)); RCLASS_SET_ORIGIN(subclass, origin); RICLASS_SET_ORIGIN_SHARED_MTBL(origin); } include_modules_at(subclass, subclass, module, FALSE); } iclass = iclass->next; } } } /* * call-seq: * mod.included_modules -> array * * Returns the list of modules included or prepended in mod * or one of mod's ancestors. * * module Sub * end * * module Mixin * prepend Sub * end * * module Outer * include Mixin * end * * Mixin.included_modules #=> [Sub] * Outer.included_modules #=> [Sub, Mixin] */ VALUE rb_mod_included_modules(VALUE mod) { VALUE ary = rb_ary_new(); VALUE p; VALUE origin = RCLASS_ORIGIN(mod); for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (p != origin && RCLASS_ORIGIN(p) == p && BUILTIN_TYPE(p) == T_ICLASS) { VALUE m = METACLASS_OF(p); if (RB_TYPE_P(m, T_MODULE)) rb_ary_push(ary, m); } } return ary; } /* * call-seq: * mod.include?(module) -> true or false * * Returns true if module is included * or prepended in mod or one of mod's ancestors. * * module A * end * class B * include A * end * class C < B * end * B.include?(A) #=> true * C.include?(A) #=> true * A.include?(A) #=> false */ VALUE rb_mod_include_p(VALUE mod, VALUE mod2) { VALUE p; Check_Type(mod2, T_MODULE); for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (BUILTIN_TYPE(p) == T_ICLASS && !FL_TEST(p, RICLASS_IS_ORIGIN)) { if (METACLASS_OF(p) == mod2) return Qtrue; } } return Qfalse; } /* * call-seq: * mod.ancestors -> array * * Returns a list of modules included/prepended in mod * (including mod itself). * * module Mod * include Math * include Comparable * prepend Enumerable * end * * Mod.ancestors #=> [Enumerable, Mod, Comparable, Math] * Math.ancestors #=> [Math] * Enumerable.ancestors #=> [Enumerable] */ VALUE rb_mod_ancestors(VALUE mod) { VALUE p, ary = rb_ary_new(); VALUE refined_class = Qnil; if (BUILTIN_TYPE(mod) == T_MODULE && FL_TEST(mod, RMODULE_IS_REFINEMENT)) { refined_class = rb_refinement_module_get_refined_class(mod); } for (p = mod; p; p = RCLASS_SUPER(p)) { if (p == refined_class) break; if (p != RCLASS_ORIGIN(p)) continue; if (BUILTIN_TYPE(p) == T_ICLASS) { rb_ary_push(ary, METACLASS_OF(p)); } else { rb_ary_push(ary, p); } } return ary; } struct subclass_traverse_data { VALUE buffer; long count; long maxcount; bool immediate_only; }; static void class_descendants_recursive(VALUE klass, VALUE v) { struct subclass_traverse_data *data = (struct subclass_traverse_data *) v; if (BUILTIN_TYPE(klass) == T_CLASS && !RCLASS_SINGLETON_P(klass)) { if (data->buffer && data->count < data->maxcount && !rb_objspace_garbage_object_p(klass)) { // assumes that this does not cause GC as long as the length does not exceed the capacity rb_ary_push(data->buffer, klass); } data->count++; if (!data->immediate_only) { rb_class_foreach_subclass(klass, class_descendants_recursive, v); } } else { rb_class_foreach_subclass(klass, class_descendants_recursive, v); } } static VALUE class_descendants(VALUE klass, bool immediate_only) { struct subclass_traverse_data data = { Qfalse, 0, -1, immediate_only }; // estimate the count of subclasses rb_class_foreach_subclass(klass, class_descendants_recursive, (VALUE) &data); // the following allocation may cause GC which may change the number of subclasses data.buffer = rb_ary_new_capa(data.count); data.maxcount = data.count; data.count = 0; size_t gc_count = rb_gc_count(); // enumerate subclasses rb_class_foreach_subclass(klass, class_descendants_recursive, (VALUE) &data); if (gc_count != rb_gc_count()) { rb_bug("GC must not occur during the subclass iteration of Class#descendants"); } return data.buffer; } /* * call-seq: * subclasses -> array * * Returns an array of classes where the receiver is the * direct superclass of the class, excluding singleton classes. * The order of the returned array is not defined. * * class A; end * class B < A; end * class C < B; end * class D < A; end * * A.subclasses #=> [D, B] * B.subclasses #=> [C] * C.subclasses #=> [] * * Anonymous subclasses (not associated with a constant) are * returned, too: * * c = Class.new(A) * A.subclasses # => [#, D, B] * * Note that the parent does not hold references to subclasses * and doesn't prevent them from being garbage collected. This * means that the subclass might disappear when all references * to it are dropped: * * # drop the reference to subclass, it can be garbage-collected now * c = nil * * A.subclasses * # It can be * # => [#, D, B] * # ...or just * # => [D, B] * # ...depending on whether garbage collector was run */ VALUE rb_class_subclasses(VALUE klass) { return class_descendants(klass, true); } /* * call-seq: * attached_object -> object * * Returns the object for which the receiver is the singleton class. * * Raises an TypeError if the class is not a singleton class. * * class Foo; end * * Foo.singleton_class.attached_object #=> Foo * Foo.attached_object #=> TypeError: `Foo' is not a singleton class * Foo.new.singleton_class.attached_object #=> # * TrueClass.attached_object #=> TypeError: `TrueClass' is not a singleton class * NilClass.attached_object #=> TypeError: `NilClass' is not a singleton class */ VALUE rb_class_attached_object(VALUE klass) { if (!RCLASS_SINGLETON_P(klass)) { rb_raise(rb_eTypeError, "'%"PRIsVALUE"' is not a singleton class", klass); } return RCLASS_ATTACHED_OBJECT(klass); } static void ins_methods_push(st_data_t name, st_data_t ary) { rb_ary_push((VALUE)ary, ID2SYM((ID)name)); } static int ins_methods_i(st_data_t name, st_data_t type, st_data_t ary) { switch ((rb_method_visibility_t)type) { case METHOD_VISI_UNDEF: case METHOD_VISI_PRIVATE: break; default: /* everything but private */ ins_methods_push(name, ary); break; } return ST_CONTINUE; } static int ins_methods_type_i(st_data_t name, st_data_t type, st_data_t ary, rb_method_visibility_t visi) { if ((rb_method_visibility_t)type == visi) { ins_methods_push(name, ary); } return ST_CONTINUE; } static int ins_methods_prot_i(st_data_t name, st_data_t type, st_data_t ary) { return ins_methods_type_i(name, type, ary, METHOD_VISI_PROTECTED); } static int ins_methods_priv_i(st_data_t name, st_data_t type, st_data_t ary) { return ins_methods_type_i(name, type, ary, METHOD_VISI_PRIVATE); } static int ins_methods_pub_i(st_data_t name, st_data_t type, st_data_t ary) { return ins_methods_type_i(name, type, ary, METHOD_VISI_PUBLIC); } static int ins_methods_undef_i(st_data_t name, st_data_t type, st_data_t ary) { return ins_methods_type_i(name, type, ary, METHOD_VISI_UNDEF); } struct method_entry_arg { st_table *list; int recur; }; static enum rb_id_table_iterator_result method_entry_i(ID key, VALUE value, void *data) { const rb_method_entry_t *me = (const rb_method_entry_t *)value; struct method_entry_arg *arg = (struct method_entry_arg *)data; rb_method_visibility_t type; if (me->def->type == VM_METHOD_TYPE_REFINED) { VALUE owner = me->owner; me = rb_resolve_refined_method(Qnil, me); if (!me) return ID_TABLE_CONTINUE; if (!arg->recur && me->owner != owner) return ID_TABLE_CONTINUE; } if (!st_is_member(arg->list, key)) { if (UNDEFINED_METHOD_ENTRY_P(me)) { type = METHOD_VISI_UNDEF; /* none */ } else { type = METHOD_ENTRY_VISI(me); RUBY_ASSERT(type != METHOD_VISI_UNDEF); } st_add_direct(arg->list, key, (st_data_t)type); } return ID_TABLE_CONTINUE; } static void add_instance_method_list(VALUE mod, struct method_entry_arg *me_arg) { struct rb_id_table *m_tbl = RCLASS_M_TBL(mod); if (!m_tbl) return; rb_id_table_foreach(m_tbl, method_entry_i, me_arg); } static bool particular_class_p(VALUE mod) { if (!mod) return false; if (RCLASS_SINGLETON_P(mod)) return true; if (BUILTIN_TYPE(mod) == T_ICLASS) return true; return false; } static VALUE class_instance_method_list(int argc, const VALUE *argv, VALUE mod, int obj, int (*func) (st_data_t, st_data_t, st_data_t)) { VALUE ary; int recur = TRUE, prepended = 0; struct method_entry_arg me_arg; if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]); me_arg.list = st_init_numtable(); me_arg.recur = recur; if (obj) { for (; particular_class_p(mod); mod = RCLASS_SUPER(mod)) { add_instance_method_list(mod, &me_arg); } } if (!recur && RCLASS_ORIGIN(mod) != mod) { mod = RCLASS_ORIGIN(mod); prepended = 1; } for (; mod; mod = RCLASS_SUPER(mod)) { add_instance_method_list(mod, &me_arg); if (BUILTIN_TYPE(mod) == T_ICLASS && !prepended) continue; if (!recur) break; } ary = rb_ary_new2(me_arg.list->num_entries); st_foreach(me_arg.list, func, ary); st_free_table(me_arg.list); return ary; } /* * call-seq: * mod.instance_methods(include_super=true) -> array * * Returns an array containing the names of the public and protected instance * methods in the receiver. For a module, these are the public and protected methods; * for a class, they are the instance (not singleton) methods. If the optional * parameter is false, the methods of any ancestors are not included. * * module A * def method1() end * end * class B * include A * def method2() end * end * class C < B * def method3() end * end * * A.instance_methods(false) #=> [:method1] * B.instance_methods(false) #=> [:method2] * B.instance_methods(true).include?(:method1) #=> true * C.instance_methods(false) #=> [:method3] * C.instance_methods.include?(:method2) #=> true * * Note that method visibility changes in the current class, as well as aliases, * are considered as methods of the current class by this method: * * class C < B * alias method4 method2 * protected :method2 * end * C.instance_methods(false).sort #=> [:method2, :method3, :method4] */ VALUE rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_i); } /* * call-seq: * mod.protected_instance_methods(include_super=true) -> array * * Returns a list of the protected instance methods defined in * mod. If the optional parameter is false, the * methods of any ancestors are not included. */ VALUE rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i); } /* * call-seq: * mod.private_instance_methods(include_super=true) -> array * * Returns a list of the private instance methods defined in * mod. If the optional parameter is false, the * methods of any ancestors are not included. * * module Mod * def method1() end * private :method1 * def method2() end * end * Mod.instance_methods #=> [:method2] * Mod.private_instance_methods #=> [:method1] */ VALUE rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i); } /* * call-seq: * mod.public_instance_methods(include_super=true) -> array * * Returns a list of the public instance methods defined in mod. * If the optional parameter is false, the methods of * any ancestors are not included. */ VALUE rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i); } /* * call-seq: * mod.undefined_instance_methods -> array * * Returns a list of the undefined instance methods defined in mod. * The undefined methods of any ancestors are not included. */ VALUE rb_class_undefined_instance_methods(VALUE mod) { VALUE include_super = Qfalse; return class_instance_method_list(1, &include_super, mod, 0, ins_methods_undef_i); } /* * call-seq: * obj.methods(regular=true) -> array * * Returns a list of the names of public and protected methods of * obj. This will include all the methods accessible in * obj's ancestors. * If the optional parameter is false, it * returns an array of obj's public and protected singleton methods, * the array will not include methods in modules included in obj. * * class Klass * def klass_method() * end * end * k = Klass.new * k.methods[0..9] #=> [:klass_method, :nil?, :===, * # :==~, :!, :eql? * # :hash, :<=>, :class, :singleton_class] * k.methods.length #=> 56 * * k.methods(false) #=> [] * def k.singleton_method; end * k.methods(false) #=> [:singleton_method] * * module M123; def m123; end end * k.extend M123 * k.methods(false) #=> [:singleton_method] */ VALUE rb_obj_methods(int argc, const VALUE *argv, VALUE obj) { rb_check_arity(argc, 0, 1); if (argc > 0 && !RTEST(argv[0])) { return rb_obj_singleton_methods(argc, argv, obj); } return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i); } /* * call-seq: * obj.protected_methods(all=true) -> array * * Returns the list of protected methods accessible to obj. If * the all parameter is set to false, only those methods * in the receiver will be listed. */ VALUE rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i); } /* * call-seq: * obj.private_methods(all=true) -> array * * Returns the list of private methods accessible to obj. If * the all parameter is set to false, only those methods * in the receiver will be listed. */ VALUE rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i); } /* * call-seq: * obj.public_methods(all=true) -> array * * Returns the list of public methods accessible to obj. If * the all parameter is set to false, only those methods * in the receiver will be listed. */ VALUE rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj) { return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i); } /* * call-seq: * obj.singleton_methods(all=true) -> array * * Returns an array of the names of singleton methods for obj. * If the optional all parameter is true, the list will include * methods in modules included in obj. * Only public and protected singleton methods are returned. * * module Other * def three() end * end * * class Single * def Single.four() end * end * * a = Single.new * * def a.one() * end * * class << a * include Other * def two() * end * end * * Single.singleton_methods #=> [:four] * a.singleton_methods(false) #=> [:two, :one] * a.singleton_methods #=> [:two, :one, :three] */ VALUE rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj) { VALUE ary, klass, origin; struct method_entry_arg me_arg; struct rb_id_table *mtbl; int recur = TRUE; if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]); if (RCLASS_SINGLETON_P(obj)) { rb_singleton_class(obj); } klass = CLASS_OF(obj); origin = RCLASS_ORIGIN(klass); me_arg.list = st_init_numtable(); me_arg.recur = recur; if (klass && RCLASS_SINGLETON_P(klass)) { if ((mtbl = RCLASS_M_TBL(origin)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg); klass = RCLASS_SUPER(klass); } if (recur) { while (klass && (RCLASS_SINGLETON_P(klass) || RB_TYPE_P(klass, T_ICLASS))) { if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg); klass = RCLASS_SUPER(klass); } } ary = rb_ary_new2(me_arg.list->num_entries); st_foreach(me_arg.list, ins_methods_i, ary); st_free_table(me_arg.list); return ary; } /*! * \} */ /*! * \addtogroup defmethod * \{ */ #ifdef rb_define_method_id #undef rb_define_method_id #endif void rb_define_method_id(VALUE klass, ID mid, VALUE (*func)(ANYARGS), int argc) { rb_add_method_cfunc(klass, mid, func, argc, METHOD_VISI_PUBLIC); } #ifdef rb_define_method #undef rb_define_method #endif void rb_define_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PUBLIC); } #ifdef rb_define_protected_method #undef rb_define_protected_method #endif void rb_define_protected_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PROTECTED); } #ifdef rb_define_private_method #undef rb_define_private_method #endif void rb_define_private_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PRIVATE); } void rb_undef_method(VALUE klass, const char *name) { rb_add_method(klass, rb_intern(name), VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF); } static enum rb_id_table_iterator_result undef_method_i(ID name, VALUE value, void *data) { VALUE klass = (VALUE)data; rb_add_method(klass, name, VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF); return ID_TABLE_CONTINUE; } void rb_undef_methods_from(VALUE klass, VALUE super) { struct rb_id_table *mtbl = RCLASS_M_TBL(super); if (mtbl) { rb_id_table_foreach(mtbl, undef_method_i, (void *)klass); } } /*! * \} */ /*! * \addtogroup class * \{ */ static inline VALUE special_singleton_class_of(VALUE obj) { switch (obj) { case Qnil: return rb_cNilClass; case Qfalse: return rb_cFalseClass; case Qtrue: return rb_cTrueClass; default: return Qnil; } } VALUE rb_special_singleton_class(VALUE obj) { return special_singleton_class_of(obj); } /** * @internal * Returns the singleton class of `obj`. Creates it if necessary. * * @note DO NOT expose the returned singleton class to * outside of class.c. * Use @ref rb_singleton_class instead for * consistency of the metaclass hierarchy. */ static VALUE singleton_class_of(VALUE obj) { VALUE klass; switch (TYPE(obj)) { case T_FIXNUM: case T_BIGNUM: case T_FLOAT: case T_SYMBOL: rb_raise(rb_eTypeError, "can't define singleton"); case T_FALSE: case T_TRUE: case T_NIL: klass = special_singleton_class_of(obj); if (NIL_P(klass)) rb_bug("unknown immediate %p", (void *)obj); return klass; case T_STRING: if (CHILLED_STRING_P(obj)) { CHILLED_STRING_MUTATED(obj); } else if (FL_TEST_RAW(obj, RSTRING_FSTR)) { rb_raise(rb_eTypeError, "can't define singleton"); } } klass = METACLASS_OF(obj); if (!(RCLASS_SINGLETON_P(klass) && RCLASS_ATTACHED_OBJECT(klass) == obj)) { klass = rb_make_metaclass(obj, klass); } RB_FL_SET_RAW(klass, RB_OBJ_FROZEN_RAW(obj)); return klass; } void rb_freeze_singleton_class(VALUE x) { /* should not propagate to meta-meta-class, and so on */ if (!RCLASS_SINGLETON_P(x)) { VALUE klass = RBASIC_CLASS(x); if (klass && // no class when hidden from ObjectSpace FL_TEST(klass, (FL_SINGLETON|FL_FREEZE)) == FL_SINGLETON) { OBJ_FREEZE(klass); } } } /** * Returns the singleton class of `obj`, or nil if obj is not a * singleton object. * * @param obj an arbitrary object. * @return the singleton class or nil. */ VALUE rb_singleton_class_get(VALUE obj) { VALUE klass; if (SPECIAL_CONST_P(obj)) { return rb_special_singleton_class(obj); } klass = METACLASS_OF(obj); if (!RCLASS_SINGLETON_P(klass)) return Qnil; if (RCLASS_ATTACHED_OBJECT(klass) != obj) return Qnil; return klass; } VALUE rb_singleton_class(VALUE obj) { VALUE klass = singleton_class_of(obj); /* ensures an exposed class belongs to its own eigenclass */ if (RB_TYPE_P(obj, T_CLASS)) (void)ENSURE_EIGENCLASS(klass); return klass; } /*! * \} */ /*! * \addtogroup defmethod * \{ */ #ifdef rb_define_singleton_method #undef rb_define_singleton_method #endif void rb_define_singleton_method(VALUE obj, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_define_method(singleton_class_of(obj), name, func, argc); } #ifdef rb_define_module_function #undef rb_define_module_function #endif void rb_define_module_function(VALUE module, const char *name, VALUE (*func)(ANYARGS), int argc) { rb_define_private_method(module, name, func, argc); rb_define_singleton_method(module, name, func, argc); } #ifdef rb_define_global_function #undef rb_define_global_function #endif void rb_define_global_function(const char *name, VALUE (*func)(ANYARGS), int argc) { rb_define_module_function(rb_mKernel, name, func, argc); } void rb_define_alias(VALUE klass, const char *name1, const char *name2) { rb_alias(klass, rb_intern(name1), rb_intern(name2)); } void rb_define_attr(VALUE klass, const char *name, int read, int write) { rb_attr(klass, rb_intern(name), read, write, FALSE); } VALUE rb_keyword_error_new(const char *error, VALUE keys) { long i = 0, len = RARRAY_LEN(keys); VALUE error_message = rb_sprintf("%s keyword%.*s", error, len > 1, "s"); if (len > 0) { rb_str_cat_cstr(error_message, ": "); while (1) { const VALUE k = RARRAY_AREF(keys, i); rb_str_append(error_message, rb_inspect(k)); if (++i >= len) break; rb_str_cat_cstr(error_message, ", "); } } return rb_exc_new_str(rb_eArgError, error_message); } NORETURN(static void rb_keyword_error(const char *error, VALUE keys)); static void rb_keyword_error(const char *error, VALUE keys) { rb_exc_raise(rb_keyword_error_new(error, keys)); } NORETURN(static void unknown_keyword_error(VALUE hash, const ID *table, int keywords)); static void unknown_keyword_error(VALUE hash, const ID *table, int keywords) { int i; for (i = 0; i < keywords; i++) { st_data_t key = ID2SYM(table[i]); rb_hash_stlike_delete(hash, &key, NULL); } rb_keyword_error("unknown", rb_hash_keys(hash)); } static int separate_symbol(st_data_t key, st_data_t value, st_data_t arg) { VALUE *kwdhash = (VALUE *)arg; if (!SYMBOL_P(key)) kwdhash++; if (!*kwdhash) *kwdhash = rb_hash_new(); rb_hash_aset(*kwdhash, (VALUE)key, (VALUE)value); return ST_CONTINUE; } VALUE rb_extract_keywords(VALUE *orighash) { VALUE parthash[2] = {0, 0}; VALUE hash = *orighash; if (RHASH_EMPTY_P(hash)) { *orighash = 0; return hash; } rb_hash_foreach(hash, separate_symbol, (st_data_t)&parthash); *orighash = parthash[1]; if (parthash[1] && RBASIC_CLASS(hash) != rb_cHash) { RBASIC_SET_CLASS(parthash[1], RBASIC_CLASS(hash)); } return parthash[0]; } int rb_get_kwargs(VALUE keyword_hash, const ID *table, int required, int optional, VALUE *values) { int i = 0, j; int rest = 0; VALUE missing = Qnil; st_data_t key; #define extract_kwarg(keyword, val) \ (key = (st_data_t)(keyword), values ? \ (rb_hash_stlike_delete(keyword_hash, &key, &(val)) || ((val) = Qundef, 0)) : \ rb_hash_stlike_lookup(keyword_hash, key, NULL)) if (NIL_P(keyword_hash)) keyword_hash = 0; if (optional < 0) { rest = 1; optional = -1-optional; } if (required) { for (; i < required; i++) { VALUE keyword = ID2SYM(table[i]); if (keyword_hash) { if (extract_kwarg(keyword, values[i])) { continue; } } if (NIL_P(missing)) missing = rb_ary_hidden_new(1); rb_ary_push(missing, keyword); } if (!NIL_P(missing)) { rb_keyword_error("missing", missing); } } j = i; if (optional && keyword_hash) { for (i = 0; i < optional; i++) { if (extract_kwarg(ID2SYM(table[required+i]), values[required+i])) { j++; } } } if (!rest && keyword_hash) { if (RHASH_SIZE(keyword_hash) > (unsigned int)(values ? 0 : j)) { unknown_keyword_error(keyword_hash, table, required+optional); } } if (values && !keyword_hash) { for (i = 0; i < required + optional; i++) { values[i] = Qundef; } } return j; #undef extract_kwarg } struct rb_scan_args_t { int kw_flag; int n_lead; int n_opt; int n_trail; bool f_var; bool f_hash; bool f_block; }; static void rb_scan_args_parse(int kw_flag, const char *fmt, struct rb_scan_args_t *arg) { const char *p = fmt; memset(arg, 0, sizeof(*arg)); arg->kw_flag = kw_flag; if (ISDIGIT(*p)) { arg->n_lead = *p - '0'; p++; if (ISDIGIT(*p)) { arg->n_opt = *p - '0'; p++; } } if (*p == '*') { arg->f_var = 1; p++; } if (ISDIGIT(*p)) { arg->n_trail = *p - '0'; p++; } if (*p == ':') { arg->f_hash = 1; p++; } if (*p == '&') { arg->f_block = 1; p++; } if (*p != '\0') { rb_fatal("bad scan arg format: %s", fmt); } } static int rb_scan_args_assign(const struct rb_scan_args_t *arg, int argc, const VALUE *const argv, va_list vargs) { int i, argi = 0; VALUE *var, hash = Qnil; #define rb_scan_args_next_param() va_arg(vargs, VALUE *) const int kw_flag = arg->kw_flag; const int n_lead = arg->n_lead; const int n_opt = arg->n_opt; const int n_trail = arg->n_trail; const int n_mand = n_lead + n_trail; const bool f_var = arg->f_var; const bool f_hash = arg->f_hash; const bool f_block = arg->f_block; /* capture an option hash - phase 1: pop from the argv */ if (f_hash && argc > 0) { VALUE last = argv[argc - 1]; if (rb_scan_args_keyword_p(kw_flag, last)) { hash = rb_hash_dup(last); argc--; } } if (argc < n_mand) { goto argc_error; } /* capture leading mandatory arguments */ for (i = 0; i < n_lead; i++) { var = rb_scan_args_next_param(); if (var) *var = argv[argi]; argi++; } /* capture optional arguments */ for (i = 0; i < n_opt; i++) { var = rb_scan_args_next_param(); if (argi < argc - n_trail) { if (var) *var = argv[argi]; argi++; } else { if (var) *var = Qnil; } } /* capture variable length arguments */ if (f_var) { int n_var = argc - argi - n_trail; var = rb_scan_args_next_param(); if (0 < n_var) { if (var) *var = rb_ary_new_from_values(n_var, &argv[argi]); argi += n_var; } else { if (var) *var = rb_ary_new(); } } /* capture trailing mandatory arguments */ for (i = 0; i < n_trail; i++) { var = rb_scan_args_next_param(); if (var) *var = argv[argi]; argi++; } /* capture an option hash - phase 2: assignment */ if (f_hash) { var = rb_scan_args_next_param(); if (var) *var = hash; } /* capture iterator block */ if (f_block) { var = rb_scan_args_next_param(); if (rb_block_given_p()) { *var = rb_block_proc(); } else { *var = Qnil; } } if (argi == argc) { return argc; } argc_error: return -(argc + 1); #undef rb_scan_args_next_param } static int rb_scan_args_result(const struct rb_scan_args_t *const arg, int argc) { const int n_lead = arg->n_lead; const int n_opt = arg->n_opt; const int n_trail = arg->n_trail; const int n_mand = n_lead + n_trail; const bool f_var = arg->f_var; if (argc >= 0) { return argc; } argc = -argc - 1; rb_error_arity(argc, n_mand, f_var ? UNLIMITED_ARGUMENTS : n_mand + n_opt); UNREACHABLE_RETURN(-1); } #undef rb_scan_args int rb_scan_args(int argc, const VALUE *argv, const char *fmt, ...) { va_list vargs; struct rb_scan_args_t arg; rb_scan_args_parse(RB_SCAN_ARGS_PASS_CALLED_KEYWORDS, fmt, &arg); va_start(vargs,fmt); argc = rb_scan_args_assign(&arg, argc, argv, vargs); va_end(vargs); return rb_scan_args_result(&arg, argc); } #undef rb_scan_args_kw int rb_scan_args_kw(int kw_flag, int argc, const VALUE *argv, const char *fmt, ...) { va_list vargs; struct rb_scan_args_t arg; rb_scan_args_parse(kw_flag, fmt, &arg); va_start(vargs,fmt); argc = rb_scan_args_assign(&arg, argc, argv, vargs); va_end(vargs); return rb_scan_args_result(&arg, argc); } /*! * \} */