/********************************************************************** range.c - $Author$ created at: Thu Aug 19 17:46:47 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "ruby/internal/config.h" #include #include #ifdef HAVE_FLOAT_H #include #endif #include "id.h" #include "internal.h" #include "internal/array.h" #include "internal/compar.h" #include "internal/enum.h" #include "internal/enumerator.h" #include "internal/error.h" #include "internal/numeric.h" #include "internal/range.h" VALUE rb_cRange; static ID id_beg, id_end, id_excl; #define id_cmp idCmp #define id_succ idSucc #define id_min idMin #define id_max idMax #define id_plus '+' static VALUE r_cover_p(VALUE, VALUE, VALUE, VALUE); #define RANGE_SET_BEG(r, v) (RSTRUCT_SET(r, 0, v)) #define RANGE_SET_END(r, v) (RSTRUCT_SET(r, 1, v)) #define RANGE_SET_EXCL(r, v) (RSTRUCT_SET(r, 2, v)) #define EXCL(r) RTEST(RANGE_EXCL(r)) static void range_init(VALUE range, VALUE beg, VALUE end, VALUE exclude_end) { if ((!FIXNUM_P(beg) || !FIXNUM_P(end)) && !NIL_P(beg) && !NIL_P(end)) { VALUE v; v = rb_funcall(beg, id_cmp, 1, end); if (NIL_P(v)) rb_raise(rb_eArgError, "bad value for range"); } RANGE_SET_EXCL(range, exclude_end); RANGE_SET_BEG(range, beg); RANGE_SET_END(range, end); if (CLASS_OF(range) == rb_cRange) { rb_obj_freeze(range); } } VALUE rb_range_new(VALUE beg, VALUE end, int exclude_end) { VALUE range = rb_obj_alloc(rb_cRange); range_init(range, beg, end, RBOOL(exclude_end)); return range; } static void range_modify(VALUE range) { rb_check_frozen(range); /* Ranges are immutable, so that they should be initialized only once. */ if (RANGE_EXCL(range) != Qnil) { rb_name_err_raise("'initialize' called twice", range, ID2SYM(idInitialize)); } } /* * call-seq: * Range.new(begin, end, exclude_end = false) -> new_range * * Returns a new range based on the given objects +begin+ and +end+. * Optional argument +exclude_end+ determines whether object +end+ * is included as the last object in the range: * * Range.new(2, 5).to_a # => [2, 3, 4, 5] * Range.new(2, 5, true).to_a # => [2, 3, 4] * Range.new('a', 'd').to_a # => ["a", "b", "c", "d"] * Range.new('a', 'd', true).to_a # => ["a", "b", "c"] * */ static VALUE range_initialize(int argc, VALUE *argv, VALUE range) { VALUE beg, end, flags; rb_scan_args(argc, argv, "21", &beg, &end, &flags); range_modify(range); range_init(range, beg, end, RBOOL(RTEST(flags))); return Qnil; } /* :nodoc: */ static VALUE range_initialize_copy(VALUE range, VALUE orig) { range_modify(range); rb_struct_init_copy(range, orig); return range; } /* * call-seq: * exclude_end? -> true or false * * Returns +true+ if +self+ excludes its end value; +false+ otherwise: * * Range.new(2, 5).exclude_end? # => false * Range.new(2, 5, true).exclude_end? # => true * (2..5).exclude_end? # => false * (2...5).exclude_end? # => true */ static VALUE range_exclude_end_p(VALUE range) { return RBOOL(EXCL(range)); } static VALUE recursive_equal(VALUE range, VALUE obj, int recur) { if (recur) return Qtrue; /* Subtle! */ if (!rb_equal(RANGE_BEG(range), RANGE_BEG(obj))) return Qfalse; if (!rb_equal(RANGE_END(range), RANGE_END(obj))) return Qfalse; return RBOOL(EXCL(range) == EXCL(obj)); } /* * call-seq: * self == other -> true or false * * Returns +true+ if and only if: * * - +other+ is a range. * - other.begin == self.begin. * - other.end == self.end. * - other.exclude_end? == self.exclude_end?. * * Otherwise returns +false+. * * r = (1..5) * r == (1..5) # => true * r = Range.new(1, 5) * r == 'foo' # => false * r == (2..5) # => false * r == (1..4) # => false * r == (1...5) # => false * r == Range.new(1, 5, true) # => false * * Note that even with the same argument, the return values of #== and #eql? can differ: * * (1..2) == (1..2.0) # => true * (1..2).eql? (1..2.0) # => false * * Related: Range#eql?. * */ static VALUE range_eq(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse; return rb_exec_recursive_paired(recursive_equal, range, obj, obj); } /* compares _a_ and _b_ and returns: * < 0: a < b * = 0: a = b * > 0: a > b or non-comparable */ static int r_less(VALUE a, VALUE b) { VALUE r = rb_funcall(a, id_cmp, 1, b); if (NIL_P(r)) return INT_MAX; return rb_cmpint(r, a, b); } static VALUE recursive_eql(VALUE range, VALUE obj, int recur) { if (recur) return Qtrue; /* Subtle! */ if (!rb_eql(RANGE_BEG(range), RANGE_BEG(obj))) return Qfalse; if (!rb_eql(RANGE_END(range), RANGE_END(obj))) return Qfalse; return RBOOL(EXCL(range) == EXCL(obj)); } /* * call-seq: * eql?(other) -> true or false * * Returns +true+ if and only if: * * - +other+ is a range. * - other.begin.eql?(self.begin). * - other.end.eql?(self.end). * - other.exclude_end? == self.exclude_end?. * * Otherwise returns +false+. * * r = (1..5) * r.eql?(1..5) # => true * r = Range.new(1, 5) * r.eql?('foo') # => false * r.eql?(2..5) # => false * r.eql?(1..4) # => false * r.eql?(1...5) # => false * r.eql?(Range.new(1, 5, true)) # => false * * Note that even with the same argument, the return values of #== and #eql? can differ: * * (1..2) == (1..2.0) # => true * (1..2).eql? (1..2.0) # => false * * Related: Range#==. */ static VALUE range_eql(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse; return rb_exec_recursive_paired(recursive_eql, range, obj, obj); } /* * call-seq: * hash -> integer * * Returns the integer hash value for +self+. * Two range objects +r0+ and +r1+ have the same hash value * if and only if r0.eql?(r1). * * Related: Range#eql?, Object#hash. */ static VALUE range_hash(VALUE range) { st_index_t hash = EXCL(range); VALUE v; hash = rb_hash_start(hash); v = rb_hash(RANGE_BEG(range)); hash = rb_hash_uint(hash, NUM2LONG(v)); v = rb_hash(RANGE_END(range)); hash = rb_hash_uint(hash, NUM2LONG(v)); hash = rb_hash_uint(hash, EXCL(range) << 24); hash = rb_hash_end(hash); return ST2FIX(hash); } static void range_each_func(VALUE range, int (*func)(VALUE, VALUE), VALUE arg) { int c; VALUE b = RANGE_BEG(range); VALUE e = RANGE_END(range); VALUE v = b; if (EXCL(range)) { while (r_less(v, e) < 0) { if ((*func)(v, arg)) break; v = rb_funcallv(v, id_succ, 0, 0); } } else { while ((c = r_less(v, e)) <= 0) { if ((*func)(v, arg)) break; if (!c) break; v = rb_funcallv(v, id_succ, 0, 0); } } } // NB: Two functions below (step_i_iter, sym_step_i and step_i) are used only to maintain the // backward-compatible behavior for string and symbol ranges with integer steps. If that branch // will be removed from range_step, these two can go, too. static bool step_i_iter(VALUE arg) { VALUE *iter = (VALUE *)arg; if (FIXNUM_P(iter[0])) { iter[0] -= INT2FIX(1) & ~FIXNUM_FLAG; } else { iter[0] = rb_funcall(iter[0], '-', 1, INT2FIX(1)); } if (iter[0] != INT2FIX(0)) return false; iter[0] = iter[1]; return true; } static int sym_step_i(VALUE i, VALUE arg) { if (step_i_iter(arg)) { rb_yield(rb_str_intern(i)); } return 0; } static int step_i(VALUE i, VALUE arg) { if (step_i_iter(arg)) { rb_yield(i); } return 0; } static int discrete_object_p(VALUE obj) { return rb_respond_to(obj, id_succ); } static int linear_object_p(VALUE obj) { if (FIXNUM_P(obj) || FLONUM_P(obj)) return TRUE; if (SPECIAL_CONST_P(obj)) return FALSE; switch (BUILTIN_TYPE(obj)) { case T_FLOAT: case T_BIGNUM: return TRUE; default: break; } if (rb_obj_is_kind_of(obj, rb_cNumeric)) return TRUE; if (rb_obj_is_kind_of(obj, rb_cTime)) return TRUE; return FALSE; } static VALUE check_step_domain(VALUE step) { VALUE zero = INT2FIX(0); int cmp; if (!rb_obj_is_kind_of(step, rb_cNumeric)) { step = rb_to_int(step); } cmp = rb_cmpint(rb_funcallv(step, idCmp, 1, &zero), step, zero); if (cmp < 0) { rb_raise(rb_eArgError, "step can't be negative"); } else if (cmp == 0) { rb_raise(rb_eArgError, "step can't be 0"); } return step; } static VALUE range_step_size(VALUE range, VALUE args, VALUE eobj) { VALUE b = RANGE_BEG(range), e = RANGE_END(range); VALUE step = INT2FIX(1); if (args) { step = check_step_domain(RARRAY_AREF(args, 0)); } if (rb_obj_is_kind_of(b, rb_cNumeric) && rb_obj_is_kind_of(e, rb_cNumeric)) { return ruby_num_interval_step_size(b, e, step, EXCL(range)); } return Qnil; } /* * call-seq: * step(s = 1) {|element| ... } -> self * step(s = 1) -> enumerator/arithmetic_sequence * * Iterates over the elements of range in steps of +s+. The iteration is performed * by + operator: * * (0..6).step(2) { puts _1 } #=> 1..5 * # Prints: 0, 2, 4, 6 * * # Iterate between two dates in step of 1 day (24 hours) * (Time.utc(2022, 2, 24)..Time.utc(2022, 3, 1)).step(24*60*60) { puts _1 } * # Prints: * # 2022-02-24 00:00:00 UTC * # 2022-02-25 00:00:00 UTC * # 2022-02-26 00:00:00 UTC * # 2022-02-27 00:00:00 UTC * # 2022-02-28 00:00:00 UTC * # 2022-03-01 00:00:00 UTC * * If + step decreases the value, iteration is still performed when * step +begin+ is higher than the +end+: * * (0..6).step(-2) { puts _1 } * # Prints nothing * * (6..0).step(-2) { puts _1 } * # Prints: 6, 4, 2, 0 * * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step(-24*60*60) { puts _1 } * # Prints: * # 2022-03-01 00:00:00 UTC * # 2022-02-28 00:00:00 UTC * # 2022-02-27 00:00:00 UTC * # 2022-02-26 00:00:00 UTC * # 2022-02-25 00:00:00 UTC * # 2022-02-24 00:00:00 UTC * * When the block is not provided, and range boundaries and step are Numeric, * the method returns Enumerator::ArithmeticSequence. * * (1..5).step(2) # => ((1..5).step(2)) * (1.0..).step(1.5) #=> ((1.0..).step(1.5)) * (..3r).step(1/3r) #=> ((..3/1).step((1/3))) * * Enumerator::ArithmeticSequence can be further used as a value object for iteration * or slicing of collections (see Array#[]). There is a convenience method #% with * behavior similar to +step+ to produce arithmetic sequences more expressively: * * # Same as (1..5).step(2) * (1..5) % 2 # => ((1..5).%(2)) * * In a generic case, when the block is not provided, Enumerator is returned: * * ('a'..).step('b') #=> # * ('a'..).step('b').take(3) #=> ["a", "ab", "abb"] * * If +s+ is not provided, it is considered +1+ for ranges with numeric +begin+: * * (1..5).step { p _1 } * # Prints: 1, 2, 3, 4, 5 * * For non-Numeric ranges, step absence is an error: * * (Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step { p _1 } * # raises: step is required for non-numeric ranges (ArgumentError) * * For backward compatibility reasons, String ranges support the iteration both with * string step and with integer step. In the latter case, the iteration is performed * by calculating the next values with String#succ: * * ('a'..'e').step(2) { p _1 } * # Prints: a, c, e * ('a'..'e').step { p _1 } * # Default step 1; prints: a, b, c, d, e * */ static VALUE range_step(int argc, VALUE *argv, VALUE range) { VALUE b, e, v, step; int c, dir; b = RANGE_BEG(range); e = RANGE_END(range); const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric); const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric); // For backward compatibility reasons (conforming to behavior before 3.4), String/Symbol // supports both old behavior ('a'..).step(1) and new behavior ('a'..).step('a') // Hence the additional conversion/additional checks. const VALUE str_b = rb_check_string_type(b); const VALUE sym_b = SYMBOL_P(b) ? rb_sym2str(b) : Qnil; if (rb_check_arity(argc, 0, 1)) step = argv[0]; else { if (b_num_p || !NIL_P(str_b) || !NIL_P(sym_b) || (NIL_P(b) && e_num_p)) step = INT2FIX(1); else rb_raise(rb_eArgError, "step is required for non-numeric ranges"); } const VALUE step_num_p = rb_obj_is_kind_of(step, rb_cNumeric); if (step_num_p && b_num_p && rb_equal(step, INT2FIX(0))) { rb_raise(rb_eArgError, "step can't be 0"); } if (!rb_block_given_p()) { // This code is allowed to create even beginless ArithmeticSequence, which can be useful, // e.g., for array slicing: // ary[(..-1) % 3] if (step_num_p && ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p))) { return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv, range_step_size, b, e, step, EXCL(range)); } // ...but generic Enumerator from beginless range is useless and probably an error. if (NIL_P(b)) { rb_raise(rb_eArgError, "#step for non-numeric beginless ranges is meaningless"); } RETURN_SIZED_ENUMERATOR(range, argc, argv, 0); } if (NIL_P(b)) { rb_raise(rb_eArgError, "#step iteration for beginless ranges is meaningless"); } if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) { /* perform summation of numbers in C until their reach Fixnum limit */ long i = FIX2LONG(b), unit = FIX2LONG(step); do { rb_yield(LONG2FIX(i)); i += unit; /* FIXABLE+FIXABLE never overflow */ } while (FIXABLE(i)); b = LONG2NUM(i); /* then switch to Bignum API */ for (;; b = rb_big_plus(b, step)) rb_yield(b); } else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special: summation is performed in C for performance */ long end = FIX2LONG(e); long i, unit = FIX2LONG(step); if (unit < 0) { if (!EXCL(range)) end -= 1; i = FIX2LONG(b); while (i > end) { rb_yield(LONG2NUM(i)); i += unit; } } else { if (!EXCL(range)) end += 1; i = FIX2LONG(b); while (i < end) { rb_yield(LONG2NUM(i)); i += unit; } } } else if (b_num_p && step_num_p && ruby_float_step(b, e, step, EXCL(range), TRUE)) { /* done */ } else if (!NIL_P(str_b) && FIXNUM_P(step)) { // backwards compatibility behavior for String only, when no step/Integer step is passed // See discussion in https://bugs.ruby-lang.org/issues/18368 VALUE iter[2] = {INT2FIX(1), step}; if (NIL_P(e)) { rb_str_upto_endless_each(str_b, step_i, (VALUE)iter); } else { rb_str_upto_each(str_b, e, EXCL(range), step_i, (VALUE)iter); } } else if (!NIL_P(sym_b) && FIXNUM_P(step)) { // same as above: backward compatibility for symbols VALUE iter[2] = {INT2FIX(1), step}; if (NIL_P(e)) { rb_str_upto_endless_each(sym_b, sym_step_i, (VALUE)iter); } else { rb_str_upto_each(sym_b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter); } } else { v = b; if (!NIL_P(e)) { if (b_num_p && step_num_p && r_less(step, INT2FIX(0)) < 0) { // iterate backwards, for consistency with ArithmeticSequence if (EXCL(range)) { for (; r_less(e, v) < 0; v = rb_funcall(v, id_plus, 1, step)) rb_yield(v); } else { for (; (c = r_less(e, v)) <= 0; v = rb_funcall(v, id_plus, 1, step)) { rb_yield(v); if (!c) break; } } } else { // Direction of the comparison. We use it as a comparison operator in cycle: // if begin < end, the cycle performs while value < end (iterating forward) // if begin > end, the cycle performs while value > end (iterating backward with // a negative step) dir = r_less(b, e); // One preliminary addition to check the step moves iteration in the same direction as // from begin to end; otherwise, the iteration should be empty. if (r_less(b, rb_funcall(b, id_plus, 1, step)) == dir) { if (EXCL(range)) { for (; r_less(v, e) == dir; v = rb_funcall(v, id_plus, 1, step)) rb_yield(v); } else { for (; (c = r_less(v, e)) == dir || c == 0; v = rb_funcall(v, id_plus, 1, step)) { rb_yield(v); if (!c) break; } } } } } else for (;; v = rb_funcall(v, id_plus, 1, step)) rb_yield(v); } return range; } /* * call-seq: * %(n) {|element| ... } -> self * %(n) -> enumerator or arithmetic_sequence * * Same as #step (but doesn't provide default value for +n+). * The method is convenient for experssive producing of Enumerator::ArithmeticSequence. * * array = [0, 1, 2, 3, 4, 5, 6] * * # slice each second element: * seq = (0..) % 2 #=> ((0..).%(2)) * array[seq] #=> [0, 2, 4, 6] * # or just * array[(0..) % 2] #=> [0, 2, 4, 6] * * Note that due to operator precedence in Ruby, parentheses are mandatory around range * in this case: * * (0..7) % 2 #=> ((0..7).%(2)) -- as expected * 0..7 % 2 #=> 0..1 -- parsed as 0..(7 % 2) */ static VALUE range_percent_step(VALUE range, VALUE step) { return range_step(1, &step, range); } #if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) union int64_double { int64_t i; double d; }; static VALUE int64_as_double_to_num(int64_t i) { union int64_double convert; if (i < 0) { convert.i = -i; return DBL2NUM(-convert.d); } else { convert.i = i; return DBL2NUM(convert.d); } } static int64_t double_as_int64(double d) { union int64_double convert; convert.d = fabs(d); return d < 0 ? -convert.i : convert.i; } #endif static int is_integer_p(VALUE v) { if (rb_integer_type_p(v)) { return true; } ID id_integer_p; VALUE is_int; CONST_ID(id_integer_p, "integer?"); is_int = rb_check_funcall(v, id_integer_p, 0, 0); return RTEST(is_int) && !UNDEF_P(is_int); } static VALUE bsearch_integer_range(VALUE beg, VALUE end, int excl) { VALUE satisfied = Qnil; int smaller; #define BSEARCH_CHECK(expr) \ do { \ VALUE val = (expr); \ VALUE v = rb_yield(val); \ if (FIXNUM_P(v)) { \ if (v == INT2FIX(0)) return val; \ smaller = (SIGNED_VALUE)v < 0; \ } \ else if (v == Qtrue) { \ satisfied = val; \ smaller = 1; \ } \ else if (!RTEST(v)) { \ smaller = 0; \ } \ else if (rb_obj_is_kind_of(v, rb_cNumeric)) { \ int cmp = rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0)); \ if (!cmp) return val; \ smaller = cmp < 0; \ } \ else { \ rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE \ " (must be numeric, true, false or nil)", \ rb_obj_class(v)); \ } \ } while (0) VALUE low = rb_to_int(beg); VALUE high = rb_to_int(end); VALUE mid; ID id_div; CONST_ID(id_div, "div"); if (!excl) high = rb_funcall(high, '+', 1, INT2FIX(1)); low = rb_funcall(low, '-', 1, INT2FIX(1)); /* * This loop must continue while low + 1 < high. * Instead of checking low + 1 < high, check low < mid, where mid = (low + high) / 2. * This is to avoid the cost of calculating low + 1 on each iteration. * Note that this condition replacement is valid because Integer#div always rounds * towards negative infinity. */ while (mid = rb_funcall(rb_funcall(high, '+', 1, low), id_div, 1, INT2FIX(2)), rb_cmpint(rb_funcall(low, id_cmp, 1, mid), low, mid) < 0) { BSEARCH_CHECK(mid); if (smaller) { high = mid; } else { low = mid; } } return satisfied; } /* * call-seq: * bsearch {|obj| block } -> value * * Returns an element from +self+ selected by a binary search. * * See {Binary Searching}[rdoc-ref:bsearch.rdoc]. * */ static VALUE range_bsearch(VALUE range) { VALUE beg, end, satisfied = Qnil; int smaller; /* Implementation notes: * Floats are handled by mapping them to 64 bits integers. * Apart from sign issues, floats and their 64 bits integer have the * same order, assuming they are represented as exponent followed * by the mantissa. This is true with or without implicit bit. * * Finding the average of two ints needs to be careful about * potential overflow (since float to long can use 64 bits). * * The half-open interval (low, high] indicates where the target is located. * The loop continues until low and high are adjacent. * * -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent, * the rounding direction of mid = (low + high) / 2 does not affect the result of * the binary search. * * Note that -0.0 is mapped to the same int as 0.0 as we don't want * (-1...0.0).bsearch to yield -0.0. */ #define BSEARCH(conv, excl) \ do { \ RETURN_ENUMERATOR(range, 0, 0); \ if (!(excl)) high++; \ low--; \ while (low + 1 < high) { \ mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \ : (low + high) / 2; \ BSEARCH_CHECK(conv(mid)); \ if (smaller) { \ high = mid; \ } \ else { \ low = mid; \ } \ } \ return satisfied; \ } while (0) #define BSEARCH_FIXNUM(beg, end, excl) \ do { \ long low = FIX2LONG(beg); \ long high = FIX2LONG(end); \ long mid; \ BSEARCH(INT2FIX, (excl)); \ } while (0) beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && FIXNUM_P(end)) { BSEARCH_FIXNUM(beg, end, EXCL(range)); } #if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) { int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg))); int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end))); int64_t mid; BSEARCH(int64_as_double_to_num, EXCL(range)); } #endif else if (is_integer_p(beg) && is_integer_p(end)) { RETURN_ENUMERATOR(range, 0, 0); return bsearch_integer_range(beg, end, EXCL(range)); } else if (is_integer_p(beg) && NIL_P(end)) { VALUE diff = LONG2FIX(1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(beg, '+', 1, diff); BSEARCH_CHECK(mid); if (smaller) { if (FIXNUM_P(beg) && FIXNUM_P(mid)) { BSEARCH_FIXNUM(beg, mid, false); } else { return bsearch_integer_range(beg, mid, false); } } diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); beg = mid; } } else if (NIL_P(beg) && is_integer_p(end)) { VALUE diff = LONG2FIX(-1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(end, '+', 1, diff); BSEARCH_CHECK(mid); if (!smaller) { if (FIXNUM_P(mid) && FIXNUM_P(end)) { BSEARCH_FIXNUM(mid, end, false); } else { return bsearch_integer_range(mid, end, false); } } diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); end = mid; } } else { rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg)); } return range; } static int each_i(VALUE v, VALUE arg) { rb_yield(v); return 0; } static int sym_each_i(VALUE v, VALUE arg) { return each_i(rb_str_intern(v), arg); } /* * call-seq: * size -> non_negative_integer or Infinity or nil * * Returns the count of elements in +self+ * if both begin and end values are numeric; * otherwise, returns +nil+: * * (1..4).size # => 4 * (1...4).size # => 3 * (1..).size # => Infinity * ('a'..'z').size # => nil * * If +self+ is not iterable, raises an exception: * * (0.5..2.5).size # TypeError * (..1).size # TypeError * * Related: Range#count. */ static VALUE range_size(VALUE range) { VALUE b = RANGE_BEG(range), e = RANGE_END(range); if (RB_INTEGER_TYPE_P(b)) { if (rb_obj_is_kind_of(e, rb_cNumeric)) { return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); } if (NIL_P(e)) { return DBL2NUM(HUGE_VAL); } } if (!discrete_object_p(b)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(b)); } return Qnil; } /* * call-seq: * to_a -> array * * Returns an array containing the elements in +self+, if a finite collection; * raises an exception otherwise. * * (1..4).to_a # => [1, 2, 3, 4] * (1...4).to_a # => [1, 2, 3] * ('a'..'d').to_a # => ["a", "b", "c", "d"] * */ static VALUE range_to_a(VALUE range) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot convert endless range to an array"); } return rb_call_super(0, 0); } static VALUE range_enum_size(VALUE range, VALUE args, VALUE eobj) { return range_size(range); } RBIMPL_ATTR_NORETURN() static void range_each_bignum_endless(VALUE beg) { for (;; beg = rb_big_plus(beg, INT2FIX(1))) { rb_yield(beg); } UNREACHABLE; } RBIMPL_ATTR_NORETURN() static void range_each_fixnum_endless(VALUE beg) { for (long i = FIX2LONG(beg); FIXABLE(i); i++) { rb_yield(LONG2FIX(i)); } range_each_bignum_endless(LONG2NUM(RUBY_FIXNUM_MAX + 1)); UNREACHABLE; } static VALUE range_each_fixnum_loop(VALUE beg, VALUE end, VALUE range) { long lim = FIX2LONG(end) + !EXCL(range); for (long i = FIX2LONG(beg); i < lim; i++) { rb_yield(LONG2FIX(i)); } return range; } /* * call-seq: * each {|element| ... } -> self * each -> an_enumerator * * With a block given, passes each element of +self+ to the block: * * a = [] * (1..4).each {|element| a.push(element) } # => 1..4 * a # => [1, 2, 3, 4] * * Raises an exception unless self.first.respond_to?(:succ). * * With no block given, returns an enumerator. * */ static VALUE range_each(VALUE range) { VALUE beg, end; long i; RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size); beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && NIL_P(end)) { range_each_fixnum_endless(beg); } else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */ return range_each_fixnum_loop(beg, end, range); } else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) { if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */ if (!FIXNUM_P(beg)) { if (RBIGNUM_NEGATIVE_P(beg)) { do { rb_yield(beg); } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1)))); if (NIL_P(end)) range_each_fixnum_endless(beg); if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range); } else { if (NIL_P(end)) range_each_bignum_endless(beg); if (FIXNUM_P(end)) return range; } } if (FIXNUM_P(beg)) { i = FIX2LONG(beg); do { rb_yield(LONG2FIX(i)); } while (POSFIXABLE(++i)); beg = LONG2NUM(i); } ASSUME(!FIXNUM_P(beg)); ASSUME(!SPECIAL_CONST_P(end)); } if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) { if (EXCL(range)) { while (rb_big_cmp(beg, end) == INT2FIX(-1)) { rb_yield(beg); beg = rb_big_plus(beg, INT2FIX(1)); } } else { VALUE c; while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { rb_yield(beg); if (c == INT2FIX(0)) break; beg = rb_big_plus(beg, INT2FIX(1)); } } } } else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */ beg = rb_sym2str(beg); if (NIL_P(end)) { rb_str_upto_endless_each(beg, sym_each_i, 0); } else { rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0); } } else { VALUE tmp = rb_check_string_type(beg); if (!NIL_P(tmp)) { if (!NIL_P(end)) { rb_str_upto_each(tmp, end, EXCL(range), each_i, 0); } else { rb_str_upto_endless_each(tmp, each_i, 0); } } else { if (!discrete_object_p(beg)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(beg)); } if (!NIL_P(end)) range_each_func(range, each_i, 0); else for (;; beg = rb_funcallv(beg, id_succ, 0, 0)) rb_yield(beg); } } return range; } RBIMPL_ATTR_NORETURN() static void range_reverse_each_bignum_beginless(VALUE end) { RUBY_ASSERT(RBIGNUM_NEGATIVE_P(end)); for (;; end = rb_big_minus(end, INT2FIX(1))) { rb_yield(end); } UNREACHABLE; } static void range_reverse_each_bignum(VALUE beg, VALUE end) { RUBY_ASSERT(RBIGNUM_POSITIVE_P(beg) == RBIGNUM_POSITIVE_P(end)); VALUE c; while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { rb_yield(end); if (c == INT2FIX(0)) break; end = rb_big_minus(end, INT2FIX(1)); } } static void range_reverse_each_positive_bignum_section(VALUE beg, VALUE end) { RUBY_ASSERT(!NIL_P(end)); if (FIXNUM_P(end) || RBIGNUM_NEGATIVE_P(end)) return; if (NIL_P(beg) || FIXNUM_P(beg) || RBIGNUM_NEGATIVE_P(beg)) { beg = LONG2NUM(FIXNUM_MAX + 1); } range_reverse_each_bignum(beg, end); } static void range_reverse_each_fixnum_section(VALUE beg, VALUE end) { RUBY_ASSERT(!NIL_P(end)); if (!FIXNUM_P(beg)) { if (!NIL_P(beg) && RBIGNUM_POSITIVE_P(beg)) return; beg = LONG2FIX(FIXNUM_MIN); } if (!FIXNUM_P(end)) { if (RBIGNUM_NEGATIVE_P(end)) return; end = LONG2FIX(FIXNUM_MAX); } long b = FIX2LONG(beg); long e = FIX2LONG(end); for (long i = e; i >= b; --i) { rb_yield(LONG2FIX(i)); } } static void range_reverse_each_negative_bignum_section(VALUE beg, VALUE end) { RUBY_ASSERT(!NIL_P(end)); if (FIXNUM_P(end) || RBIGNUM_POSITIVE_P(end)) { end = LONG2NUM(FIXNUM_MIN - 1); } if (NIL_P(beg)) { range_reverse_each_bignum_beginless(end); } if (FIXNUM_P(beg) || RBIGNUM_POSITIVE_P(beg)) return; range_reverse_each_bignum(beg, end); } /* * call-seq: * reverse_each {|element| ... } -> self * reverse_each -> an_enumerator * * With a block given, passes each element of +self+ to the block in reverse order: * * a = [] * (1..4).reverse_each {|element| a.push(element) } # => 1..4 * a # => [4, 3, 2, 1] * * a = [] * (1...4).reverse_each {|element| a.push(element) } # => 1...4 * a # => [3, 2, 1] * * With no block given, returns an enumerator. * */ static VALUE range_reverse_each(VALUE range) { RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size); VALUE beg = RANGE_BEG(range); VALUE end = RANGE_END(range); int excl = EXCL(range); if (NIL_P(end)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(end)); } if (FIXNUM_P(beg) && FIXNUM_P(end)) { if (excl) { if (end == LONG2FIX(FIXNUM_MIN)) return range; end = rb_int_minus(end, INT2FIX(1)); } range_reverse_each_fixnum_section(beg, end); } else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) { if (excl) { end = rb_int_minus(end, INT2FIX(1)); } range_reverse_each_positive_bignum_section(beg, end); range_reverse_each_fixnum_section(beg, end); range_reverse_each_negative_bignum_section(beg, end); } else { return rb_call_super(0, NULL); } return range; } /* * call-seq: * self.begin -> object * * Returns the object that defines the beginning of +self+. * * (1..4).begin # => 1 * (..2).begin # => nil * * Related: Range#first, Range#end. */ static VALUE range_begin(VALUE range) { return RANGE_BEG(range); } /* * call-seq: * self.end -> object * * Returns the object that defines the end of +self+. * * (1..4).end # => 4 * (1...4).end # => 4 * (1..).end # => nil * * Related: Range#begin, Range#last. */ static VALUE range_end(VALUE range) { return RANGE_END(range); } static VALUE first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, cbarg)) { VALUE *ary = (VALUE *)cbarg; long n = NUM2LONG(ary[0]); if (n <= 0) { rb_iter_break(); } rb_ary_push(ary[1], i); n--; ary[0] = LONG2NUM(n); return Qnil; } /* * call-seq: * first -> object * first(n) -> array * * With no argument, returns the first element of +self+, if it exists: * * (1..4).first # => 1 * ('a'..'d').first # => "a" * * With non-negative integer argument +n+ given, * returns the first +n+ elements in an array: * * (1..10).first(3) # => [1, 2, 3] * (1..10).first(0) # => [] * (1..4).first(50) # => [1, 2, 3, 4] * * Raises an exception if there is no first element: * * (..4).first # Raises RangeError */ static VALUE range_first(int argc, VALUE *argv, VALUE range) { VALUE n, ary[2]; if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the first element of beginless range"); } if (argc == 0) return RANGE_BEG(range); rb_scan_args(argc, argv, "1", &n); ary[0] = n; ary[1] = rb_ary_new2(NUM2LONG(n)); rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary); return ary[1]; } static VALUE rb_int_range_last(int argc, VALUE *argv, VALUE range) { static const VALUE ONE = INT2FIX(1); VALUE b, e, len_1, len, nv, ary; int x; long n; RUBY_ASSERT(argc > 0); b = RANGE_BEG(range); e = RANGE_END(range); RUBY_ASSERT(RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e)); x = EXCL(range); len_1 = rb_int_minus(e, b); if (x) { e = rb_int_minus(e, ONE); len = len_1; } else { len = rb_int_plus(len_1, ONE); } if (FIXNUM_ZERO_P(len) || rb_num_negative_p(len)) { return rb_ary_new_capa(0); } rb_scan_args(argc, argv, "1", &nv); n = NUM2LONG(nv); if (n < 0) { rb_raise(rb_eArgError, "negative array size"); } nv = LONG2NUM(n); if (RTEST(rb_int_gt(nv, len))) { nv = len; n = NUM2LONG(nv); } ary = rb_ary_new_capa(n); b = rb_int_minus(e, nv); while (n) { b = rb_int_plus(b, ONE); rb_ary_push(ary, b); --n; } return ary; } /* * call-seq: * last -> object * last(n) -> array * * With no argument, returns the last element of +self+, if it exists: * * (1..4).last # => 4 * ('a'..'d').last # => "d" * * Note that +last+ with no argument returns the end element of +self+ * even if #exclude_end? is +true+: * * (1...4).last # => 4 * ('a'...'d').last # => "d" * * With non-negative integer argument +n+ given, * returns the last +n+ elements in an array: * * (1..10).last(3) # => [8, 9, 10] * (1..10).last(0) # => [] * (1..4).last(50) # => [1, 2, 3, 4] * * Note that +last+ with argument does not return the end element of +self+ * if #exclude_end? it +true+: * * (1...4).last(3) # => [1, 2, 3] * ('a'...'d').last(3) # => ["a", "b", "c"] * * Raises an exception if there is no last element: * * (1..).last # Raises RangeError * */ static VALUE range_last(int argc, VALUE *argv, VALUE range) { VALUE b, e; if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the last element of endless range"); } if (argc == 0) return RANGE_END(range); b = RANGE_BEG(range); e = RANGE_END(range); if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) && RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) { return rb_int_range_last(argc, argv, range); } return rb_ary_last(argc, argv, rb_Array(range)); } /* * call-seq: * min -> object * min(n) -> array * min {|a, b| ... } -> object * min(n) {|a, b| ... } -> array * * Returns the minimum value in +self+, * using method #<=> or a given block for comparison. * * With no argument and no block given, * returns the minimum-valued element of +self+. * * (1..4).min # => 1 * ('a'..'d').min # => "a" * (-4..-1).min # => -4 * * With non-negative integer argument +n+ given, and no block given, * returns the +n+ minimum-valued elements of +self+ in an array: * * (1..4).min(2) # => [1, 2] * ('a'..'d').min(2) # => ["a", "b"] * (-4..-1).min(2) # => [-4, -3] * (1..4).min(50) # => [1, 2, 3, 4] * * If a block is given, it is called: * * - First, with the first two element of +self+. * - Then, sequentially, with the so-far minimum value and the next element of +self+. * * To illustrate: * * (1..4).min {|a, b| p [a, b]; a <=> b } # => 1 * * Output: * * [2, 1] * [3, 1] * [4, 1] * * With no argument and a block given, * returns the return value of the last call to the block: * * (1..4).min {|a, b| -(a <=> b) } # => 4 * * With non-negative integer argument +n+ given, and a block given, * returns the return values of the last +n+ calls to the block in an array: * * (1..4).min(2) {|a, b| -(a <=> b) } # => [4, 3] * (1..4).min(50) {|a, b| -(a <=> b) } # => [4, 3, 2, 1] * * Returns an empty array if +n+ is zero: * * (1..4).min(0) # => [] * (1..4).min(0) {|a, b| -(a <=> b) } # => [] * * Returns +nil+ or an empty array if: * * - The begin value of the range is larger than the end value: * * (4..1).min # => nil * (4..1).min(2) # => [] * (4..1).min {|a, b| -(a <=> b) } # => nil * (4..1).min(2) {|a, b| -(a <=> b) } # => [] * * - The begin value of an exclusive range is equal to the end value: * * (1...1).min # => nil * (1...1).min(2) # => [] * (1...1).min {|a, b| -(a <=> b) } # => nil * (1...1).min(2) {|a, b| -(a <=> b) } # => [] * * Raises an exception if either: * * - +self+ is a beginless range: (..4). * - A block is given and +self+ is an endless range. * * Related: Range#max, Range#minmax. */ static VALUE range_min(int argc, VALUE *argv, VALUE range) { if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of beginless range"); } if (rb_block_given_p()) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method"); } return rb_call_super(argc, argv); } else if (argc != 0) { return range_first(argc, argv, range); } else { VALUE b = RANGE_BEG(range); VALUE e = RANGE_END(range); int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e); if (c > 0 || (c == 0 && EXCL(range))) return Qnil; return b; } } /* * call-seq: * max -> object * max(n) -> array * max {|a, b| ... } -> object * max(n) {|a, b| ... } -> array * * Returns the maximum value in +self+, * using method #<=> or a given block for comparison. * * With no argument and no block given, * returns the maximum-valued element of +self+. * * (1..4).max # => 4 * ('a'..'d').max # => "d" * (-4..-1).max # => -1 * * With non-negative integer argument +n+ given, and no block given, * returns the +n+ maximum-valued elements of +self+ in an array: * * (1..4).max(2) # => [4, 3] * ('a'..'d').max(2) # => ["d", "c"] * (-4..-1).max(2) # => [-1, -2] * (1..4).max(50) # => [4, 3, 2, 1] * * If a block is given, it is called: * * - First, with the first two element of +self+. * - Then, sequentially, with the so-far maximum value and the next element of +self+. * * To illustrate: * * (1..4).max {|a, b| p [a, b]; a <=> b } # => 4 * * Output: * * [2, 1] * [3, 2] * [4, 3] * * With no argument and a block given, * returns the return value of the last call to the block: * * (1..4).max {|a, b| -(a <=> b) } # => 1 * * With non-negative integer argument +n+ given, and a block given, * returns the return values of the last +n+ calls to the block in an array: * * (1..4).max(2) {|a, b| -(a <=> b) } # => [1, 2] * (1..4).max(50) {|a, b| -(a <=> b) } # => [1, 2, 3, 4] * * Returns an empty array if +n+ is zero: * * (1..4).max(0) # => [] * (1..4).max(0) {|a, b| -(a <=> b) } # => [] * * Returns +nil+ or an empty array if: * * - The begin value of the range is larger than the end value: * * (4..1).max # => nil * (4..1).max(2) # => [] * (4..1).max {|a, b| -(a <=> b) } # => nil * (4..1).max(2) {|a, b| -(a <=> b) } # => [] * * - The begin value of an exclusive range is equal to the end value: * * (1...1).max # => nil * (1...1).max(2) # => [] * (1...1).max {|a, b| -(a <=> b) } # => nil * (1...1).max(2) {|a, b| -(a <=> b) } # => [] * * Raises an exception if either: * * - +self+ is a endless range: (1..). * - A block is given and +self+ is a beginless range. * * Related: Range#min, Range#minmax. * */ static VALUE range_max(int argc, VALUE *argv, VALUE range) { VALUE e = RANGE_END(range); int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric); if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the maximum of endless range"); } VALUE b = RANGE_BEG(range); if (rb_block_given_p() || (EXCL(range) && !nm) || argc) { if (NIL_P(b)) { rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method"); } return rb_call_super(argc, argv); } else { int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e); if (c > 0) return Qnil; if (EXCL(range)) { if (!RB_INTEGER_TYPE_P(e)) { rb_raise(rb_eTypeError, "cannot exclude non Integer end value"); } if (c == 0) return Qnil; if (!RB_INTEGER_TYPE_P(b)) { rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value"); } if (FIXNUM_P(e)) { return LONG2NUM(FIX2LONG(e) - 1); } return rb_funcall(e, '-', 1, INT2FIX(1)); } return e; } } /* * call-seq: * minmax -> [object, object] * minmax {|a, b| ... } -> [object, object] * * Returns a 2-element array containing the minimum and maximum value in +self+, * either according to comparison method #<=> or a given block. * * With no block given, returns the minimum and maximum values, * using #<=> for comparison: * * (1..4).minmax # => [1, 4] * (1...4).minmax # => [1, 3] * ('a'..'d').minmax # => ["a", "d"] * (-4..-1).minmax # => [-4, -1] * * With a block given, the block must return an integer: * * - Negative if +a+ is smaller than +b+. * - Zero if +a+ and +b+ are equal. * - Positive if +a+ is larger than +b+. * * The block is called self.size times to compare elements; * returns a 2-element Array containing the minimum and maximum values from +self+, * per the block: * * (1..4).minmax {|a, b| -(a <=> b) } # => [4, 1] * * Returns [nil, nil] if: * * - The begin value of the range is larger than the end value: * * (4..1).minmax # => [nil, nil] * (4..1).minmax {|a, b| -(a <=> b) } # => [nil, nil] * * - The begin value of an exclusive range is equal to the end value: * * (1...1).minmax # => [nil, nil] * (1...1).minmax {|a, b| -(a <=> b) } # => [nil, nil] * * Raises an exception if +self+ is a beginless or an endless range. * * Related: Range#min, Range#max. * */ static VALUE range_minmax(VALUE range) { if (rb_block_given_p()) { return rb_call_super(0, NULL); } return rb_assoc_new( rb_funcall(range, id_min, 0), rb_funcall(range, id_max, 0) ); } int rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp) { VALUE b, e; int excl; if (rb_obj_is_kind_of(range, rb_cRange)) { b = RANGE_BEG(range); e = RANGE_END(range); excl = EXCL(range); } else if (RTEST(rb_obj_is_kind_of(range, rb_cArithSeq))) { return (int)Qfalse; } else { VALUE x; b = rb_check_funcall(range, id_beg, 0, 0); if (UNDEF_P(b)) return (int)Qfalse; e = rb_check_funcall(range, id_end, 0, 0); if (UNDEF_P(e)) return (int)Qfalse; x = rb_check_funcall(range, rb_intern("exclude_end?"), 0, 0); if (UNDEF_P(x)) return (int)Qfalse; excl = RTEST(x); } *begp = b; *endp = e; *exclp = excl; return (int)Qtrue; } /* Extract the components of a Range. * * You can use +err+ to control the behavior of out-of-range and exception. * * When +err+ is 0 or 2, if the begin offset is greater than +len+, * it is out-of-range. The +RangeError+ is raised only if +err+ is 2, * in this case. If +err+ is 0, +Qnil+ will be returned. * * When +err+ is 1, the begin and end offsets won't be adjusted even if they * are greater than +len+. It allows +rb_ary_aset+ extends arrays. * * If the begin component of the given range is negative and is too-large * abstract value, the +RangeError+ is raised only +err+ is 1 or 2. * * The case of err = 0 is used in item accessing methods such as * +rb_ary_aref+, +rb_ary_slice_bang+, and +rb_str_aref+. * * The case of err = 1 is used in Array's methods such as * +rb_ary_aset+ and +rb_ary_fill+. * * The case of err = 2 is used in +rb_str_aset+. */ VALUE rb_range_component_beg_len(VALUE b, VALUE e, int excl, long *begp, long *lenp, long len, int err) { long beg, end; beg = NIL_P(b) ? 0 : NUM2LONG(b); end = NIL_P(e) ? -1 : NUM2LONG(e); if (NIL_P(e)) excl = 0; if (beg < 0) { beg += len; if (beg < 0) goto out_of_range; } if (end < 0) end += len; if (!excl) end++; /* include end point */ if (err == 0 || err == 2) { if (beg > len) goto out_of_range; if (end > len) end = len; } len = end - beg; if (len < 0) len = 0; *begp = beg; *lenp = len; return Qtrue; out_of_range: return Qnil; } VALUE rb_range_beg_len(VALUE range, long *begp, long *lenp, long len, int err) { VALUE b, e; int excl; if (!rb_range_values(range, &b, &e, &excl)) return Qfalse; VALUE res = rb_range_component_beg_len(b, e, excl, begp, lenp, len, err); if (NIL_P(res) && err) { rb_raise(rb_eRangeError, "%+"PRIsVALUE" out of range", range); } return res; } /* * call-seq: * to_s -> string * * Returns a string representation of +self+, * including begin.to_s and end.to_s: * * (1..4).to_s # => "1..4" * (1...4).to_s # => "1...4" * (1..).to_s # => "1.." * (..4).to_s # => "..4" * * Note that returns from #to_s and #inspect may differ: * * ('a'..'d').to_s # => "a..d" * ('a'..'d').inspect # => "\"a\"..\"d\"" * * Related: Range#inspect. * */ static VALUE range_to_s(VALUE range) { VALUE str, str2; str = rb_obj_as_string(RANGE_BEG(range)); str2 = rb_obj_as_string(RANGE_END(range)); str = rb_str_dup(str); rb_str_cat(str, "...", EXCL(range) ? 3 : 2); rb_str_append(str, str2); return str; } static VALUE inspect_range(VALUE range, VALUE dummy, int recur) { VALUE str, str2 = Qundef; if (recur) { return rb_str_new2(EXCL(range) ? "(... ... ...)" : "(... .. ...)"); } if (!NIL_P(RANGE_BEG(range)) || NIL_P(RANGE_END(range))) { str = rb_str_dup(rb_inspect(RANGE_BEG(range))); } else { str = rb_str_new(0, 0); } rb_str_cat(str, "...", EXCL(range) ? 3 : 2); if (NIL_P(RANGE_BEG(range)) || !NIL_P(RANGE_END(range))) { str2 = rb_inspect(RANGE_END(range)); } if (!UNDEF_P(str2)) rb_str_append(str, str2); return str; } /* * call-seq: * inspect -> string * * Returns a string representation of +self+, * including begin.inspect and end.inspect: * * (1..4).inspect # => "1..4" * (1...4).inspect # => "1...4" * (1..).inspect # => "1.." * (..4).inspect # => "..4" * * Note that returns from #to_s and #inspect may differ: * * ('a'..'d').to_s # => "a..d" * ('a'..'d').inspect # => "\"a\"..\"d\"" * * Related: Range#to_s. * */ static VALUE range_inspect(VALUE range) { return rb_exec_recursive(inspect_range, range, 0); } static VALUE range_include_internal(VALUE range, VALUE val); VALUE rb_str_include_range_p(VALUE beg, VALUE end, VALUE val, VALUE exclusive); /* * call-seq: * self === object -> true or false * * Returns +true+ if +object+ is between self.begin and self.end. * +false+ otherwise: * * (1..4) === 2 # => true * (1..4) === 5 # => false * (1..4) === 'a' # => false * (1..4) === 4 # => true * (1...4) === 4 # => false * ('a'..'d') === 'c' # => true * ('a'..'d') === 'e' # => false * * A case statement uses method ===, and so: * * case 79 * when (1..50) * "low" * when (51..75) * "medium" * when (76..100) * "high" * end # => "high" * * case "2.6.5" * when ..."2.4" * "EOL" * when "2.4"..."2.5" * "maintenance" * when "2.5"..."3.0" * "stable" * when "3.1".. * "upcoming" * end # => "stable" * */ static VALUE range_eqq(VALUE range, VALUE val) { return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val); } /* * call-seq: * include?(object) -> true or false * * Returns +true+ if +object+ is an element of +self+, +false+ otherwise: * * (1..4).include?(2) # => true * (1..4).include?(5) # => false * (1..4).include?(4) # => true * (1...4).include?(4) # => false * ('a'..'d').include?('b') # => true * ('a'..'d').include?('e') # => false * ('a'..'d').include?('B') # => false * ('a'..'d').include?('d') # => true * ('a'...'d').include?('d') # => false * * If begin and end are numeric, #include? behaves like #cover? * * (1..3).include?(1.5) # => true * (1..3).cover?(1.5) # => true * * But when not numeric, the two methods may differ: * * ('a'..'d').include?('cc') # => false * ('a'..'d').cover?('cc') # => true * * Related: Range#cover?. */ static VALUE range_include(VALUE range, VALUE val) { VALUE ret = range_include_internal(range, val); if (!UNDEF_P(ret)) return ret; return rb_call_super(1, &val); } static inline bool range_integer_edge_p(VALUE beg, VALUE end) { return (!NIL_P(rb_check_to_integer(beg, "to_int")) || !NIL_P(rb_check_to_integer(end, "to_int"))); } static inline bool range_string_range_p(VALUE beg, VALUE end) { return RB_TYPE_P(beg, T_STRING) && RB_TYPE_P(end, T_STRING); } static inline VALUE range_include_fallback(VALUE beg, VALUE end, VALUE val) { if (NIL_P(beg) && NIL_P(end)) { if (linear_object_p(val)) return Qtrue; } if (NIL_P(beg) || NIL_P(end)) { rb_raise(rb_eTypeError, "cannot determine inclusion in beginless/endless ranges"); } return Qundef; } static VALUE range_include_internal(VALUE range, VALUE val) { VALUE beg = RANGE_BEG(range); VALUE end = RANGE_END(range); int nv = FIXNUM_P(beg) || FIXNUM_P(end) || linear_object_p(beg) || linear_object_p(end); if (nv || range_integer_edge_p(beg, end)) { return r_cover_p(range, beg, end, val); } else if (range_string_range_p(beg, end)) { return rb_str_include_range_p(beg, end, val, RANGE_EXCL(range)); } return range_include_fallback(beg, end, val); } static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val); /* * call-seq: * cover?(object) -> true or false * cover?(range) -> true or false * * Returns +true+ if the given argument is within +self+, +false+ otherwise. * * With non-range argument +object+, evaluates with <= and <. * * For range +self+ with included end value (#exclude_end? == false), * evaluates thus: * * self.begin <= object <= self.end * * Examples: * * r = (1..4) * r.cover?(1) # => true * r.cover?(4) # => true * r.cover?(0) # => false * r.cover?(5) # => false * r.cover?('foo') # => false * * r = ('a'..'d') * r.cover?('a') # => true * r.cover?('d') # => true * r.cover?(' ') # => false * r.cover?('e') # => false * r.cover?(0) # => false * * For range +r+ with excluded end value (#exclude_end? == true), * evaluates thus: * * r.begin <= object < r.end * * Examples: * * r = (1...4) * r.cover?(1) # => true * r.cover?(3) # => true * r.cover?(0) # => false * r.cover?(4) # => false * r.cover?('foo') # => false * * r = ('a'...'d') * r.cover?('a') # => true * r.cover?('c') # => true * r.cover?(' ') # => false * r.cover?('d') # => false * r.cover?(0) # => false * * With range argument +range+, compares the first and last * elements of +self+ and +range+: * * r = (1..4) * r.cover?(1..4) # => true * r.cover?(0..4) # => false * r.cover?(1..5) # => false * r.cover?('a'..'d') # => false * * r = (1...4) * r.cover?(1..3) # => true * r.cover?(1..4) # => false * * If begin and end are numeric, #cover? behaves like #include? * * (1..3).cover?(1.5) # => true * (1..3).include?(1.5) # => true * * But when not numeric, the two methods may differ: * * ('a'..'d').cover?('cc') # => true * ('a'..'d').include?('cc') # => false * * Returns +false+ if either: * * - The begin value of +self+ is larger than its end value. * - An internal call to #<=> returns +nil+; * that is, the operands are not comparable. * * Beginless ranges cover all values of the same type before the end, * excluding the end for exclusive ranges. Beginless ranges cover * ranges that end before the end of the beginless range, or at the * end of the beginless range for inclusive ranges. * * (..2).cover?(1) # => true * (..2).cover?(2) # => true * (..2).cover?(3) # => false * (...2).cover?(2) # => false * (..2).cover?("2") # => false * (..2).cover?(..2) # => true * (..2).cover?(...2) # => true * (..2).cover?(.."2") # => false * (...2).cover?(..2) # => false * * Endless ranges cover all values of the same type after the * beginning. Endless exclusive ranges do not cover endless * inclusive ranges. * * (2..).cover?(1) # => false * (2..).cover?(3) # => true * (2...).cover?(3) # => true * (2..).cover?(2) # => true * (2..).cover?("2") # => false * (2..).cover?(2..) # => true * (2..).cover?(2...) # => true * (2..).cover?("2"..) # => false * (2...).cover?(2..) # => false * (2...).cover?(3...) # => true * (2...).cover?(3..) # => false * (3..).cover?(2..) # => false * * Ranges that are both beginless and endless cover all values and * ranges, and return true for all arguments, with the exception that * beginless and endless exclusive ranges do not cover endless * inclusive ranges. * * (nil...).cover?(Object.new) # => true * (nil...).cover?(nil...) # => true * (nil..).cover?(nil...) # => true * (nil...).cover?(nil..) # => false * (nil...).cover?(1..) # => false * * Related: Range#include?. * */ static VALUE range_cover(VALUE range, VALUE val) { VALUE beg, end; beg = RANGE_BEG(range); end = RANGE_END(range); if (rb_obj_is_kind_of(val, rb_cRange)) { return RBOOL(r_cover_range_p(range, beg, end, val)); } return r_cover_p(range, beg, end, val); } static VALUE r_call_max(VALUE r) { return rb_funcallv(r, rb_intern("max"), 0, 0); } static int r_cover_range_p(VALUE range, VALUE beg, VALUE end, VALUE val) { VALUE val_beg, val_end, val_max; int cmp_end; val_beg = RANGE_BEG(val); val_end = RANGE_END(val); if (!NIL_P(end) && NIL_P(val_end)) return FALSE; if (!NIL_P(beg) && NIL_P(val_beg)) return FALSE; if (!NIL_P(val_beg) && !NIL_P(val_end) && r_less(val_beg, val_end) > (EXCL(val) ? -1 : 0)) return FALSE; if (!NIL_P(val_beg) && !r_cover_p(range, beg, end, val_beg)) return FALSE; if (!NIL_P(val_end) && !NIL_P(end)) { VALUE r_cmp_end = rb_funcall(end, id_cmp, 1, val_end); if (NIL_P(r_cmp_end)) return FALSE; cmp_end = rb_cmpint(r_cmp_end, end, val_end); } else { cmp_end = r_less(end, val_end); } if (EXCL(range) == EXCL(val)) { return cmp_end >= 0; } else if (EXCL(range)) { return cmp_end > 0; } else if (cmp_end >= 0) { return TRUE; } val_max = rb_rescue2(r_call_max, val, 0, Qnil, rb_eTypeError, (VALUE)0); if (NIL_P(val_max)) return FALSE; return r_less(end, val_max) >= 0; } static VALUE r_cover_p(VALUE range, VALUE beg, VALUE end, VALUE val) { if (NIL_P(beg) || r_less(beg, val) <= 0) { int excl = EXCL(range); if (NIL_P(end) || r_less(val, end) <= -excl) return Qtrue; } return Qfalse; } static VALUE range_dumper(VALUE range) { VALUE v = rb_obj_alloc(rb_cObject); rb_ivar_set(v, id_excl, RANGE_EXCL(range)); rb_ivar_set(v, id_beg, RANGE_BEG(range)); rb_ivar_set(v, id_end, RANGE_END(range)); return v; } static VALUE range_loader(VALUE range, VALUE obj) { VALUE beg, end, excl; if (!RB_TYPE_P(obj, T_OBJECT) || RBASIC(obj)->klass != rb_cObject) { rb_raise(rb_eTypeError, "not a dumped range object"); } range_modify(range); beg = rb_ivar_get(obj, id_beg); end = rb_ivar_get(obj, id_end); excl = rb_ivar_get(obj, id_excl); if (!NIL_P(excl)) { range_init(range, beg, end, RBOOL(RTEST(excl))); } return range; } static VALUE range_alloc(VALUE klass) { /* rb_struct_alloc_noinit itself should not be used because * rb_marshal_define_compat uses equality of allocation function */ return rb_struct_alloc_noinit(klass); } /* * call-seq: * count -> integer * count(object) -> integer * count {|element| ... } -> integer * * Returns the count of elements, based on an argument or block criterion, if given. * * With no argument and no block given, returns the number of elements: * * (1..4).count # => 4 * (1...4).count # => 3 * ('a'..'d').count # => 4 * ('a'...'d').count # => 3 * (1..).count # => Infinity * (..4).count # => Infinity * * With argument +object+, returns the number of +object+ found in +self+, * which will usually be zero or one: * * (1..4).count(2) # => 1 * (1..4).count(5) # => 0 * (1..4).count('a') # => 0 * * With a block given, calls the block with each element; * returns the number of elements for which the block returns a truthy value: * * (1..4).count {|element| element < 3 } # => 2 * * Related: Range#size. */ static VALUE range_count(int argc, VALUE *argv, VALUE range) { if (argc != 0) { /* It is odd for instance (1...).count(0) to return Infinity. Just let * it loop. */ return rb_call_super(argc, argv); } else if (rb_block_given_p()) { /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return * Infinity. Just let it loop. */ return rb_call_super(argc, argv); } VALUE beg = RANGE_BEG(range), end = RANGE_END(range); if (NIL_P(beg) || NIL_P(end)) { /* We are confident that the answer is Infinity. */ return DBL2NUM(HUGE_VAL); } if (is_integer_p(beg)) { VALUE size = range_size(range); if (!NIL_P(size)) { return size; } } return rb_call_super(argc, argv); } static bool empty_region_p(VALUE beg, VALUE end, int excl) { if (NIL_P(beg)) return false; if (NIL_P(end)) return false; int less = r_less(beg, end); /* empty range */ if (less > 0) return true; if (excl && less == 0) return true; return false; } /* * call-seq: * overlap?(range) -> true or false * * Returns +true+ if +range+ overlaps with +self+, +false+ otherwise: * * (0..2).overlap?(1..3) #=> true * (0..2).overlap?(3..4) #=> false * (0..).overlap?(..0) #=> true * * With non-range argument, raises TypeError. * * (1..3).overlap?(1) # TypeError * * Returns +false+ if an internal call to #<=> returns +nil+; * that is, the operands are not comparable. * * (1..3).overlap?('a'..'d') # => false * * Returns +false+ if +self+ or +range+ is empty. "Empty range" means * that its begin value is larger than, or equal for an exclusive * range, its end value. * * (4..1).overlap?(2..3) # => false * (4..1).overlap?(..3) # => false * (4..1).overlap?(2..) # => false * (2...2).overlap?(1..2) # => false * * (1..4).overlap?(3..2) # => false * (..4).overlap?(3..2) # => false * (1..).overlap?(3..2) # => false * (1..2).overlap?(2...2) # => false * * Returns +false+ if the begin value one of +self+ and +range+ is * larger than, or equal if the other is an exclusive range, the end * value of the other: * * (4..5).overlap?(2..3) # => false * (4..5).overlap?(2...4) # => false * * (1..2).overlap?(3..4) # => false * (1...3).overlap?(3..4) # => false * * Returns +false+ if the end value one of +self+ and +range+ is * larger than, or equal for an exclusive range, the end value of the * other: * * (4..5).overlap?(2..3) # => false * (4..5).overlap?(2...4) # => false * * (1..2).overlap?(3..4) # => false * (1...3).overlap?(3..4) # => false * * Note that the method wouldn't make any assumptions about the beginless * range being actually empty, even if its upper bound is the minimum * possible value of its type, so all this would return +true+: * * (...-Float::INFINITY).overlap?(...-Float::INFINITY) # => true * (..."").overlap?(..."") # => true * (...[]).overlap?(...[]) # => true * * Even if those ranges are effectively empty (no number can be smaller than * -Float::INFINITY), they are still considered overlapping * with themselves. * * Related: Range#cover?. */ static VALUE range_overlap(VALUE range, VALUE other) { if (!rb_obj_is_kind_of(other, rb_cRange)) { rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)", rb_class_name(rb_obj_class(other))); } VALUE self_beg = RANGE_BEG(range); VALUE self_end = RANGE_END(range); int self_excl = EXCL(range); VALUE other_beg = RANGE_BEG(other); VALUE other_end = RANGE_END(other); int other_excl = EXCL(other); if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse; if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse; if (!NIL_P(self_beg) && !NIL_P(other_beg)) { VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg); if (NIL_P(cmp)) return Qfalse; /* if both begin values are equal, no more comparisons needed */ if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue; } else if (NIL_P(self_beg) && !NIL_P(self_end) && NIL_P(other_beg)) { VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end); return RBOOL(!NIL_P(cmp)); } if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse; if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse; return Qtrue; } /* A \Range object represents a collection of values * that are between given begin and end values. * * You can create an \Range object explicitly with: * * - A {range literal}[rdoc-ref:syntax/literals.rdoc@Range+Literals]: * * # Ranges that use '..' to include the given end value. * (1..4).to_a # => [1, 2, 3, 4] * ('a'..'d').to_a # => ["a", "b", "c", "d"] * # Ranges that use '...' to exclude the given end value. * (1...4).to_a # => [1, 2, 3] * ('a'...'d').to_a # => ["a", "b", "c"] * * - Method Range.new: * * # Ranges that by default include the given end value. * Range.new(1, 4).to_a # => [1, 2, 3, 4] * Range.new('a', 'd').to_a # => ["a", "b", "c", "d"] * # Ranges that use third argument +exclude_end+ to exclude the given end value. * Range.new(1, 4, true).to_a # => [1, 2, 3] * Range.new('a', 'd', true).to_a # => ["a", "b", "c"] * * == Beginless Ranges * * A _beginless_ _range_ has a definite end value, but a +nil+ begin value. * Such a range includes all values up to the end value. * * r = (..4) # => nil..4 * r.begin # => nil * r.include?(-50) # => true * r.include?(4) # => true * * r = (...4) # => nil...4 * r.include?(4) # => false * * Range.new(nil, 4) # => nil..4 * Range.new(nil, 4, true) # => nil...4 * * A beginless range may be used to slice an array: * * a = [1, 2, 3, 4] * # Include the third array element in the slice * r = (..2) # => nil..2 * a[r] # => [1, 2, 3] * # Exclude the third array element from the slice * r = (...2) # => nil...2 * a[r] # => [1, 2] * * \Method +each+ for a beginless range raises an exception. * * == Endless Ranges * * An _endless_ _range_ has a definite begin value, but a +nil+ end value. * Such a range includes all values from the begin value. * * r = (1..) # => 1.. * r.end # => nil * r.include?(50) # => true * * Range.new(1, nil) # => 1.. * * The literal for an endless range may be written with either two dots * or three. * The range has the same elements, either way. * But note that the two are not equal: * * r0 = (1..) # => 1.. * r1 = (1...) # => 1... * r0.begin == r1.begin # => true * r0.end == r1.end # => true * r0 == r1 # => false * * An endless range may be used to slice an array: * * a = [1, 2, 3, 4] * r = (2..) # => 2.. * a[r] # => [3, 4] * * \Method +each+ for an endless range calls the given block indefinitely: * * a = [] * r = (1..) * r.each do |i| * a.push(i) if i.even? * break if i > 10 * end * a # => [2, 4, 6, 8, 10] * * A range can be both beginless and endless. For literal beginless, endless * ranges, at least the beginning or end of the range must be given as an * explicit nil value. It is recommended to use an explicit nil beginning and * implicit nil end, since that is what Ruby uses for Range#inspect: * * (nil..) # => (nil..) * (..nil) # => (nil..) * (nil..nil) # => (nil..) * * == Ranges and Other Classes * * An object may be put into a range if its class implements * instance method #<=>. * Ruby core classes that do so include Array, Complex, File::Stat, * Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time. * * Example: * * t0 = Time.now # => 2021-09-19 09:22:48.4854986 -0500 * t1 = Time.now # => 2021-09-19 09:22:56.0365079 -0500 * t2 = Time.now # => 2021-09-19 09:23:08.5263283 -0500 * (t0..t2).include?(t1) # => true * (t0..t1).include?(t2) # => false * * A range can be iterated over only if its elements * implement instance method +succ+. * Ruby core classes that do so include Integer, String, and Symbol * (but not the other classes mentioned above). * * Iterator methods include: * * - In \Range itself: #each, #step, and #% * - Included from module Enumerable: #each_entry, #each_with_index, * #each_with_object, #each_slice, #each_cons, and #reverse_each. * * Example: * * a = [] * (1..4).each {|i| a.push(i) } * a # => [1, 2, 3, 4] * * == Ranges and User-Defined Classes * * A user-defined class that is to be used in a range * must implement instance method #<=>; * see Integer#<=>. * To make iteration available, it must also implement * instance method +succ+; see Integer#succ. * * The class below implements both #<=> and +succ+, * and so can be used both to construct ranges and to iterate over them. * Note that the Comparable module is included * so the == method is defined in terms of #<=>. * * # Represent a string of 'X' characters. * class Xs * include Comparable * attr_accessor :length * def initialize(n) * @length = n * end * def succ * Xs.new(@length + 1) * end * def <=>(other) * @length <=> other.length * end * def to_s * sprintf "%2d #{inspect}", @length * end * def inspect * 'X' * @length * end * end * * r = Xs.new(3)..Xs.new(6) #=> XXX..XXXXXX * r.to_a #=> [XXX, XXXX, XXXXX, XXXXXX] * r.include?(Xs.new(5)) #=> true * r.include?(Xs.new(7)) #=> false * * == What's Here * * First, what's elsewhere. \Class \Range: * * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here]. * - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here], * which provides dozens of additional methods. * * Here, class \Range provides methods that are useful for: * * - {Creating a Range}[rdoc-ref:Range@Methods+for+Creating+a+Range] * - {Querying}[rdoc-ref:Range@Methods+for+Querying] * - {Comparing}[rdoc-ref:Range@Methods+for+Comparing] * - {Iterating}[rdoc-ref:Range@Methods+for+Iterating] * - {Converting}[rdoc-ref:Range@Methods+for+Converting] * - {Methods for Working with JSON}[rdoc-ref:Range@Methods+for+Working+with+JSON] * * === Methods for Creating a \Range * * - ::new: Returns a new range. * * === Methods for Querying * * - #begin: Returns the begin value given for +self+. * - #bsearch: Returns an element from +self+ selected by a binary search. * - #count: Returns a count of elements in +self+. * - #end: Returns the end value given for +self+. * - #exclude_end?: Returns whether the end object is excluded. * - #first: Returns the first elements of +self+. * - #hash: Returns the integer hash code. * - #last: Returns the last elements of +self+. * - #max: Returns the maximum values in +self+. * - #min: Returns the minimum values in +self+. * - #minmax: Returns the minimum and maximum values in +self+. * - #size: Returns the count of elements in +self+. * * === Methods for Comparing * * - #==: Returns whether a given object is equal to +self+ (uses #==). * - #===: Returns whether the given object is between the begin and end values. * - #cover?: Returns whether a given object is within +self+. * - #eql?: Returns whether a given object is equal to +self+ (uses #eql?). * - #include? (aliased as #member?): Returns whether a given object * is an element of +self+. * * === Methods for Iterating * * - #%: Requires argument +n+; calls the block with each +n+-th element of +self+. * - #each: Calls the block with each element of +self+. * - #step: Takes optional argument +n+ (defaults to 1); * calls the block with each +n+-th element of +self+. * * === Methods for Converting * * - #inspect: Returns a string representation of +self+ (uses #inspect). * - #to_a (aliased as #entries): Returns elements of +self+ in an array. * - #to_s: Returns a string representation of +self+ (uses #to_s). * * === Methods for Working with \JSON * * - ::json_create: Returns a new \Range object constructed from the given object. * - #as_json: Returns a 2-element hash representing +self+. * - #to_json: Returns a \JSON string representing +self+. * * To make these methods available: * * require 'json/add/range' * */ void Init_Range(void) { id_beg = rb_intern_const("begin"); id_end = rb_intern_const("end"); id_excl = rb_intern_const("excl"); rb_cRange = rb_struct_define_without_accessor( "Range", rb_cObject, range_alloc, "begin", "end", "excl", NULL); rb_include_module(rb_cRange, rb_mEnumerable); rb_marshal_define_compat(rb_cRange, rb_cObject, range_dumper, range_loader); rb_define_method(rb_cRange, "initialize", range_initialize, -1); rb_define_method(rb_cRange, "initialize_copy", range_initialize_copy, 1); rb_define_method(rb_cRange, "==", range_eq, 1); rb_define_method(rb_cRange, "===", range_eqq, 1); rb_define_method(rb_cRange, "eql?", range_eql, 1); rb_define_method(rb_cRange, "hash", range_hash, 0); rb_define_method(rb_cRange, "each", range_each, 0); rb_define_method(rb_cRange, "step", range_step, -1); rb_define_method(rb_cRange, "%", range_percent_step, 1); rb_define_method(rb_cRange, "reverse_each", range_reverse_each, 0); rb_define_method(rb_cRange, "bsearch", range_bsearch, 0); rb_define_method(rb_cRange, "begin", range_begin, 0); rb_define_method(rb_cRange, "end", range_end, 0); rb_define_method(rb_cRange, "first", range_first, -1); rb_define_method(rb_cRange, "last", range_last, -1); rb_define_method(rb_cRange, "min", range_min, -1); rb_define_method(rb_cRange, "max", range_max, -1); rb_define_method(rb_cRange, "minmax", range_minmax, 0); rb_define_method(rb_cRange, "size", range_size, 0); rb_define_method(rb_cRange, "to_a", range_to_a, 0); rb_define_method(rb_cRange, "entries", range_to_a, 0); rb_define_method(rb_cRange, "to_s", range_to_s, 0); rb_define_method(rb_cRange, "inspect", range_inspect, 0); rb_define_method(rb_cRange, "exclude_end?", range_exclude_end_p, 0); rb_define_method(rb_cRange, "member?", range_include, 1); rb_define_method(rb_cRange, "include?", range_include, 1); rb_define_method(rb_cRange, "cover?", range_cover, 1); rb_define_method(rb_cRange, "count", range_count, -1); rb_define_method(rb_cRange, "overlap?", range_overlap, 1); }