/********************************************************************** array.c - $Author$ $Date$ created at: Fri Aug 6 09:46:12 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/ruby.h" #include "ruby/util.h" #include "ruby/st.h" VALUE rb_cArray; static ID id_cmp; #define ARY_DEFAULT_SIZE 16 void rb_mem_clear(register VALUE *mem, register long size) { while (size--) { *mem++ = Qnil; } } static inline void memfill(register VALUE *mem, register long size, register VALUE val) { while (size--) { *mem++ = val; } } #define ARY_ITERLOCK FL_USER1 static void ary_iter_check(VALUE ary) { if (FL_TEST(ary, ARY_ITERLOCK)) { rb_raise(rb_eRuntimeError, "can't modify array during iteration"); } } #define ARY_SORTLOCK FL_USER3 #define ARY_SHARED_P(a) FL_TEST(a, ELTS_SHARED) #define ARY_SET_LEN(ary, n) do { \ RARRAY(ary)->len = (n);\ } while (0) #define ARY_CAPA(ary) RARRAY(ary)->aux.capa #define RESIZE_CAPA(ary,capacity) do {\ REALLOC_N(RARRAY(ary)->ptr, VALUE, (capacity));\ RARRAY(ary)->aux.capa = (capacity);\ } while (0) #define ITERATE(func, ary) do { \ FL_SET(ary, ARY_ITERLOCK); \ return rb_ensure(func, (ary), each_unlock, (ary));\ } while (0) static inline void rb_ary_modify_check(VALUE ary) { if (OBJ_FROZEN(ary)) rb_error_frozen("array"); if (FL_TEST(ary, ARY_SORTLOCK)) rb_raise(rb_eRuntimeError, "can't modify array during sort"); if (!OBJ_TAINTED(ary) && rb_safe_level() >= 4) rb_raise(rb_eSecurityError, "Insecure: can't modify array"); } static void rb_ary_modify(VALUE ary) { VALUE *ptr; rb_ary_modify_check(ary); if (ARY_SHARED_P(ary)) { ptr = ALLOC_N(VALUE, RARRAY_LEN(ary)); FL_UNSET(ary, ELTS_SHARED); RARRAY(ary)->aux.capa = RARRAY_LEN(ary); MEMCPY(ptr, RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary)); RARRAY(ary)->ptr = ptr; } } VALUE rb_ary_freeze(VALUE ary) { return rb_obj_freeze(ary); } /* * call-seq: * array.frozen? -> true or false * * Return true if this array is frozen (or temporarily frozen * while being sorted). */ static VALUE rb_ary_frozen_p(VALUE ary) { if (OBJ_FROZEN(ary)) return Qtrue; if (FL_TEST(ary, ARY_SORTLOCK)) return Qtrue; return Qfalse; } static VALUE ary_alloc(VALUE klass) { NEWOBJ(ary, struct RArray); OBJSETUP(ary, klass, T_ARRAY); ary->len = 0; ary->ptr = 0; ary->aux.capa = 0; return (VALUE)ary; } static VALUE ary_new(VALUE klass, long len) { VALUE ary; if (len < 0) { rb_raise(rb_eArgError, "negative array size (or size too big)"); } if (len > 0 && len * sizeof(VALUE) <= len) { rb_raise(rb_eArgError, "array size too big"); } ary = ary_alloc(klass); if (len == 0) len++; RARRAY(ary)->ptr = ALLOC_N(VALUE, len); RARRAY(ary)->aux.capa = len; return ary; } VALUE rb_ary_new2(long len) { return ary_new(rb_cArray, len); } VALUE rb_ary_new(void) { return rb_ary_new2(ARY_DEFAULT_SIZE); } #include VALUE rb_ary_new3(long n, ...) { va_list ar; VALUE ary; long i; ary = rb_ary_new2(n); va_start(ar, n); for (i=0; ilen = n; return ary; } VALUE rb_ary_new4(long n, const VALUE *elts) { VALUE ary; ary = rb_ary_new2(n); if (n > 0 && elts) { MEMCPY(RARRAY_PTR(ary), elts, VALUE, n); RARRAY(ary)->len = n; } return ary; } void rb_ary_free(VALUE ary) { if (!ARY_SHARED_P(ary)) { xfree(RARRAY(ary)->ptr); } } static VALUE ary_make_shared(VALUE ary) { if (ARY_SHARED_P(ary)) { return RARRAY(ary)->aux.shared; } else { NEWOBJ(shared, struct RArray); OBJSETUP(shared, 0, T_ARRAY); shared->len = RARRAY(ary)->len; shared->ptr = RARRAY(ary)->ptr; shared->aux.capa = RARRAY(ary)->aux.capa; RARRAY(ary)->aux.shared = (VALUE)shared; FL_SET(ary, ELTS_SHARED); OBJ_FREEZE(shared); return (VALUE)shared; } } VALUE rb_assoc_new(VALUE car, VALUE cdr) { return rb_ary_new3(2, car, cdr); } static VALUE to_ary(VALUE ary) { return rb_convert_type(ary, T_ARRAY, "Array", "to_ary"); } static VALUE to_a(VALUE ary) { return rb_convert_type(ary, T_ARRAY, "Array", "to_a"); } VALUE rb_check_array_type(VALUE ary) { return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary"); } /* * call-seq: * Array.try_convert(obj) -> array or nil * * Try to convert obj into an array, using to_ary method. * Returns converted array or nil if obj cannot be converted * for any reason. This method is to check if an argument is an * array. * * Array.try_convert([1]) # => [1] * Array.try_convert("1") # => nil * * if tmp = Array.try_convert(arg) * # the argument is an array * elsif tmp = String.try_convert(arg) * # the argument is a string * end * */ static VALUE rb_ary_s_try_convert(VALUE dummy, VALUE ary) { return rb_check_array_type(ary); } /* * call-seq: * Array.new(size=0, obj=nil) * Array.new(array) * Array.new(size) {|index| block } * * Returns a new array. In the first form, the new array is * empty. In the second it is created with _size_ copies of _obj_ * (that is, _size_ references to the same * _obj_). The third form creates a copy of the array * passed as a parameter (the array is generated by calling * to_ary on the parameter). In the last form, an array * of the given size is created. Each element in this array is * calculated by passing the element's index to the given block and * storing the return value. * * Array.new * Array.new(2) * Array.new(5, "A") * * # only one copy of the object is created * a = Array.new(2, Hash.new) * a[0]['cat'] = 'feline' * a * a[1]['cat'] = 'Felix' * a * * # here multiple copies are created * a = Array.new(2) { Hash.new } * a[0]['cat'] = 'feline' * a * * squares = Array.new(5) {|i| i*i} * squares * * copy = Array.new(squares) */ static VALUE rb_ary_initialize(int argc, VALUE *argv, VALUE ary) { long len; VALUE size, val; rb_ary_modify(ary); ary_iter_check(ary); if (rb_scan_args(argc, argv, "02", &size, &val) == 0) { if (RARRAY_PTR(ary) && !ARY_SHARED_P(ary)) { free(RARRAY(ary)->ptr); } RARRAY(ary)->len = 0; if (rb_block_given_p()) { rb_warning("given block not used"); } return ary; } if (argc == 1 && !FIXNUM_P(size)) { val = rb_check_array_type(size); if (!NIL_P(val)) { rb_ary_replace(ary, val); return ary; } } len = NUM2LONG(size); if (len < 0) { rb_raise(rb_eArgError, "negative array size"); } if (len > 0 && len * (long)sizeof(VALUE) <= len) { rb_raise(rb_eArgError, "array size too big"); } rb_ary_modify(ary); RESIZE_CAPA(ary, len); if (rb_block_given_p()) { long i; if (argc == 2) { rb_warn("block supersedes default value argument"); } for (i=0; ilen = i + 1; } } else { memfill(RARRAY_PTR(ary), len, val); RARRAY(ary)->len = len; } return ary; } /* * Returns a new array populated with the given objects. * * Array.[]( 1, 'a', /^A/ ) * Array[ 1, 'a', /^A/ ] * [ 1, 'a', /^A/ ] */ static VALUE rb_ary_s_create(int argc, VALUE *argv, VALUE klass) { VALUE ary = ary_alloc(klass); if (argc < 0) { rb_raise(rb_eArgError, "negative array size"); } RARRAY(ary)->ptr = ALLOC_N(VALUE, argc); RARRAY(ary)->aux.capa = argc; MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc); RARRAY(ary)->len = argc; return ary; } void rb_ary_store(VALUE ary, long idx, VALUE val) { if (idx < 0) { idx += RARRAY_LEN(ary); if (idx < 0) { rb_raise(rb_eIndexError, "index %ld out of array", idx - RARRAY_LEN(ary)); } } rb_ary_modify(ary); if (idx >= ARY_CAPA(ary)) { long new_capa = ARY_CAPA(ary) / 2; if (new_capa < ARY_DEFAULT_SIZE) { new_capa = ARY_DEFAULT_SIZE; } if (new_capa + idx < new_capa) { rb_raise(rb_eArgError, "index too big"); } new_capa += idx; if (new_capa * (long)sizeof(VALUE) <= new_capa) { rb_raise(rb_eArgError, "index too big"); } RESIZE_CAPA(ary, new_capa); } if (idx > RARRAY_LEN(ary)) { rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), idx-RARRAY_LEN(ary) + 1); } if (idx >= RARRAY_LEN(ary)) { RARRAY(ary)->len = idx + 1; } RARRAY_PTR(ary)[idx] = val; } static VALUE ary_shared_array(VALUE klass, VALUE ary) { VALUE val = ary_alloc(klass); ary_make_shared(ary); RARRAY(val)->ptr = RARRAY(ary)->ptr; RARRAY(val)->len = RARRAY(ary)->len; RARRAY(val)->aux.shared = RARRAY(ary)->aux.shared; FL_SET(val, ELTS_SHARED); return val; } static VALUE ary_shared_first(int argc, VALUE *argv, VALUE ary, int last) { VALUE nv, result; long n; long offset = 0; rb_scan_args(argc, argv, "1", &nv); n = NUM2LONG(nv); if (n > RARRAY_LEN(ary)) { n = RARRAY_LEN(ary); } else if (n < 0) { rb_raise(rb_eArgError, "negative array size"); } if (last) { offset = RARRAY_LEN(ary) - n; } result = ary_shared_array(rb_cArray, ary); RARRAY(result)->ptr += offset; RARRAY(result)->len = n; return result; } /* * call-seq: * array << obj -> array * * Append---Pushes the given object on to the end of this array. This * expression returns the array itself, so several appends * may be chained together. * * [ 1, 2 ] << "c" << "d" << [ 3, 4 ] * #=> [ 1, 2, "c", "d", [ 3, 4 ] ] * */ VALUE rb_ary_push(VALUE ary, VALUE item) { rb_ary_store(ary, RARRAY_LEN(ary), item); return ary; } /* * call-seq: * array.push(obj, ... ) -> array * * Append---Pushes the given object(s) on to the end of this array. This * expression returns the array itself, so several appends * may be chained together. * * a = [ "a", "b", "c" ] * a.push("d", "e", "f") * #=> ["a", "b", "c", "d", "e", "f"] */ static VALUE rb_ary_push_m(int argc, VALUE *argv, VALUE ary) { while (argc--) { rb_ary_push(ary, *argv++); } return ary; } VALUE rb_ary_pop(VALUE ary) { long n; rb_ary_modify_check(ary); if (RARRAY_LEN(ary) == 0) return Qnil; if (!ARY_SHARED_P(ary) && RARRAY_LEN(ary) * 3 < ARY_CAPA(ary) && ARY_CAPA(ary) > ARY_DEFAULT_SIZE) { RESIZE_CAPA(ary, RARRAY_LEN(ary) * 2); } n = RARRAY_LEN(ary)-1; RARRAY(ary)->len = n; return RARRAY_PTR(ary)[n]; } /* * call-seq: * array.pop -> obj or nil * * Removes the last element from self and returns it, or * nil if the array is empty. * * a = [ "a", "b", "c", "d" ] * a.pop #=> "d" * a.pop(2) #=> ["b", "c"] * a #=> ["a"] */ static VALUE rb_ary_pop_m(int argc, VALUE *argv, VALUE ary) { VALUE result; if (argc == 0) { return rb_ary_pop(ary); } rb_ary_modify_check(ary); result = ary_shared_first(argc, argv, ary, Qtrue); RARRAY(ary)->len -= RARRAY_LEN(result); return result; } VALUE rb_ary_shift(VALUE ary) { VALUE top; rb_ary_modify_check(ary); ary_iter_check(ary); if (RARRAY_LEN(ary) == 0) return Qnil; top = RARRAY_PTR(ary)[0]; if (!ARY_SHARED_P(ary)) { if (RARRAY_LEN(ary) < ARY_DEFAULT_SIZE) { MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+1, VALUE, RARRAY_LEN(ary)-1); RARRAY(ary)->len--; return top; } RARRAY_PTR(ary)[0] = Qnil; ary_make_shared(ary); } RARRAY(ary)->ptr++; /* shift ptr */ RARRAY(ary)->len--; return top; } /* * call-seq: * array.shift -> obj or nil * * Returns the first element of self and removes it (shifting all * other elements down by one). Returns nil if the array * is empty. * * args = [ "-m", "-q", "filename" ] * args.shift #=> "-m" * args #=> ["-q", "filename"] * * args = [ "-m", "-q", "filename" ] * args.shift(2) #=> ["-m", "-q"] * args #=> ["filename"] */ static VALUE rb_ary_shift_m(int argc, VALUE *argv, VALUE ary) { VALUE result; long n; if (argc == 0) { return rb_ary_shift(ary); } rb_ary_modify_check(ary); ary_iter_check(ary); result = ary_shared_first(argc, argv, ary, Qfalse); n = RARRAY_LEN(result); if (ARY_SHARED_P(ary)) { RARRAY(ary)->ptr += n; RARRAY(ary)->len -= n; } else { MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n); RARRAY(ary)->len -= n; } return result; } /* * call-seq: * array.unshift(obj, ...) -> array * * Prepends objects to the front of array. * other elements up one. * * a = [ "b", "c", "d" ] * a.unshift("a") #=> ["a", "b", "c", "d"] * a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"] */ static VALUE rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary) { long len = RARRAY(ary)->len; if (argc == 0) return ary; rb_ary_modify(ary); ary_iter_check(ary); if (RARRAY(ary)->aux.capa <= RARRAY_LEN(ary)+argc) { RESIZE_CAPA(ary, RARRAY(ary)->aux.capa + ARY_DEFAULT_SIZE); } /* sliding items */ MEMMOVE(RARRAY(ary)->ptr + argc, RARRAY(ary)->ptr, VALUE, len); MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc); RARRAY(ary)->len += argc; return ary; } VALUE rb_ary_unshift(VALUE ary, VALUE item) { return rb_ary_unshift_m(1,&item,ary); } /* faster version - use this if you don't need to treat negative offset */ static inline VALUE rb_ary_elt(VALUE ary, long offset) { if (RARRAY_LEN(ary) == 0) return Qnil; if (offset < 0 || RARRAY_LEN(ary) <= offset) { return Qnil; } return RARRAY_PTR(ary)[offset]; } VALUE rb_ary_entry(VALUE ary, long offset) { if (offset < 0) { offset += RARRAY_LEN(ary); } return rb_ary_elt(ary, offset); } static VALUE rb_ary_subseq(VALUE ary, long beg, long len) { VALUE klass, ary2, shared; VALUE *ptr; if (beg > RARRAY_LEN(ary)) return Qnil; if (beg < 0 || len < 0) return Qnil; if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) { len = RARRAY_LEN(ary) - beg; } klass = rb_obj_class(ary); if (len == 0) return ary_new(klass, 0); shared = ary_make_shared(ary); ptr = RARRAY_PTR(ary); ary2 = ary_alloc(klass); RARRAY(ary2)->ptr = ptr + beg; RARRAY(ary2)->len = len; RARRAY(ary2)->aux.shared = shared; FL_SET(ary2, ELTS_SHARED); return ary2; } /* * call-seq: * array[index] -> obj or nil * array[start, length] -> an_array or nil * array[range] -> an_array or nil * array.slice(index) -> obj or nil * array.slice(start, length) -> an_array or nil * array.slice(range) -> an_array or nil * * Element Reference---Returns the element at _index_, * or returns a subarray starting at _start_ and * continuing for _length_ elements, or returns a subarray * specified by _range_. * Negative indices count backward from the end of the * array (-1 is the last element). Returns nil if the index * (or starting index) are out of range. * * a = [ "a", "b", "c", "d", "e" ] * a[2] + a[0] + a[1] #=> "cab" * a[6] #=> nil * a[1, 2] #=> [ "b", "c" ] * a[1..3] #=> [ "b", "c", "d" ] * a[4..7] #=> [ "e" ] * a[6..10] #=> nil * a[-3, 3] #=> [ "c", "d", "e" ] * # special cases * a[5] #=> nil * a[5, 1] #=> [] * a[5..10] #=> [] * */ VALUE rb_ary_aref(int argc, VALUE *argv, VALUE ary) { VALUE arg; long beg, len; if (argc == 2) { beg = NUM2LONG(argv[0]); len = NUM2LONG(argv[1]); if (beg < 0) { beg += RARRAY_LEN(ary); } return rb_ary_subseq(ary, beg, len); } if (argc != 1) { rb_scan_args(argc, argv, "11", 0, 0); } arg = argv[0]; /* special case - speeding up */ if (FIXNUM_P(arg)) { return rb_ary_entry(ary, FIX2LONG(arg)); } /* check if idx is Range */ switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) { case Qfalse: break; case Qnil: return Qnil; default: return rb_ary_subseq(ary, beg, len); } return rb_ary_entry(ary, NUM2LONG(arg)); } /* * call-seq: * array.at(index) -> obj or nil * * Returns the element at _index_. A * negative index counts from the end of _self_. Returns +nil+ * if the index is out of range. See also Array#[]. * (Array#at is slightly faster than Array#[], * as it does not accept ranges and so on.) * * a = [ "a", "b", "c", "d", "e" ] * a.at(0) #=> "a" * a.at(-1) #=> "e" */ static VALUE rb_ary_at(VALUE ary, VALUE pos) { return rb_ary_entry(ary, NUM2LONG(pos)); } /* * call-seq: * array.first -> obj or nil * array.first(n) -> an_array * * Returns the first element, or the first +n+ elements, of the array. * If the array is empty, the first form returns nil, and the * second form returns an empty array. * * a = [ "q", "r", "s", "t" ] * a.first #=> "q" * a.first(2) #=> ["q", "r"] */ static VALUE rb_ary_first(int argc, VALUE *argv, VALUE ary) { if (argc == 0) { if (RARRAY_LEN(ary) == 0) return Qnil; return RARRAY_PTR(ary)[0]; } else { return ary_shared_first(argc, argv, ary, Qfalse); } } /* * call-seq: * array.last -> obj or nil * array.last(n) -> an_array * * Returns the last element(s) of self. If the array is empty, * the first form returns nil. * * a = [ "w", "x", "y", "z" ] * a.last #=> "z" * a.last(2) #=> ["y", "z"] */ static VALUE rb_ary_last(int argc, VALUE *argv, VALUE ary) { if (argc == 0) { if (RARRAY_LEN(ary) == 0) return Qnil; return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1]; } else { return ary_shared_first(argc, argv, ary, Qtrue); } } /* * call-seq: * array.fetch(index) -> obj * array.fetch(index, default ) -> obj * array.fetch(index) {|index| block } -> obj * * Tries to return the element at position index. If the index * lies outside the array, the first form throws an * IndexError exception, the second form returns * default, and the third form returns the value of invoking * the block, passing in the index. Negative values of index * count from the end of the array. * * a = [ 11, 22, 33, 44 ] * a.fetch(1) #=> 22 * a.fetch(-1) #=> 44 * a.fetch(4, 'cat') #=> "cat" * a.fetch(4) { |i| i*i } #=> 16 */ static VALUE rb_ary_fetch(int argc, VALUE *argv, VALUE ary) { VALUE pos, ifnone; long block_given; long idx; rb_scan_args(argc, argv, "11", &pos, &ifnone); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } idx = NUM2LONG(pos); if (idx < 0) { idx += RARRAY_LEN(ary); } if (idx < 0 || RARRAY_LEN(ary) <= idx) { if (block_given) return rb_yield(pos); if (argc == 1) { rb_raise(rb_eIndexError, "index %ld out of array", idx); } return ifnone; } return RARRAY_PTR(ary)[idx]; } /* * call-seq: * array.index(obj) -> int or nil * array.index {|item| block} -> int or nil * * Returns the index of the first object in self such that is * == to obj. If a block is given instead of an * argument, returns first object for which block is true. * Returns nil if no match is found. * * a = [ "a", "b", "c" ] * a.index("b") #=> 1 * a.index("z") #=> nil * a.index{|x|x=="b"} #=> 1 */ static VALUE rb_ary_index(int argc, VALUE *argv, VALUE ary) { VALUE val; long i; if (rb_scan_args(argc, argv, "01", &val) == 0) { RETURN_ENUMERATOR(ary, 0, 0); for (i=0; i int or nil * * Returns the index of the last object in array * == to obj. If a block is given instead of an * argument, returns first object for which block is * true. Returns nil if no match is found. * * a = [ "a", "b", "b", "b", "c" ] * a.rindex("b") #=> 3 * a.rindex("z") #=> nil * a.rindex{|x|x=="b"} #=> 3 */ static VALUE rb_ary_rindex(int argc, VALUE *argv, VALUE ary) { VALUE val; long i = RARRAY_LEN(ary); if (rb_scan_args(argc, argv, "01", &val) == 0) { RETURN_ENUMERATOR(ary, 0, 0); while (i--) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) return LONG2NUM(i); if (i > RARRAY_LEN(ary)) { i = RARRAY_LEN(ary); } } } else { while (i--) { if (rb_equal(RARRAY_PTR(ary)[i], val)) return LONG2NUM(i); if (i > RARRAY_LEN(ary)) { i = RARRAY_LEN(ary); } } } return Qnil; } VALUE rb_ary_to_ary(VALUE obj) { if (TYPE(obj) == T_ARRAY) { return obj; } if (rb_respond_to(obj, rb_intern("to_ary"))) { return to_ary(obj); } return rb_ary_new3(1, obj); } static void rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl) { long rlen; if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len); if (beg < 0) { beg += RARRAY_LEN(ary); if (beg < 0) { beg -= RARRAY_LEN(ary); rb_raise(rb_eIndexError, "index %ld out of array", beg); } } if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) { len = RARRAY_LEN(ary) - beg; } if (rpl == Qundef) { rlen = 0; } else { rpl = rb_ary_to_ary(rpl); rlen = RARRAY_LEN(rpl); } rb_ary_modify(ary); ary_iter_check(ary); if (beg >= RARRAY_LEN(ary)) { len = beg + rlen; if (len >= ARY_CAPA(ary)) { RESIZE_CAPA(ary, len); } rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), beg - RARRAY_LEN(ary)); if (rlen > 0) { MEMCPY(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen); } RARRAY(ary)->len = len; } else { long alen; if (beg + len > RARRAY_LEN(ary)) { len = RARRAY_LEN(ary) - beg; } alen = RARRAY_LEN(ary) + rlen - len; if (alen >= ARY_CAPA(ary)) { RESIZE_CAPA(ary, alen); } if (len != rlen) { MEMMOVE(RARRAY_PTR(ary) + beg + rlen, RARRAY_PTR(ary) + beg + len, VALUE, RARRAY_LEN(ary) - (beg + len)); RARRAY(ary)->len = alen; } if (rlen > 0) { MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen); } } } /* * call-seq: * array[index] = obj -> obj * array[start, length] = obj or an_array or nil -> obj or an_array or nil * array[range] = obj or an_array or nil -> obj or an_array or nil * * Element Assignment---Sets the element at _index_, * or replaces a subarray starting at _start_ and * continuing for _length_ elements, or replaces a subarray * specified by _range_. If indices are greater than * the current capacity of the array, the array grows * automatically. A negative indices will count backward * from the end of the array. Inserts elements if _length_ is * zero. An +IndexError+ is raised if a negative index points * past the beginning of the array. See also * Array#push, and Array#unshift. * * a = Array.new * a[4] = "4"; #=> [nil, nil, nil, nil, "4"] * a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"] * a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"] * a[0, 2] = "?" #=> ["?", 2, nil, "4"] * a[0..2] = "A" #=> ["A", "4"] * a[-1] = "Z" #=> ["A", "Z"] * a[1..-1] = nil #=> ["A", nil] * a[1..-1] = [] #=> ["A"] */ static VALUE rb_ary_aset(int argc, VALUE *argv, VALUE ary) { long offset, beg, len; if (argc == 3) { rb_ary_splice(ary, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]); return argv[2]; } if (argc != 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc); } if (FIXNUM_P(argv[0])) { offset = FIX2LONG(argv[0]); goto fixnum; } if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) { /* check if idx is Range */ rb_ary_splice(ary, beg, len, argv[1]); return argv[1]; } offset = NUM2LONG(argv[0]); fixnum: rb_ary_store(ary, offset, argv[1]); return argv[1]; } /* * call-seq: * array.insert(index, obj...) -> array * * Inserts the given values before the element with the given index * (which may be negative). * * a = %w{ a b c d } * a.insert(2, 99) #=> ["a", "b", 99, "c", "d"] * a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"] */ static VALUE rb_ary_insert(int argc, VALUE *argv, VALUE ary) { long pos; if (argc == 1) return ary; if (argc < 1) { rb_raise(rb_eArgError, "wrong number of arguments (at least 1)"); } pos = NUM2LONG(argv[0]); if (pos == -1) { pos = RARRAY_LEN(ary); } if (pos < 0) { pos++; } rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1)); return ary; } static VALUE each_unlock(VALUE ary) { FL_UNSET(ary, ARY_ITERLOCK); return ary; } static VALUE each_i(VALUE ary) { long i; for (i=0; i array * * Calls block once for each element in self, passing that * element as a parameter. * * a = [ "a", "b", "c" ] * a.each {|x| print x, " -- " } * * produces: * * a -- b -- c -- */ VALUE rb_ary_each(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ITERATE(each_i, ary); return ary; } static VALUE each_index_i(VALUE ary) { long i; for (i=0; i array * * Same as Array#each, but passes the index of the element * instead of the element itself. * * a = [ "a", "b", "c" ] * a.each_index {|x| print x, " -- " } * * produces: * * 0 -- 1 -- 2 -- */ static VALUE rb_ary_each_index(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ITERATE(each_index_i, ary); } static VALUE reverse_each_i(VALUE ary) { long len = RARRAY_LEN(ary); while (len--) { rb_yield(RARRAY_PTR(ary)[len]); if (RARRAY_LEN(ary) < len) { len = RARRAY_LEN(ary); } } return ary; } /* * call-seq: * array.reverse_each {|item| block } * * Same as Array#each, but traverses self in reverse * order. * * a = [ "a", "b", "c" ] * a.reverse_each {|x| print x, " " } * * produces: * * c b a */ static VALUE rb_ary_reverse_each(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ITERATE(reverse_each_i, ary); } /* * call-seq: * array.length -> int * * Returns the number of elements in self. May be zero. * * [ 1, 2, 3, 4, 5 ].length #=> 5 */ static VALUE rb_ary_length(VALUE ary) { long len = RARRAY_LEN(ary); return LONG2NUM(len); } /* * call-seq: * array.empty? -> true or false * * Returns true if self array contains no elements. * * [].empty? #=> true */ static VALUE rb_ary_empty_p(VALUE ary) { if (RARRAY_LEN(ary) == 0) return Qtrue; return Qfalse; } VALUE rb_ary_dup(VALUE ary) { VALUE dup = rb_ary_new2(RARRAY_LEN(ary)); MEMCPY(RARRAY_PTR(dup), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary)); RARRAY(dup)->len = RARRAY_LEN(ary); OBJ_INFECT(dup, ary); return dup; } extern VALUE rb_output_fs; static VALUE recursive_join(VALUE ary, VALUE argp, int recur) { VALUE *arg = (VALUE *)argp; if (recur) { return rb_str_new2("[...]"); } return rb_ary_join(arg[0], arg[1]); } VALUE rb_ary_join(VALUE ary, VALUE sep) { long len = 1, i; int taint = Qfalse; VALUE result, tmp; if (RARRAY_LEN(ary) == 0) return rb_str_new(0, 0); if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = Qtrue; for (i=0; i 0 && !NIL_P(sep)) rb_str_buf_append(result, sep); rb_str_buf_append(result, tmp); if (OBJ_TAINTED(tmp)) taint = Qtrue; } if (taint) OBJ_TAINT(result); return result; } /* * call-seq: * array.join(sep=$,) -> str * * Returns a string created by converting each element of the array to * a string, separated by sep. * * [ "a", "b", "c" ].join #=> "abc" * [ "a", "b", "c" ].join("-") #=> "a-b-c" */ static VALUE rb_ary_join_m(int argc, VALUE *argv, VALUE ary) { VALUE sep; rb_scan_args(argc, argv, "01", &sep); if (NIL_P(sep)) sep = rb_output_fs; return rb_ary_join(ary, sep); } static VALUE inspect_ary(VALUE ary, VALUE dummy, int recur) { int tainted = OBJ_TAINTED(ary); long i; VALUE s, str; if (recur) return rb_tainted_str_new2("[...]"); str = rb_str_buf_new2("["); for (i=0; i 0) rb_str_buf_cat2(str, ", "); rb_str_buf_append(str, s); } rb_str_buf_cat2(str, "]"); if (tainted) OBJ_TAINT(str); return str; } /* * call-seq: * array.to_s -> string * array.inspect -> string * * Create a printable version of array. */ static VALUE rb_ary_inspect(VALUE ary) { if (RARRAY_LEN(ary) == 0) return rb_str_new2("[]"); return rb_exec_recursive(inspect_ary, ary, 0); } VALUE rb_ary_to_s(VALUE ary) { return rb_ary_inspect(ary); } /* * call-seq: * array.to_a -> array * * Returns _self_. If called on a subclass of Array, converts * the receiver to an Array object. */ static VALUE rb_ary_to_a(VALUE ary) { if (rb_obj_class(ary) != rb_cArray) { VALUE dup = rb_ary_new2(RARRAY_LEN(ary)); rb_ary_replace(dup, ary); return dup; } return ary; } /* * call-seq: * array.to_ary -> array * * Returns _self_. */ static VALUE rb_ary_to_ary_m(VALUE ary) { return ary; } VALUE rb_ary_reverse(VALUE ary) { VALUE *p1, *p2; VALUE tmp; rb_ary_modify(ary); ary_iter_check(ary); if (RARRAY_LEN(ary) > 1) { p1 = RARRAY_PTR(ary); p2 = p1 + RARRAY_LEN(ary) - 1; /* points last item */ while (p1 < p2) { tmp = *p1; *p1++ = *p2; *p2-- = tmp; } } return ary; } /* * call-seq: * array.reverse! -> array * * Reverses _self_ in place. * * a = [ "a", "b", "c" ] * a.reverse! #=> ["c", "b", "a"] * a #=> ["c", "b", "a"] */ static VALUE rb_ary_reverse_bang(VALUE ary) { return rb_ary_reverse(ary); } /* * call-seq: * array.reverse -> an_array * * Returns a new array containing self's elements in reverse order. * * [ "a", "b", "c" ].reverse #=> ["c", "b", "a"] * [ 1 ].reverse #=> [1] */ static VALUE rb_ary_reverse_m(VALUE ary) { return rb_ary_reverse(rb_ary_dup(ary)); } struct ary_sort_data { VALUE ary; VALUE *ptr; long len; }; static void ary_sort_check(struct ary_sort_data *data) { if (RARRAY_PTR(data->ary) != data->ptr || RARRAY_LEN(data->ary) != data->len) { rb_raise(rb_eRuntimeError, "array modified during sort"); } } static int sort_1(const void *ap, const void *bp, void *data) { VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; VALUE retval = rb_yield_values(2, a, b); int n; n = rb_cmpint(retval, a, b); ary_sort_check((struct ary_sort_data *)data); return n; } static int sort_2(const void *ap, const void *bp, void *data) { VALUE retval; VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; int n; if (FIXNUM_P(a) && FIXNUM_P(b)) { if ((long)a > (long)b) return 1; if ((long)a < (long)b) return -1; return 0; } if (TYPE(a) == T_STRING) { if (TYPE(b) == T_STRING) return rb_str_cmp(a, b); } retval = rb_funcall(a, id_cmp, 1, b); n = rb_cmpint(retval, a, b); ary_sort_check((struct ary_sort_data *)data); return n; } static VALUE sort_i(VALUE ary) { struct ary_sort_data data; data.ary = ary; data.ptr = RARRAY_PTR(ary); data.len = RARRAY_LEN(ary); ruby_qsort(RARRAY_PTR(ary), RARRAY_LEN(ary), sizeof(VALUE), rb_block_given_p()?sort_1:sort_2, &data); return ary; } static VALUE sort_unlock(VALUE ary) { FL_UNSET(ary, ARY_SORTLOCK); return ary; } /* * call-seq: * array.sort! -> array * array.sort! {| a,b | block } -> array * * Sorts _self_. Comparisons for * the sort will be done using the <=> operator or using * an optional code block. The block implements a comparison between * a and b, returning -1, 0, or +1. See also * Enumerable#sort_by. * * a = [ "d", "a", "e", "c", "b" ] * a.sort #=> ["a", "b", "c", "d", "e"] * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"] */ VALUE rb_ary_sort_bang(VALUE ary) { rb_ary_modify(ary); ary_iter_check(ary); if (RARRAY_LEN(ary) > 1) { FL_SET(ary, ARY_SORTLOCK); /* prohibit modification during sort */ rb_ensure(sort_i, ary, sort_unlock, ary); } return ary; } /* * call-seq: * array.sort -> an_array * array.sort {| a,b | block } -> an_array * * Returns a new array created by sorting self. Comparisons for * the sort will be done using the <=> operator or using * an optional code block. The block implements a comparison between * a and b, returning -1, 0, or +1. See also * Enumerable#sort_by. * * a = [ "d", "a", "e", "c", "b" ] * a.sort #=> ["a", "b", "c", "d", "e"] * a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"] */ VALUE rb_ary_sort(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_sort_bang(ary); return ary; } static VALUE collect_i(VALUE ary) { long i; VALUE collect; collect = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i])); } return collect; } /* * call-seq: * array.collect {|item| block } -> an_array * array.map {|item| block } -> an_array * * Invokes block once for each element of self. Creates a * new array containing the values returned by the block. * See also Enumerable#collect. * * a = [ "a", "b", "c", "d" ] * a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"] * a #=> ["a", "b", "c", "d"] */ static VALUE rb_ary_collect(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ITERATE(collect_i, ary); } static VALUE collect_bang_i(VALUE ary) { long i; rb_ary_modify(ary); for (i = 0; i < RARRAY_LEN(ary); i++) { RARRAY_PTR(ary)[i] = rb_yield(RARRAY_PTR(ary)[i]); } return ary; } /* * call-seq: * array.collect! {|item| block } -> array * array.map! {|item| block } -> array * * Invokes the block once for each element of _self_, replacing the * element with the value returned by _block_. * See also Enumerable#collect. * * a = [ "a", "b", "c", "d" ] * a.collect! {|x| x + "!" } * a #=> [ "a!", "b!", "c!", "d!" ] */ static VALUE rb_ary_collect_bang(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ITERATE(collect_bang_i, ary); } VALUE rb_get_values_at(VALUE obj, long olen, int argc, VALUE *argv, VALUE (*func) (VALUE, long)) { VALUE result = rb_ary_new2(argc); long beg, len, i, j; for (i=0; i an_array * * Returns an array containing the elements in * _self_ corresponding to the given selector(s). The selectors * may be either integer indices or ranges. * See also Array#select. * * a = %w{ a b c d e f } * a.values_at(1, 3, 5) * a.values_at(1, 3, 5, 7) * a.values_at(-1, -3, -5, -7) * a.values_at(1..3, 2...5) */ static VALUE rb_ary_values_at(int argc, VALUE *argv, VALUE ary) { return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry); } static VALUE select_i(VALUE ary) { VALUE result; long i; result = rb_ary_new2(RARRAY_LEN(ary)); for (i = 0; i < RARRAY_LEN(ary); i++) { if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) { rb_ary_push(result, rb_ary_elt(ary, i)); } } return result; } /* * call-seq: * array.select {|item| block } -> an_array * * Invokes the block passing in successive elements from array, * returning an array containing those elements for which the block * returns a true value (equivalent to Enumerable#select). * * a = %w{ a b c d e f } * a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"] */ static VALUE rb_ary_select(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ITERATE(select_i, ary); } /* * call-seq: * array.delete(obj) -> obj or nil * array.delete(obj) { block } -> obj or nil * * Deletes items from self that are equal to obj. If * the item is not found, returns nil. If the optional * code block is given, returns the result of block if the item * is not found. * * a = [ "a", "b", "b", "b", "c" ] * a.delete("b") #=> "b" * a #=> ["a", "c"] * a.delete("z") #=> nil * a.delete("z") { "not found" } #=> "not found" */ VALUE rb_ary_delete(VALUE ary, VALUE item) { long i1, i2; for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { VALUE e = RARRAY_PTR(ary)[i1]; if (rb_equal(e, item)) continue; if (i1 != i2) { rb_ary_store(ary, i2, e); } i2++; } if (RARRAY_LEN(ary) == i2) { if (rb_block_given_p()) { return rb_yield(item); } return Qnil; } rb_ary_modify(ary); ary_iter_check(ary); if (RARRAY_LEN(ary) > i2) { RARRAY(ary)->len = i2; if (i2 * 2 < ARY_CAPA(ary) && ARY_CAPA(ary) > ARY_DEFAULT_SIZE) { RESIZE_CAPA(ary, i2*2); } } return item; } VALUE rb_ary_delete_at(VALUE ary, long pos) { long len = RARRAY_LEN(ary); VALUE del; if (pos >= len) return Qnil; if (pos < 0) { pos += len; if (pos < 0) return Qnil; } rb_ary_modify(ary); ary_iter_check(ary); del = RARRAY_PTR(ary)[pos]; MEMMOVE(RARRAY_PTR(ary)+pos, RARRAY_PTR(ary)+pos+1, VALUE, RARRAY_LEN(ary)-pos-1); RARRAY(ary)->len--; return del; } /* * call-seq: * array.delete_at(index) -> obj or nil * * Deletes the element at the specified index, returning that element, * or nil if the index is out of range. See also * Array#slice!. * * a = %w( ant bat cat dog ) * a.delete_at(2) #=> "cat" * a #=> ["ant", "bat", "dog"] * a.delete_at(99) #=> nil */ static VALUE rb_ary_delete_at_m(VALUE ary, VALUE pos) { return rb_ary_delete_at(ary, NUM2LONG(pos)); } /* * call-seq: * array.slice!(index) -> obj or nil * array.slice!(start, length) -> sub_array or nil * array.slice!(range) -> sub_array or nil * * Deletes the element(s) given by an index (optionally with a length) * or by a range. Returns the deleted object, subarray, or * nil if the index is out of range. Equivalent to: * * def slice!(*args) * result = self[*args] * self[*args] = nil * result * end * * a = [ "a", "b", "c" ] * a.slice!(1) #=> "b" * a #=> ["a", "c"] * a.slice!(-1) #=> "c" * a #=> ["a"] * a.slice!(100) #=> nil * a #=> ["a"] */ static VALUE rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary) { VALUE arg1, arg2; long pos, len; if (rb_scan_args(argc, argv, "11", &arg1, &arg2) == 2) { pos = NUM2LONG(arg1); len = NUM2LONG(arg2); delete_pos_len: if (pos < 0) { pos = RARRAY_LEN(ary) + pos; } arg2 = rb_ary_subseq(ary, pos, len); rb_ary_splice(ary, pos, len, Qundef); /* Qnil/rb_ary_new2(0) */ return arg2; } if (!FIXNUM_P(arg1) && rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 1)) { goto delete_pos_len; } return rb_ary_delete_at(ary, NUM2LONG(arg1)); } static VALUE reject_bang_i(VALUE ary) { long i1, i2; rb_ary_modify(ary); for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { VALUE v = RARRAY_PTR(ary)[i1]; if (RTEST(rb_yield(v))) continue; if (i1 != i2) { rb_ary_store(ary, i2, v); } i2++; } if (RARRAY_LEN(ary) == i2) return Qnil; if (i2 < RARRAY_LEN(ary)) RARRAY(ary)->len = i2; return ary; } /* * call-seq: * array.reject! {|item| block } -> array or nil * * Equivalent to Array#delete_if, deleting elements from * _self_ for which the block evaluates to true, but returns * nil if no changes were made. Also see * Enumerable#reject. */ static VALUE rb_ary_reject_bang(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ary_iter_check(ary); ITERATE(reject_bang_i, ary); } /* * call-seq: * array.reject {|item| block } -> an_array * * Returns a new array containing the items in _self_ * for which the block is not true. */ static VALUE rb_ary_reject(VALUE ary) { RETURN_ENUMERATOR(ary, 0, 0); ary = rb_ary_dup(ary); rb_ary_reject_bang(ary); return ary; } /* * call-seq: * array.delete_if {|item| block } -> array * * Deletes every element of self for which block evaluates * to true. * * a = [ "a", "b", "c" ] * a.delete_if {|x| x >= "b" } #=> ["a"] */ static VALUE rb_ary_delete_if(VALUE ary) { rb_ary_reject_bang(ary); return ary; } /* * call-seq: * array.transpose -> an_array * * Assumes that self is an array of arrays and transposes the * rows and columns. * * a = [[1,2], [3,4], [5,6]] * a.transpose #=> [[1, 3, 5], [2, 4, 6]] */ static VALUE rb_ary_transpose(VALUE ary) { long elen = -1, alen, i, j; VALUE tmp, result = 0; alen = RARRAY_LEN(ary); if (alen == 0) return rb_ary_dup(ary); for (i=0; i array * * Replaces the contents of self with the contents of * other_array, truncating or expanding if necessary. * * a = [ "a", "b", "c", "d", "e" ] * a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] * a #=> ["x", "y", "z"] */ VALUE rb_ary_replace(VALUE copy, VALUE orig) { VALUE shared; VALUE *ptr; orig = to_ary(orig); rb_ary_modify_check(copy); ary_iter_check(copy); if (copy == orig) return copy; shared = ary_make_shared(orig); if (!ARY_SHARED_P(copy)) { ptr = RARRAY(copy)->ptr; xfree(ptr); } RARRAY(copy)->ptr = RARRAY(orig)->ptr; RARRAY(copy)->len = RARRAY(orig)->len; RARRAY(copy)->aux.shared = shared; FL_SET(copy, ELTS_SHARED); return copy; } /* * call-seq: * array.clear -> array * * Removes all elements from _self_. * * a = [ "a", "b", "c", "d", "e" ] * a.clear #=> [ ] */ VALUE rb_ary_clear(VALUE ary) { rb_ary_modify(ary); ary_iter_check(ary); RARRAY(ary)->len = 0; if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) { RESIZE_CAPA(ary, ARY_DEFAULT_SIZE * 2); } return ary; } /* * call-seq: * array.fill(obj) -> array * array.fill(obj, start [, length]) -> array * array.fill(obj, range ) -> array * array.fill {|index| block } -> array * array.fill(start [, length] ) {|index| block } -> array * array.fill(range) {|index| block } -> array * * The first three forms set the selected elements of self (which * may be the entire array) to obj. A start of * nil is equivalent to zero. A length of * nil is equivalent to self.length. The last three * forms fill the array with the value of the block. The block is * passed the absolute index of each element to be filled. * * a = [ "a", "b", "c", "d" ] * a.fill("x") #=> ["x", "x", "x", "x"] * a.fill("z", 2, 2) #=> ["x", "x", "z", "z"] * a.fill("y", 0..1) #=> ["y", "y", "z", "z"] * a.fill {|i| i*i} #=> [0, 1, 4, 9] * a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27] */ static VALUE rb_ary_fill(int argc, VALUE *argv, VALUE ary) { VALUE item, arg1, arg2; long beg = 0, end = 0, len = 0; VALUE *p, *pend; int block_p = Qfalse; if (rb_block_given_p()) { block_p = Qtrue; rb_scan_args(argc, argv, "02", &arg1, &arg2); argc += 1; /* hackish */ } else { rb_scan_args(argc, argv, "12", &item, &arg1, &arg2); } switch (argc) { case 1: beg = 0; len = RARRAY_LEN(ary); break; case 2: if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) { break; } /* fall through */ case 3: beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1); if (beg < 0) { beg = RARRAY_LEN(ary) + beg; if (beg < 0) beg = 0; } len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2); break; } rb_ary_modify(ary); ary_iter_check(ary); end = beg + len; if (end < 0) { rb_raise(rb_eArgError, "argument too big"); } if (RARRAY_LEN(ary) < end) { if (end >= ARY_CAPA(ary)) { RESIZE_CAPA(ary, end); } rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary)); RARRAY(ary)->len = end; } if (block_p) { VALUE v; long i; for (i=beg; i=RARRAY_LEN(ary)) break; RARRAY_PTR(ary)[i] = v; } } else { p = RARRAY_PTR(ary) + beg; pend = p + len; while (p < pend) { *p++ = item; } } return ary; } /* * call-seq: * array + other_array -> an_array * * Concatenation---Returns a new array built by concatenating the * two arrays together to produce a third array. * * [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ] */ VALUE rb_ary_plus(VALUE x, VALUE y) { VALUE z; long len; y = to_ary(y); len = RARRAY_LEN(x) + RARRAY_LEN(y); z = rb_ary_new2(len); MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x)); MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y)); RARRAY(z)->len = len; return z; } /* * call-seq: * array.concat(other_array) -> array * * Appends the elements in other_array to _self_. * * [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ] */ VALUE rb_ary_concat(VALUE x, VALUE y) { y = to_ary(y); if (RARRAY_LEN(y) > 0) { rb_ary_splice(x, RARRAY_LEN(x), 0, y); } return x; } /* * call-seq: * array * int -> an_array * array * str -> a_string * * Repetition---With a String argument, equivalent to * self.join(str). Otherwise, returns a new array * built by concatenating the _int_ copies of _self_. * * * [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ] * [ 1, 2, 3 ] * "," #=> "1,2,3" * */ static VALUE rb_ary_times(VALUE ary, VALUE times) { VALUE ary2, tmp; long i, len; tmp = rb_check_string_type(times); if (!NIL_P(tmp)) { return rb_ary_join(ary, tmp); } len = NUM2LONG(times); if (len == 0) return ary_new(rb_obj_class(ary), 0); if (len < 0) { rb_raise(rb_eArgError, "negative argument"); } if (LONG_MAX/len < RARRAY_LEN(ary)) { rb_raise(rb_eArgError, "argument too big"); } len *= RARRAY_LEN(ary); ary2 = ary_new(rb_obj_class(ary), len); RARRAY(ary2)->len = len; for (i=0; i an_array or nil * * Searches through an array whose elements are also arrays * comparing _obj_ with the first element of each contained array * using obj.==. * Returns the first contained array that matches (that * is, the first associated array), * or +nil+ if no match is found. * See also Array#rassoc. * * s1 = [ "colors", "red", "blue", "green" ] * s2 = [ "letters", "a", "b", "c" ] * s3 = "foo" * a = [ s1, s2, s3 ] * a.assoc("letters") #=> [ "letters", "a", "b", "c" ] * a.assoc("foo") #=> nil */ VALUE rb_ary_assoc(VALUE ary, VALUE key) { long i; VALUE v; for (i = 0; i < RARRAY_LEN(ary); ++i) { v = RARRAY_PTR(ary)[i]; if (TYPE(v) == T_ARRAY && RARRAY_LEN(v) > 0 && rb_equal(RARRAY_PTR(v)[0], key)) return v; } return Qnil; } /* * call-seq: * array.rassoc(obj) -> an_array or nil * * Searches through the array whose elements are also arrays. Compares * _obj_ with the second element of each contained array using * ==. Returns the first contained array that matches. See * also Array#assoc. * * a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ] * a.rassoc("two") #=> [2, "two"] * a.rassoc("four") #=> nil */ VALUE rb_ary_rassoc(VALUE ary, VALUE value) { long i; VALUE v; for (i = 0; i < RARRAY_LEN(ary); ++i) { v = RARRAY_PTR(ary)[i]; if (TYPE(v) == T_ARRAY && RARRAY_LEN(v) > 1 && rb_equal(RARRAY_PTR(v)[1], value)) return v; } return Qnil; } static VALUE recursive_equal(VALUE ary1, VALUE ary2, int recur) { long i; if (recur) return Qfalse; for (i=0; i bool * * Equality---Two arrays are equal if they contain the same number * of elements and if each element is equal to (according to * Object.==) the corresponding element in the other array. * * [ "a", "c" ] == [ "a", "c", 7 ] #=> false * [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true * [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false * */ static VALUE rb_ary_equal(VALUE ary1, VALUE ary2) { if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) { if (!rb_respond_to(ary2, rb_intern("to_ary"))) { return Qfalse; } return rb_equal(ary2, ary1); } if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; return rb_exec_recursive(recursive_equal, ary1, ary2); } /* * call-seq: * array.eql?(other) -> true or false * * Returns true if _array_ and _other_ are the same object, * or are both arrays with the same content. */ static VALUE rb_ary_eql(VALUE ary1, VALUE ary2) { long i; if (ary1 == ary2) return Qtrue; if (TYPE(ary2) != T_ARRAY) return Qfalse; if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; for (i=0; i fixnum * * Compute a hash-code for this array. Two arrays with the same content * will have the same hash code (and will compare using eql?). */ static VALUE rb_ary_hash(VALUE ary) { return rb_exec_recursive(recursive_hash, ary, 0); } /* * call-seq: * array.include?(obj) -> true or false * * Returns true if the given object is present in * self (that is, if any object == anObject), * false otherwise. * * a = [ "a", "b", "c" ] * a.include?("b") #=> true * a.include?("z") #=> false */ VALUE rb_ary_includes(VALUE ary, VALUE item) { long i; for (i=0; i other_array -> -1, 0, +1 * * Comparison---Returns an integer (-1, 0, * or +1) if this array is less than, equal to, or greater than * other_array. Each object in each array is compared * (using <=>). If any value isn't * equal, then that inequality is the return value. If all the * values found are equal, then the return is based on a * comparison of the array lengths. Thus, two arrays are * ``equal'' according to Array#<=> if and only if they have * the same length and the value of each element is equal to the * value of the corresponding element in the other array. * * [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1 * [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1 * */ VALUE rb_ary_cmp(VALUE ary1, VALUE ary2) { long i, len; ary2 = to_ary(ary2); len = RARRAY_LEN(ary1); if (len > RARRAY_LEN(ary2)) { len = RARRAY_LEN(ary2); } for (i=0; i 0) return INT2FIX(1); return INT2FIX(-1); } static VALUE ary_make_hash(VALUE ary1, VALUE ary2) { VALUE hash = rb_hash_new(); long i; for (i=0; i an_array * * Array Difference---Returns a new array that is a copy of * the original array, removing any items that also appear in * other_array. (If you need set-like behavior, see the * library class Set.) * * [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ] */ static VALUE rb_ary_diff(VALUE ary1, VALUE ary2) { VALUE ary3; volatile VALUE hash; long i; hash = ary_make_hash(to_ary(ary2), 0); ary3 = rb_ary_new(); for (i=0; i [ 1, 3 ] */ static VALUE rb_ary_and(VALUE ary1, VALUE ary2) { VALUE hash, ary3, v, vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ? RARRAY_LEN(ary1) : RARRAY_LEN(ary2)); hash = ary_make_hash(ary2, 0); if (RHASH_EMPTY_P(hash)) return ary3; for (i=0; i an_array * * Set Union---Returns a new array by joining this array with * other_array, removing duplicates. * * [ "a", "b", "c" ] | [ "c", "d", "a" ] * #=> [ "a", "b", "c", "d" ] */ static VALUE rb_ary_or(VALUE ary1, VALUE ary2) { VALUE hash, ary3; VALUE v, vv; long i; ary2 = to_ary(ary2); ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2)); hash = ary_make_hash(ary1, ary2); for (i=0; i array or nil * * Removes duplicate elements from _self_. * Returns nil if no changes are made (that is, no * duplicates are found). * * a = [ "a", "a", "b", "b", "c" ] * a.uniq! #=> ["a", "b", "c"] * b = [ "a", "b", "c" ] * b.uniq! #=> nil */ static VALUE rb_ary_uniq_bang(VALUE ary) { VALUE hash, v, vv; long i, j; ary_iter_check(ary); hash = ary_make_hash(ary, 0); if (RARRAY_LEN(ary) == RHASH_SIZE(hash)) { return Qnil; } for (i=j=0; ilen = j; return ary; } /* * call-seq: * array.uniq -> an_array * * Returns a new array by removing duplicate values in self. * * a = [ "a", "a", "b", "b", "c" ] * a.uniq #=> ["a", "b", "c"] */ static VALUE rb_ary_uniq(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_uniq_bang(ary); return ary; } /* * call-seq: * array.compact! -> array or nil * * Removes +nil+ elements from array. * Returns +nil+ if no changes were made. * * [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ] * [ "a", "b", "c" ].compact! #=> nil */ static VALUE rb_ary_compact_bang(VALUE ary) { VALUE *p, *t, *end; long n; rb_ary_modify(ary); ary_iter_check(ary); p = t = RARRAY_PTR(ary); end = p + RARRAY_LEN(ary); while (t < end) { if (NIL_P(*t)) t++; else *p++ = *t++; } if (RARRAY_LEN(ary) == (p - RARRAY_PTR(ary))) { return Qnil; } n = p - RARRAY_PTR(ary); RESIZE_CAPA(ary, n); RARRAY(ary)->len = n; return ary; } /* * call-seq: * array.compact -> an_array * * Returns a copy of _self_ with all +nil+ elements removed. * * [ "a", nil, "b", nil, "c", nil ].compact * #=> [ "a", "b", "c" ] */ static VALUE rb_ary_compact(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_compact_bang(ary); return ary; } /* * call-seq: * array.nitems -> int * array.nitems { |item| block } -> int * * Returns the number of non-nil elements in _self_. * If a block is given, the elements yielding a true value are * counted. * * May be zero. * * [ 1, nil, 3, nil, 5 ].nitems #=> 3 * [5,6,7,8,9].nitems { |x| x % 2 != 0 } #=> 3 */ static VALUE rb_ary_nitems(VALUE ary) { long n = 0; if (rb_block_given_p()) { long i; for (i=0; i array or nil * array.flatten!(level) -> array or nil * * Flattens _self_ in place. * Returns nil if no modifications were made (i.e., * array contains no subarrays.) If the optional level * argument determins the level of recursion to flatten. * * a = [ 1, 2, [3, [4, 5] ] ] * a.flatten! #=> [1, 2, 3, 4, 5] * a.flatten! #=> nil * a #=> [1, 2, 3, 4, 5] * a = [ 1, 2, [3, [4, 5] ] ] * a.flatten!(1) #=> [1, 2, 3, [4, 5]] */ static VALUE rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary) { long i = 0; int mod = 0; int level = -1; VALUE memo = Qnil; VALUE lv; rb_scan_args(argc, argv, "01", &lv); if (!NIL_P(lv)) level = NUM2INT(lv); if (level == 0) return ary; while (i an_array * array.flatten(level) -> an_array * * Returns a new array that is a one-dimensional flattening of this * array (recursively). That is, for every element that is an array, * extract its elements into the new array. If the optional * level argument determins the level of recursion to flatten. * * s = [ 1, 2, 3 ] #=> [1, 2, 3] * t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]] * a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10] * a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10 * a = [ 1, 2, [3, [4, 5] ] ] * a.flatten(1) #=> [1, 2, 3, [4, 5]] */ static VALUE rb_ary_flatten(int argc, VALUE *argv, VALUE ary) { ary = rb_ary_dup(ary); rb_ary_flatten_bang(argc, argv, ary); return ary; } /* * call-seq: * array.shuffle! -> array or nil * * Shuffles elements in _self_ in place. */ static VALUE rb_ary_shuffle_bang(VALUE ary) { long i = RARRAY_LEN(ary); rb_ary_modify(ary); ary_iter_check(ary); while (i) { long j = genrand_real()*i; VALUE tmp = RARRAY_PTR(ary)[--i]; RARRAY_PTR(ary)[i] = RARRAY_PTR(ary)[j]; RARRAY_PTR(ary)[j] = tmp; } return ary; } /* * call-seq: * array.shuffle -> an_array * * Returns a new array with elements of this array shuffled. * * a = [ 1, 2, 3 ] #=> [1, 2, 3] * a.shuffle #=> [2, 3, 1] */ static VALUE rb_ary_shuffle(VALUE ary) { ary = rb_ary_dup(ary); rb_ary_shuffle_bang(ary); return ary; } /* * call-seq: * array.choice -> obj * * Choose a random element from an array. */ static VALUE rb_ary_choice(VALUE ary) { long i, j; i = RARRAY_LEN(ary); if (i == 0) return Qnil; j = genrand_real()*i; return RARRAY_PTR(ary)[j]; } /* * call-seq: * ary.cycle {|obj| block } * * Calls block repeatedly forever. * * a = ["a", "b", "c"] * a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever. * */ static VALUE rb_ary_cycle(VALUE ary) { long i; RETURN_ENUMERATOR(ary, 0, 0); while (RARRAY_LEN(ary) > 0) { for (i=0; ilen = r; rb_yield(result); } } } } /* * call-seq: * ary.permutation(n) { |p| block } -> array * ary.permutation(n) -> enumerator * * When invoked with a block, yield all permutations of length n * of the elements of ary, then return the array itself. * The implementation makes no guarantees about the order in which * the permutations are yielded. * * When invoked without a block, return an enumerator object instead. * * Examples: * a = [1, 2, 3] * a.permutation(1).to_a #=> [[1],[2],[3]] * a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]] * a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] * a.permutation(0).to_a #=> [[]]: one permutation of length 0 * a.permutation(4).to_a #=> [] : no permutations of length 4 */ static VALUE rb_ary_permutation(VALUE ary, VALUE num) { long r, n, i; RETURN_ENUMERATOR(ary, 1, &num); /* Return enumerator if no block */ r = NUM2LONG(num); /* Permutation size from argument */ n = RARRAY_LEN(ary); /* Array length */ if (r < 0 || n < r) { /* no permutations: yield nothing */ } else if (r == 0) { /* exactly one permutation: the zero-length array */ rb_yield(rb_ary_new2(0)); } else if (r == 1) { /* this is a special, easy case */ for (i = 0; i < RARRAY_LEN(ary); i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { /* this is the general case */ ary = rb_ary_dup(ary); /* private defensive copy of ary */ volatile VALUE t0 = rb_str_new(0, n*sizeof(long)); long *p = (long*)RSTRING_PTR(t0); /* array indexes of current permutation */ volatile VALUE t1 = rb_str_new(0, n*sizeof(int)); int *used = (int*)RSTRING_PTR(t1); /* booleans: which indexes are already used */ for(i = 0; i < n; i++) used[i] = 0; /* initialize array */ permute0(n,r,p,0,used,ary); /* compute and yield permutations */ } return ary; } static long combi_len(long n, long k) { long i, val = 1; if (k*2 > n) k = n-k; if (k == 0) return 1; if (k < 0) return 0; val = 1; for (i=1; i <= k; i++,n--) { val *= n; val /= i; } return val; } /* * call-seq: * ary.combination(n) { |c| block } -> ary * ary.combination(n) -> enumerator * * When invoked with a block, yields all combinations of length n * of elements from ary and then returns ary itself. * The implementation makes no guarantees about the order in which * the combinations are yielded. * * When invoked without a block, returns an enumerator object instead. * * Examples: * a = [1, 2, 3, 4] * a.combination(1).to_a #=> [[1],[2],[3],[4]] * a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]] * a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]] * a.combination(4).to_a #=> [[1,2,3,4]] * a.combination(0).to_a #=> [[]]: one combination of length 0 * a.combination(5).to_a #=> [] : no combinations of length 5 * */ static VALUE rb_ary_combination(VALUE ary, VALUE num) { long n, i, len; RETURN_ENUMERATOR(ary, 1, &num); n = NUM2LONG(num); len = RARRAY_LEN(ary); if (n < 0 || len < n) { /* yield nothing */ } else if (n == 0) { rb_yield(rb_ary_new2(0)); } else if (n == 1) { for (i = 0; i < len; i++) { rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i])); } } else { volatile VALUE tmp = rb_str_new(0, n*sizeof(long)); long *stack = (long*)RSTRING_PTR(tmp); long nlen = combi_len(len, n); volatile VALUE cc = rb_ary_new2(n); VALUE *chosen = RARRAY_PTR(cc); long lev = 0; MEMZERO(stack, long, n); stack[0] = -1; for (i = 0; i < nlen; i++) { chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]]; for (lev++; lev < n; lev++) { chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1]; } rb_yield(rb_ary_new4(n, chosen)); do { stack[lev--]++; } while (lev && (stack[lev+1]+n == len+lev+1)); } } return ary; } /* * call-seq: * ary.product(other_ary, ...) * * Returns an array of all combinations of elements from all arrays. * The length of the returned array is the product of the length * of ary and the argument arrays * * [1,2,3].product([4,5]) # => [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]] * [1,2].product([1,2]) # => [[1,1],[1,2],[2,1],[2,2]] * [1,2].product([3,4],[5,6]) # => [[1,3,5],[1,3,6],[1,4,5],[1,4,6], * # [2,3,5],[2,3,6],[2,4,5],[2,4,6]] * [1,2].product() # => [[1],[2]] * [1,2].product([]) # => [] */ static VALUE rb_ary_product(int argc, VALUE *argv, VALUE ary) { int n = argc+1; /* How many arrays we're operating on */ volatile VALUE t0 = rb_str_new(0, n*sizeof(VALUE)); volatile VALUE t1 = rb_str_new(0, n*sizeof(int)); VALUE *arrays = (VALUE*)RSTRING_PTR(t0); /* The arrays we're computing the product of */ int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */ VALUE result; /* The array we'll be returning */ long i,j; /* initialize the arrays of arrays */ arrays[0] = ary; for(i = 1; i < n; i++) arrays[i] = argv[i-1]; /* initialize the counters for the arrays */ for(i = 0; i < n; i++) counters[i] = 0; /* Compute the length of the result array; return [] if any is empty */ long resultlen = 1; for(i = 0; i < n; i++) { resultlen *= RARRAY_LEN(arrays[i]); if (resultlen == 0) return rb_ary_new2(0); } /* Otherwise, allocate and fill in an array of results */ result = rb_ary_new2(resultlen); for(i = 0; i < resultlen; i++) { /* fill in one subarray */ VALUE subarray = rb_ary_new2(n); for(j = 0; j < n; j++) { rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j])); } /* put it on the result array */ rb_ary_push(result, subarray); /* * Increment the last counter. If it overflows, reset to 0 * and increment the one before it. */ int m = n-1; counters[m]++; while(m >= 0 && counters[m] == RARRAY_LEN(arrays[m])) { counters[m] = 0; m--; counters[m]++; } } return result; } /* Arrays are ordered, integer-indexed collections of any object. * Array indexing starts at 0, as in C or Java. A negative index is * assumed to be relative to the end of the array---that is, an index of -1 * indicates the last element of the array, -2 is the next to last * element in the array, and so on. */ void Init_Array(void) { rb_cArray = rb_define_class("Array", rb_cObject); rb_include_module(rb_cArray, rb_mEnumerable); rb_define_alloc_func(rb_cArray, ary_alloc); rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1); rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1); rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1); rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1); rb_define_method(rb_cArray, "to_s", rb_ary_inspect, 0); rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0); rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0); rb_define_method(rb_cArray, "to_splat", rb_ary_to_a, 0); rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0); rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0); rb_define_method(rb_cArray, "==", rb_ary_equal, 1); rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1); rb_define_method(rb_cArray, "hash", rb_ary_hash, 0); rb_define_method(rb_cArray, "[]", rb_ary_aref, -1); rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1); rb_define_method(rb_cArray, "at", rb_ary_at, 1); rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1); rb_define_method(rb_cArray, "first", rb_ary_first, -1); rb_define_method(rb_cArray, "last", rb_ary_last, -1); rb_define_method(rb_cArray, "concat", rb_ary_concat, 1); rb_define_method(rb_cArray, "<<", rb_ary_push, 1); rb_define_method(rb_cArray, "push", rb_ary_push_m, -1); rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1); rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1); rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1); rb_define_method(rb_cArray, "insert", rb_ary_insert, -1); rb_define_method(rb_cArray, "each", rb_ary_each, 0); rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0); rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0); rb_define_method(rb_cArray, "length", rb_ary_length, 0); rb_define_alias(rb_cArray, "size", "length"); rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0); rb_define_method(rb_cArray, "index", rb_ary_index, -1); rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1); rb_define_method(rb_cArray, "join", rb_ary_join_m, -1); rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0); rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0); rb_define_method(rb_cArray, "sort", rb_ary_sort, 0); rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0); rb_define_method(rb_cArray, "collect", rb_ary_collect, 0); rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0); rb_define_method(rb_cArray, "map", rb_ary_collect, 0); rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0); rb_define_method(rb_cArray, "select", rb_ary_select, 0); rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1); rb_define_method(rb_cArray, "delete", rb_ary_delete, 1); rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1); rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0); rb_define_method(rb_cArray, "reject", rb_ary_reject, 0); rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0); rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0); rb_define_method(rb_cArray, "replace", rb_ary_replace, 1); rb_define_method(rb_cArray, "clear", rb_ary_clear, 0); rb_define_method(rb_cArray, "fill", rb_ary_fill, -1); rb_define_method(rb_cArray, "include?", rb_ary_includes, 1); rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1); rb_define_method(rb_cArray, "slice", rb_ary_aref, -1); rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1); rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1); rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1); rb_define_method(rb_cArray, "+", rb_ary_plus, 1); rb_define_method(rb_cArray, "*", rb_ary_times, 1); rb_define_method(rb_cArray, "-", rb_ary_diff, 1); rb_define_method(rb_cArray, "&", rb_ary_and, 1); rb_define_method(rb_cArray, "|", rb_ary_or, 1); rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0); rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0); rb_define_method(rb_cArray, "compact", rb_ary_compact, 0); rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0); rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1); rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1); rb_define_method(rb_cArray, "nitems", rb_ary_nitems, 0); rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, 0); rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, 0); rb_define_method(rb_cArray, "choice", rb_ary_choice, 0); rb_define_method(rb_cArray, "cycle", rb_ary_cycle, 0); rb_define_method(rb_cArray, "permutation", rb_ary_permutation, 1); rb_define_method(rb_cArray, "combination", rb_ary_combination, 1); rb_define_method(rb_cArray, "product", rb_ary_product, -1); id_cmp = rb_intern("<=>"); }