/************************************************ ainfo.c - created at: Thu Mar 31 12:21:29 JST 1994 Copyright (C) 1993-2007 Yukihiro Matsumoto ************************************************/ #include "rubysocket.h" #if defined(INET6) && (defined(LOOKUP_ORDER_HACK_INET) || defined(LOOKUP_ORDER_HACK_INET6)) #define LOOKUP_ORDERS (sizeof(lookup_order_table) / sizeof(lookup_order_table[0])) static const int lookup_order_table[] = { #if defined(LOOKUP_ORDER_HACK_INET) PF_INET, PF_INET6, PF_UNSPEC, #elif defined(LOOKUP_ORDER_HACK_INET6) PF_INET6, PF_INET, PF_UNSPEC, #else /* should not happen */ #endif }; static int ruby_getaddrinfo(const char *nodename, const char *servname, const struct addrinfo *hints, struct addrinfo **res) { struct addrinfo tmp_hints; int i, af, error; if (hints->ai_family != PF_UNSPEC) { return getaddrinfo(nodename, servname, hints, res); } for (i = 0; i < LOOKUP_ORDERS; i++) { af = lookup_order_table[i]; MEMCPY(&tmp_hints, hints, struct addrinfo, 1); tmp_hints.ai_family = af; error = getaddrinfo(nodename, servname, &tmp_hints, res); if (error) { if (tmp_hints.ai_family == PF_UNSPEC) { break; } } else { break; } } return error; } #define getaddrinfo(node,serv,hints,res) ruby_getaddrinfo((node),(serv),(hints),(res)) #endif #if defined(_AIX) static int ruby_getaddrinfo__aix(const char *nodename, const char *servname, struct addrinfo *hints, struct addrinfo **res) { int error = getaddrinfo(nodename, servname, hints, res); struct addrinfo *r; if (error) return error; for (r = *res; r != NULL; r = r->ai_next) { if (r->ai_addr->sa_family == 0) r->ai_addr->sa_family = r->ai_family; if (r->ai_addr->sa_len == 0) r->ai_addr->sa_len = r->ai_addrlen; } return 0; } #undef getaddrinfo #define getaddrinfo(node,serv,hints,res) ruby_getaddrinfo__aix((node),(serv),(hints),(res)) static int ruby_getnameinfo__aix(const struct sockaddr *sa, size_t salen, char *host, size_t hostlen, char *serv, size_t servlen, int flags) { struct sockaddr_in6 *sa6; u_int32_t *a6; if (sa->sa_family == AF_INET6) { sa6 = (struct sockaddr_in6 *)sa; a6 = sa6->sin6_addr.u6_addr.u6_addr32; if (a6[0] == 0 && a6[1] == 0 && a6[2] == 0 && a6[3] == 0) { strncpy(host, "::", hostlen); snprintf(serv, servlen, "%d", sa6->sin6_port); return 0; } } return getnameinfo(sa, salen, host, hostlen, serv, servlen, flags); } #undef getnameinfo #define getnameinfo(sa, salen, host, hostlen, serv, servlen, flags) \ ruby_getnameinfo__aix((sa), (salen), (host), (hostlen), (serv), (servlen), (flags)) #endif #ifndef GETADDRINFO_EMU struct getaddrinfo_arg { const char *node; const char *service; const struct addrinfo *hints; struct addrinfo **res; }; static VALUE nogvl_getaddrinfo(void *arg) { struct getaddrinfo_arg *ptr = arg; return getaddrinfo(ptr->node, ptr->service, ptr->hints, ptr->res); } #endif int rb_getaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res) { #ifdef GETADDRINFO_EMU return getaddrinfo(node, service, hints, res); #else struct getaddrinfo_arg arg; int ret; arg.node = node; arg.service = service; arg.hints = hints; arg.res = res; ret = BLOCKING_REGION(nogvl_getaddrinfo, &arg); return ret; #endif } #ifndef GETADDRINFO_EMU struct getnameinfo_arg { const struct sockaddr *sa; socklen_t salen; char *host; size_t hostlen; char *serv; size_t servlen; int flags; }; static VALUE nogvl_getnameinfo(void *arg) { struct getnameinfo_arg *ptr = arg; return getnameinfo(ptr->sa, ptr->salen, ptr->host, ptr->hostlen, ptr->serv, ptr->servlen, ptr->flags); } #endif int rb_getnameinfo(const struct sockaddr *sa, socklen_t salen, char *host, size_t hostlen, char *serv, size_t servlen, int flags) { #ifdef GETADDRINFO_EMU return getnameinfo(sa, salen, host, hostlen, serv, servlen, flags); #else struct getnameinfo_arg arg; int ret; arg.sa = sa; arg.salen = salen; arg.host = host; arg.hostlen = hostlen; arg.serv = serv; arg.servlen = servlen; arg.flags = flags; ret = BLOCKING_REGION(nogvl_getnameinfo, &arg); return ret; #endif } static void make_ipaddr0(struct sockaddr *addr, char *buf, size_t len) { int error; error = rb_getnameinfo(addr, SA_LEN(addr), buf, len, NULL, 0, NI_NUMERICHOST); if (error) { raise_socket_error("getnameinfo", error); } } VALUE make_ipaddr(struct sockaddr *addr) { char hbuf[1024]; make_ipaddr0(addr, hbuf, sizeof(hbuf)); return rb_str_new2(hbuf); } static void make_inetaddr(long host, char *buf, size_t len) { struct sockaddr_in sin; MEMZERO(&sin, struct sockaddr_in, 1); sin.sin_family = AF_INET; SET_SIN_LEN(&sin, sizeof(sin)); sin.sin_addr.s_addr = host; make_ipaddr0((struct sockaddr*)&sin, buf, len); } static int str_isnumber(const char *p) { char *ep; if (!p || *p == '\0') return 0; ep = NULL; (void)STRTOUL(p, &ep, 10); if (ep && *ep == '\0') return 1; else return 0; } static char* host_str(VALUE host, char *hbuf, size_t len, int *flags_ptr) { if (NIL_P(host)) { return NULL; } else if (rb_obj_is_kind_of(host, rb_cInteger)) { unsigned long i = NUM2ULONG(host); make_inetaddr(htonl(i), hbuf, len); if (flags_ptr) *flags_ptr |= AI_NUMERICHOST; return hbuf; } else { char *name; SafeStringValue(host); name = RSTRING_PTR(host); if (!name || *name == 0 || (name[0] == '<' && strcmp(name, "") == 0)) { make_inetaddr(INADDR_ANY, hbuf, len); if (flags_ptr) *flags_ptr |= AI_NUMERICHOST; } else if (name[0] == '<' && strcmp(name, "") == 0) { make_inetaddr(INADDR_BROADCAST, hbuf, len); if (flags_ptr) *flags_ptr |= AI_NUMERICHOST; } else if (strlen(name) >= len) { rb_raise(rb_eArgError, "hostname too long (%"PRIuSIZE")", strlen(name)); } else { strcpy(hbuf, name); } return hbuf; } } static char* port_str(VALUE port, char *pbuf, size_t len, int *flags_ptr) { if (NIL_P(port)) { return 0; } else if (FIXNUM_P(port)) { snprintf(pbuf, len, "%ld", FIX2LONG(port)); #ifdef AI_NUMERICSERV if (flags_ptr) *flags_ptr |= AI_NUMERICSERV; #endif return pbuf; } else { char *serv; SafeStringValue(port); serv = RSTRING_PTR(port); if (strlen(serv) >= len) { rb_raise(rb_eArgError, "service name too long (%"PRIuSIZE")", strlen(serv)); } strcpy(pbuf, serv); return pbuf; } } struct addrinfo* sock_getaddrinfo(VALUE host, VALUE port, struct addrinfo *hints, int socktype_hack) { struct addrinfo* res = NULL; char *hostp, *portp; int error; char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV]; int additional_flags = 0; hostp = host_str(host, hbuf, sizeof(hbuf), &additional_flags); portp = port_str(port, pbuf, sizeof(pbuf), &additional_flags); if (socktype_hack && hints->ai_socktype == 0 && str_isnumber(portp)) { hints->ai_socktype = SOCK_DGRAM; } hints->ai_flags |= additional_flags; error = rb_getaddrinfo(hostp, portp, hints, &res); if (error) { if (hostp && hostp[strlen(hostp)-1] == '\n') { rb_raise(rb_eSocket, "newline at the end of hostname"); } raise_socket_error("getaddrinfo", error); } #if defined(__APPLE__) && defined(__MACH__) { struct addrinfo *r; r = res; while (r) { if (! r->ai_socktype) r->ai_socktype = hints->ai_socktype; if (! r->ai_protocol) { if (r->ai_socktype == SOCK_DGRAM) { r->ai_protocol = IPPROTO_UDP; } else if (r->ai_socktype == SOCK_STREAM) { r->ai_protocol = IPPROTO_TCP; } } r = r->ai_next; } } #endif return res; } struct addrinfo* sock_addrinfo(VALUE host, VALUE port, int socktype, int flags) { struct addrinfo hints; MEMZERO(&hints, struct addrinfo, 1); hints.ai_family = AF_UNSPEC; hints.ai_socktype = socktype; hints.ai_flags = flags; return sock_getaddrinfo(host, port, &hints, 1); } VALUE ipaddr(struct sockaddr *sockaddr, int norevlookup) { VALUE family, port, addr1, addr2; VALUE ary; int error; char hbuf[1024], pbuf[1024]; ID id; id = intern_family(sockaddr->sa_family); if (id) { family = rb_str_dup(rb_id2str(id)); } else { sprintf(pbuf, "unknown:%d", sockaddr->sa_family); family = rb_str_new2(pbuf); } addr1 = Qnil; if (!norevlookup) { error = rb_getnameinfo(sockaddr, SA_LEN(sockaddr), hbuf, sizeof(hbuf), NULL, 0, 0); if (! error) { addr1 = rb_str_new2(hbuf); } } error = rb_getnameinfo(sockaddr, SA_LEN(sockaddr), hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), NI_NUMERICHOST | NI_NUMERICSERV); if (error) { raise_socket_error("getnameinfo", error); } addr2 = rb_str_new2(hbuf); if (addr1 == Qnil) { addr1 = addr2; } port = INT2FIX(atoi(pbuf)); ary = rb_ary_new3(4, family, port, addr1, addr2); return ary; } #ifdef HAVE_SYS_UN_H const char* unixpath(struct sockaddr_un *sockaddr, socklen_t len) { if (sockaddr->sun_path < (char*)sockaddr + len) return sockaddr->sun_path; else return ""; } VALUE unixaddr(struct sockaddr_un *sockaddr, socklen_t len) { return rb_assoc_new(rb_str_new2("AF_UNIX"), rb_str_new2(unixpath(sockaddr, len))); } #endif struct hostent_arg { VALUE host; struct addrinfo* addr; VALUE (*ipaddr)(struct sockaddr*, size_t); }; static VALUE make_hostent_internal(struct hostent_arg *arg) { VALUE host = arg->host; struct addrinfo* addr = arg->addr; VALUE (*ipaddr)(struct sockaddr*, size_t) = arg->ipaddr; struct addrinfo *ai; struct hostent *h; VALUE ary, names; char **pch; const char* hostp; char hbuf[NI_MAXHOST]; ary = rb_ary_new(); if (addr->ai_canonname) { hostp = addr->ai_canonname; } else { hostp = host_str(host, hbuf, sizeof(hbuf), NULL); } rb_ary_push(ary, rb_str_new2(hostp)); if (addr->ai_canonname && (h = gethostbyname(addr->ai_canonname))) { names = rb_ary_new(); if (h->h_aliases != NULL) { for (pch = h->h_aliases; *pch; pch++) { rb_ary_push(names, rb_str_new2(*pch)); } } } else { names = rb_ary_new2(0); } rb_ary_push(ary, names); rb_ary_push(ary, INT2NUM(addr->ai_family)); for (ai = addr; ai; ai = ai->ai_next) { rb_ary_push(ary, (*ipaddr)(ai->ai_addr, ai->ai_addrlen)); } return ary; } VALUE make_hostent(VALUE host, struct addrinfo *addr, VALUE (*ipaddr)(struct sockaddr *, size_t)) { struct hostent_arg arg; arg.host = host; arg.addr = addr; arg.ipaddr = ipaddr; return rb_ensure(make_hostent_internal, (VALUE)&arg, RUBY_METHOD_FUNC(freeaddrinfo), (VALUE)addr); } typedef struct { VALUE inspectname; VALUE canonname; int pfamily; int socktype; int protocol; size_t sockaddr_len; struct sockaddr_storage addr; } rb_addrinfo_t; static void addrinfo_mark(rb_addrinfo_t *rai) { if (rai) { rb_gc_mark(rai->inspectname); rb_gc_mark(rai->canonname); } } static void addrinfo_free(rb_addrinfo_t *rai) { xfree(rai); } static VALUE addrinfo_s_allocate(VALUE klass) { return Data_Wrap_Struct(klass, addrinfo_mark, addrinfo_free, 0); } #define IS_ADDRINFO(obj) (RDATA(obj)->dmark == (RUBY_DATA_FUNC)addrinfo_mark) static rb_addrinfo_t * check_addrinfo(VALUE self) { Check_Type(self, RUBY_T_DATA); if (!IS_ADDRINFO(self)) { rb_raise(rb_eTypeError, "wrong argument type %s (expected Addrinfo)", rb_class2name(CLASS_OF(self))); } return DATA_PTR(self); } static rb_addrinfo_t * get_addrinfo(VALUE self) { rb_addrinfo_t *rai = check_addrinfo(self); if (!rai) { rb_raise(rb_eTypeError, "uninitialized socket address"); } return rai; } static rb_addrinfo_t * alloc_addrinfo() { rb_addrinfo_t *rai = ALLOC(rb_addrinfo_t); memset(rai, 0, sizeof(rb_addrinfo_t)); rai->inspectname = Qnil; rai->canonname = Qnil; return rai; } static void init_addrinfo(rb_addrinfo_t *rai, struct sockaddr *sa, size_t len, int pfamily, int socktype, int protocol, VALUE canonname, VALUE inspectname) { if (sizeof(rai->addr) < len) rb_raise(rb_eArgError, "sockaddr string too big"); memcpy((void *)&rai->addr, (void *)sa, len); rai->sockaddr_len = len; rai->pfamily = pfamily; rai->socktype = socktype; rai->protocol = protocol; rai->canonname = canonname; rai->inspectname = inspectname; } VALUE addrinfo_new(struct sockaddr *addr, socklen_t len, int family, int socktype, int protocol, VALUE canonname, VALUE inspectname) { VALUE a; rb_addrinfo_t *rai; a = addrinfo_s_allocate(rb_cAddrinfo); DATA_PTR(a) = rai = alloc_addrinfo(); init_addrinfo(rai, addr, len, family, socktype, protocol, canonname, inspectname); return a; } static struct addrinfo * call_getaddrinfo(VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags, int socktype_hack) { struct addrinfo hints, *res; MEMZERO(&hints, struct addrinfo, 1); hints.ai_family = NIL_P(family) ? PF_UNSPEC : family_arg(family); if (!NIL_P(socktype)) { hints.ai_socktype = socktype_arg(socktype); } if (!NIL_P(protocol)) { hints.ai_protocol = NUM2INT(protocol); } if (!NIL_P(flags)) { hints.ai_flags = NUM2INT(flags); } res = sock_getaddrinfo(node, service, &hints, socktype_hack); if (res == NULL) rb_raise(rb_eSocket, "host not found"); return res; } static VALUE make_inspectname(VALUE node, VALUE service, struct addrinfo *res); static void init_addrinfo_getaddrinfo(rb_addrinfo_t *rai, VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags, VALUE inspectnode, VALUE inspectservice) { struct addrinfo *res = call_getaddrinfo(node, service, family, socktype, protocol, flags, 1); VALUE canonname; VALUE inspectname = rb_str_equal(node, inspectnode) ? Qnil : make_inspectname(inspectnode, inspectservice, res); canonname = Qnil; if (res->ai_canonname) { canonname = rb_tainted_str_new_cstr(res->ai_canonname); OBJ_FREEZE(canonname); } init_addrinfo(rai, res->ai_addr, res->ai_addrlen, NUM2INT(family), NUM2INT(socktype), NUM2INT(protocol), canonname, inspectname); freeaddrinfo(res); } static VALUE make_inspectname(VALUE node, VALUE service, struct addrinfo *res) { VALUE inspectname = Qnil; if (res) { char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV]; int ret; ret = rb_getnameinfo(res->ai_addr, res->ai_addrlen, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), NI_NUMERICHOST|NI_NUMERICSERV); if (ret == 0) { if (TYPE(node) == T_STRING && strcmp(hbuf, RSTRING_PTR(node)) == 0) node = Qnil; if (TYPE(service) == T_STRING && strcmp(pbuf, RSTRING_PTR(service)) == 0) service = Qnil; else if (TYPE(service) == T_FIXNUM && atoi(pbuf) == FIX2INT(service)) service = Qnil; } } if (TYPE(node) == T_STRING) { inspectname = rb_str_dup(node); } if (TYPE(service) == T_STRING) { if (NIL_P(inspectname)) inspectname = rb_sprintf(":%s", StringValueCStr(service)); else rb_str_catf(inspectname, ":%s", StringValueCStr(service)); } else if (TYPE(service) == T_FIXNUM && FIX2INT(service) != 0) { if (NIL_P(inspectname)) inspectname = rb_sprintf(":%d", FIX2INT(service)); else rb_str_catf(inspectname, ":%d", FIX2INT(service)); } if (!NIL_P(inspectname)) { OBJ_INFECT(inspectname, node); OBJ_INFECT(inspectname, service); OBJ_FREEZE(inspectname); } return inspectname; } static VALUE addrinfo_firstonly_new(VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags) { VALUE ret; VALUE canonname; VALUE inspectname; struct addrinfo *res = call_getaddrinfo(node, service, family, socktype, protocol, flags, 0); inspectname = make_inspectname(node, service, res); canonname = Qnil; if (res->ai_canonname) { canonname = rb_tainted_str_new_cstr(res->ai_canonname); OBJ_FREEZE(canonname); } ret = addrinfo_new(res->ai_addr, res->ai_addrlen, res->ai_family, res->ai_socktype, res->ai_protocol, canonname, inspectname); freeaddrinfo(res); return ret; } static VALUE addrinfo_list_new(VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags) { VALUE ret; struct addrinfo *r; VALUE inspectname; struct addrinfo *res = call_getaddrinfo(node, service, family, socktype, protocol, flags, 0); inspectname = make_inspectname(node, service, res); ret = rb_ary_new(); for (r = res; r; r = r->ai_next) { VALUE addr; VALUE canonname = Qnil; if (r->ai_canonname) { canonname = rb_tainted_str_new_cstr(r->ai_canonname); OBJ_FREEZE(canonname); } addr = addrinfo_new(r->ai_addr, r->ai_addrlen, r->ai_family, r->ai_socktype, r->ai_protocol, canonname, inspectname); rb_ary_push(ret, addr); } freeaddrinfo(res); return ret; } #ifdef HAVE_SYS_UN_H static void init_unix_addrinfo(rb_addrinfo_t *rai, VALUE path, int socktype) { struct sockaddr_un un; StringValue(path); if (sizeof(un.sun_path) <= RSTRING_LEN(path)) rb_raise(rb_eArgError, "too long unix socket path (max: %dbytes)", (int)sizeof(un.sun_path)-1); MEMZERO(&un, struct sockaddr_un, 1); un.sun_family = AF_UNIX; memcpy((void*)&un.sun_path, RSTRING_PTR(path), RSTRING_LEN(path)); init_addrinfo(rai, (struct sockaddr *)&un, sizeof(un), PF_UNIX, socktype, 0, Qnil, Qnil); } #endif /* * call-seq: * Addrinfo.new(sockaddr) => addrinfo * Addrinfo.new(sockaddr, family) => addrinfo * Addrinfo.new(sockaddr, family, socktype) => addrinfo * Addrinfo.new(sockaddr, family, socktype, protocol) => addrinfo * * returns a new instance of Addrinfo. * It the instnace contains sockaddr, family, socktype, protocol. * sockaddr means struct sockaddr which can be used for connect(2), etc. * family, socktype and protocol are integers which is used for arguments of socket(2). * * sockaddr is specified as an array or a string. * The array should be compatible to the value of IPSocket#addr or UNIXSocket#addr. * The string should be struct sockaddr as generated by * Socket.sockaddr_in or Socket.unpack_sockaddr_un. * * sockaddr examples: * - ["AF_INET", 46102, "localhost.localdomain", "127.0.0.1"] * - ["AF_INET6", 42304, "ip6-localhost", "::1"] * - ["AF_UNIX", "/tmp/sock"] * - Socket.sockaddr_in("smtp", "2001:DB8::1") * - Socket.sockaddr_in(80, "172.18.22.42") * - Socket.sockaddr_in(80, "www.ruby-lang.org") * - Socket.sockaddr_un("/tmp/sock") * * In an AF_INET/AF_INET6 sockaddr array, the 4th element, * numeric IP address, is used to construct socket address in the Addrinfo instance. * The 3rd element, textual host name, is also recorded but only used for Addrinfo#inspect. * * family is specified as an integer to specify the protocol family such as Socket::PF_INET. * It can be a symbol or a string which is the constant name * with or without PF_ prefix such as :INET, :INET6, :UNIX, "PF_INET", etc. * If ommitted, PF_UNSPEC is assumed. * * socktype is specified as an integer to specify the socket type such as Socket::SOCK_STREAM. * It can be a symbol or a string which is the constant name * with or without SOCK_ prefix such as :STREAM, :DGRAM, :RAW, "SOCK_STREAM", etc. * If ommitted, 0 is assumed. * * protocol is specified as an integer to specify the protocol such as Socket::IPPROTO_TCP. * It must be an integer, unlike family and socktype. * If ommitted, 0 is assumed. * Note that 0 is reasonable value for most protocols, except raw socket. * */ static VALUE addrinfo_initialize(int argc, VALUE *argv, VALUE self) { rb_addrinfo_t *rai; VALUE sockaddr_arg, sockaddr_ary, pfamily, socktype, protocol; int i_pfamily, i_socktype, i_protocol; struct sockaddr *sockaddr_ptr; size_t sockaddr_len; VALUE canonname = Qnil, inspectname = Qnil; if (check_addrinfo(self)) rb_raise(rb_eTypeError, "already initialized socket address"); DATA_PTR(self) = rai = alloc_addrinfo(); rb_scan_args(argc, argv, "13", &sockaddr_arg, &pfamily, &socktype, &protocol); i_pfamily = NIL_P(pfamily) ? PF_UNSPEC : family_arg(pfamily); i_socktype = NIL_P(socktype) ? 0 : socktype_arg(socktype); i_protocol = NIL_P(protocol) ? 0 : NUM2INT(protocol); sockaddr_ary = rb_check_array_type(sockaddr_arg); if (!NIL_P(sockaddr_ary)) { VALUE afamily = rb_ary_entry(sockaddr_ary, 0); int af; StringValue(afamily); if (family_to_int(RSTRING_PTR(afamily), RSTRING_LEN(afamily), &af) == -1) rb_raise(rb_eSocket, "unknown address family: %s", StringValueCStr(afamily)); switch (af) { case AF_INET: /* ["AF_INET", 46102, "localhost.localdomain", "127.0.0.1"] */ #ifdef INET6 case AF_INET6: /* ["AF_INET6", 42304, "ip6-localhost", "::1"] */ #endif { VALUE service = rb_ary_entry(sockaddr_ary, 1); VALUE nodename = rb_ary_entry(sockaddr_ary, 2); VALUE numericnode = rb_ary_entry(sockaddr_ary, 3); int flags; service = INT2NUM(NUM2INT(service)); if (!NIL_P(nodename)) StringValue(nodename); StringValue(numericnode); flags = AI_NUMERICHOST; #ifdef AI_NUMERICSERV flags |= AI_NUMERICSERV; #endif init_addrinfo_getaddrinfo(rai, numericnode, service, INT2NUM(i_pfamily ? i_pfamily : af), INT2NUM(i_socktype), INT2NUM(i_protocol), INT2NUM(flags), nodename, service); break; } #ifdef HAVE_SYS_UN_H case AF_UNIX: /* ["AF_UNIX", "/tmp/sock"] */ { VALUE path = rb_ary_entry(sockaddr_ary, 1); StringValue(path); init_unix_addrinfo(rai, path, SOCK_STREAM); break; } #endif default: rb_raise(rb_eSocket, "unexpected address family"); } } else { StringValue(sockaddr_arg); sockaddr_ptr = (struct sockaddr *)RSTRING_PTR(sockaddr_arg); sockaddr_len = RSTRING_LEN(sockaddr_arg); init_addrinfo(rai, sockaddr_ptr, sockaddr_len, i_pfamily, i_socktype, i_protocol, canonname, inspectname); } return self; } static int get_afamily(struct sockaddr *addr, socklen_t len) { if ((char*)&addr->sa_family + sizeof(addr->sa_family) - (char*)addr <= len) return addr->sa_family; else return AF_UNSPEC; } static int ai_get_afamily(rb_addrinfo_t *rai) { return get_afamily((struct sockaddr *)&rai->addr, rai->sockaddr_len); } static VALUE inspect_sockaddr(VALUE addrinfo, VALUE ret) { rb_addrinfo_t *rai = get_addrinfo(addrinfo); if (rai->sockaddr_len == 0) { rb_str_cat2(ret, "empty-sockaddr"); } else if (rai->sockaddr_len < ((char*)&rai->addr.ss_family + sizeof(rai->addr.ss_family)) - (char*)&rai->addr) rb_str_cat2(ret, "too-short-sockaddr"); else { switch (rai->addr.ss_family) { case AF_INET: { struct sockaddr_in *addr; int port; if (rai->sockaddr_len < sizeof(struct sockaddr_in)) { rb_str_cat2(ret, "too-short-AF_INET-sockaddr"); } else { addr = (struct sockaddr_in *)&rai->addr; rb_str_catf(ret, "%d.%d.%d.%d", ((unsigned char*)&addr->sin_addr)[0], ((unsigned char*)&addr->sin_addr)[1], ((unsigned char*)&addr->sin_addr)[2], ((unsigned char*)&addr->sin_addr)[3]); port = ntohs(addr->sin_port); if (port) rb_str_catf(ret, ":%d", port); if (sizeof(struct sockaddr_in) < rai->sockaddr_len) rb_str_catf(ret, "(sockaddr %d bytes too long)", (int)(rai->sockaddr_len - sizeof(struct sockaddr_in))); } break; } #ifdef AF_INET6 case AF_INET6: { struct sockaddr_in6 *addr; char hbuf[1024]; int port; int error; if (rai->sockaddr_len < sizeof(struct sockaddr_in6)) { rb_str_cat2(ret, "too-short-AF_INET6-sockaddr"); } else { addr = (struct sockaddr_in6 *)&rai->addr; /* use getnameinfo for scope_id. * RFC 4007: IPv6 Scoped Address Architecture * draft-ietf-ipv6-scope-api-00.txt: Scoped Address Extensions to the IPv6 Basic Socket API */ error = getnameinfo((struct sockaddr *)&rai->addr, rai->sockaddr_len, hbuf, sizeof(hbuf), NULL, 0, NI_NUMERICHOST|NI_NUMERICSERV); if (error) { raise_socket_error("getnameinfo", error); } if (addr->sin6_port == 0) { rb_str_cat2(ret, hbuf); } else { port = ntohs(addr->sin6_port); rb_str_catf(ret, "[%s]:%d", hbuf, port); } if (sizeof(struct sockaddr_in6) < rai->sockaddr_len) rb_str_catf(ret, "(sockaddr %d bytes too long)", (int)(rai->sockaddr_len - sizeof(struct sockaddr_in6))); } break; } #endif #ifdef HAVE_SYS_UN_H case AF_UNIX: { struct sockaddr_un *addr = (struct sockaddr_un *)&rai->addr; char *p, *s, *t, *e; s = addr->sun_path; e = (char*)addr + rai->sockaddr_len; if (e < s) rb_str_cat2(ret, "too-short-AF_UNIX-sockaddr"); else if (s == e) rb_str_cat2(ret, "empty-path-AF_UNIX-sockaddr"); else { int printable_only = 1; p = s; while (p < e && *p != '\0') { printable_only = printable_only && ISPRINT(*p) && !ISSPACE(*p); p++; } t = p; while (p < e && *p == '\0') p++; if (printable_only && /* only printable, no space */ t < e && /* NUL terminated */ p == e) { /* no data after NUL */ if (s == t) rb_str_cat2(ret, "empty-path-AF_UNIX-sockaddr"); else if (s[0] == '/') /* absolute path */ rb_str_cat2(ret, s); else rb_str_catf(ret, "AF_UNIX %s", s); } else { rb_str_cat2(ret, "AF_UNIX"); e = (char *)addr->sun_path + sizeof(addr->sun_path); while (s < e && *(e-1) == '\0') e--; while (s < e) rb_str_catf(ret, ":%02x", (unsigned char)*s++); } if (addr->sun_path + sizeof(addr->sun_path) < (char*)&rai->addr + rai->sockaddr_len) rb_str_catf(ret, "(sockaddr %d bytes too long)", (int)(rai->sockaddr_len - (addr->sun_path + sizeof(addr->sun_path) - (char*)&rai->addr))); } break; } #endif default: { ID id = intern_family(rai->addr.ss_family); if (id == 0) rb_str_catf(ret, "unknown address family %d", rai->addr.ss_family); else rb_str_catf(ret, "%s address format unknown", rb_id2name(id)); break; } } } return ret; } /* * call-seq: * addrinfo.inspect => string * * returns a string which shows addrinfo in human-readable form. * * Addrinfo.tcp("localhost", 80).inspect #=> "#" * Addrinfo.unix("/tmp/sock").inspect #=> "#" * */ static VALUE addrinfo_inspect(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int internet_p; VALUE ret; ret = rb_sprintf("#<%s: ", rb_obj_classname(self)); inspect_sockaddr(self, ret); if (rai->pfamily && ai_get_afamily(rai) != rai->pfamily) { ID id = intern_protocol_family(rai->pfamily); if (id) rb_str_catf(ret, " %s", rb_id2name(id)); else rb_str_catf(ret, " PF_\?\?\?(%d)", rai->pfamily); } internet_p = rai->pfamily == PF_INET; #ifdef INET6 internet_p = internet_p || rai->pfamily == PF_INET6; #endif if (internet_p && rai->socktype == SOCK_STREAM && (rai->protocol == 0 || rai->protocol == IPPROTO_TCP)) { rb_str_cat2(ret, " TCP"); } else if (internet_p && rai->socktype == SOCK_DGRAM && (rai->protocol == 0 || rai->protocol == IPPROTO_UDP)) { rb_str_cat2(ret, " UDP"); } else { if (rai->socktype) { ID id = intern_socktype(rai->socktype); if (id) rb_str_catf(ret, " %s", rb_id2name(id)); else rb_str_catf(ret, " SOCK_\?\?\?(%d)", rai->socktype); } if (rai->protocol) { if (internet_p) { ID id = intern_ipproto(rai->protocol); if (id) rb_str_catf(ret, " %s", rb_id2name(id)); else goto unknown_protocol; } else { unknown_protocol: rb_str_catf(ret, " UNKNOWN_PROTOCOL(%d)", rai->protocol); } } } if (!NIL_P(rai->canonname)) { VALUE name = rai->canonname; rb_str_catf(ret, " %s", StringValueCStr(name)); } if (!NIL_P(rai->inspectname)) { VALUE name = rai->inspectname; rb_str_catf(ret, " (%s)", StringValueCStr(name)); } rb_str_buf_cat2(ret, ">"); return ret; } /* * call-seq: * addrinfo.inspect_sockaddr => string * * returns a string which shows the sockaddr in _addrinfo_ with human-readable form. * * Addrinfo.tcp("localhost", 80).inspect_sockaddr #=> "127.0.0.1:80" * Addrinfo.tcp("ip6-localhost", 80).inspect_sockaddr #=> "[::1]:80" * Addrinfo.unix("/tmp/sock").inspect_sockaddr #=> "/tmp/sock" * */ static VALUE addrinfo_inspect_sockaddr(VALUE self) { return inspect_sockaddr(self, rb_str_new("", 0)); } /* :nodoc: */ static VALUE addrinfo_mdump(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); VALUE sockaddr, afamily, pfamily, socktype, protocol, canonname, inspectname; int afamily_int = ai_get_afamily(rai); ID id; id = intern_protocol_family(rai->pfamily); if (id == 0) rb_raise(rb_eSocket, "unknown protocol family: %d", rai->pfamily); pfamily = rb_id2str(id); if (rai->socktype == 0) socktype = INT2FIX(0); else { id = intern_socktype(rai->socktype); if (id == 0) rb_raise(rb_eSocket, "unknown socktype: %d", rai->socktype); socktype = rb_id2str(id); } if (rai->protocol == 0) protocol = INT2FIX(0); else if (IS_IP_FAMILY(afamily_int)) { id = intern_ipproto(rai->protocol); if (id == 0) rb_raise(rb_eSocket, "unknown IP protocol: %d", rai->protocol); protocol = rb_id2str(id); } else { rb_raise(rb_eSocket, "unknown protocol: %d", rai->protocol); } canonname = rai->canonname; inspectname = rai->inspectname; id = intern_family(afamily_int); if (id == 0) rb_raise(rb_eSocket, "unknown address family: %d", afamily_int); afamily = rb_id2str(id); switch(afamily_int) { #ifdef HAVE_SYS_UN_H case AF_UNIX: { struct sockaddr_un *su = (struct sockaddr_un *)&rai->addr; char *s, *e; s = su->sun_path; e = (char*)s + sizeof(su->sun_path); while (s < e && *(e-1) == '\0') e--; sockaddr = rb_str_new(s, e-s); break; } #endif default: { char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV]; int error; error = getnameinfo((struct sockaddr *)&rai->addr, rai->sockaddr_len, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), NI_NUMERICHOST|NI_NUMERICSERV); if (error) { raise_socket_error("getnameinfo", error); } sockaddr = rb_assoc_new(rb_str_new_cstr(hbuf), rb_str_new_cstr(pbuf)); break; } } return rb_ary_new3(7, afamily, sockaddr, pfamily, socktype, protocol, canonname, inspectname); } /* :nodoc: */ static VALUE addrinfo_mload(VALUE self, VALUE ary) { VALUE v; VALUE canonname, inspectname; int afamily, pfamily, socktype, protocol; struct sockaddr_storage ss; size_t len; rb_addrinfo_t *rai; if (check_addrinfo(self)) rb_raise(rb_eTypeError, "already initialized socket address"); ary = rb_convert_type(ary, T_ARRAY, "Array", "to_ary"); v = rb_ary_entry(ary, 0); StringValue(v); if (family_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &afamily) == -1) rb_raise(rb_eTypeError, "unexpected address family"); v = rb_ary_entry(ary, 2); StringValue(v); if (family_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &pfamily) == -1) rb_raise(rb_eTypeError, "unexpected protocol family"); v = rb_ary_entry(ary, 3); if (v == INT2FIX(0)) socktype = 0; else { StringValue(v); if (socktype_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &socktype) == -1) rb_raise(rb_eTypeError, "unexpected socktype"); } v = rb_ary_entry(ary, 4); if (v == INT2FIX(0)) protocol = 0; else { StringValue(v); if (IS_IP_FAMILY(afamily)) { if (ipproto_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &protocol) == -1) rb_raise(rb_eTypeError, "unexpected protocol"); } else { rb_raise(rb_eTypeError, "unexpected protocol"); } } v = rb_ary_entry(ary, 5); if (NIL_P(v)) canonname = Qnil; else { StringValue(v); canonname = v; } v = rb_ary_entry(ary, 6); if (NIL_P(v)) inspectname = Qnil; else { StringValue(v); inspectname = v; } v = rb_ary_entry(ary, 1); switch(afamily) { #ifdef HAVE_SYS_UN_H case AF_UNIX: { struct sockaddr_un *su = (struct sockaddr_un *)&ss; memset(su, 0, sizeof(*su)); su->sun_family = AF_UNIX; StringValue(v); if (sizeof(su->sun_path) <= RSTRING_LEN(v)) rb_raise(rb_eSocket, "too long AF_UNIX path"); memcpy(su->sun_path, RSTRING_PTR(v), RSTRING_LEN(v)); len = sizeof(*su); break; } #endif default: { VALUE pair = rb_convert_type(v, T_ARRAY, "Array", "to_ary"); struct addrinfo *res; int flags = AI_NUMERICHOST; #ifdef AI_NUMERICSERV flags |= AI_NUMERICSERV; #endif res = call_getaddrinfo(rb_ary_entry(pair, 0), rb_ary_entry(pair, 1), INT2NUM(pfamily), INT2NUM(socktype), INT2NUM(protocol), INT2NUM(flags), 1); len = res->ai_addrlen; memcpy(&ss, res->ai_addr, res->ai_addrlen); break; } } DATA_PTR(self) = rai = alloc_addrinfo(); init_addrinfo(rai, (struct sockaddr *)&ss, len, pfamily, socktype, protocol, canonname, inspectname); return self; } /* * call-seq: * addrinfo.afamily => integer * * returns the address family as an integer. * * Addrinfo.tcp("localhost", 80).afamily == Socket::AF_INET #=> true * */ static VALUE addrinfo_afamily(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return INT2NUM(ai_get_afamily(rai)); } /* * call-seq: * addrinfo.pfamily => integer * * returns the protocol family as an integer. * * Addrinfo.tcp("localhost", 80).pfamily == Socket::PF_INET #=> true * */ static VALUE addrinfo_pfamily(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return INT2NUM(rai->pfamily); } /* * call-seq: * addrinfo.socktype => integer * * returns the socket type as an integer. * * Addrinfo.tcp("localhost", 80).socktype == Socket::SOCK_STREAM #=> true * */ static VALUE addrinfo_socktype(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return INT2NUM(rai->socktype); } /* * call-seq: * addrinfo.protocol => integer * * returns the socket type as an integer. * * Addrinfo.tcp("localhost", 80).protocol == Socket::IPPROTO_TCP #=> true * */ static VALUE addrinfo_protocol(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return INT2NUM(rai->protocol); } /* * call-seq: * addrinfo.to_sockaddr => string * * returns the socket address as packed struct sockaddr string. * * Addrinfo.tcp("localhost", 80).to_sockaddr * #=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00" * */ static VALUE addrinfo_to_sockaddr(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); VALUE ret; ret = rb_str_new((char*)&rai->addr, rai->sockaddr_len); OBJ_INFECT(ret, self); return ret; } /* * call-seq: * addrinfo.canonname => string or nil * * returns the canonical name as an string. * * nil is returned if no canonical name. * * The canonical name is set by Addrinfo.getaddrinfo when AI_CANONNAME is specified. * * list = Addrinfo.getaddrinfo("www.ruby-lang.org", 80, :INET, :STREAM, nil, Socket::AI_CANONNAME) * p list[0] #=> # * p list[0].canonname #=> "carbon.ruby-lang.org" * */ static VALUE addrinfo_canonname(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return rai->canonname; } /* * call-seq: * addrinfo.ip? => true or false * * returns true if addrinfo is internet (IPv4/IPv6) address. * returns false otherwise. * * Addrinfo.tcp("127.0.0.1", 80).ip? #=> true * Addrinfo.tcp("::1", 80).ip? #=> true * Addrinfo.unix("/tmp/sock").ip? #=> false * */ static VALUE addrinfo_ip_p(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); return IS_IP_FAMILY(family) ? Qtrue : Qfalse; } /* * call-seq: * addrinfo.ipv4? => true or false * * returns true if addrinfo is IPv4 address. * returns false otherwise. * * Addrinfo.tcp("127.0.0.1", 80).ipv4? #=> true * Addrinfo.tcp("::1", 80).ipv4? #=> false * Addrinfo.unix("/tmp/sock").ipv4? #=> false * */ static VALUE addrinfo_ipv4_p(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return ai_get_afamily(rai) == AF_INET ? Qtrue : Qfalse; } /* * call-seq: * addrinfo.ipv6? => true or false * * returns true if addrinfo is IPv6 address. * returns false otherwise. * * Addrinfo.tcp("127.0.0.1", 80).ipv6? #=> false * Addrinfo.tcp("::1", 80).ipv6? #=> true * Addrinfo.unix("/tmp/sock").ipv6? #=> false * */ static VALUE addrinfo_ipv6_p(VALUE self) { #ifdef AF_INET6 rb_addrinfo_t *rai = get_addrinfo(self); return ai_get_afamily(rai) == AF_INET6 ? Qtrue : Qfalse; #else return Qfalse; #endif } /* * call-seq: * addrinfo.unix? => true or false * * returns true if addrinfo is UNIX address. * returns false otherwise. * * Addrinfo.tcp("127.0.0.1", 80).unix? #=> false * Addrinfo.tcp("::1", 80).unix? #=> false * Addrinfo.unix("/tmp/sock").unix? #=> true * */ static VALUE addrinfo_unix_p(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); #ifdef AF_UNIX return ai_get_afamily(rai) == AF_UNIX ? Qtrue : Qfalse; #else return Qfalse; #endif } /* * call-seq: * addrinfo.getnameinfo => [nodename, service] * addrinfo.getnameinfo(flags) => [nodename, service] * * returns nodename and service as a pair of strings. * This converts struct sockaddr in addrinfo to textual representation. * * flags should be bitwise OR of Socket::NI_??? constants. * * Addrinfo.tcp("127.0.0.1", 80).getnameinfo #=> ["localhost", "www"] * * Addrinfo.tcp("127.0.0.1", 80).getnameinfo(Socket::NI_NUMERICSERV) * #=> ["localhost", "80"] */ static VALUE addrinfo_getnameinfo(int argc, VALUE *argv, VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); VALUE vflags; char hbuf[1024], pbuf[1024]; int flags, error; rb_scan_args(argc, argv, "01", &vflags); flags = NIL_P(vflags) ? 0 : NUM2INT(vflags); if (rai->socktype == SOCK_DGRAM) flags |= NI_DGRAM; error = getnameinfo((struct sockaddr *)&rai->addr, rai->sockaddr_len, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), flags); if (error) { raise_socket_error("getnameinfo", error); } return rb_assoc_new(rb_str_new2(hbuf), rb_str_new2(pbuf)); } /* * call-seq: * addrinfo.ip_unpack => [addr, port] * * Returns the IP address and port number as 2-element array. * * Addrinfo.tcp("127.0.0.1", 80).ip_unpack #=> ["127.0.0.1", 80] * Addrinfo.tcp("::1", 80).ip_unpack #=> ["::1", 80] */ static VALUE addrinfo_ip_unpack(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); VALUE vflags; VALUE ret, portstr; if (!IS_IP_FAMILY(family)) rb_raise(rb_eSocket, "need IPv4 or IPv6 address"); vflags = INT2NUM(NI_NUMERICHOST|NI_NUMERICSERV); ret = addrinfo_getnameinfo(1, &vflags, self); portstr = rb_ary_entry(ret, 1); rb_ary_store(ret, 1, INT2NUM(atoi(StringValueCStr(portstr)))); return ret; } /* * call-seq: * addrinfo.ip_address => string * * Returns the IP address as a string. * * Addrinfo.tcp("127.0.0.1", 80).ip_address #=> "127.0.0.1" * Addrinfo.tcp("::1", 80).ip_address #=> "::1" */ static VALUE addrinfo_ip_address(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); VALUE vflags; VALUE ret; if (!IS_IP_FAMILY(family)) rb_raise(rb_eSocket, "need IPv4 or IPv6 address"); vflags = INT2NUM(NI_NUMERICHOST|NI_NUMERICSERV); ret = addrinfo_getnameinfo(1, &vflags, self); return rb_ary_entry(ret, 0); } /* * call-seq: * addrinfo.ip_port => port * * Returns the port number as an integer. * * Addrinfo.tcp("127.0.0.1", 80).ip_port #=> 80 * Addrinfo.tcp("::1", 80).ip_port #=> 80 */ static VALUE addrinfo_ip_port(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); int port; if (!IS_IP_FAMILY(family)) { bad_family: #ifdef AF_INET6 rb_raise(rb_eSocket, "need IPv4 or IPv6 address"); #else rb_raise(rb_eSocket, "need IPv4 address"); #endif } switch (family) { case AF_INET: if (rai->sockaddr_len != sizeof(struct sockaddr_in)) rb_raise(rb_eSocket, "unexpected sockaddr size for IPv4"); port = ntohs(((struct sockaddr_in *)&rai->addr)->sin_port); break; #ifdef AF_INET6 case AF_INET6: if (rai->sockaddr_len != sizeof(struct sockaddr_in6)) rb_raise(rb_eSocket, "unexpected sockaddr size for IPv6"); port = ntohs(((struct sockaddr_in6 *)&rai->addr)->sin6_port); break; #endif default: goto bad_family; } return INT2NUM(port); } static int extract_in_addr(VALUE self, uint32_t *addrp) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); if (family != AF_INET) return 0; *addrp = ntohl(((struct sockaddr_in *)&rai->addr)->sin_addr.s_addr); return 1; } /* * Returns true for IPv4 private address (10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16). * It returns false otherwise. */ static VALUE addrinfo_ipv4_private_p(VALUE self) { uint32_t a; if (!extract_in_addr(self, &a)) return Qfalse; if ((a & 0xff000000) == 0x0a000000 || /* 10.0.0.0/8 */ (a & 0xfff00000) == 0xac100000 || /* 172.16.0.0/12 */ (a & 0xffff0000) == 0xc0a80000) /* 192.168.0.0/16 */ return Qtrue; return Qfalse; } /* * Returns true for IPv4 loopback address (127.0.0.0/8). * It returns false otherwise. */ static VALUE addrinfo_ipv4_loopback_p(VALUE self) { uint32_t a; if (!extract_in_addr(self, &a)) return Qfalse; if ((a & 0xff000000) == 0x7f000000) /* 127.0.0.0/8 */ return Qtrue; return Qfalse; } /* * Returns true for IPv4 multicast address (224.0.0.0/4). * It returns false otherwise. */ static VALUE addrinfo_ipv4_multicast_p(VALUE self) { uint32_t a; if (!extract_in_addr(self, &a)) return Qfalse; if ((a & 0xf0000000) == 0xe0000000) /* 224.0.0.0/4 */ return Qtrue; return Qfalse; } #ifdef INET6 static struct in6_addr * extract_in6_addr(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); if (family != AF_INET6) return NULL; return &((struct sockaddr_in6 *)&rai->addr)->sin6_addr; } /* * Returns true for IPv6 unspecified address (::). * It returns false otherwise. */ static VALUE addrinfo_ipv6_unspecified_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_UNSPECIFIED(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 loopback address (::1). * It returns false otherwise. */ static VALUE addrinfo_ipv6_loopback_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_LOOPBACK(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast address (ff00::/8). * It returns false otherwise. */ static VALUE addrinfo_ipv6_multicast_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MULTICAST(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 link local address (ff80::/10). * It returns false otherwise. */ static VALUE addrinfo_ipv6_linklocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_LINKLOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 site local address (ffc0::/10). * It returns false otherwise. */ static VALUE addrinfo_ipv6_sitelocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_SITELOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv4-mapped IPv6 address (::ffff:0:0/80). * It returns false otherwise. */ static VALUE addrinfo_ipv6_v4mapped_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_V4MAPPED(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv4-compatible IPv6 address (::/80). * It returns false otherwise. */ static VALUE addrinfo_ipv6_v4compat_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_V4COMPAT(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast node-local scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_nodelocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_NODELOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast link-local scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_linklocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_LINKLOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast site-local scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_sitelocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_SITELOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast organization-local scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_orglocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_ORGLOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast global scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_global_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_GLOBAL(addr)) return Qtrue; return Qfalse; } /* * Returns IPv4 address of IPv4 mapped/compatible IPv6 address. * It returns nil if +self+ is not IPv4 mapped/compatible IPv6 address. * * Addrinfo.ip("::192.0.2.3").ipv6_to_ipv4 #=> # * Addrinfo.ip("::ffff:192.0.2.3").ipv6_to_ipv4 #=> # * Addrinfo.ip("::1").ipv6_to_ipv4 #=> nil * Addrinfo.ip("192.0.2.3").ipv6_to_ipv4 #=> nil * Addrinfo.unix("/tmp/sock").ipv6_to_ipv4 #=> nil */ static VALUE addrinfo_ipv6_to_ipv4(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); struct in6_addr *addr; int family = ai_get_afamily(rai); if (family != AF_INET6) return Qnil; addr = &((struct sockaddr_in6 *)&rai->addr)->sin6_addr; if (IN6_IS_ADDR_V4MAPPED(addr) || IN6_IS_ADDR_V4COMPAT(addr)) { struct sockaddr_in sin4; MEMZERO(&sin4, struct sockaddr_in, 1); sin4.sin_family = AF_INET; SET_SIN_LEN(&sin4, sizeof(sin4)); memcpy(&sin4.sin_addr, (char*)addr + sizeof(*addr) - sizeof(sin4.sin_addr), sizeof(sin4.sin_addr)); return addrinfo_new((struct sockaddr *)&sin4, sizeof(sin4), PF_INET, rai->socktype, rai->protocol, rai->canonname, rai->inspectname); } else { return Qnil; } } #endif #ifdef HAVE_SYS_UN_H /* * call-seq: * addrinfo.unix_path => path * * Returns the socket path as a string. * * Addrinfo.unix("/tmp/sock").unix_path #=> "/tmp/sock" */ static VALUE addrinfo_unix_path(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); struct sockaddr_un *addr; char *s, *e; if (family != AF_UNIX) rb_raise(rb_eSocket, "need AF_UNIX address"); addr = (struct sockaddr_un *)&rai->addr; s = addr->sun_path; e = (char*)addr + rai->sockaddr_len; if (e < s) rb_raise(rb_eSocket, "too short AF_UNIX address"); if (addr->sun_path + sizeof(addr->sun_path) < e) rb_raise(rb_eSocket, "too long AF_UNIX address"); while (s < e && *(e-1) == '\0') e--; return rb_str_new(s, e-s); } #endif /* * call-seq: * Addrinfo.getaddrinfo(nodename, service, family, socktype, protocol, flags) => [addrinfo, ...] * Addrinfo.getaddrinfo(nodename, service, family, socktype, protocol) => [addrinfo, ...] * Addrinfo.getaddrinfo(nodename, service, family, socktype) => [addrinfo, ...] * Addrinfo.getaddrinfo(nodename, service, family) => [addrinfo, ...] * Addrinfo.getaddrinfo(nodename, service) => [addrinfo, ...] * * returns a list of addrinfo objects as an array. * * This method converts nodename (hostname) and service (port) to addrinfo. * Since the conversion is not unique, the result is a list of addrinfo objects. * * nodename or service can be nil if no conversion intended. * * family, socktype and protocol are hint for prefered protocol. * If the result will be used for a socket with SOCK_STREAM, * SOCK_STREAM should be specified as socktype. * If so, Addrinfo.getaddrinfo returns addrinfo list appropriate for SOCK_STREAM. * If they are omitted or nil is given, the result is not restricted. * * Similary, PF_INET6 as family restricts for IPv6. * * flags should be bitwise OR of Socket::AI_??? constants. * * Note that socktype should be specified whenever application knows the usage of the address. * Some platform causes an error when socktype is ommitted and servname is specified as an integer * because some port numbers, 512 for example, are ambiguous without socktype. * * Addrinfo.getaddrinfo("www.kame.net", 80, nil, :STREAM) * #=> [#, * # #] * */ static VALUE addrinfo_s_getaddrinfo(int argc, VALUE *argv, VALUE self) { VALUE node, service, family, socktype, protocol, flags; rb_scan_args(argc, argv, "24", &node, &service, &family, &socktype, &protocol, &flags); return addrinfo_list_new(node, service, family, socktype, protocol, flags); } /* * call-seq: * Addrinfo.ip(host) => addrinfo * * returns an addrinfo object for IP address. * * The port, socktype, protocol of the result is filled by zero. * So, it is not appropriate to create a socket. * * Addrinfo.ip("localhost") #=> # */ static VALUE addrinfo_s_ip(VALUE self, VALUE host) { VALUE ret; rb_addrinfo_t *rai; ret = addrinfo_firstonly_new(host, Qnil, INT2NUM(PF_UNSPEC), INT2FIX(0), INT2FIX(0), INT2FIX(0)); rai = get_addrinfo(ret); rai->socktype = 0; rai->protocol = 0; return ret; } /* * call-seq: * Addrinfo.tcp(host, port) => addrinfo * * returns an addrinfo object for TCP address. * * Addrinfo.tcp("localhost", "smtp") #=> # */ static VALUE addrinfo_s_tcp(VALUE self, VALUE host, VALUE port) { return addrinfo_firstonly_new(host, port, INT2NUM(PF_UNSPEC), INT2NUM(SOCK_STREAM), INT2NUM(IPPROTO_TCP), INT2FIX(0)); } /* * call-seq: * Addrinfo.udp(host, port) => addrinfo * * returns an addrinfo object for UDP address. * * Addrinfo.udp("localhost", "daytime") #=> # */ static VALUE addrinfo_s_udp(VALUE self, VALUE host, VALUE port) { return addrinfo_firstonly_new(host, port, INT2NUM(PF_UNSPEC), INT2NUM(SOCK_DGRAM), INT2NUM(IPPROTO_UDP), INT2FIX(0)); } #ifdef HAVE_SYS_UN_H /* * call-seq: * Addrinfo.unix(path [, socktype]) => addrinfo * * returns an addrinfo object for UNIX socket address. * * _socktype_ specifies the socket type. * If it is omitted, :STREAM is used. * * Addrinfo.unix("/tmp/sock") #=> # * Addrinfo.unix("/tmp/sock", :DGRAM) #=> # */ static VALUE addrinfo_s_unix(int argc, VALUE *argv, VALUE self) { VALUE path, vsocktype, addr; int socktype; rb_addrinfo_t *rai; rb_scan_args(argc, argv, "11", &path, &vsocktype); if (NIL_P(vsocktype)) socktype = SOCK_STREAM; else socktype = socktype_arg(vsocktype); addr = addrinfo_s_allocate(rb_cAddrinfo); DATA_PTR(addr) = rai = alloc_addrinfo(); init_unix_addrinfo(rai, path, socktype); OBJ_INFECT(addr, path); return addr; } #endif VALUE sockaddr_string_value(volatile VALUE *v) { VALUE val = *v; if (TYPE(val) == RUBY_T_DATA && IS_ADDRINFO(val)) { *v = addrinfo_to_sockaddr(val); } StringValue(*v); return *v; } char * sockaddr_string_value_ptr(volatile VALUE *v) { sockaddr_string_value(v); return RSTRING_PTR(*v); } VALUE rb_check_sockaddr_string_type(VALUE val) { if (TYPE(val) == RUBY_T_DATA && IS_ADDRINFO(val)) return addrinfo_to_sockaddr(val); return rb_check_string_type(val); } VALUE fd_socket_addrinfo(int fd, struct sockaddr *addr, socklen_t len) { int family; int socktype; int ret; socklen_t optlen = sizeof(socktype); /* assumes protocol family and address family are identical */ family = get_afamily(addr, len); ret = getsockopt(fd, SOL_SOCKET, SO_TYPE, (void*)&socktype, &optlen); if (ret == -1) { rb_sys_fail("getsockopt(SO_TYPE)"); } return addrinfo_new(addr, len, family, socktype, 0, Qnil, Qnil); } VALUE io_socket_addrinfo(VALUE io, struct sockaddr *addr, socklen_t len) { rb_io_t *fptr; switch (TYPE(io)) { case T_FIXNUM: return fd_socket_addrinfo(FIX2INT(io), addr, len); case T_BIGNUM: return fd_socket_addrinfo(NUM2INT(io), addr, len); case T_FILE: GetOpenFile(io, fptr); return fd_socket_addrinfo(fptr->fd, addr, len); default: rb_raise(rb_eTypeError, "neither IO nor file descriptor"); } } /* * Addrinfo class */ void Init_addrinfo(void) { rb_cAddrinfo = rb_define_class("Addrinfo", rb_cData); rb_define_alloc_func(rb_cAddrinfo, addrinfo_s_allocate); rb_define_method(rb_cAddrinfo, "initialize", addrinfo_initialize, -1); rb_define_method(rb_cAddrinfo, "inspect", addrinfo_inspect, 0); rb_define_method(rb_cAddrinfo, "inspect_sockaddr", addrinfo_inspect_sockaddr, 0); rb_define_singleton_method(rb_cAddrinfo, "getaddrinfo", addrinfo_s_getaddrinfo, -1); rb_define_singleton_method(rb_cAddrinfo, "ip", addrinfo_s_ip, 1); rb_define_singleton_method(rb_cAddrinfo, "tcp", addrinfo_s_tcp, 2); rb_define_singleton_method(rb_cAddrinfo, "udp", addrinfo_s_udp, 2); #ifdef HAVE_SYS_UN_H rb_define_singleton_method(rb_cAddrinfo, "unix", addrinfo_s_unix, -1); #endif rb_define_method(rb_cAddrinfo, "afamily", addrinfo_afamily, 0); rb_define_method(rb_cAddrinfo, "pfamily", addrinfo_pfamily, 0); rb_define_method(rb_cAddrinfo, "socktype", addrinfo_socktype, 0); rb_define_method(rb_cAddrinfo, "protocol", addrinfo_protocol, 0); rb_define_method(rb_cAddrinfo, "canonname", addrinfo_canonname, 0); rb_define_method(rb_cAddrinfo, "ipv4?", addrinfo_ipv4_p, 0); rb_define_method(rb_cAddrinfo, "ipv6?", addrinfo_ipv6_p, 0); rb_define_method(rb_cAddrinfo, "unix?", addrinfo_unix_p, 0); rb_define_method(rb_cAddrinfo, "ip?", addrinfo_ip_p, 0); rb_define_method(rb_cAddrinfo, "ip_unpack", addrinfo_ip_unpack, 0); rb_define_method(rb_cAddrinfo, "ip_address", addrinfo_ip_address, 0); rb_define_method(rb_cAddrinfo, "ip_port", addrinfo_ip_port, 0); rb_define_method(rb_cAddrinfo, "ipv4_private?", addrinfo_ipv4_private_p, 0); rb_define_method(rb_cAddrinfo, "ipv4_loopback?", addrinfo_ipv4_loopback_p, 0); rb_define_method(rb_cAddrinfo, "ipv4_multicast?", addrinfo_ipv4_multicast_p, 0); #ifdef INET6 rb_define_method(rb_cAddrinfo, "ipv6_unspecified?", addrinfo_ipv6_unspecified_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_loopback?", addrinfo_ipv6_loopback_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_multicast?", addrinfo_ipv6_multicast_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_linklocal?", addrinfo_ipv6_linklocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_sitelocal?", addrinfo_ipv6_sitelocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_v4mapped?", addrinfo_ipv6_v4mapped_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_v4compat?", addrinfo_ipv6_v4compat_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_nodelocal?", addrinfo_ipv6_mc_nodelocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_linklocal?", addrinfo_ipv6_mc_linklocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_sitelocal?", addrinfo_ipv6_mc_sitelocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_orglocal?", addrinfo_ipv6_mc_orglocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_global?", addrinfo_ipv6_mc_global_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_to_ipv4", addrinfo_ipv6_to_ipv4, 0); #endif #ifdef HAVE_SYS_UN_H rb_define_method(rb_cAddrinfo, "unix_path", addrinfo_unix_path, 0); #endif rb_define_method(rb_cAddrinfo, "to_sockaddr", addrinfo_to_sockaddr, 0); rb_define_method(rb_cAddrinfo, "to_s", addrinfo_to_sockaddr, 0); /* compatibility for ruby before 1.9.2 */ rb_define_method(rb_cAddrinfo, "getnameinfo", addrinfo_getnameinfo, -1); rb_define_method(rb_cAddrinfo, "marshal_dump", addrinfo_mdump, 0); rb_define_method(rb_cAddrinfo, "marshal_load", addrinfo_mload, 1); }