/********************************************************************** io.c - $Author$ created at: Fri Oct 15 18:08:59 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/internal/config.h" #include "ruby/fiber/scheduler.h" #include "ruby/io/buffer.h" #include #include #include /* non-Linux poll may not work on all FDs */ #if defined(HAVE_POLL) # if defined(__linux__) # define USE_POLL 1 # endif # if defined(__FreeBSD_version) && __FreeBSD_version >= 1100000 # define USE_POLL 1 # endif #endif #ifndef USE_POLL # define USE_POLL 0 #endif #undef free #define free(x) xfree(x) #if defined(DOSISH) || defined(__CYGWIN__) #include #endif #include #if defined HAVE_NET_SOCKET_H # include #elif defined HAVE_SYS_SOCKET_H # include #endif #if defined(__BOW__) || defined(__CYGWIN__) || defined(_WIN32) # define NO_SAFE_RENAME #endif #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__sun) || defined(_nec_ews) # define USE_SETVBUF #endif #ifdef __QNXNTO__ #include #endif #include #if defined(HAVE_SYS_IOCTL_H) && !defined(_WIN32) #include #endif #if defined(HAVE_FCNTL_H) || defined(_WIN32) #include #elif defined(HAVE_SYS_FCNTL_H) #include #endif #ifdef HAVE_SYS_TIME_H # include #endif #include #if defined(HAVE_SYS_PARAM_H) || defined(__HIUX_MPP__) # include #endif #if !defined NOFILE # define NOFILE 64 #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYSCALL_H #include #elif defined HAVE_SYS_SYSCALL_H #include #endif #ifdef HAVE_SYS_UIO_H #include #endif #ifdef HAVE_SYS_WAIT_H # include /* for WNOHANG on BSD */ #endif #ifdef HAVE_COPYFILE_H # include # ifndef COPYFILE_STATE_COPIED /* * Some OSes (e.g., OSX < 10.6) implement fcopyfile() but not * COPYFILE_STATE_COPIED. Since the only use of the former here * requires the latter, we disable the former when the latter is undefined. */ # undef HAVE_FCOPYFILE # endif #endif #include "ruby/internal/stdbool.h" #include "ccan/list/list.h" #include "dln.h" #include "encindex.h" #include "id.h" #include "internal.h" #include "internal/class.h" #include "internal/encoding.h" #include "internal/error.h" #include "internal/inits.h" #include "internal/io.h" #include "internal/numeric.h" #include "internal/object.h" #include "internal/process.h" #include "internal/thread.h" #include "internal/transcode.h" #include "internal/variable.h" #include "ruby/io.h" #include "ruby/io/buffer.h" #include "ruby/missing.h" #include "ruby/thread.h" #include "ruby/util.h" #include "ruby_atomic.h" #include "ruby/ractor.h" #if !USE_POLL # include "vm_core.h" #endif #include "builtin.h" #ifndef O_ACCMODE #define O_ACCMODE (O_RDONLY | O_WRONLY | O_RDWR) #endif #ifndef PIPE_BUF # ifdef _POSIX_PIPE_BUF # define PIPE_BUF _POSIX_PIPE_BUF # else # define PIPE_BUF 512 /* is this ok? */ # endif #endif #ifndef EWOULDBLOCK # define EWOULDBLOCK EAGAIN #endif #if defined(HAVE___SYSCALL) && (defined(__APPLE__) || defined(__OpenBSD__)) /* Mac OS X and OpenBSD have __syscall but don't define it in headers */ off_t __syscall(quad_t number, ...); #endif #define IO_RBUF_CAPA_MIN 8192 #define IO_CBUF_CAPA_MIN (128*1024) #define IO_RBUF_CAPA_FOR(fptr) (NEED_READCONV(fptr) ? IO_CBUF_CAPA_MIN : IO_RBUF_CAPA_MIN) #define IO_WBUF_CAPA_MIN 8192 #define IO_MAX_BUFFER_GROWTH 8 * 1024 * 1024 // 8MB /* define system APIs */ #ifdef _WIN32 #undef open #define open rb_w32_uopen #undef rename #define rename(f, t) rb_w32_urename((f), (t)) #include "win32/file.h" #endif VALUE rb_cIO; VALUE rb_eEOFError; VALUE rb_eIOError; VALUE rb_eIOTimeoutError; VALUE rb_mWaitReadable; VALUE rb_mWaitWritable; static VALUE rb_eEAGAINWaitReadable; static VALUE rb_eEAGAINWaitWritable; static VALUE rb_eEWOULDBLOCKWaitReadable; static VALUE rb_eEWOULDBLOCKWaitWritable; static VALUE rb_eEINPROGRESSWaitWritable; static VALUE rb_eEINPROGRESSWaitReadable; VALUE rb_stdin, rb_stdout, rb_stderr; static VALUE orig_stdout, orig_stderr; VALUE rb_output_fs; VALUE rb_rs; VALUE rb_output_rs; VALUE rb_default_rs; static VALUE argf; static ID id_write, id_read, id_getc, id_flush, id_readpartial, id_set_encoding, id_fileno; static VALUE sym_mode, sym_perm, sym_flags, sym_extenc, sym_intenc, sym_encoding, sym_open_args; static VALUE sym_textmode, sym_binmode, sym_autoclose; static VALUE sym_SET, sym_CUR, sym_END; static VALUE sym_wait_readable, sym_wait_writable; #ifdef SEEK_DATA static VALUE sym_DATA; #endif #ifdef SEEK_HOLE static VALUE sym_HOLE; #endif static VALUE prep_io(int fd, int fmode, VALUE klass, const char *path); VALUE rb_io_blocking_region_wait(struct rb_io *io, rb_blocking_function_t *function, void *argument, enum rb_io_event events) { return rb_thread_io_blocking_call(function, argument, io->fd, events); } VALUE rb_io_blocking_region(struct rb_io *io, rb_blocking_function_t *function, void *argument) { return rb_io_blocking_region_wait(io, function, argument, 0); } struct argf { VALUE filename, current_file; long last_lineno; /* $. */ long lineno; VALUE argv; VALUE inplace; struct rb_io_encoding encs; int8_t init_p, next_p, binmode; }; static rb_atomic_t max_file_descriptor = NOFILE; void rb_update_max_fd(int fd) { rb_atomic_t afd = (rb_atomic_t)fd; rb_atomic_t max_fd = max_file_descriptor; int err; if (fd < 0 || afd <= max_fd) return; #if defined(HAVE_FCNTL) && defined(F_GETFL) err = fcntl(fd, F_GETFL) == -1; #else { struct stat buf; err = fstat(fd, &buf) != 0; } #endif if (err && errno == EBADF) { rb_bug("rb_update_max_fd: invalid fd (%d) given.", fd); } while (max_fd < afd) { max_fd = ATOMIC_CAS(max_file_descriptor, max_fd, afd); } } void rb_maygvl_fd_fix_cloexec(int fd) { /* MinGW don't have F_GETFD and FD_CLOEXEC. [ruby-core:40281] */ #if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(F_SETFD) && defined(FD_CLOEXEC) int flags, flags2, ret; flags = fcntl(fd, F_GETFD); /* should not fail except EBADF. */ if (flags == -1) { rb_bug("rb_maygvl_fd_fix_cloexec: fcntl(%d, F_GETFD) failed: %s", fd, strerror(errno)); } if (fd <= 2) flags2 = flags & ~FD_CLOEXEC; /* Clear CLOEXEC for standard file descriptors: 0, 1, 2. */ else flags2 = flags | FD_CLOEXEC; /* Set CLOEXEC for non-standard file descriptors: 3, 4, 5, ... */ if (flags != flags2) { ret = fcntl(fd, F_SETFD, flags2); if (ret != 0) { rb_bug("rb_maygvl_fd_fix_cloexec: fcntl(%d, F_SETFD, %d) failed: %s", fd, flags2, strerror(errno)); } } #endif } void rb_fd_fix_cloexec(int fd) { rb_maygvl_fd_fix_cloexec(fd); rb_update_max_fd(fd); } /* this is only called once */ static int rb_fix_detect_o_cloexec(int fd) { #if defined(O_CLOEXEC) && defined(F_GETFD) int flags = fcntl(fd, F_GETFD); if (flags == -1) rb_bug("rb_fix_detect_o_cloexec: fcntl(%d, F_GETFD) failed: %s", fd, strerror(errno)); if (flags & FD_CLOEXEC) return 1; #endif /* fall through if O_CLOEXEC does not work: */ rb_maygvl_fd_fix_cloexec(fd); return 0; } static inline bool io_again_p(int e) { return (e == EWOULDBLOCK) || (e == EAGAIN); } int rb_cloexec_open(const char *pathname, int flags, mode_t mode) { int ret; static int o_cloexec_state = -1; /* <0: unknown, 0: ignored, >0: working */ static const int retry_interval = 0; static const int retry_max_count = 10000; int retry_count = 0; #ifdef O_CLOEXEC /* O_CLOEXEC is available since Linux 2.6.23. Linux 2.6.18 silently ignore it. */ flags |= O_CLOEXEC; #elif defined O_NOINHERIT flags |= O_NOINHERIT; #endif while ((ret = open(pathname, flags, mode)) == -1) { int e = errno; if (!io_again_p(e)) break; if (retry_count++ >= retry_max_count) break; sleep(retry_interval); } if (ret < 0) return ret; if (ret <= 2 || o_cloexec_state == 0) { rb_maygvl_fd_fix_cloexec(ret); } else if (o_cloexec_state > 0) { return ret; } else { o_cloexec_state = rb_fix_detect_o_cloexec(ret); } return ret; } int rb_cloexec_dup(int oldfd) { /* Don't allocate standard file descriptors: 0, 1, 2 */ return rb_cloexec_fcntl_dupfd(oldfd, 3); } int rb_cloexec_dup2(int oldfd, int newfd) { int ret; /* When oldfd == newfd, dup2 succeeds but dup3 fails with EINVAL. * rb_cloexec_dup2 succeeds as dup2. */ if (oldfd == newfd) { ret = newfd; } else { #if defined(HAVE_DUP3) && defined(O_CLOEXEC) static int try_dup3 = 1; if (2 < newfd && try_dup3) { ret = dup3(oldfd, newfd, O_CLOEXEC); if (ret != -1) return ret; /* dup3 is available since Linux 2.6.27, glibc 2.9. */ if (errno == ENOSYS) { try_dup3 = 0; ret = dup2(oldfd, newfd); } } else { ret = dup2(oldfd, newfd); } #else ret = dup2(oldfd, newfd); #endif if (ret < 0) return ret; } rb_maygvl_fd_fix_cloexec(ret); return ret; } static int rb_fd_set_nonblock(int fd) { #ifdef _WIN32 return rb_w32_set_nonblock(fd); #elif defined(F_GETFL) int oflags = fcntl(fd, F_GETFL); if (oflags == -1) return -1; if (oflags & O_NONBLOCK) return 0; oflags |= O_NONBLOCK; return fcntl(fd, F_SETFL, oflags); #endif return 0; } int rb_cloexec_pipe(int descriptors[2]) { #ifdef HAVE_PIPE2 int result = pipe2(descriptors, O_CLOEXEC | O_NONBLOCK); #else int result = pipe(descriptors); #endif if (result < 0) return result; #ifdef __CYGWIN__ if (result == 0 && descriptors[1] == -1) { close(descriptors[0]); descriptors[0] = -1; errno = ENFILE; return -1; } #endif #ifndef HAVE_PIPE2 rb_maygvl_fd_fix_cloexec(descriptors[0]); rb_maygvl_fd_fix_cloexec(descriptors[1]); #ifndef _WIN32 rb_fd_set_nonblock(descriptors[0]); rb_fd_set_nonblock(descriptors[1]); #endif #endif return result; } int rb_cloexec_fcntl_dupfd(int fd, int minfd) { int ret; #if defined(HAVE_FCNTL) && defined(F_DUPFD_CLOEXEC) && defined(F_DUPFD) static int try_dupfd_cloexec = 1; if (try_dupfd_cloexec) { ret = fcntl(fd, F_DUPFD_CLOEXEC, minfd); if (ret != -1) { if (ret <= 2) rb_maygvl_fd_fix_cloexec(ret); return ret; } /* F_DUPFD_CLOEXEC is available since Linux 2.6.24. Linux 2.6.18 fails with EINVAL */ if (errno == EINVAL) { ret = fcntl(fd, F_DUPFD, minfd); if (ret != -1) { try_dupfd_cloexec = 0; } } } else { ret = fcntl(fd, F_DUPFD, minfd); } #elif defined(HAVE_FCNTL) && defined(F_DUPFD) ret = fcntl(fd, F_DUPFD, minfd); #else ret = dup(fd); if (ret >= 0 && ret < minfd) { const int prev_fd = ret; ret = rb_cloexec_fcntl_dupfd(fd, minfd); close(prev_fd); } return ret; #endif if (ret < 0) return ret; rb_maygvl_fd_fix_cloexec(ret); return ret; } #define argf_of(obj) (*(struct argf *)DATA_PTR(obj)) #define ARGF argf_of(argf) #define GetWriteIO(io) rb_io_get_write_io(io) #define READ_DATA_PENDING(fptr) ((fptr)->rbuf.len) #define READ_DATA_PENDING_COUNT(fptr) ((fptr)->rbuf.len) #define READ_DATA_PENDING_PTR(fptr) ((fptr)->rbuf.ptr+(fptr)->rbuf.off) #define READ_DATA_BUFFERED(fptr) READ_DATA_PENDING(fptr) #define READ_CHAR_PENDING(fptr) ((fptr)->cbuf.len) #define READ_CHAR_PENDING_COUNT(fptr) ((fptr)->cbuf.len) #define READ_CHAR_PENDING_PTR(fptr) ((fptr)->cbuf.ptr+(fptr)->cbuf.off) #if defined(_WIN32) #define WAIT_FD_IN_WIN32(fptr) \ (rb_w32_io_cancelable_p((fptr)->fd) ? Qnil : rb_io_wait(fptr->self, RB_INT2NUM(RUBY_IO_READABLE), RUBY_IO_TIMEOUT_DEFAULT)) #else #define WAIT_FD_IN_WIN32(fptr) #endif #define READ_CHECK(fptr) do {\ if (!READ_DATA_PENDING(fptr)) {\ WAIT_FD_IN_WIN32(fptr);\ rb_io_check_closed(fptr);\ }\ } while(0) #ifndef S_ISSOCK # ifdef _S_ISSOCK # define S_ISSOCK(m) _S_ISSOCK(m) # else # ifdef _S_IFSOCK # define S_ISSOCK(m) (((m) & S_IFMT) == _S_IFSOCK) # else # ifdef S_IFSOCK # define S_ISSOCK(m) (((m) & S_IFMT) == S_IFSOCK) # endif # endif # endif #endif static int io_fflush(rb_io_t *); static rb_io_t *flush_before_seek(rb_io_t *fptr); #define FMODE_SIGNAL_ON_EPIPE (1<<17) #define fptr_signal_on_epipe(fptr) \ (((fptr)->mode & FMODE_SIGNAL_ON_EPIPE) != 0) #define fptr_set_signal_on_epipe(fptr, flag) \ ((flag) ? \ (fptr)->mode |= FMODE_SIGNAL_ON_EPIPE : \ (fptr)->mode &= ~FMODE_SIGNAL_ON_EPIPE) extern ID ruby_static_id_signo; NORETURN(static void rb_sys_fail_on_write(rb_io_t *fptr)); static void rb_sys_fail_on_write(rb_io_t *fptr) { int e = errno; VALUE errinfo = rb_syserr_new_path(e, (fptr)->pathv); #if defined EPIPE if (fptr_signal_on_epipe(fptr) && (e == EPIPE)) { const VALUE sig = # if defined SIGPIPE INT2FIX(SIGPIPE) - INT2FIX(0) + # endif INT2FIX(0); rb_ivar_set(errinfo, ruby_static_id_signo, sig); } #endif rb_exc_raise(errinfo); } #define NEED_NEWLINE_DECORATOR_ON_READ(fptr) ((fptr)->mode & FMODE_TEXTMODE) #define NEED_NEWLINE_DECORATOR_ON_WRITE(fptr) ((fptr)->mode & FMODE_TEXTMODE) #if defined(RUBY_TEST_CRLF_ENVIRONMENT) || defined(_WIN32) # define RUBY_CRLF_ENVIRONMENT 1 #else # define RUBY_CRLF_ENVIRONMENT 0 #endif #if RUBY_CRLF_ENVIRONMENT /* Windows */ # define DEFAULT_TEXTMODE FMODE_TEXTMODE # define TEXTMODE_NEWLINE_DECORATOR_ON_WRITE ECONV_CRLF_NEWLINE_DECORATOR /* * CRLF newline is set as default newline decorator. * If only CRLF newline conversion is needed, we use binary IO process * with OS's text mode for IO performance improvement. * If encoding conversion is needed or a user sets text mode, we use encoding * conversion IO process and universal newline decorator by default. */ #define NEED_READCONV(fptr) ((fptr)->encs.enc2 != NULL || (fptr)->encs.ecflags & ~ECONV_CRLF_NEWLINE_DECORATOR) #define WRITECONV_MASK ( \ (ECONV_DECORATOR_MASK & ~ECONV_CRLF_NEWLINE_DECORATOR)|\ ECONV_STATEFUL_DECORATOR_MASK|\ 0) #define NEED_WRITECONV(fptr) ( \ ((fptr)->encs.enc != NULL && (fptr)->encs.enc != rb_ascii8bit_encoding()) || \ ((fptr)->encs.ecflags & WRITECONV_MASK) || \ 0) #define SET_BINARY_MODE(fptr) setmode((fptr)->fd, O_BINARY) #define NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr) do {\ if (NEED_NEWLINE_DECORATOR_ON_READ(fptr)) {\ if (((fptr)->mode & FMODE_READABLE) &&\ !((fptr)->encs.ecflags & ECONV_NEWLINE_DECORATOR_MASK)) {\ setmode((fptr)->fd, O_BINARY);\ }\ else {\ setmode((fptr)->fd, O_TEXT);\ }\ }\ } while(0) #define SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags) do {\ if ((enc2) && ((ecflags) & ECONV_DEFAULT_NEWLINE_DECORATOR)) {\ (ecflags) |= ECONV_UNIVERSAL_NEWLINE_DECORATOR;\ }\ } while(0) /* * IO unread with taking care of removed '\r' in text mode. */ static void io_unread(rb_io_t *fptr) { rb_off_t r, pos; ssize_t read_size; long i; long newlines = 0; long extra_max; char *p; char *buf; rb_io_check_closed(fptr); if (fptr->rbuf.len == 0 || fptr->mode & FMODE_DUPLEX) { return; } errno = 0; if (!rb_w32_fd_is_text(fptr->fd)) { r = lseek(fptr->fd, -fptr->rbuf.len, SEEK_CUR); if (r < 0 && errno) { if (errno == ESPIPE) fptr->mode |= FMODE_DUPLEX; return; } fptr->rbuf.off = 0; fptr->rbuf.len = 0; return; } pos = lseek(fptr->fd, 0, SEEK_CUR); if (pos < 0 && errno) { if (errno == ESPIPE) fptr->mode |= FMODE_DUPLEX; return; } /* add extra offset for removed '\r' in rbuf */ extra_max = (long)(pos - fptr->rbuf.len); p = fptr->rbuf.ptr + fptr->rbuf.off; /* if the end of rbuf is '\r', rbuf doesn't have '\r' within rbuf.len */ if (*(fptr->rbuf.ptr + fptr->rbuf.capa - 1) == '\r') { newlines++; } for (i = 0; i < fptr->rbuf.len; i++) { if (*p == '\n') newlines++; if (extra_max == newlines) break; p++; } buf = ALLOC_N(char, fptr->rbuf.len + newlines); while (newlines >= 0) { r = lseek(fptr->fd, pos - fptr->rbuf.len - newlines, SEEK_SET); if (newlines == 0) break; if (r < 0) { newlines--; continue; } read_size = _read(fptr->fd, buf, fptr->rbuf.len + newlines); if (read_size < 0) { int e = errno; free(buf); rb_syserr_fail_path(e, fptr->pathv); } if (read_size == fptr->rbuf.len) { lseek(fptr->fd, r, SEEK_SET); break; } else { newlines--; } } free(buf); fptr->rbuf.off = 0; fptr->rbuf.len = 0; return; } /* * We use io_seek to back cursor position when changing mode from text to binary, * but stdin and pipe cannot seek back. Stdin and pipe read should use encoding * conversion for working properly with mode change. * * Return previous translation mode. */ static inline int set_binary_mode_with_seek_cur(rb_io_t *fptr) { if (!rb_w32_fd_is_text(fptr->fd)) return O_BINARY; if (fptr->rbuf.len == 0 || fptr->mode & FMODE_DUPLEX) { return setmode(fptr->fd, O_BINARY); } flush_before_seek(fptr); return setmode(fptr->fd, O_BINARY); } #define SET_BINARY_MODE_WITH_SEEK_CUR(fptr) set_binary_mode_with_seek_cur(fptr) #else /* Unix */ # define DEFAULT_TEXTMODE 0 #define NEED_READCONV(fptr) ((fptr)->encs.enc2 != NULL || NEED_NEWLINE_DECORATOR_ON_READ(fptr)) #define NEED_WRITECONV(fptr) ( \ ((fptr)->encs.enc != NULL && (fptr)->encs.enc != rb_ascii8bit_encoding()) || \ NEED_NEWLINE_DECORATOR_ON_WRITE(fptr) || \ ((fptr)->encs.ecflags & (ECONV_DECORATOR_MASK|ECONV_STATEFUL_DECORATOR_MASK)) || \ 0) #define SET_BINARY_MODE(fptr) (void)(fptr) #define NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr) (void)(fptr) #define SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags) ((void)(enc2), (void)(ecflags)) #define SET_BINARY_MODE_WITH_SEEK_CUR(fptr) (void)(fptr) #endif #if !defined HAVE_SHUTDOWN && !defined shutdown #define shutdown(a,b) 0 #endif #if defined(_WIN32) #define is_socket(fd, path) rb_w32_is_socket(fd) #elif !defined(S_ISSOCK) #define is_socket(fd, path) 0 #else static int is_socket(int fd, VALUE path) { struct stat sbuf; if (fstat(fd, &sbuf) < 0) rb_sys_fail_path(path); return S_ISSOCK(sbuf.st_mode); } #endif static const char closed_stream[] = "closed stream"; static void io_fd_check_closed(int fd) { if (fd < 0) { rb_thread_check_ints(); /* check for ruby_error_stream_closed */ rb_raise(rb_eIOError, closed_stream); } } void rb_eof_error(void) { rb_raise(rb_eEOFError, "end of file reached"); } VALUE rb_io_taint_check(VALUE io) { rb_check_frozen(io); return io; } void rb_io_check_initialized(rb_io_t *fptr) { if (!fptr) { rb_raise(rb_eIOError, "uninitialized stream"); } } void rb_io_check_closed(rb_io_t *fptr) { rb_io_check_initialized(fptr); io_fd_check_closed(fptr->fd); } static rb_io_t * rb_io_get_fptr(VALUE io) { rb_io_t *fptr = RFILE(io)->fptr; rb_io_check_initialized(fptr); return fptr; } VALUE rb_io_get_io(VALUE io) { return rb_convert_type_with_id(io, T_FILE, "IO", idTo_io); } VALUE rb_io_check_io(VALUE io) { return rb_check_convert_type_with_id(io, T_FILE, "IO", idTo_io); } VALUE rb_io_get_write_io(VALUE io) { VALUE write_io; write_io = rb_io_get_fptr(io)->tied_io_for_writing; if (write_io) { return write_io; } return io; } VALUE rb_io_set_write_io(VALUE io, VALUE w) { VALUE write_io; rb_io_t *fptr = rb_io_get_fptr(io); if (!RTEST(w)) { w = 0; } else { GetWriteIO(w); } write_io = fptr->tied_io_for_writing; fptr->tied_io_for_writing = w; return write_io ? write_io : Qnil; } /* * call-seq: * timeout -> duration or nil * * Get the internal timeout duration or nil if it was not set. * */ VALUE rb_io_timeout(VALUE self) { rb_io_t *fptr = rb_io_get_fptr(self); return fptr->timeout; } /* * call-seq: * timeout = duration -> duration * timeout = nil -> nil * * Sets the internal timeout to the specified duration or nil. The timeout * applies to all blocking operations where possible. * * When the operation performs longer than the timeout set, IO::TimeoutError * is raised. * * This affects the following methods (but is not limited to): #gets, #puts, * #read, #write, #wait_readable and #wait_writable. This also affects * blocking socket operations like Socket#accept and Socket#connect. * * Some operations like File#open and IO#close are not affected by the * timeout. A timeout during a write operation may leave the IO in an * inconsistent state, e.g. data was partially written. Generally speaking, a * timeout is a last ditch effort to prevent an application from hanging on * slow I/O operations, such as those that occur during a slowloris attack. */ VALUE rb_io_set_timeout(VALUE self, VALUE timeout) { // Validate it: if (RTEST(timeout)) { rb_time_interval(timeout); } rb_io_t *fptr = rb_io_get_fptr(self); fptr->timeout = timeout; return self; } /* * call-seq: * IO.try_convert(object) -> new_io or nil * * Attempts to convert +object+ into an \IO object via method +to_io+; * returns the new \IO object if successful, or +nil+ otherwise: * * IO.try_convert(STDOUT) # => #> * IO.try_convert(ARGF) # => #> * IO.try_convert('STDOUT') # => nil * */ static VALUE rb_io_s_try_convert(VALUE dummy, VALUE io) { return rb_io_check_io(io); } #if !RUBY_CRLF_ENVIRONMENT static void io_unread(rb_io_t *fptr) { rb_off_t r; rb_io_check_closed(fptr); if (fptr->rbuf.len == 0 || fptr->mode & FMODE_DUPLEX) return; /* xxx: target position may be negative if buffer is filled by ungetc */ errno = 0; r = lseek(fptr->fd, -fptr->rbuf.len, SEEK_CUR); if (r < 0 && errno) { if (errno == ESPIPE) fptr->mode |= FMODE_DUPLEX; return; } fptr->rbuf.off = 0; fptr->rbuf.len = 0; return; } #endif static rb_encoding *io_input_encoding(rb_io_t *fptr); static void io_ungetbyte(VALUE str, rb_io_t *fptr) { long len = RSTRING_LEN(str); if (fptr->rbuf.ptr == NULL) { const int min_capa = IO_RBUF_CAPA_FOR(fptr); fptr->rbuf.off = 0; fptr->rbuf.len = 0; #if SIZEOF_LONG > SIZEOF_INT if (len > INT_MAX) rb_raise(rb_eIOError, "ungetbyte failed"); #endif if (len > min_capa) fptr->rbuf.capa = (int)len; else fptr->rbuf.capa = min_capa; fptr->rbuf.ptr = ALLOC_N(char, fptr->rbuf.capa); } if (fptr->rbuf.capa < len + fptr->rbuf.len) { rb_raise(rb_eIOError, "ungetbyte failed"); } if (fptr->rbuf.off < len) { MEMMOVE(fptr->rbuf.ptr+fptr->rbuf.capa-fptr->rbuf.len, fptr->rbuf.ptr+fptr->rbuf.off, char, fptr->rbuf.len); fptr->rbuf.off = fptr->rbuf.capa-fptr->rbuf.len; } fptr->rbuf.off-=(int)len; fptr->rbuf.len+=(int)len; MEMMOVE(fptr->rbuf.ptr+fptr->rbuf.off, RSTRING_PTR(str), char, len); } static rb_io_t * flush_before_seek(rb_io_t *fptr) { if (io_fflush(fptr) < 0) rb_sys_fail_on_write(fptr); io_unread(fptr); errno = 0; return fptr; } #define io_seek(fptr, ofs, whence) (errno = 0, lseek(flush_before_seek(fptr)->fd, (ofs), (whence))) #define io_tell(fptr) lseek(flush_before_seek(fptr)->fd, 0, SEEK_CUR) #ifndef SEEK_CUR # define SEEK_SET 0 # define SEEK_CUR 1 # define SEEK_END 2 #endif void rb_io_check_char_readable(rb_io_t *fptr) { rb_io_check_closed(fptr); if (!(fptr->mode & FMODE_READABLE)) { rb_raise(rb_eIOError, "not opened for reading"); } if (fptr->wbuf.len) { if (io_fflush(fptr) < 0) rb_sys_fail_on_write(fptr); } if (fptr->tied_io_for_writing) { rb_io_t *wfptr; GetOpenFile(fptr->tied_io_for_writing, wfptr); if (io_fflush(wfptr) < 0) rb_sys_fail_on_write(wfptr); } } void rb_io_check_byte_readable(rb_io_t *fptr) { rb_io_check_char_readable(fptr); if (READ_CHAR_PENDING(fptr)) { rb_raise(rb_eIOError, "byte oriented read for character buffered IO"); } } void rb_io_check_readable(rb_io_t *fptr) { rb_io_check_byte_readable(fptr); } static rb_encoding* io_read_encoding(rb_io_t *fptr) { if (fptr->encs.enc) { return fptr->encs.enc; } return rb_default_external_encoding(); } static rb_encoding* io_input_encoding(rb_io_t *fptr) { if (fptr->encs.enc2) { return fptr->encs.enc2; } return io_read_encoding(fptr); } void rb_io_check_writable(rb_io_t *fptr) { rb_io_check_closed(fptr); if (!(fptr->mode & FMODE_WRITABLE)) { rb_raise(rb_eIOError, "not opened for writing"); } if (fptr->rbuf.len) { io_unread(fptr); } } int rb_io_read_pending(rb_io_t *fptr) { /* This function is used for bytes and chars. Confusing. */ if (READ_CHAR_PENDING(fptr)) return 1; /* should raise? */ return READ_DATA_PENDING(fptr); } void rb_io_read_check(rb_io_t *fptr) { if (!READ_DATA_PENDING(fptr)) { rb_io_wait(fptr->self, RB_INT2NUM(RUBY_IO_READABLE), RUBY_IO_TIMEOUT_DEFAULT); } return; } int rb_gc_for_fd(int err) { if (err == EMFILE || err == ENFILE || err == ENOMEM) { rb_gc(); return 1; } return 0; } /* try `expr` upto twice while it returns false and `errno` * is to GC. Each `errno`s are available as `first_errno` and * `retried_errno` respectively */ #define TRY_WITH_GC(expr) \ for (int first_errno, retried_errno = 0, retried = 0; \ (!retried && \ !(expr) && \ (!rb_gc_for_fd(first_errno = errno) || !(expr)) && \ (retried_errno = errno, 1)); \ (void)retried_errno, retried = 1) static int ruby_dup(int orig) { int fd = -1; TRY_WITH_GC((fd = rb_cloexec_dup(orig)) >= 0) { rb_syserr_fail(first_errno, 0); } rb_update_max_fd(fd); return fd; } static VALUE io_alloc(VALUE klass) { NEWOBJ_OF(io, struct RFile, klass, T_FILE, sizeof(struct RFile), 0); io->fptr = 0; return (VALUE)io; } #ifndef S_ISREG # define S_ISREG(m) (((m) & S_IFMT) == S_IFREG) #endif struct io_internal_read_struct { VALUE th; rb_io_t *fptr; int nonblock; int fd; void *buf; size_t capa; struct timeval *timeout; }; struct io_internal_write_struct { VALUE th; rb_io_t *fptr; int nonblock; int fd; const void *buf; size_t capa; struct timeval *timeout; }; #ifdef HAVE_WRITEV struct io_internal_writev_struct { VALUE th; rb_io_t *fptr; int nonblock; int fd; int iovcnt; const struct iovec *iov; struct timeval *timeout; }; #endif static int nogvl_wait_for(VALUE th, rb_io_t *fptr, short events, struct timeval *timeout); /** * Wait for the given events on the given file descriptor. * Returns -1 if an error or timeout occurred. +errno+ will be set. * Returns the event mask if an event occurred. */ static inline int io_internal_wait(VALUE thread, rb_io_t *fptr, int error, int events, struct timeval *timeout) { if (!timeout && rb_thread_mn_schedulable(thread)) { RUBY_ASSERT(errno == EWOULDBLOCK || errno == EAGAIN); return -1; } int ready = nogvl_wait_for(thread, fptr, events, timeout); if (ready > 0) { return ready; } else if (ready == 0) { errno = ETIMEDOUT; return -1; } errno = error; return -1; } static VALUE internal_read_func(void *ptr) { struct io_internal_read_struct *iis = ptr; ssize_t result; if (iis->timeout && !iis->nonblock) { if (io_internal_wait(iis->th, iis->fptr, 0, RB_WAITFD_IN, iis->timeout) == -1) { return -1; } } retry: result = read(iis->fd, iis->buf, iis->capa); if (result < 0 && !iis->nonblock) { if (io_again_p(errno)) { if (io_internal_wait(iis->th, iis->fptr, errno, RB_WAITFD_IN, iis->timeout) == -1) { return -1; } else { goto retry; } } } return result; } #if defined __APPLE__ # define do_write_retry(code) do {result = code;} while (result == -1 && errno == EPROTOTYPE) #else # define do_write_retry(code) result = code #endif static VALUE internal_write_func(void *ptr) { struct io_internal_write_struct *iis = ptr; ssize_t result; if (iis->timeout && !iis->nonblock) { if (io_internal_wait(iis->th, iis->fptr, 0, RB_WAITFD_OUT, iis->timeout) == -1) { return -1; } } retry: do_write_retry(write(iis->fd, iis->buf, iis->capa)); if (result < 0 && !iis->nonblock) { int e = errno; if (io_again_p(e)) { if (io_internal_wait(iis->th, iis->fptr, errno, RB_WAITFD_OUT, iis->timeout) == -1) { return -1; } else { goto retry; } } } return result; } #ifdef HAVE_WRITEV static VALUE internal_writev_func(void *ptr) { struct io_internal_writev_struct *iis = ptr; ssize_t result; if (iis->timeout && !iis->nonblock) { if (io_internal_wait(iis->th, iis->fptr, 0, RB_WAITFD_OUT, iis->timeout) == -1) { return -1; } } retry: do_write_retry(writev(iis->fd, iis->iov, iis->iovcnt)); if (result < 0 && !iis->nonblock) { if (io_again_p(errno)) { if (io_internal_wait(iis->th, iis->fptr, errno, RB_WAITFD_OUT, iis->timeout) == -1) { return -1; } else { goto retry; } } } return result; } #endif static ssize_t rb_io_read_memory(rb_io_t *fptr, void *buf, size_t count) { VALUE scheduler = rb_fiber_scheduler_current(); if (scheduler != Qnil) { VALUE result = rb_fiber_scheduler_io_read_memory(scheduler, fptr->self, buf, count, 0); if (!UNDEF_P(result)) { return rb_fiber_scheduler_io_result_apply(result); } } struct io_internal_read_struct iis = { .th = rb_thread_current(), .fptr = fptr, .nonblock = 0, .fd = fptr->fd, .buf = buf, .capa = count, .timeout = NULL, }; struct timeval timeout_storage; if (fptr->timeout != Qnil) { timeout_storage = rb_time_interval(fptr->timeout); iis.timeout = &timeout_storage; } return (ssize_t)rb_io_blocking_region_wait(fptr, internal_read_func, &iis, RUBY_IO_READABLE); } static ssize_t rb_io_write_memory(rb_io_t *fptr, const void *buf, size_t count) { VALUE scheduler = rb_fiber_scheduler_current(); if (scheduler != Qnil) { VALUE result = rb_fiber_scheduler_io_write_memory(scheduler, fptr->self, buf, count, 0); if (!UNDEF_P(result)) { return rb_fiber_scheduler_io_result_apply(result); } } struct io_internal_write_struct iis = { .th = rb_thread_current(), .fptr = fptr, .nonblock = 0, .fd = fptr->fd, .buf = buf, .capa = count, .timeout = NULL }; struct timeval timeout_storage; if (fptr->timeout != Qnil) { timeout_storage = rb_time_interval(fptr->timeout); iis.timeout = &timeout_storage; } return (ssize_t)rb_io_blocking_region_wait(fptr, internal_write_func, &iis, RUBY_IO_WRITABLE); } #ifdef HAVE_WRITEV static ssize_t rb_writev_internal(rb_io_t *fptr, const struct iovec *iov, int iovcnt) { if (!iovcnt) return 0; VALUE scheduler = rb_fiber_scheduler_current(); if (scheduler != Qnil) { // This path assumes at least one `iov`: VALUE result = rb_fiber_scheduler_io_write_memory(scheduler, fptr->self, iov[0].iov_base, iov[0].iov_len, 0); if (!UNDEF_P(result)) { return rb_fiber_scheduler_io_result_apply(result); } } struct io_internal_writev_struct iis = { .th = rb_thread_current(), .fptr = fptr, .nonblock = 0, .fd = fptr->fd, .iov = iov, .iovcnt = iovcnt, .timeout = NULL }; struct timeval timeout_storage; if (fptr->timeout != Qnil) { timeout_storage = rb_time_interval(fptr->timeout); iis.timeout = &timeout_storage; } return (ssize_t)rb_io_blocking_region_wait(fptr, internal_writev_func, &iis, RUBY_IO_WRITABLE); } #endif static VALUE io_flush_buffer_sync(void *arg) { rb_io_t *fptr = arg; long l = fptr->wbuf.len; ssize_t r = write(fptr->fd, fptr->wbuf.ptr+fptr->wbuf.off, (size_t)l); if (fptr->wbuf.len <= r) { fptr->wbuf.off = 0; fptr->wbuf.len = 0; return 0; } if (0 <= r) { fptr->wbuf.off += (int)r; fptr->wbuf.len -= (int)r; errno = EAGAIN; } return (VALUE)-1; } static VALUE io_flush_buffer_async(VALUE arg) { rb_io_t *fptr = (rb_io_t *)arg; return rb_io_blocking_region_wait(fptr, io_flush_buffer_sync, fptr, RUBY_IO_WRITABLE); } static inline int io_flush_buffer(rb_io_t *fptr) { if (!NIL_P(fptr->write_lock) && rb_mutex_owned_p(fptr->write_lock)) { return (int)io_flush_buffer_async((VALUE)fptr); } else { return (int)rb_mutex_synchronize(fptr->write_lock, io_flush_buffer_async, (VALUE)fptr); } } static int io_fflush(rb_io_t *fptr) { rb_io_check_closed(fptr); if (fptr->wbuf.len == 0) return 0; while (fptr->wbuf.len > 0 && io_flush_buffer(fptr) != 0) { if (!rb_io_maybe_wait_writable(errno, fptr->self, RUBY_IO_TIMEOUT_DEFAULT)) return -1; rb_io_check_closed(fptr); } return 0; } VALUE rb_io_wait(VALUE io, VALUE events, VALUE timeout) { VALUE scheduler = rb_fiber_scheduler_current(); if (scheduler != Qnil) { return rb_fiber_scheduler_io_wait(scheduler, io, events, timeout); } rb_io_t * fptr = NULL; RB_IO_POINTER(io, fptr); struct timeval tv_storage; struct timeval *tv = NULL; if (NIL_OR_UNDEF_P(timeout)) { timeout = fptr->timeout; } if (timeout != Qnil) { tv_storage = rb_time_interval(timeout); tv = &tv_storage; } int ready = rb_thread_wait_for_single_fd(fptr->fd, RB_NUM2INT(events), tv); if (ready < 0) { rb_sys_fail(0); } // Not sure if this is necessary: rb_io_check_closed(fptr); if (ready) { return RB_INT2NUM(ready); } else { return Qfalse; } } static VALUE io_from_fd(int fd) { return prep_io(fd, FMODE_EXTERNAL, rb_cIO, NULL); } static int io_wait_for_single_fd(int fd, int events, struct timeval *timeout) { VALUE scheduler = rb_fiber_scheduler_current(); if (scheduler != Qnil) { return RTEST( rb_fiber_scheduler_io_wait(scheduler, io_from_fd(fd), RB_INT2NUM(events), rb_fiber_scheduler_make_timeout(timeout)) ); } return rb_thread_wait_for_single_fd(fd, events, timeout); } int rb_io_wait_readable(int f) { io_fd_check_closed(f); VALUE scheduler = rb_fiber_scheduler_current(); switch (errno) { case EINTR: #if defined(ERESTART) case ERESTART: #endif rb_thread_check_ints(); return TRUE; case EAGAIN: #if EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif if (scheduler != Qnil) { return RTEST( rb_fiber_scheduler_io_wait_readable(scheduler, io_from_fd(f)) ); } else { io_wait_for_single_fd(f, RUBY_IO_READABLE, NULL); } return TRUE; default: return FALSE; } } int rb_io_wait_writable(int f) { io_fd_check_closed(f); VALUE scheduler = rb_fiber_scheduler_current(); switch (errno) { case EINTR: #if defined(ERESTART) case ERESTART: #endif /* * In old Linux, several special files under /proc and /sys don't handle * select properly. Thus we need avoid to call if don't use O_NONBLOCK. * Otherwise, we face nasty hang up. Sigh. * e.g. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=31b07093c44a7a442394d44423e21d783f5523b8 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=31b07093c44a7a442394d44423e21d783f5523b8 * In EINTR case, we only need to call RUBY_VM_CHECK_INTS_BLOCKING(). * Then rb_thread_check_ints() is enough. */ rb_thread_check_ints(); return TRUE; case EAGAIN: #if EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif if (scheduler != Qnil) { return RTEST( rb_fiber_scheduler_io_wait_writable(scheduler, io_from_fd(f)) ); } else { io_wait_for_single_fd(f, RUBY_IO_WRITABLE, NULL); } return TRUE; default: return FALSE; } } int rb_wait_for_single_fd(int fd, int events, struct timeval *timeout) { return io_wait_for_single_fd(fd, events, timeout); } int rb_thread_wait_fd(int fd) { return rb_wait_for_single_fd(fd, RUBY_IO_READABLE, NULL); } int rb_thread_fd_writable(int fd) { return rb_wait_for_single_fd(fd, RUBY_IO_WRITABLE, NULL); } VALUE rb_io_maybe_wait(int error, VALUE io, VALUE events, VALUE timeout) { // fptr->fd can be set to -1 at any time by another thread when the GVL is // released. Many code, e.g. `io_bufread` didn't check this correctly and // instead relies on `read(-1) -> -1` which causes this code path. We then // check here whether the IO was in fact closed. Probably it's better to // check that `fptr->fd != -1` before using it in syscall. rb_io_check_closed(RFILE(io)->fptr); switch (error) { // In old Linux, several special files under /proc and /sys don't handle // select properly. Thus we need avoid to call if don't use O_NONBLOCK. // Otherwise, we face nasty hang up. Sigh. // e.g. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=31b07093c44a7a442394d44423e21d783f5523b8 // https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=31b07093c44a7a442394d44423e21d783f5523b8 // In EINTR case, we only need to call RUBY_VM_CHECK_INTS_BLOCKING(). // Then rb_thread_check_ints() is enough. case EINTR: #if defined(ERESTART) case ERESTART: #endif // We might have pending interrupts since the previous syscall was interrupted: rb_thread_check_ints(); // The operation was interrupted, so retry it immediately: return events; case EAGAIN: #if EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif // The operation would block, so wait for the specified events: return rb_io_wait(io, events, timeout); default: // Non-specific error, no event is ready: return Qnil; } } int rb_io_maybe_wait_readable(int error, VALUE io, VALUE timeout) { VALUE result = rb_io_maybe_wait(error, io, RB_INT2NUM(RUBY_IO_READABLE), timeout); if (RTEST(result)) { return RB_NUM2INT(result); } else if (result == RUBY_Qfalse) { rb_raise(rb_eIOTimeoutError, "Timed out waiting for IO to become readable!"); } return 0; } int rb_io_maybe_wait_writable(int error, VALUE io, VALUE timeout) { VALUE result = rb_io_maybe_wait(error, io, RB_INT2NUM(RUBY_IO_WRITABLE), timeout); if (RTEST(result)) { return RB_NUM2INT(result); } else if (result == RUBY_Qfalse) { rb_raise(rb_eIOTimeoutError, "Timed out waiting for IO to become writable!"); } return 0; } static void make_writeconv(rb_io_t *fptr) { if (!fptr->writeconv_initialized) { const char *senc, *denc; rb_encoding *enc; int ecflags; VALUE ecopts; fptr->writeconv_initialized = 1; ecflags = fptr->encs.ecflags & ~ECONV_NEWLINE_DECORATOR_READ_MASK; ecopts = fptr->encs.ecopts; if (!fptr->encs.enc || (rb_is_ascii8bit_enc(fptr->encs.enc) && !fptr->encs.enc2)) { /* no encoding conversion */ fptr->writeconv_pre_ecflags = 0; fptr->writeconv_pre_ecopts = Qnil; fptr->writeconv = rb_econv_open_opts("", "", ecflags, ecopts); if (!fptr->writeconv) rb_exc_raise(rb_econv_open_exc("", "", ecflags)); fptr->writeconv_asciicompat = Qnil; } else { enc = fptr->encs.enc2 ? fptr->encs.enc2 : fptr->encs.enc; senc = rb_econv_asciicompat_encoding(rb_enc_name(enc)); if (!senc && !(fptr->encs.ecflags & ECONV_STATEFUL_DECORATOR_MASK)) { /* single conversion */ fptr->writeconv_pre_ecflags = ecflags; fptr->writeconv_pre_ecopts = ecopts; fptr->writeconv = NULL; fptr->writeconv_asciicompat = Qnil; } else { /* double conversion */ fptr->writeconv_pre_ecflags = ecflags & ~ECONV_STATEFUL_DECORATOR_MASK; fptr->writeconv_pre_ecopts = ecopts; if (senc) { denc = rb_enc_name(enc); fptr->writeconv_asciicompat = rb_str_new2(senc); } else { senc = denc = ""; fptr->writeconv_asciicompat = rb_str_new2(rb_enc_name(enc)); } ecflags = fptr->encs.ecflags & (ECONV_ERROR_HANDLER_MASK|ECONV_STATEFUL_DECORATOR_MASK); ecopts = fptr->encs.ecopts; fptr->writeconv = rb_econv_open_opts(senc, denc, ecflags, ecopts); if (!fptr->writeconv) rb_exc_raise(rb_econv_open_exc(senc, denc, ecflags)); } } } } /* writing functions */ struct binwrite_arg { rb_io_t *fptr; const char *ptr; long length; }; struct write_arg { VALUE io; VALUE str; int nosync; }; #ifdef HAVE_WRITEV static ssize_t io_binwrite_string_internal(rb_io_t *fptr, const char *ptr, long length) { if (fptr->wbuf.len) { struct iovec iov[2]; iov[0].iov_base = fptr->wbuf.ptr+fptr->wbuf.off; iov[0].iov_len = fptr->wbuf.len; iov[1].iov_base = (void*)ptr; iov[1].iov_len = length; ssize_t result = rb_writev_internal(fptr, iov, 2); if (result < 0) return result; if (result >= fptr->wbuf.len) { // We wrote more than the internal buffer: result -= fptr->wbuf.len; fptr->wbuf.off = 0; fptr->wbuf.len = 0; } else { // We only wrote less data than the internal buffer: fptr->wbuf.off += (int)result; fptr->wbuf.len -= (int)result; result = 0; } return result; } else { return rb_io_write_memory(fptr, ptr, length); } } #else static ssize_t io_binwrite_string_internal(rb_io_t *fptr, const char *ptr, long length) { long remaining = length; if (fptr->wbuf.len) { if (fptr->wbuf.len+length <= fptr->wbuf.capa) { if (fptr->wbuf.capa < fptr->wbuf.off+fptr->wbuf.len+length) { MEMMOVE(fptr->wbuf.ptr, fptr->wbuf.ptr+fptr->wbuf.off, char, fptr->wbuf.len); fptr->wbuf.off = 0; } MEMMOVE(fptr->wbuf.ptr+fptr->wbuf.off+fptr->wbuf.len, ptr, char, length); fptr->wbuf.len += (int)length; // We copied the entire incoming data to the internal buffer: remaining = 0; } // Flush the internal buffer: if (io_fflush(fptr) < 0) { return -1; } // If all the data was buffered, we are done: if (remaining == 0) { return length; } } // Otherwise, we should write the data directly: return rb_io_write_memory(fptr, ptr, length); } #endif static VALUE io_binwrite_string(VALUE arg) { struct binwrite_arg *p = (struct binwrite_arg *)arg; const char *ptr = p->ptr; size_t remaining = p->length; while (remaining) { // Write as much as possible: ssize_t result = io_binwrite_string_internal(p->fptr, ptr, remaining); if (result == 0) { // If only the internal buffer is written, result will be zero [bytes of given data written]. This means we // should try again immediately. } else if (result > 0) { if ((size_t)result == remaining) break; ptr += result; remaining -= result; } // Wait for it to become writable: else if (rb_io_maybe_wait_writable(errno, p->fptr->self, RUBY_IO_TIMEOUT_DEFAULT)) { rb_io_check_closed(p->fptr); } else { // The error was unrelated to waiting for it to become writable, so we fail: return -1; } } return p->length; } inline static void io_allocate_write_buffer(rb_io_t *fptr, int sync) { if (fptr->wbuf.ptr == NULL && !(sync && (fptr->mode & FMODE_SYNC))) { fptr->wbuf.off = 0; fptr->wbuf.len = 0; fptr->wbuf.capa = IO_WBUF_CAPA_MIN; fptr->wbuf.ptr = ALLOC_N(char, fptr->wbuf.capa); } if (NIL_P(fptr->write_lock)) { fptr->write_lock = rb_mutex_new(); rb_mutex_allow_trap(fptr->write_lock, 1); } } static inline int io_binwrite_requires_flush_write(rb_io_t *fptr, long len, int nosync) { // If the requested operation was synchronous and the output mode is synchronous or a TTY: if (!nosync && (fptr->mode & (FMODE_SYNC|FMODE_TTY))) return 1; // If the amount of data we want to write exceeds the internal buffer: if (fptr->wbuf.ptr && fptr->wbuf.capa <= fptr->wbuf.len + len) return 1; // Otherwise, we can append to the internal buffer: return 0; } static long io_binwrite(const char *ptr, long len, rb_io_t *fptr, int nosync) { if (len <= 0) return len; // Don't write anything if current thread has a pending interrupt: rb_thread_check_ints(); io_allocate_write_buffer(fptr, !nosync); if (io_binwrite_requires_flush_write(fptr, len, nosync)) { struct binwrite_arg arg; arg.fptr = fptr; arg.ptr = ptr; arg.length = len; if (!NIL_P(fptr->write_lock)) { return rb_mutex_synchronize(fptr->write_lock, io_binwrite_string, (VALUE)&arg); } else { return io_binwrite_string((VALUE)&arg); } } else { if (fptr->wbuf.off) { if (fptr->wbuf.len) MEMMOVE(fptr->wbuf.ptr, fptr->wbuf.ptr+fptr->wbuf.off, char, fptr->wbuf.len); fptr->wbuf.off = 0; } MEMMOVE(fptr->wbuf.ptr+fptr->wbuf.off+fptr->wbuf.len, ptr, char, len); fptr->wbuf.len += (int)len; return len; } } # define MODE_BTMODE(a,b,c) ((fmode & FMODE_BINMODE) ? (b) : \ (fmode & FMODE_TEXTMODE) ? (c) : (a)) #define MODE_BTXMODE(a, b, c, d, e, f) ((fmode & FMODE_EXCL) ? \ MODE_BTMODE(d, e, f) : \ MODE_BTMODE(a, b, c)) static VALUE do_writeconv(VALUE str, rb_io_t *fptr, int *converted) { if (NEED_WRITECONV(fptr)) { VALUE common_encoding = Qnil; SET_BINARY_MODE(fptr); make_writeconv(fptr); if (fptr->writeconv) { #define fmode (fptr->mode) if (!NIL_P(fptr->writeconv_asciicompat)) common_encoding = fptr->writeconv_asciicompat; else if (MODE_BTMODE(DEFAULT_TEXTMODE,0,1) && !rb_enc_asciicompat(rb_enc_get(str))) { rb_raise(rb_eArgError, "ASCII incompatible string written for text mode IO without encoding conversion: %s", rb_enc_name(rb_enc_get(str))); } #undef fmode } else { if (fptr->encs.enc2) common_encoding = rb_enc_from_encoding(fptr->encs.enc2); else if (fptr->encs.enc != rb_ascii8bit_encoding()) common_encoding = rb_enc_from_encoding(fptr->encs.enc); } if (!NIL_P(common_encoding)) { str = rb_str_encode(str, common_encoding, fptr->writeconv_pre_ecflags, fptr->writeconv_pre_ecopts); *converted = 1; } if (fptr->writeconv) { str = rb_econv_str_convert(fptr->writeconv, str, ECONV_PARTIAL_INPUT); *converted = 1; } } #if RUBY_CRLF_ENVIRONMENT #define fmode (fptr->mode) else if (MODE_BTMODE(DEFAULT_TEXTMODE,0,1)) { if ((fptr->mode & FMODE_READABLE) && !(fptr->encs.ecflags & ECONV_NEWLINE_DECORATOR_MASK)) { setmode(fptr->fd, O_BINARY); } else { setmode(fptr->fd, O_TEXT); } if (!rb_enc_asciicompat(rb_enc_get(str))) { rb_raise(rb_eArgError, "ASCII incompatible string written for text mode IO without encoding conversion: %s", rb_enc_name(rb_enc_get(str))); } } #undef fmode #endif return str; } static long io_fwrite(VALUE str, rb_io_t *fptr, int nosync) { int converted = 0; VALUE tmp; long n, len; const char *ptr; #ifdef _WIN32 if (fptr->mode & FMODE_TTY) { long len = rb_w32_write_console(str, fptr->fd); if (len > 0) return len; } #endif str = do_writeconv(str, fptr, &converted); if (converted) OBJ_FREEZE(str); tmp = rb_str_tmp_frozen_no_embed_acquire(str); RSTRING_GETMEM(tmp, ptr, len); n = io_binwrite(ptr, len, fptr, nosync); rb_str_tmp_frozen_release(str, tmp); return n; } ssize_t rb_io_bufwrite(VALUE io, const void *buf, size_t size) { rb_io_t *fptr; GetOpenFile(io, fptr); rb_io_check_writable(fptr); return (ssize_t)io_binwrite(buf, (long)size, fptr, 0); } static VALUE io_write(VALUE io, VALUE str, int nosync) { rb_io_t *fptr; long n; VALUE tmp; io = GetWriteIO(io); str = rb_obj_as_string(str); tmp = rb_io_check_io(io); if (NIL_P(tmp)) { /* port is not IO, call write method for it. */ return rb_funcall(io, id_write, 1, str); } io = tmp; if (RSTRING_LEN(str) == 0) return INT2FIX(0); GetOpenFile(io, fptr); rb_io_check_writable(fptr); n = io_fwrite(str, fptr, nosync); if (n < 0L) rb_sys_fail_on_write(fptr); return LONG2FIX(n); } #ifdef HAVE_WRITEV struct binwritev_arg { rb_io_t *fptr; struct iovec *iov; int iovcnt; size_t total; }; static VALUE io_binwritev_internal(VALUE arg) { struct binwritev_arg *p = (struct binwritev_arg *)arg; size_t remaining = p->total; size_t offset = 0; rb_io_t *fptr = p->fptr; struct iovec *iov = p->iov; int iovcnt = p->iovcnt; while (remaining) { long result = rb_writev_internal(fptr, iov, iovcnt); if (result >= 0) { offset += result; if (fptr->wbuf.ptr && fptr->wbuf.len) { if (offset < (size_t)fptr->wbuf.len) { fptr->wbuf.off += result; fptr->wbuf.len -= result; } else { offset -= (size_t)fptr->wbuf.len; fptr->wbuf.off = 0; fptr->wbuf.len = 0; } } if (offset == p->total) { return p->total; } while (result >= (ssize_t)iov->iov_len) { /* iovcnt > 0 */ result -= iov->iov_len; iov->iov_len = 0; iov++; if (!--iovcnt) { // I don't believe this code path can ever occur. return offset; } } iov->iov_base = (char *)iov->iov_base + result; iov->iov_len -= result; } else if (rb_io_maybe_wait_writable(errno, fptr->self, RUBY_IO_TIMEOUT_DEFAULT)) { rb_io_check_closed(fptr); } else { return -1; } } return offset; } static long io_binwritev(struct iovec *iov, int iovcnt, rb_io_t *fptr) { // Don't write anything if current thread has a pending interrupt: rb_thread_check_ints(); if (iovcnt == 0) return 0; size_t total = 0; for (int i = 1; i < iovcnt; i++) total += iov[i].iov_len; io_allocate_write_buffer(fptr, 1); if (fptr->wbuf.ptr && fptr->wbuf.len) { // The end of the buffered data: size_t offset = fptr->wbuf.off + fptr->wbuf.len; if (offset + total <= (size_t)fptr->wbuf.capa) { for (int i = 1; i < iovcnt; i++) { memcpy(fptr->wbuf.ptr+offset, iov[i].iov_base, iov[i].iov_len); offset += iov[i].iov_len; } fptr->wbuf.len += total; return total; } else { iov[0].iov_base = fptr->wbuf.ptr + fptr->wbuf.off; iov[0].iov_len = fptr->wbuf.len; } } else { // The first iov is reserved for the internal buffer, and it's empty. iov++; if (!--iovcnt) { // If there are no other io vectors we are done. return 0; } } struct binwritev_arg arg; arg.fptr = fptr; arg.iov = iov; arg.iovcnt = iovcnt; arg.total = total; if (!NIL_P(fptr->write_lock)) { return rb_mutex_synchronize(fptr->write_lock, io_binwritev_internal, (VALUE)&arg); } else { return io_binwritev_internal((VALUE)&arg); } } static long io_fwritev(int argc, const VALUE *argv, rb_io_t *fptr) { int i, converted, iovcnt = argc + 1; long n; VALUE v1, v2, str, tmp, *tmp_array; struct iovec *iov; iov = ALLOCV_N(struct iovec, v1, iovcnt); tmp_array = ALLOCV_N(VALUE, v2, argc); for (i = 0; i < argc; i++) { str = rb_obj_as_string(argv[i]); converted = 0; str = do_writeconv(str, fptr, &converted); if (converted) OBJ_FREEZE(str); tmp = rb_str_tmp_frozen_acquire(str); tmp_array[i] = tmp; /* iov[0] is reserved for buffer of fptr */ iov[i+1].iov_base = RSTRING_PTR(tmp); iov[i+1].iov_len = RSTRING_LEN(tmp); } n = io_binwritev(iov, iovcnt, fptr); if (v1) ALLOCV_END(v1); for (i = 0; i < argc; i++) { rb_str_tmp_frozen_release(argv[i], tmp_array[i]); } if (v2) ALLOCV_END(v2); return n; } static int iovcnt_ok(int iovcnt) { #ifdef IOV_MAX return iovcnt < IOV_MAX; #else /* GNU/Hurd has writev, but no IOV_MAX */ return 1; #endif } #endif /* HAVE_WRITEV */ static VALUE io_writev(int argc, const VALUE *argv, VALUE io) { rb_io_t *fptr; long n; VALUE tmp, total = INT2FIX(0); int i, cnt = 1; io = GetWriteIO(io); tmp = rb_io_check_io(io); if (NIL_P(tmp)) { /* port is not IO, call write method for it. */ return rb_funcallv(io, id_write, argc, argv); } io = tmp; GetOpenFile(io, fptr); rb_io_check_writable(fptr); for (i = 0; i < argc; i += cnt) { #ifdef HAVE_WRITEV if ((fptr->mode & (FMODE_SYNC|FMODE_TTY)) && iovcnt_ok(cnt = argc - i)) { n = io_fwritev(cnt, &argv[i], fptr); } else #endif { cnt = 1; /* sync at last item */ n = io_fwrite(rb_obj_as_string(argv[i]), fptr, (i < argc-1)); } if (n < 0L) rb_sys_fail_on_write(fptr); total = rb_fix_plus(LONG2FIX(n), total); } return total; } /* * call-seq: * write(*objects) -> integer * * Writes each of the given +objects+ to +self+, * which must be opened for writing * (see {Access Modes}[rdoc-ref:File@Access+Modes]); * returns the total number bytes written; * each of +objects+ that is not a string is converted via method +to_s+: * * $stdout.write('Hello', ', ', 'World!', "\n") # => 14 * $stdout.write('foo', :bar, 2, "\n") # => 8 * * Output: * * Hello, World! * foobar2 * * Related: IO#read. */ static VALUE io_write_m(int argc, VALUE *argv, VALUE io) { if (argc != 1) { return io_writev(argc, argv, io); } else { VALUE str = argv[0]; return io_write(io, str, 0); } } VALUE rb_io_write(VALUE io, VALUE str) { return rb_funcallv(io, id_write, 1, &str); } static VALUE rb_io_writev(VALUE io, int argc, const VALUE *argv) { if (argc > 1 && rb_obj_method_arity(io, id_write) == 1) { if (io != rb_ractor_stderr() && RTEST(ruby_verbose)) { VALUE klass = CLASS_OF(io); char sep = RCLASS_SINGLETON_P(klass) ? (klass = io, '.') : '#'; rb_category_warning( RB_WARN_CATEGORY_DEPRECATED, "%+"PRIsVALUE"%c""write is outdated interface" " which accepts just one argument", klass, sep ); } do rb_io_write(io, *argv++); while (--argc); return Qnil; } return rb_funcallv(io, id_write, argc, argv); } /* * call-seq: * self << object -> self * * Writes the given +object+ to +self+, * which must be opened for writing (see {Access Modes}[rdoc-ref:File@Access+Modes]); * returns +self+; * if +object+ is not a string, it is converted via method +to_s+: * * $stdout << 'Hello' << ', ' << 'World!' << "\n" * $stdout << 'foo' << :bar << 2 << "\n" * * Output: * * Hello, World! * foobar2 * */ VALUE rb_io_addstr(VALUE io, VALUE str) { rb_io_write(io, str); return io; } #ifdef HAVE_FSYNC static VALUE nogvl_fsync(void *ptr) { rb_io_t *fptr = ptr; #ifdef _WIN32 if (GetFileType((HANDLE)rb_w32_get_osfhandle(fptr->fd)) != FILE_TYPE_DISK) return 0; #endif return (VALUE)fsync(fptr->fd); } #endif VALUE rb_io_flush_raw(VALUE io, int sync) { rb_io_t *fptr; if (!RB_TYPE_P(io, T_FILE)) { return rb_funcall(io, id_flush, 0); } io = GetWriteIO(io); GetOpenFile(io, fptr); if (fptr->mode & FMODE_WRITABLE) { if (io_fflush(fptr) < 0) rb_sys_fail_on_write(fptr); } if (fptr->mode & FMODE_READABLE) { io_unread(fptr); } return io; } /* * call-seq: * flush -> self * * Flushes data buffered in +self+ to the operating system * (but does not necessarily flush data buffered in the operating system): * * $stdout.print 'no newline' # Not necessarily flushed. * $stdout.flush # Flushed. * */ VALUE rb_io_flush(VALUE io) { return rb_io_flush_raw(io, 1); } /* * call-seq: * tell -> integer * * Returns the current position (in bytes) in +self+ * (see {Position}[rdoc-ref:IO@Position]): * * f = File.open('t.txt') * f.tell # => 0 * f.gets # => "First line\n" * f.tell # => 12 * f.close * * Related: IO#pos=, IO#seek. */ static VALUE rb_io_tell(VALUE io) { rb_io_t *fptr; rb_off_t pos; GetOpenFile(io, fptr); pos = io_tell(fptr); if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv); pos -= fptr->rbuf.len; return OFFT2NUM(pos); } static VALUE rb_io_seek(VALUE io, VALUE offset, int whence) { rb_io_t *fptr; rb_off_t pos; pos = NUM2OFFT(offset); GetOpenFile(io, fptr); pos = io_seek(fptr, pos, whence); if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv); return INT2FIX(0); } static int interpret_seek_whence(VALUE vwhence) { if (vwhence == sym_SET) return SEEK_SET; if (vwhence == sym_CUR) return SEEK_CUR; if (vwhence == sym_END) return SEEK_END; #ifdef SEEK_DATA if (vwhence == sym_DATA) return SEEK_DATA; #endif #ifdef SEEK_HOLE if (vwhence == sym_HOLE) return SEEK_HOLE; #endif return NUM2INT(vwhence); } /* * call-seq: * seek(offset, whence = IO::SEEK_SET) -> 0 * * Seeks to the position given by integer +offset+ * (see {Position}[rdoc-ref:IO@Position]) * and constant +whence+, which is one of: * * - +:CUR+ or IO::SEEK_CUR: * Repositions the stream to its current position plus the given +offset+: * * f = File.open('t.txt') * f.tell # => 0 * f.seek(20, :CUR) # => 0 * f.tell # => 20 * f.seek(-10, :CUR) # => 0 * f.tell # => 10 * f.close * * - +:END+ or IO::SEEK_END: * Repositions the stream to its end plus the given +offset+: * * f = File.open('t.txt') * f.tell # => 0 * f.seek(0, :END) # => 0 # Repositions to stream end. * f.tell # => 52 * f.seek(-20, :END) # => 0 * f.tell # => 32 * f.seek(-40, :END) # => 0 * f.tell # => 12 * f.close * * - +:SET+ or IO:SEEK_SET: * Repositions the stream to the given +offset+: * * f = File.open('t.txt') * f.tell # => 0 * f.seek(20, :SET) # => 0 * f.tell # => 20 * f.seek(40, :SET) # => 0 * f.tell # => 40 * f.close * * Related: IO#pos=, IO#tell. * */ static VALUE rb_io_seek_m(int argc, VALUE *argv, VALUE io) { VALUE offset, ptrname; int whence = SEEK_SET; if (rb_scan_args(argc, argv, "11", &offset, &ptrname) == 2) { whence = interpret_seek_whence(ptrname); } return rb_io_seek(io, offset, whence); } /* * call-seq: * pos = new_position -> new_position * * Seeks to the given +new_position+ (in bytes); * see {Position}[rdoc-ref:IO@Position]: * * f = File.open('t.txt') * f.tell # => 0 * f.pos = 20 # => 20 * f.tell # => 20 * f.close * * Related: IO#seek, IO#tell. * */ static VALUE rb_io_set_pos(VALUE io, VALUE offset) { rb_io_t *fptr; rb_off_t pos; pos = NUM2OFFT(offset); GetOpenFile(io, fptr); pos = io_seek(fptr, pos, SEEK_SET); if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv); return OFFT2NUM(pos); } static void clear_readconv(rb_io_t *fptr); /* * call-seq: * rewind -> 0 * * Repositions the stream to its beginning, * setting both the position and the line number to zero; * see {Position}[rdoc-ref:IO@Position] * and {Line Number}[rdoc-ref:IO@Line+Number]: * * f = File.open('t.txt') * f.tell # => 0 * f.lineno # => 0 * f.gets # => "First line\n" * f.tell # => 12 * f.lineno # => 1 * f.rewind # => 0 * f.tell # => 0 * f.lineno # => 0 * f.close * * Note that this method cannot be used with streams such as pipes, ttys, and sockets. * */ static VALUE rb_io_rewind(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); if (io_seek(fptr, 0L, 0) < 0 && errno) rb_sys_fail_path(fptr->pathv); if (io == ARGF.current_file) { ARGF.lineno -= fptr->lineno; } fptr->lineno = 0; if (fptr->readconv) { clear_readconv(fptr); } return INT2FIX(0); } static int fptr_wait_readable(rb_io_t *fptr) { int result = rb_io_maybe_wait_readable(errno, fptr->self, RUBY_IO_TIMEOUT_DEFAULT); if (result) rb_io_check_closed(fptr); return result; } static int io_fillbuf(rb_io_t *fptr) { ssize_t r; if (fptr->rbuf.ptr == NULL) { fptr->rbuf.off = 0; fptr->rbuf.len = 0; fptr->rbuf.capa = IO_RBUF_CAPA_FOR(fptr); fptr->rbuf.ptr = ALLOC_N(char, fptr->rbuf.capa); #ifdef _WIN32 fptr->rbuf.capa--; #endif } if (fptr->rbuf.len == 0) { retry: r = rb_io_read_memory(fptr, fptr->rbuf.ptr, fptr->rbuf.capa); if (r < 0) { if (fptr_wait_readable(fptr)) goto retry; int e = errno; VALUE path = rb_sprintf("fd:%d ", fptr->fd); if (!NIL_P(fptr->pathv)) { rb_str_append(path, fptr->pathv); } rb_syserr_fail_path(e, path); } if (r > 0) rb_io_check_closed(fptr); fptr->rbuf.off = 0; fptr->rbuf.len = (int)r; /* r should be <= rbuf_capa */ if (r == 0) return -1; /* EOF */ } return 0; } /* * call-seq: * eof -> true or false * * Returns +true+ if the stream is positioned at its end, +false+ otherwise; * see {Position}[rdoc-ref:IO@Position]: * * f = File.open('t.txt') * f.eof # => false * f.seek(0, :END) # => 0 * f.eof # => true * f.close * * Raises an exception unless the stream is opened for reading; * see {Mode}[rdoc-ref:File@Access+Modes]. * * If +self+ is a stream such as pipe or socket, this method * blocks until the other end sends some data or closes it: * * r, w = IO.pipe * Thread.new { sleep 1; w.close } * r.eof? # => true # After 1-second wait. * * r, w = IO.pipe * Thread.new { sleep 1; w.puts "a" } * r.eof? # => false # After 1-second wait. * * r, w = IO.pipe * r.eof? # blocks forever * * Note that this method reads data to the input byte buffer. So * IO#sysread may not behave as you intend with IO#eof?, unless you * call IO#rewind first (which is not available for some streams). */ VALUE rb_io_eof(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); rb_io_check_char_readable(fptr); if (READ_CHAR_PENDING(fptr)) return Qfalse; if (READ_DATA_PENDING(fptr)) return Qfalse; READ_CHECK(fptr); #if RUBY_CRLF_ENVIRONMENT if (!NEED_READCONV(fptr) && NEED_NEWLINE_DECORATOR_ON_READ(fptr)) { return RBOOL(eof(fptr->fd)); } #endif return RBOOL(io_fillbuf(fptr) < 0); } /* * call-seq: * sync -> true or false * * Returns the current sync mode of the stream. * When sync mode is true, all output is immediately flushed to the underlying * operating system and is not buffered by Ruby internally. See also #fsync. * * f = File.open('t.tmp', 'w') * f.sync # => false * f.sync = true * f.sync # => true * f.close * */ static VALUE rb_io_sync(VALUE io) { rb_io_t *fptr; io = GetWriteIO(io); GetOpenFile(io, fptr); return RBOOL(fptr->mode & FMODE_SYNC); } #ifdef HAVE_FSYNC /* * call-seq: * sync = boolean -> boolean * * Sets the _sync_ _mode_ for the stream to the given value; * returns the given value. * * Values for the sync mode: * * - +true+: All output is immediately flushed to the * underlying operating system and is not buffered internally. * - +false+: Output may be buffered internally. * * Example; * * f = File.open('t.tmp', 'w') * f.sync # => false * f.sync = true * f.sync # => true * f.close * * Related: IO#fsync. * */ static VALUE rb_io_set_sync(VALUE io, VALUE sync) { rb_io_t *fptr; io = GetWriteIO(io); GetOpenFile(io, fptr); if (RTEST(sync)) { fptr->mode |= FMODE_SYNC; } else { fptr->mode &= ~FMODE_SYNC; } return sync; } /* * call-seq: * fsync -> 0 * * Immediately writes to disk all data buffered in the stream, * via the operating system's fsync(2). * Note this difference: * * - IO#sync=: Ensures that data is flushed from the stream's internal buffers, * but does not guarantee that the operating system actually writes the data to disk. * - IO#fsync: Ensures both that data is flushed from internal buffers, * and that data is written to disk. * * Raises an exception if the operating system does not support fsync(2). * */ static VALUE rb_io_fsync(VALUE io) { rb_io_t *fptr; io = GetWriteIO(io); GetOpenFile(io, fptr); if (io_fflush(fptr) < 0) rb_sys_fail_on_write(fptr); if ((int)rb_io_blocking_region(fptr, nogvl_fsync, fptr)) rb_sys_fail_path(fptr->pathv); return INT2FIX(0); } #else # define rb_io_fsync rb_f_notimplement # define rb_io_sync rb_f_notimplement static VALUE rb_io_set_sync(VALUE io, VALUE sync) { rb_notimplement(); UNREACHABLE; } #endif #ifdef HAVE_FDATASYNC static VALUE nogvl_fdatasync(void *ptr) { rb_io_t *fptr = ptr; #ifdef _WIN32 if (GetFileType((HANDLE)rb_w32_get_osfhandle(fptr->fd)) != FILE_TYPE_DISK) return 0; #endif return (VALUE)fdatasync(fptr->fd); } /* * call-seq: * fdatasync -> 0 * * Immediately writes to disk all data buffered in the stream, * via the operating system's: fdatasync(2), if supported, * otherwise via fsync(2), if supported; * otherwise raises an exception. * */ static VALUE rb_io_fdatasync(VALUE io) { rb_io_t *fptr; io = GetWriteIO(io); GetOpenFile(io, fptr); if (io_fflush(fptr) < 0) rb_sys_fail_on_write(fptr); if ((int)rb_io_blocking_region(fptr, nogvl_fdatasync, fptr) == 0) return INT2FIX(0); /* fall back */ return rb_io_fsync(io); } #else #define rb_io_fdatasync rb_io_fsync #endif /* * call-seq: * fileno -> integer * * Returns the integer file descriptor for the stream: * * $stdin.fileno # => 0 * $stdout.fileno # => 1 * $stderr.fileno # => 2 * File.open('t.txt').fileno # => 10 * f.close * */ static VALUE rb_io_fileno(VALUE io) { rb_io_t *fptr = RFILE(io)->fptr; int fd; rb_io_check_closed(fptr); fd = fptr->fd; return INT2FIX(fd); } int rb_io_descriptor(VALUE io) { if (RB_TYPE_P(io, T_FILE)) { rb_io_t *fptr = RFILE(io)->fptr; rb_io_check_closed(fptr); return fptr->fd; } else { VALUE fileno = rb_check_funcall(io, id_fileno, 0, NULL); if (!UNDEF_P(fileno)) { return RB_NUM2INT(fileno); } } rb_raise(rb_eTypeError, "expected IO or #fileno, %"PRIsVALUE" given", rb_obj_class(io)); UNREACHABLE_RETURN(-1); } int rb_io_mode(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); return fptr->mode; } /* * call-seq: * pid -> integer or nil * * Returns the process ID of a child process associated with the stream, * which will have been set by IO#popen, or +nil+ if the stream was not * created by IO#popen: * * pipe = IO.popen("-") * if pipe * $stderr.puts "In parent, child pid is #{pipe.pid}" * else * $stderr.puts "In child, pid is #{$$}" * end * * Output: * * In child, pid is 26209 * In parent, child pid is 26209 * */ static VALUE rb_io_pid(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); if (!fptr->pid) return Qnil; return PIDT2NUM(fptr->pid); } /* * call-seq: * path -> string or nil * * Returns the path associated with the IO, or +nil+ if there is no path * associated with the IO. It is not guaranteed that the path exists on * the filesystem. * * $stdin.path # => "" * * File.open("testfile") {|f| f.path} # => "testfile" */ VALUE rb_io_path(VALUE io) { rb_io_t *fptr = RFILE(io)->fptr; if (!fptr) return Qnil; return rb_obj_dup(fptr->pathv); } /* * call-seq: * inspect -> string * * Returns a string representation of +self+: * * f = File.open('t.txt') * f.inspect # => "#" * f.close * */ static VALUE rb_io_inspect(VALUE obj) { rb_io_t *fptr; VALUE result; static const char closed[] = " (closed)"; fptr = RFILE(obj)->fptr; if (!fptr) return rb_any_to_s(obj); result = rb_str_new_cstr("#<"); rb_str_append(result, rb_class_name(CLASS_OF(obj))); rb_str_cat2(result, ":"); if (NIL_P(fptr->pathv)) { if (fptr->fd < 0) { rb_str_cat(result, closed+1, strlen(closed)-1); } else { rb_str_catf(result, "fd %d", fptr->fd); } } else { rb_str_append(result, fptr->pathv); if (fptr->fd < 0) { rb_str_cat(result, closed, strlen(closed)); } } return rb_str_cat2(result, ">"); } /* * call-seq: * to_io -> self * * Returns +self+. * */ static VALUE rb_io_to_io(VALUE io) { return io; } /* reading functions */ static long read_buffered_data(char *ptr, long len, rb_io_t *fptr) { int n; n = READ_DATA_PENDING_COUNT(fptr); if (n <= 0) return 0; if (n > len) n = (int)len; MEMMOVE(ptr, fptr->rbuf.ptr+fptr->rbuf.off, char, n); fptr->rbuf.off += n; fptr->rbuf.len -= n; return n; } static long io_bufread(char *ptr, long len, rb_io_t *fptr) { long offset = 0; long n = len; long c; if (READ_DATA_PENDING(fptr) == 0) { while (n > 0) { again: rb_io_check_closed(fptr); c = rb_io_read_memory(fptr, ptr+offset, n); if (c == 0) break; if (c < 0) { if (fptr_wait_readable(fptr)) goto again; return -1; } offset += c; if ((n -= c) <= 0) break; } return len - n; } while (n > 0) { c = read_buffered_data(ptr+offset, n, fptr); if (c > 0) { offset += c; if ((n -= c) <= 0) break; } rb_io_check_closed(fptr); if (io_fillbuf(fptr) < 0) { break; } } return len - n; } static int io_setstrbuf(VALUE *str, long len); struct bufread_arg { char *str_ptr; long len; rb_io_t *fptr; }; static VALUE bufread_call(VALUE arg) { struct bufread_arg *p = (struct bufread_arg *)arg; p->len = io_bufread(p->str_ptr, p->len, p->fptr); return Qundef; } static long io_fread(VALUE str, long offset, long size, rb_io_t *fptr) { long len; struct bufread_arg arg; io_setstrbuf(&str, offset + size); arg.str_ptr = RSTRING_PTR(str) + offset; arg.len = size; arg.fptr = fptr; rb_str_locktmp_ensure(str, bufread_call, (VALUE)&arg); len = arg.len; if (len < 0) rb_sys_fail_path(fptr->pathv); return len; } static long remain_size(rb_io_t *fptr) { struct stat st; rb_off_t siz = READ_DATA_PENDING_COUNT(fptr); rb_off_t pos; if (fstat(fptr->fd, &st) == 0 && S_ISREG(st.st_mode) #if defined(__HAIKU__) && (st.st_dev > 3) #endif ) { if (io_fflush(fptr) < 0) rb_sys_fail_on_write(fptr); pos = lseek(fptr->fd, 0, SEEK_CUR); if (st.st_size >= pos && pos >= 0) { siz += st.st_size - pos; if (siz > LONG_MAX) { rb_raise(rb_eIOError, "file too big for single read"); } } } else { siz += BUFSIZ; } return (long)siz; } static VALUE io_enc_str(VALUE str, rb_io_t *fptr) { rb_enc_associate(str, io_read_encoding(fptr)); return str; } static rb_encoding *io_read_encoding(rb_io_t *fptr); static void make_readconv(rb_io_t *fptr, int size) { if (!fptr->readconv) { int ecflags; VALUE ecopts; const char *sname, *dname; ecflags = fptr->encs.ecflags & ~ECONV_NEWLINE_DECORATOR_WRITE_MASK; ecopts = fptr->encs.ecopts; if (fptr->encs.enc2) { sname = rb_enc_name(fptr->encs.enc2); dname = rb_enc_name(io_read_encoding(fptr)); } else { sname = dname = ""; } fptr->readconv = rb_econv_open_opts(sname, dname, ecflags, ecopts); if (!fptr->readconv) rb_exc_raise(rb_econv_open_exc(sname, dname, ecflags)); fptr->cbuf.off = 0; fptr->cbuf.len = 0; if (size < IO_CBUF_CAPA_MIN) size = IO_CBUF_CAPA_MIN; fptr->cbuf.capa = size; fptr->cbuf.ptr = ALLOC_N(char, fptr->cbuf.capa); } } #define MORE_CHAR_SUSPENDED Qtrue #define MORE_CHAR_FINISHED Qnil static VALUE fill_cbuf(rb_io_t *fptr, int ec_flags) { const unsigned char *ss, *sp, *se; unsigned char *ds, *dp, *de; rb_econv_result_t res; int putbackable; int cbuf_len0; VALUE exc; ec_flags |= ECONV_PARTIAL_INPUT; if (fptr->cbuf.len == fptr->cbuf.capa) return MORE_CHAR_SUSPENDED; /* cbuf full */ if (fptr->cbuf.len == 0) fptr->cbuf.off = 0; else if (fptr->cbuf.off + fptr->cbuf.len == fptr->cbuf.capa) { memmove(fptr->cbuf.ptr, fptr->cbuf.ptr+fptr->cbuf.off, fptr->cbuf.len); fptr->cbuf.off = 0; } cbuf_len0 = fptr->cbuf.len; while (1) { ss = sp = (const unsigned char *)fptr->rbuf.ptr + fptr->rbuf.off; se = sp + fptr->rbuf.len; ds = dp = (unsigned char *)fptr->cbuf.ptr + fptr->cbuf.off + fptr->cbuf.len; de = (unsigned char *)fptr->cbuf.ptr + fptr->cbuf.capa; res = rb_econv_convert(fptr->readconv, &sp, se, &dp, de, ec_flags); fptr->rbuf.off += (int)(sp - ss); fptr->rbuf.len -= (int)(sp - ss); fptr->cbuf.len += (int)(dp - ds); putbackable = rb_econv_putbackable(fptr->readconv); if (putbackable) { rb_econv_putback(fptr->readconv, (unsigned char *)fptr->rbuf.ptr + fptr->rbuf.off - putbackable, putbackable); fptr->rbuf.off -= putbackable; fptr->rbuf.len += putbackable; } exc = rb_econv_make_exception(fptr->readconv); if (!NIL_P(exc)) return exc; if (cbuf_len0 != fptr->cbuf.len) return MORE_CHAR_SUSPENDED; if (res == econv_finished) { return MORE_CHAR_FINISHED; } if (res == econv_source_buffer_empty) { if (fptr->rbuf.len == 0) { READ_CHECK(fptr); if (io_fillbuf(fptr) < 0) { if (!fptr->readconv) { return MORE_CHAR_FINISHED; } ds = dp = (unsigned char *)fptr->cbuf.ptr + fptr->cbuf.off + fptr->cbuf.len; de = (unsigned char *)fptr->cbuf.ptr + fptr->cbuf.capa; res = rb_econv_convert(fptr->readconv, NULL, NULL, &dp, de, 0); fptr->cbuf.len += (int)(dp - ds); rb_econv_check_error(fptr->readconv); break; } } } } if (cbuf_len0 != fptr->cbuf.len) return MORE_CHAR_SUSPENDED; return MORE_CHAR_FINISHED; } static VALUE more_char(rb_io_t *fptr) { VALUE v; v = fill_cbuf(fptr, ECONV_AFTER_OUTPUT); if (v != MORE_CHAR_SUSPENDED && v != MORE_CHAR_FINISHED) rb_exc_raise(v); return v; } static VALUE io_shift_cbuf(rb_io_t *fptr, int len, VALUE *strp) { VALUE str = Qnil; if (strp) { str = *strp; if (NIL_P(str)) { *strp = str = rb_str_new(fptr->cbuf.ptr+fptr->cbuf.off, len); } else { rb_str_cat(str, fptr->cbuf.ptr+fptr->cbuf.off, len); } rb_enc_associate(str, fptr->encs.enc); } fptr->cbuf.off += len; fptr->cbuf.len -= len; /* xxx: set coderange */ if (fptr->cbuf.len == 0) fptr->cbuf.off = 0; else if (fptr->cbuf.capa/2 < fptr->cbuf.off) { memmove(fptr->cbuf.ptr, fptr->cbuf.ptr+fptr->cbuf.off, fptr->cbuf.len); fptr->cbuf.off = 0; } return str; } static int io_setstrbuf(VALUE *str, long len) { #ifdef _WIN32 if (len > 0) len = (len + 1) & ~1L; /* round up for wide char */ #endif if (NIL_P(*str)) { *str = rb_str_new(0, len); return TRUE; } else { VALUE s = StringValue(*str); rb_str_modify(s); long clen = RSTRING_LEN(s); if (clen >= len) { return FALSE; } len -= clen; } if ((rb_str_capacity(*str) - (size_t)RSTRING_LEN(*str)) < (size_t)len) { rb_str_modify_expand(*str, len); } return FALSE; } #define MAX_REALLOC_GAP 4096 static void io_shrink_read_string(VALUE str, long n) { if (rb_str_capacity(str) - n > MAX_REALLOC_GAP) { rb_str_resize(str, n); } } static void io_set_read_length(VALUE str, long n, int shrinkable) { if (RSTRING_LEN(str) != n) { rb_str_modify(str); rb_str_set_len(str, n); if (shrinkable) io_shrink_read_string(str, n); } } static VALUE read_all(rb_io_t *fptr, long siz, VALUE str) { long bytes; long n; long pos; rb_encoding *enc; int cr; int shrinkable; if (NEED_READCONV(fptr)) { int first = !NIL_P(str); SET_BINARY_MODE(fptr); shrinkable = io_setstrbuf(&str,0); make_readconv(fptr, 0); while (1) { VALUE v; if (fptr->cbuf.len) { if (first) rb_str_set_len(str, first = 0); io_shift_cbuf(fptr, fptr->cbuf.len, &str); } v = fill_cbuf(fptr, 0); if (v != MORE_CHAR_SUSPENDED && v != MORE_CHAR_FINISHED) { if (fptr->cbuf.len) { if (first) rb_str_set_len(str, first = 0); io_shift_cbuf(fptr, fptr->cbuf.len, &str); } rb_exc_raise(v); } if (v == MORE_CHAR_FINISHED) { clear_readconv(fptr); if (first) rb_str_set_len(str, first = 0); if (shrinkable) io_shrink_read_string(str, RSTRING_LEN(str)); return io_enc_str(str, fptr); } } } NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr); bytes = 0; pos = 0; enc = io_read_encoding(fptr); cr = 0; if (siz == 0) siz = BUFSIZ; shrinkable = io_setstrbuf(&str, siz); for (;;) { READ_CHECK(fptr); n = io_fread(str, bytes, siz - bytes, fptr); if (n == 0 && bytes == 0) { rb_str_set_len(str, 0); break; } bytes += n; rb_str_set_len(str, bytes); if (cr != ENC_CODERANGE_BROKEN) pos += rb_str_coderange_scan_restartable(RSTRING_PTR(str) + pos, RSTRING_PTR(str) + bytes, enc, &cr); if (bytes < siz) break; siz += BUFSIZ; size_t capa = rb_str_capacity(str); if (capa < (size_t)RSTRING_LEN(str) + BUFSIZ) { if (capa < BUFSIZ) { capa = BUFSIZ; } else if (capa > IO_MAX_BUFFER_GROWTH) { capa = IO_MAX_BUFFER_GROWTH; } rb_str_modify_expand(str, capa); } } if (shrinkable) io_shrink_read_string(str, RSTRING_LEN(str)); str = io_enc_str(str, fptr); ENC_CODERANGE_SET(str, cr); return str; } void rb_io_set_nonblock(rb_io_t *fptr) { if (rb_fd_set_nonblock(fptr->fd) != 0) { rb_sys_fail_path(fptr->pathv); } } static VALUE io_read_memory_call(VALUE arg) { struct io_internal_read_struct *iis = (struct io_internal_read_struct *)arg; VALUE scheduler = rb_fiber_scheduler_current(); if (scheduler != Qnil) { VALUE result = rb_fiber_scheduler_io_read_memory(scheduler, iis->fptr->self, iis->buf, iis->capa, 0); if (!UNDEF_P(result)) { // This is actually returned as a pseudo-VALUE and later cast to a long: return (VALUE)rb_fiber_scheduler_io_result_apply(result); } } if (iis->nonblock) { return rb_io_blocking_region(iis->fptr, internal_read_func, iis); } else { return rb_io_blocking_region_wait(iis->fptr, internal_read_func, iis, RUBY_IO_READABLE); } } static long io_read_memory_locktmp(VALUE str, struct io_internal_read_struct *iis) { return (long)rb_str_locktmp_ensure(str, io_read_memory_call, (VALUE)iis); } #define no_exception_p(opts) !rb_opts_exception_p((opts), TRUE) static VALUE io_getpartial(int argc, VALUE *argv, VALUE io, int no_exception, int nonblock) { rb_io_t *fptr; VALUE length, str; long n, len; struct io_internal_read_struct iis; int shrinkable; rb_scan_args(argc, argv, "11", &length, &str); if ((len = NUM2LONG(length)) < 0) { rb_raise(rb_eArgError, "negative length %ld given", len); } shrinkable = io_setstrbuf(&str, len); GetOpenFile(io, fptr); rb_io_check_byte_readable(fptr); if (len == 0) { io_set_read_length(str, 0, shrinkable); return str; } if (!nonblock) READ_CHECK(fptr); n = read_buffered_data(RSTRING_PTR(str), len, fptr); if (n <= 0) { again: if (nonblock) { rb_io_set_nonblock(fptr); } io_setstrbuf(&str, len); iis.th = rb_thread_current(); iis.fptr = fptr; iis.nonblock = nonblock; iis.fd = fptr->fd; iis.buf = RSTRING_PTR(str); iis.capa = len; iis.timeout = NULL; n = io_read_memory_locktmp(str, &iis); if (n < 0) { int e = errno; if (!nonblock && fptr_wait_readable(fptr)) goto again; if (nonblock && (io_again_p(e))) { if (no_exception) return sym_wait_readable; else rb_readwrite_syserr_fail(RB_IO_WAIT_READABLE, e, "read would block"); } rb_syserr_fail_path(e, fptr->pathv); } } io_set_read_length(str, n, shrinkable); if (n == 0) return Qnil; else return str; } /* * call-seq: * readpartial(maxlen) -> string * readpartial(maxlen, out_string) -> out_string * * Reads up to +maxlen+ bytes from the stream; * returns a string (either a new string or the given +out_string+). * Its encoding is: * * - The unchanged encoding of +out_string+, if +out_string+ is given. * - ASCII-8BIT, otherwise. * * - Contains +maxlen+ bytes from the stream, if available. * - Otherwise contains all available bytes, if any available. * - Otherwise is an empty string. * * With the single non-negative integer argument +maxlen+ given, * returns a new string: * * f = File.new('t.txt') * f.readpartial(20) # => "First line\nSecond l" * f.readpartial(20) # => "ine\n\nFourth line\n" * f.readpartial(20) # => "Fifth line\n" * f.readpartial(20) # Raises EOFError. * f.close * * With both argument +maxlen+ and string argument +out_string+ given, * returns modified +out_string+: * * f = File.new('t.txt') * s = 'foo' * f.readpartial(20, s) # => "First line\nSecond l" * s = 'bar' * f.readpartial(0, s) # => "" * f.close * * This method is useful for a stream such as a pipe, a socket, or a tty. * It blocks only when no data is immediately available. * This means that it blocks only when _all_ of the following are true: * * - The byte buffer in the stream is empty. * - The content of the stream is empty. * - The stream is not at EOF. * * When blocked, the method waits for either more data or EOF on the stream: * * - If more data is read, the method returns the data. * - If EOF is reached, the method raises EOFError. * * When not blocked, the method responds immediately: * * - Returns data from the buffer if there is any. * - Otherwise returns data from the stream if there is any. * - Otherwise raises EOFError if the stream has reached EOF. * * Note that this method is similar to sysread. The differences are: * * - If the byte buffer is not empty, read from the byte buffer * instead of "sysread for buffered IO (IOError)". * - It doesn't cause Errno::EWOULDBLOCK and Errno::EINTR. When * readpartial meets EWOULDBLOCK and EINTR by read system call, * readpartial retries the system call. * * The latter means that readpartial is non-blocking-flag insensitive. * It blocks on the situation IO#sysread causes Errno::EWOULDBLOCK as * if the fd is blocking mode. * * Examples: * * # # Returned Buffer Content Pipe Content * r, w = IO.pipe # * w << 'abc' # "" "abc". * r.readpartial(4096) # => "abc" "" "" * r.readpartial(4096) # (Blocks because buffer and pipe are empty.) * * # # Returned Buffer Content Pipe Content * r, w = IO.pipe # * w << 'abc' # "" "abc" * w.close # "" "abc" EOF * r.readpartial(4096) # => "abc" "" EOF * r.readpartial(4096) # raises EOFError * * # # Returned Buffer Content Pipe Content * r, w = IO.pipe # * w << "abc\ndef\n" # "" "abc\ndef\n" * r.gets # => "abc\n" "def\n" "" * w << "ghi\n" # "def\n" "ghi\n" * r.readpartial(4096) # => "def\n" "" "ghi\n" * r.readpartial(4096) # => "ghi\n" "" "" * */ static VALUE io_readpartial(int argc, VALUE *argv, VALUE io) { VALUE ret; ret = io_getpartial(argc, argv, io, Qnil, 0); if (NIL_P(ret)) rb_eof_error(); return ret; } static VALUE io_nonblock_eof(int no_exception) { if (!no_exception) { rb_eof_error(); } return Qnil; } /* :nodoc: */ static VALUE io_read_nonblock(rb_execution_context_t *ec, VALUE io, VALUE length, VALUE str, VALUE ex) { rb_io_t *fptr; long n, len; struct io_internal_read_struct iis; int shrinkable; if ((len = NUM2LONG(length)) < 0) { rb_raise(rb_eArgError, "negative length %ld given", len); } shrinkable = io_setstrbuf(&str, len); rb_bool_expected(ex, "exception", TRUE); GetOpenFile(io, fptr); rb_io_check_byte_readable(fptr); if (len == 0) { io_set_read_length(str, 0, shrinkable); return str; } n = read_buffered_data(RSTRING_PTR(str), len, fptr); if (n <= 0) { rb_fd_set_nonblock(fptr->fd); shrinkable |= io_setstrbuf(&str, len); iis.fptr = fptr; iis.nonblock = 1; iis.fd = fptr->fd; iis.buf = RSTRING_PTR(str); iis.capa = len; iis.timeout = NULL; n = io_read_memory_locktmp(str, &iis); if (n < 0) { int e = errno; if (io_again_p(e)) { if (!ex) return sym_wait_readable; rb_readwrite_syserr_fail(RB_IO_WAIT_READABLE, e, "read would block"); } rb_syserr_fail_path(e, fptr->pathv); } } io_set_read_length(str, n, shrinkable); if (n == 0) { if (!ex) return Qnil; rb_eof_error(); } return str; } /* :nodoc: */ static VALUE io_write_nonblock(rb_execution_context_t *ec, VALUE io, VALUE str, VALUE ex) { rb_io_t *fptr; long n; if (!RB_TYPE_P(str, T_STRING)) str = rb_obj_as_string(str); rb_bool_expected(ex, "exception", TRUE); io = GetWriteIO(io); GetOpenFile(io, fptr); rb_io_check_writable(fptr); if (io_fflush(fptr) < 0) rb_sys_fail_on_write(fptr); rb_fd_set_nonblock(fptr->fd); n = write(fptr->fd, RSTRING_PTR(str), RSTRING_LEN(str)); RB_GC_GUARD(str); if (n < 0) { int e = errno; if (io_again_p(e)) { if (!ex) { return sym_wait_writable; } else { rb_readwrite_syserr_fail(RB_IO_WAIT_WRITABLE, e, "write would block"); } } rb_syserr_fail_path(e, fptr->pathv); } return LONG2FIX(n); } /* * call-seq: * read(maxlen = nil, out_string = nil) -> new_string, out_string, or nil * * Reads bytes from the stream; the stream must be opened for reading * (see {Access Modes}[rdoc-ref:File@Access+Modes]): * * - If +maxlen+ is +nil+, reads all bytes using the stream's data mode. * - Otherwise reads up to +maxlen+ bytes in binary mode. * * Returns a string (either a new string or the given +out_string+) * containing the bytes read. * The encoding of the string depends on both +maxLen+ and +out_string+: * * - +maxlen+ is +nil+: uses internal encoding of +self+ * (regardless of whether +out_string+ was given). * - +maxlen+ not +nil+: * * - +out_string+ given: encoding of +out_string+ not modified. * - +out_string+ not given: ASCII-8BIT is used. * * Without Argument +out_string+ * * When argument +out_string+ is omitted, * the returned value is a new string: * * f = File.new('t.txt') * f.read * # => "First line\nSecond line\n\nFourth line\nFifth line\n" * f.rewind * f.read(30) # => "First line\r\nSecond line\r\n\r\nFou" * f.read(30) # => "rth line\r\nFifth line\r\n" * f.read(30) # => nil * f.close * * If +maxlen+ is zero, returns an empty string. * * With Argument +out_string+ * * When argument +out_string+ is given, * the returned value is +out_string+, whose content is replaced: * * f = File.new('t.txt') * s = 'foo' # => "foo" * f.read(nil, s) # => "First line\nSecond line\n\nFourth line\nFifth line\n" * s # => "First line\nSecond line\n\nFourth line\nFifth line\n" * f.rewind * s = 'bar' * f.read(30, s) # => "First line\r\nSecond line\r\n\r\nFou" * s # => "First line\r\nSecond line\r\n\r\nFou" * s = 'baz' * f.read(30, s) # => "rth line\r\nFifth line\r\n" * s # => "rth line\r\nFifth line\r\n" * s = 'bat' * f.read(30, s) # => nil * s # => "" * f.close * * Note that this method behaves like the fread() function in C. * This means it retries to invoke read(2) system calls to read data * with the specified maxlen (or until EOF). * * This behavior is preserved even if the stream is in non-blocking mode. * (This method is non-blocking-flag insensitive as other methods.) * * If you need the behavior like a single read(2) system call, * consider #readpartial, #read_nonblock, and #sysread. * * Related: IO#write. */ static VALUE io_read(int argc, VALUE *argv, VALUE io) { rb_io_t *fptr; long n, len; VALUE length, str; int shrinkable; #if RUBY_CRLF_ENVIRONMENT int previous_mode; #endif rb_scan_args(argc, argv, "02", &length, &str); if (NIL_P(length)) { GetOpenFile(io, fptr); rb_io_check_char_readable(fptr); return read_all(fptr, remain_size(fptr), str); } len = NUM2LONG(length); if (len < 0) { rb_raise(rb_eArgError, "negative length %ld given", len); } shrinkable = io_setstrbuf(&str,len); GetOpenFile(io, fptr); rb_io_check_byte_readable(fptr); if (len == 0) { io_set_read_length(str, 0, shrinkable); return str; } READ_CHECK(fptr); #if RUBY_CRLF_ENVIRONMENT previous_mode = set_binary_mode_with_seek_cur(fptr); #endif n = io_fread(str, 0, len, fptr); io_set_read_length(str, n, shrinkable); #if RUBY_CRLF_ENVIRONMENT if (previous_mode == O_TEXT) { setmode(fptr->fd, O_TEXT); } #endif if (n == 0) return Qnil; return str; } static void rscheck(const char *rsptr, long rslen, VALUE rs) { if (!rs) return; if (RSTRING_PTR(rs) != rsptr && RSTRING_LEN(rs) != rslen) rb_raise(rb_eRuntimeError, "rs modified"); } static int appendline(rb_io_t *fptr, int delim, VALUE *strp, long *lp) { VALUE str = *strp; long limit = *lp; if (NEED_READCONV(fptr)) { SET_BINARY_MODE(fptr); make_readconv(fptr, 0); do { const char *p, *e; int searchlen = READ_CHAR_PENDING_COUNT(fptr); if (searchlen) { p = READ_CHAR_PENDING_PTR(fptr); if (0 < limit && limit < searchlen) searchlen = (int)limit; e = memchr(p, delim, searchlen); if (e) { int len = (int)(e-p+1); if (NIL_P(str)) *strp = str = rb_str_new(p, len); else rb_str_buf_cat(str, p, len); fptr->cbuf.off += len; fptr->cbuf.len -= len; limit -= len; *lp = limit; return delim; } if (NIL_P(str)) *strp = str = rb_str_new(p, searchlen); else rb_str_buf_cat(str, p, searchlen); fptr->cbuf.off += searchlen; fptr->cbuf.len -= searchlen; limit -= searchlen; if (limit == 0) { *lp = limit; return (unsigned char)RSTRING_PTR(str)[RSTRING_LEN(str)-1]; } } } while (more_char(fptr) != MORE_CHAR_FINISHED); clear_readconv(fptr); *lp = limit; return EOF; } NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr); do { long pending = READ_DATA_PENDING_COUNT(fptr); if (pending > 0) { const char *p = READ_DATA_PENDING_PTR(fptr); const char *e; long last; if (limit > 0 && pending > limit) pending = limit; e = memchr(p, delim, pending); if (e) pending = e - p + 1; if (!NIL_P(str)) { last = RSTRING_LEN(str); rb_str_resize(str, last + pending); } else { last = 0; *strp = str = rb_str_buf_new(pending); rb_str_set_len(str, pending); } read_buffered_data(RSTRING_PTR(str) + last, pending, fptr); /* must not fail */ limit -= pending; *lp = limit; if (e) return delim; if (limit == 0) return (unsigned char)RSTRING_PTR(str)[RSTRING_LEN(str)-1]; } READ_CHECK(fptr); } while (io_fillbuf(fptr) >= 0); *lp = limit; return EOF; } static inline int swallow(rb_io_t *fptr, int term) { if (NEED_READCONV(fptr)) { rb_encoding *enc = io_read_encoding(fptr); int needconv = rb_enc_mbminlen(enc) != 1; SET_BINARY_MODE(fptr); make_readconv(fptr, 0); do { size_t cnt; while ((cnt = READ_CHAR_PENDING_COUNT(fptr)) > 0) { const char *p = READ_CHAR_PENDING_PTR(fptr); int i; if (!needconv) { if (*p != term) return TRUE; i = (int)cnt; while (--i && *++p == term); } else { const char *e = p + cnt; if (rb_enc_ascget(p, e, &i, enc) != term) return TRUE; while ((p += i) < e && rb_enc_ascget(p, e, &i, enc) == term); i = (int)(e - p); } io_shift_cbuf(fptr, (int)cnt - i, NULL); } } while (more_char(fptr) != MORE_CHAR_FINISHED); return FALSE; } NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr); do { size_t cnt; while ((cnt = READ_DATA_PENDING_COUNT(fptr)) > 0) { char buf[1024]; const char *p = READ_DATA_PENDING_PTR(fptr); int i; if (cnt > sizeof buf) cnt = sizeof buf; if (*p != term) return TRUE; i = (int)cnt; while (--i && *++p == term); if (!read_buffered_data(buf, cnt - i, fptr)) /* must not fail */ rb_sys_fail_path(fptr->pathv); } READ_CHECK(fptr); } while (io_fillbuf(fptr) == 0); return FALSE; } static VALUE rb_io_getline_fast(rb_io_t *fptr, rb_encoding *enc, int chomp) { VALUE str = Qnil; int len = 0; long pos = 0; int cr = 0; do { int pending = READ_DATA_PENDING_COUNT(fptr); if (pending > 0) { const char *p = READ_DATA_PENDING_PTR(fptr); const char *e; int chomplen = 0; e = memchr(p, '\n', pending); if (e) { pending = (int)(e - p + 1); if (chomp) { chomplen = (pending > 1 && *(e-1) == '\r') + 1; } } if (NIL_P(str)) { str = rb_str_new(p, pending - chomplen); fptr->rbuf.off += pending; fptr->rbuf.len -= pending; } else { rb_str_resize(str, len + pending - chomplen); read_buffered_data(RSTRING_PTR(str)+len, pending - chomplen, fptr); fptr->rbuf.off += chomplen; fptr->rbuf.len -= chomplen; if (pending == 1 && chomplen == 1 && len > 0) { if (RSTRING_PTR(str)[len-1] == '\r') { rb_str_resize(str, --len); break; } } } len += pending - chomplen; if (cr != ENC_CODERANGE_BROKEN) pos += rb_str_coderange_scan_restartable(RSTRING_PTR(str) + pos, RSTRING_PTR(str) + len, enc, &cr); if (e) break; } READ_CHECK(fptr); } while (io_fillbuf(fptr) >= 0); if (NIL_P(str)) return Qnil; str = io_enc_str(str, fptr); ENC_CODERANGE_SET(str, cr); fptr->lineno++; return str; } struct getline_arg { VALUE io; VALUE rs; long limit; unsigned int chomp: 1; }; static void extract_getline_opts(VALUE opts, struct getline_arg *args) { int chomp = FALSE; if (!NIL_P(opts)) { static ID kwds[1]; VALUE vchomp; if (!kwds[0]) { kwds[0] = rb_intern_const("chomp"); } rb_get_kwargs(opts, kwds, 0, -2, &vchomp); chomp = (!UNDEF_P(vchomp)) && RTEST(vchomp); } args->chomp = chomp; } static void extract_getline_args(int argc, VALUE *argv, struct getline_arg *args) { VALUE rs = rb_rs, lim = Qnil; if (argc == 1) { VALUE tmp = Qnil; if (NIL_P(argv[0]) || !NIL_P(tmp = rb_check_string_type(argv[0]))) { rs = tmp; } else { lim = argv[0]; } } else if (2 <= argc) { rs = argv[0], lim = argv[1]; if (!NIL_P(rs)) StringValue(rs); } args->rs = rs; args->limit = NIL_P(lim) ? -1L : NUM2LONG(lim); } static void check_getline_args(VALUE *rsp, long *limit, VALUE io) { rb_io_t *fptr; VALUE rs = *rsp; if (!NIL_P(rs)) { rb_encoding *enc_rs, *enc_io; GetOpenFile(io, fptr); enc_rs = rb_enc_get(rs); enc_io = io_read_encoding(fptr); if (enc_io != enc_rs && (!is_ascii_string(rs) || (RSTRING_LEN(rs) > 0 && !rb_enc_asciicompat(enc_io)))) { if (rs == rb_default_rs) { rs = rb_enc_str_new(0, 0, enc_io); rb_str_buf_cat_ascii(rs, "\n"); *rsp = rs; } else { rb_raise(rb_eArgError, "encoding mismatch: %s IO with %s RS", rb_enc_name(enc_io), rb_enc_name(enc_rs)); } } } } static void prepare_getline_args(int argc, VALUE *argv, struct getline_arg *args, VALUE io) { VALUE opts; argc = rb_scan_args(argc, argv, "02:", NULL, NULL, &opts); extract_getline_args(argc, argv, args); extract_getline_opts(opts, args); check_getline_args(&args->rs, &args->limit, io); } static VALUE rb_io_getline_0(VALUE rs, long limit, int chomp, rb_io_t *fptr) { VALUE str = Qnil; int nolimit = 0; rb_encoding *enc; rb_io_check_char_readable(fptr); if (NIL_P(rs) && limit < 0) { str = read_all(fptr, 0, Qnil); if (RSTRING_LEN(str) == 0) return Qnil; } else if (limit == 0) { return rb_enc_str_new(0, 0, io_read_encoding(fptr)); } else if (rs == rb_default_rs && limit < 0 && !NEED_READCONV(fptr) && rb_enc_asciicompat(enc = io_read_encoding(fptr))) { NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr); return rb_io_getline_fast(fptr, enc, chomp); } else { int c, newline = -1; const char *rsptr = 0; long rslen = 0; int rspara = 0; int extra_limit = 16; int chomp_cr = chomp; SET_BINARY_MODE(fptr); enc = io_read_encoding(fptr); if (!NIL_P(rs)) { rslen = RSTRING_LEN(rs); if (rslen == 0) { rsptr = "\n\n"; rslen = 2; rspara = 1; swallow(fptr, '\n'); rs = 0; if (!rb_enc_asciicompat(enc)) { rs = rb_usascii_str_new(rsptr, rslen); rs = rb_str_encode(rs, rb_enc_from_encoding(enc), 0, Qnil); OBJ_FREEZE(rs); rsptr = RSTRING_PTR(rs); rslen = RSTRING_LEN(rs); } } else { rsptr = RSTRING_PTR(rs); } newline = (unsigned char)rsptr[rslen - 1]; chomp_cr = chomp && rslen == 1 && newline == '\n'; } /* MS - Optimization */ while ((c = appendline(fptr, newline, &str, &limit)) != EOF) { const char *s, *p, *pp, *e; if (c == newline) { if (RSTRING_LEN(str) < rslen) continue; s = RSTRING_PTR(str); e = RSTRING_END(str); p = e - rslen; if (!at_char_boundary(s, p, e, enc)) continue; if (!rspara) rscheck(rsptr, rslen, rs); if (memcmp(p, rsptr, rslen) == 0) { if (chomp) { if (chomp_cr && p > s && *(p-1) == '\r') --p; rb_str_set_len(str, p - s); } break; } } if (limit == 0) { s = RSTRING_PTR(str); p = RSTRING_END(str); pp = rb_enc_left_char_head(s, p-1, p, enc); if (extra_limit && MBCLEN_NEEDMORE_P(rb_enc_precise_mbclen(pp, p, enc))) { /* relax the limit while incomplete character. * extra_limit limits the relax length */ limit = 1; extra_limit--; } else { nolimit = 1; break; } } } if (rspara && c != EOF) swallow(fptr, '\n'); if (!NIL_P(str)) str = io_enc_str(str, fptr); } if (!NIL_P(str) && !nolimit) { fptr->lineno++; } return str; } static VALUE rb_io_getline_1(VALUE rs, long limit, int chomp, VALUE io) { rb_io_t *fptr; int old_lineno, new_lineno; VALUE str; GetOpenFile(io, fptr); old_lineno = fptr->lineno; str = rb_io_getline_0(rs, limit, chomp, fptr); if (!NIL_P(str) && (new_lineno = fptr->lineno) != old_lineno) { if (io == ARGF.current_file) { ARGF.lineno += new_lineno - old_lineno; ARGF.last_lineno = ARGF.lineno; } else { ARGF.last_lineno = new_lineno; } } return str; } static VALUE rb_io_getline(int argc, VALUE *argv, VALUE io) { struct getline_arg args; prepare_getline_args(argc, argv, &args, io); return rb_io_getline_1(args.rs, args.limit, args.chomp, io); } VALUE rb_io_gets(VALUE io) { return rb_io_getline_1(rb_default_rs, -1, FALSE, io); } VALUE rb_io_gets_internal(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); return rb_io_getline_0(rb_default_rs, -1, FALSE, fptr); } /* * call-seq: * gets(sep = $/, chomp: false) -> string or nil * gets(limit, chomp: false) -> string or nil * gets(sep, limit, chomp: false) -> string or nil * * Reads and returns a line from the stream; * assigns the return value to $_. * See {Line IO}[rdoc-ref:IO@Line+IO]. * * With no arguments given, returns the next line * as determined by line separator $/, or +nil+ if none: * * f = File.open('t.txt') * f.gets # => "First line\n" * $_ # => "First line\n" * f.gets # => "\n" * f.gets # => "Fourth line\n" * f.gets # => "Fifth line\n" * f.gets # => nil * f.close * * With only string argument +sep+ given, * returns the next line as determined by line separator +sep+, * or +nil+ if none; * see {Line Separator}[rdoc-ref:IO@Line+Separator]: * * f = File.new('t.txt') * f.gets('l') # => "First l" * f.gets('li') # => "ine\nSecond li" * f.gets('lin') # => "ne\n\nFourth lin" * f.gets # => "e\n" * f.close * * The two special values for +sep+ are honored: * * f = File.new('t.txt') * # Get all. * f.gets(nil) # => "First line\nSecond line\n\nFourth line\nFifth line\n" * f.rewind * # Get paragraph (up to two line separators). * f.gets('') # => "First line\nSecond line\n\n" * f.close * * With only integer argument +limit+ given, * limits the number of bytes in the line; * see {Line Limit}[rdoc-ref:IO@Line+Limit]: * * # No more than one line. * File.open('t.txt') {|f| f.gets(10) } # => "First line" * File.open('t.txt') {|f| f.gets(11) } # => "First line\n" * File.open('t.txt') {|f| f.gets(12) } # => "First line\n" * * With arguments +sep+ and +limit+ given, * combines the two behaviors * (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]). * * Optional keyword argument +chomp+ specifies whether line separators * are to be omitted: * * f = File.open('t.txt') * # Chomp the lines. * f.gets(chomp: true) # => "First line" * f.gets(chomp: true) # => "Second line" * f.gets(chomp: true) # => "" * f.gets(chomp: true) # => "Fourth line" * f.gets(chomp: true) # => "Fifth line" * f.gets(chomp: true) # => nil * f.close * */ static VALUE rb_io_gets_m(int argc, VALUE *argv, VALUE io) { VALUE str; str = rb_io_getline(argc, argv, io); rb_lastline_set(str); return str; } /* * call-seq: * lineno -> integer * * Returns the current line number for the stream; * see {Line Number}[rdoc-ref:IO@Line+Number]. * */ static VALUE rb_io_lineno(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); rb_io_check_char_readable(fptr); return INT2NUM(fptr->lineno); } /* * call-seq: * lineno = integer -> integer * * Sets and returns the line number for the stream; * see {Line Number}[rdoc-ref:IO@Line+Number]. * */ static VALUE rb_io_set_lineno(VALUE io, VALUE lineno) { rb_io_t *fptr; GetOpenFile(io, fptr); rb_io_check_char_readable(fptr); fptr->lineno = NUM2INT(lineno); return lineno; } /* :nodoc: */ static VALUE io_readline(rb_execution_context_t *ec, VALUE io, VALUE sep, VALUE lim, VALUE chomp) { long limit = -1; if (NIL_P(lim)) { VALUE tmp = Qnil; // If sep is specified, but it's not a string and not nil, then assume // it's the limit (it should be an integer) if (!NIL_P(sep) && NIL_P(tmp = rb_check_string_type(sep))) { // If the user has specified a non-nil / non-string value // for the separator, we assume it's the limit and set the // separator to default: rb_rs. lim = sep; limit = NUM2LONG(lim); sep = rb_rs; } else { sep = tmp; } } else { if (!NIL_P(sep)) StringValue(sep); limit = NUM2LONG(lim); } check_getline_args(&sep, &limit, io); VALUE line = rb_io_getline_1(sep, limit, RTEST(chomp), io); rb_lastline_set_up(line, 1); if (NIL_P(line)) { rb_eof_error(); } return line; } static VALUE io_readlines(const struct getline_arg *arg, VALUE io); /* * call-seq: * readlines(sep = $/, chomp: false) -> array * readlines(limit, chomp: false) -> array * readlines(sep, limit, chomp: false) -> array * * Reads and returns all remaining line from the stream; * does not modify $_. * See {Line IO}[rdoc-ref:IO@Line+IO]. * * With no arguments given, returns lines * as determined by line separator $/, or +nil+ if none: * * f = File.new('t.txt') * f.readlines * # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] * f.readlines # => [] * f.close * * With only string argument +sep+ given, * returns lines as determined by line separator +sep+, * or +nil+ if none; * see {Line Separator}[rdoc-ref:IO@Line+Separator]: * * f = File.new('t.txt') * f.readlines('li') * # => ["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"] * f.close * * The two special values for +sep+ are honored: * * f = File.new('t.txt') * # Get all into one string. * f.readlines(nil) * # => ["First line\nSecond line\n\nFourth line\nFifth line\n"] * # Get paragraphs (up to two line separators). * f.rewind * f.readlines('') * # => ["First line\nSecond line\n\n", "Fourth line\nFifth line\n"] * f.close * * With only integer argument +limit+ given, * limits the number of bytes in each line; * see {Line Limit}[rdoc-ref:IO@Line+Limit]: * * f = File.new('t.txt') * f.readlines(8) * # => ["First li", "ne\n", "Second l", "ine\n", "\n", "Fourth l", "ine\n", "Fifth li", "ne\n"] * f.close * * With arguments +sep+ and +limit+ given, * combines the two behaviors * (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]). * * Optional keyword argument +chomp+ specifies whether line separators * are to be omitted: * * f = File.new('t.txt') * f.readlines(chomp: true) * # => ["First line", "Second line", "", "Fourth line", "Fifth line"] * f.close * */ static VALUE rb_io_readlines(int argc, VALUE *argv, VALUE io) { struct getline_arg args; prepare_getline_args(argc, argv, &args, io); return io_readlines(&args, io); } static VALUE io_readlines(const struct getline_arg *arg, VALUE io) { VALUE line, ary; if (arg->limit == 0) rb_raise(rb_eArgError, "invalid limit: 0 for readlines"); ary = rb_ary_new(); while (!NIL_P(line = rb_io_getline_1(arg->rs, arg->limit, arg->chomp, io))) { rb_ary_push(ary, line); } return ary; } /* * call-seq: * each_line(sep = $/, chomp: false) {|line| ... } -> self * each_line(limit, chomp: false) {|line| ... } -> self * each_line(sep, limit, chomp: false) {|line| ... } -> self * each_line -> enumerator * * Calls the block with each remaining line read from the stream; * returns +self+. * Does nothing if already at end-of-stream; * See {Line IO}[rdoc-ref:IO@Line+IO]. * * With no arguments given, reads lines * as determined by line separator $/: * * f = File.new('t.txt') * f.each_line {|line| p line } * f.each_line {|line| fail 'Cannot happen' } * f.close * * Output: * * "First line\n" * "Second line\n" * "\n" * "Fourth line\n" * "Fifth line\n" * * With only string argument +sep+ given, * reads lines as determined by line separator +sep+; * see {Line Separator}[rdoc-ref:IO@Line+Separator]: * * f = File.new('t.txt') * f.each_line('li') {|line| p line } * f.close * * Output: * * "First li" * "ne\nSecond li" * "ne\n\nFourth li" * "ne\nFifth li" * "ne\n" * * The two special values for +sep+ are honored: * * f = File.new('t.txt') * # Get all into one string. * f.each_line(nil) {|line| p line } * f.close * * Output: * * "First line\nSecond line\n\nFourth line\nFifth line\n" * * f.rewind * # Get paragraphs (up to two line separators). * f.each_line('') {|line| p line } * * Output: * * "First line\nSecond line\n\n" * "Fourth line\nFifth line\n" * * With only integer argument +limit+ given, * limits the number of bytes in each line; * see {Line Limit}[rdoc-ref:IO@Line+Limit]: * * f = File.new('t.txt') * f.each_line(8) {|line| p line } * f.close * * Output: * * "First li" * "ne\n" * "Second l" * "ine\n" * "\n" * "Fourth l" * "ine\n" * "Fifth li" * "ne\n" * * With arguments +sep+ and +limit+ given, * combines the two behaviors * (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]). * * Optional keyword argument +chomp+ specifies whether line separators * are to be omitted: * * f = File.new('t.txt') * f.each_line(chomp: true) {|line| p line } * f.close * * Output: * * "First line" * "Second line" * "" * "Fourth line" * "Fifth line" * * Returns an Enumerator if no block is given. */ static VALUE rb_io_each_line(int argc, VALUE *argv, VALUE io) { VALUE str; struct getline_arg args; RETURN_ENUMERATOR(io, argc, argv); prepare_getline_args(argc, argv, &args, io); if (args.limit == 0) rb_raise(rb_eArgError, "invalid limit: 0 for each_line"); while (!NIL_P(str = rb_io_getline_1(args.rs, args.limit, args.chomp, io))) { rb_yield(str); } return io; } /* * call-seq: * each_byte {|byte| ... } -> self * each_byte -> enumerator * * Calls the given block with each byte (0..255) in the stream; returns +self+. * See {Byte IO}[rdoc-ref:IO@Byte+IO]. * * f = File.new('t.rus') * a = [] * f.each_byte {|b| a << b } * a # => [209, 130, 208, 181, 209, 129, 209, 130] * f.close * * Returns an Enumerator if no block is given. * * Related: IO#each_char, IO#each_codepoint. * */ static VALUE rb_io_each_byte(VALUE io) { rb_io_t *fptr; RETURN_ENUMERATOR(io, 0, 0); GetOpenFile(io, fptr); do { while (fptr->rbuf.len > 0) { char *p = fptr->rbuf.ptr + fptr->rbuf.off++; fptr->rbuf.len--; rb_yield(INT2FIX(*p & 0xff)); rb_io_check_byte_readable(fptr); errno = 0; } READ_CHECK(fptr); } while (io_fillbuf(fptr) >= 0); return io; } static VALUE io_getc(rb_io_t *fptr, rb_encoding *enc) { int r, n, cr = 0; VALUE str; if (NEED_READCONV(fptr)) { rb_encoding *read_enc = io_read_encoding(fptr); str = Qnil; SET_BINARY_MODE(fptr); make_readconv(fptr, 0); while (1) { if (fptr->cbuf.len) { r = rb_enc_precise_mbclen(fptr->cbuf.ptr+fptr->cbuf.off, fptr->cbuf.ptr+fptr->cbuf.off+fptr->cbuf.len, read_enc); if (!MBCLEN_NEEDMORE_P(r)) break; if (fptr->cbuf.len == fptr->cbuf.capa) { rb_raise(rb_eIOError, "too long character"); } } if (more_char(fptr) == MORE_CHAR_FINISHED) { if (fptr->cbuf.len == 0) { clear_readconv(fptr); return Qnil; } /* return an unit of an incomplete character just before EOF */ str = rb_enc_str_new(fptr->cbuf.ptr+fptr->cbuf.off, 1, read_enc); fptr->cbuf.off += 1; fptr->cbuf.len -= 1; if (fptr->cbuf.len == 0) clear_readconv(fptr); ENC_CODERANGE_SET(str, ENC_CODERANGE_BROKEN); return str; } } if (MBCLEN_INVALID_P(r)) { r = rb_enc_mbclen(fptr->cbuf.ptr+fptr->cbuf.off, fptr->cbuf.ptr+fptr->cbuf.off+fptr->cbuf.len, read_enc); io_shift_cbuf(fptr, r, &str); cr = ENC_CODERANGE_BROKEN; } else { io_shift_cbuf(fptr, MBCLEN_CHARFOUND_LEN(r), &str); cr = ENC_CODERANGE_VALID; if (MBCLEN_CHARFOUND_LEN(r) == 1 && rb_enc_asciicompat(read_enc) && ISASCII(RSTRING_PTR(str)[0])) { cr = ENC_CODERANGE_7BIT; } } str = io_enc_str(str, fptr); ENC_CODERANGE_SET(str, cr); return str; } NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr); if (io_fillbuf(fptr) < 0) { return Qnil; } if (rb_enc_asciicompat(enc) && ISASCII(fptr->rbuf.ptr[fptr->rbuf.off])) { str = rb_str_new(fptr->rbuf.ptr+fptr->rbuf.off, 1); fptr->rbuf.off += 1; fptr->rbuf.len -= 1; cr = ENC_CODERANGE_7BIT; } else { r = rb_enc_precise_mbclen(fptr->rbuf.ptr+fptr->rbuf.off, fptr->rbuf.ptr+fptr->rbuf.off+fptr->rbuf.len, enc); if (MBCLEN_CHARFOUND_P(r) && (n = MBCLEN_CHARFOUND_LEN(r)) <= fptr->rbuf.len) { str = rb_str_new(fptr->rbuf.ptr+fptr->rbuf.off, n); fptr->rbuf.off += n; fptr->rbuf.len -= n; cr = ENC_CODERANGE_VALID; } else if (MBCLEN_NEEDMORE_P(r)) { str = rb_str_new(fptr->rbuf.ptr+fptr->rbuf.off, fptr->rbuf.len); fptr->rbuf.len = 0; getc_needmore: if (io_fillbuf(fptr) != -1) { rb_str_cat(str, fptr->rbuf.ptr+fptr->rbuf.off, 1); fptr->rbuf.off++; fptr->rbuf.len--; r = rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_PTR(str)+RSTRING_LEN(str), enc); if (MBCLEN_NEEDMORE_P(r)) { goto getc_needmore; } else if (MBCLEN_CHARFOUND_P(r)) { cr = ENC_CODERANGE_VALID; } } } else { str = rb_str_new(fptr->rbuf.ptr+fptr->rbuf.off, 1); fptr->rbuf.off++; fptr->rbuf.len--; } } if (!cr) cr = ENC_CODERANGE_BROKEN; str = io_enc_str(str, fptr); ENC_CODERANGE_SET(str, cr); return str; } /* * call-seq: * each_char {|c| ... } -> self * each_char -> enumerator * * Calls the given block with each character in the stream; returns +self+. * See {Character IO}[rdoc-ref:IO@Character+IO]. * * f = File.new('t.rus') * a = [] * f.each_char {|c| a << c.ord } * a # => [1090, 1077, 1089, 1090] * f.close * * Returns an Enumerator if no block is given. * * Related: IO#each_byte, IO#each_codepoint. * */ static VALUE rb_io_each_char(VALUE io) { rb_io_t *fptr; rb_encoding *enc; VALUE c; RETURN_ENUMERATOR(io, 0, 0); GetOpenFile(io, fptr); rb_io_check_char_readable(fptr); enc = io_input_encoding(fptr); READ_CHECK(fptr); while (!NIL_P(c = io_getc(fptr, enc))) { rb_yield(c); } return io; } /* * call-seq: * each_codepoint {|c| ... } -> self * each_codepoint -> enumerator * * Calls the given block with each codepoint in the stream; returns +self+: * * f = File.new('t.rus') * a = [] * f.each_codepoint {|c| a << c } * a # => [1090, 1077, 1089, 1090] * f.close * * Returns an Enumerator if no block is given. * * Related: IO#each_byte, IO#each_char. * */ static VALUE rb_io_each_codepoint(VALUE io) { rb_io_t *fptr; rb_encoding *enc; unsigned int c; int r, n; RETURN_ENUMERATOR(io, 0, 0); GetOpenFile(io, fptr); rb_io_check_char_readable(fptr); READ_CHECK(fptr); if (NEED_READCONV(fptr)) { SET_BINARY_MODE(fptr); r = 1; /* no invalid char yet */ for (;;) { make_readconv(fptr, 0); for (;;) { if (fptr->cbuf.len) { if (fptr->encs.enc) r = rb_enc_precise_mbclen(fptr->cbuf.ptr+fptr->cbuf.off, fptr->cbuf.ptr+fptr->cbuf.off+fptr->cbuf.len, fptr->encs.enc); else r = ONIGENC_CONSTRUCT_MBCLEN_CHARFOUND(1); if (!MBCLEN_NEEDMORE_P(r)) break; if (fptr->cbuf.len == fptr->cbuf.capa) { rb_raise(rb_eIOError, "too long character"); } } if (more_char(fptr) == MORE_CHAR_FINISHED) { clear_readconv(fptr); if (!MBCLEN_CHARFOUND_P(r)) { enc = fptr->encs.enc; goto invalid; } return io; } } if (MBCLEN_INVALID_P(r)) { enc = fptr->encs.enc; goto invalid; } n = MBCLEN_CHARFOUND_LEN(r); if (fptr->encs.enc) { c = rb_enc_codepoint(fptr->cbuf.ptr+fptr->cbuf.off, fptr->cbuf.ptr+fptr->cbuf.off+fptr->cbuf.len, fptr->encs.enc); } else { c = (unsigned char)fptr->cbuf.ptr[fptr->cbuf.off]; } fptr->cbuf.off += n; fptr->cbuf.len -= n; rb_yield(UINT2NUM(c)); rb_io_check_byte_readable(fptr); } } NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr); enc = io_input_encoding(fptr); while (io_fillbuf(fptr) >= 0) { r = rb_enc_precise_mbclen(fptr->rbuf.ptr+fptr->rbuf.off, fptr->rbuf.ptr+fptr->rbuf.off+fptr->rbuf.len, enc); if (MBCLEN_CHARFOUND_P(r) && (n = MBCLEN_CHARFOUND_LEN(r)) <= fptr->rbuf.len) { c = rb_enc_codepoint(fptr->rbuf.ptr+fptr->rbuf.off, fptr->rbuf.ptr+fptr->rbuf.off+fptr->rbuf.len, enc); fptr->rbuf.off += n; fptr->rbuf.len -= n; rb_yield(UINT2NUM(c)); } else if (MBCLEN_INVALID_P(r)) { goto invalid; } else if (MBCLEN_NEEDMORE_P(r)) { char cbuf[8], *p = cbuf; int more = MBCLEN_NEEDMORE_LEN(r); if (more > numberof(cbuf)) goto invalid; more += n = fptr->rbuf.len; if (more > numberof(cbuf)) goto invalid; while ((n = (int)read_buffered_data(p, more, fptr)) > 0 && (p += n, (more -= n) > 0)) { if (io_fillbuf(fptr) < 0) goto invalid; if ((n = fptr->rbuf.len) > more) n = more; } r = rb_enc_precise_mbclen(cbuf, p, enc); if (!MBCLEN_CHARFOUND_P(r)) goto invalid; c = rb_enc_codepoint(cbuf, p, enc); rb_yield(UINT2NUM(c)); } else { continue; } rb_io_check_byte_readable(fptr); } return io; invalid: rb_raise(rb_eArgError, "invalid byte sequence in %s", rb_enc_name(enc)); UNREACHABLE_RETURN(Qundef); } /* * call-seq: * getc -> character or nil * * Reads and returns the next 1-character string from the stream; * returns +nil+ if already at end-of-stream. * See {Character IO}[rdoc-ref:IO@Character+IO]. * * f = File.open('t.txt') * f.getc # => "F" * f.close * f = File.open('t.rus') * f.getc.ord # => 1090 * f.close * * Related: IO#readchar (may raise EOFError). * */ static VALUE rb_io_getc(VALUE io) { rb_io_t *fptr; rb_encoding *enc; GetOpenFile(io, fptr); rb_io_check_char_readable(fptr); enc = io_input_encoding(fptr); READ_CHECK(fptr); return io_getc(fptr, enc); } /* * call-seq: * readchar -> string * * Reads and returns the next 1-character string from the stream; * raises EOFError if already at end-of-stream. * See {Character IO}[rdoc-ref:IO@Character+IO]. * * f = File.open('t.txt') * f.readchar # => "F" * f.close * f = File.open('t.rus') * f.readchar.ord # => 1090 * f.close * * Related: IO#getc (will not raise EOFError). * */ static VALUE rb_io_readchar(VALUE io) { VALUE c = rb_io_getc(io); if (NIL_P(c)) { rb_eof_error(); } return c; } /* * call-seq: * getbyte -> integer or nil * * Reads and returns the next byte (in range 0..255) from the stream; * returns +nil+ if already at end-of-stream. * See {Byte IO}[rdoc-ref:IO@Byte+IO]. * * f = File.open('t.txt') * f.getbyte # => 70 * f.close * f = File.open('t.rus') * f.getbyte # => 209 * f.close * * Related: IO#readbyte (may raise EOFError). */ VALUE rb_io_getbyte(VALUE io) { rb_io_t *fptr; int c; GetOpenFile(io, fptr); rb_io_check_byte_readable(fptr); READ_CHECK(fptr); VALUE r_stdout = rb_ractor_stdout(); if (fptr->fd == 0 && (fptr->mode & FMODE_TTY) && RB_TYPE_P(r_stdout, T_FILE)) { rb_io_t *ofp; GetOpenFile(r_stdout, ofp); if (ofp->mode & FMODE_TTY) { rb_io_flush(r_stdout); } } if (io_fillbuf(fptr) < 0) { return Qnil; } fptr->rbuf.off++; fptr->rbuf.len--; c = (unsigned char)fptr->rbuf.ptr[fptr->rbuf.off-1]; return INT2FIX(c & 0xff); } /* * call-seq: * readbyte -> integer * * Reads and returns the next byte (in range 0..255) from the stream; * raises EOFError if already at end-of-stream. * See {Byte IO}[rdoc-ref:IO@Byte+IO]. * * f = File.open('t.txt') * f.readbyte # => 70 * f.close * f = File.open('t.rus') * f.readbyte # => 209 * f.close * * Related: IO#getbyte (will not raise EOFError). * */ static VALUE rb_io_readbyte(VALUE io) { VALUE c = rb_io_getbyte(io); if (NIL_P(c)) { rb_eof_error(); } return c; } /* * call-seq: * ungetbyte(integer) -> nil * ungetbyte(string) -> nil * * Pushes back ("unshifts") the given data onto the stream's buffer, * placing the data so that it is next to be read; returns +nil+. * See {Byte IO}[rdoc-ref:IO@Byte+IO]. * * Note that: * * - Calling the method has no effect with unbuffered reads (such as IO#sysread). * - Calling #rewind on the stream discards the pushed-back data. * * When argument +integer+ is given, uses only its low-order byte: * * File.write('t.tmp', '012') * f = File.open('t.tmp') * f.ungetbyte(0x41) # => nil * f.read # => "A012" * f.rewind * f.ungetbyte(0x4243) # => nil * f.read # => "C012" * f.close * * When argument +string+ is given, uses all bytes: * * File.write('t.tmp', '012') * f = File.open('t.tmp') * f.ungetbyte('A') # => nil * f.read # => "A012" * f.rewind * f.ungetbyte('BCDE') # => nil * f.read # => "BCDE012" * f.close * */ VALUE rb_io_ungetbyte(VALUE io, VALUE b) { rb_io_t *fptr; GetOpenFile(io, fptr); rb_io_check_byte_readable(fptr); switch (TYPE(b)) { case T_NIL: return Qnil; case T_FIXNUM: case T_BIGNUM: ; VALUE v = rb_int_modulo(b, INT2FIX(256)); unsigned char c = NUM2INT(v) & 0xFF; b = rb_str_new((const char *)&c, 1); break; default: StringValue(b); } io_ungetbyte(b, fptr); return Qnil; } /* * call-seq: * ungetc(integer) -> nil * ungetc(string) -> nil * * Pushes back ("unshifts") the given data onto the stream's buffer, * placing the data so that it is next to be read; returns +nil+. * See {Character IO}[rdoc-ref:IO@Character+IO]. * * Note that: * * - Calling the method has no effect with unbuffered reads (such as IO#sysread). * - Calling #rewind on the stream discards the pushed-back data. * * When argument +integer+ is given, interprets the integer as a character: * * File.write('t.tmp', '012') * f = File.open('t.tmp') * f.ungetc(0x41) # => nil * f.read # => "A012" * f.rewind * f.ungetc(0x0442) # => nil * f.getc.ord # => 1090 * f.close * * When argument +string+ is given, uses all characters: * * File.write('t.tmp', '012') * f = File.open('t.tmp') * f.ungetc('A') # => nil * f.read # => "A012" * f.rewind * f.ungetc("\u0442\u0435\u0441\u0442") # => nil * f.getc.ord # => 1090 * f.getc.ord # => 1077 * f.getc.ord # => 1089 * f.getc.ord # => 1090 * f.close * */ VALUE rb_io_ungetc(VALUE io, VALUE c) { rb_io_t *fptr; long len; GetOpenFile(io, fptr); rb_io_check_char_readable(fptr); if (FIXNUM_P(c)) { c = rb_enc_uint_chr(FIX2UINT(c), io_read_encoding(fptr)); } else if (RB_BIGNUM_TYPE_P(c)) { c = rb_enc_uint_chr(NUM2UINT(c), io_read_encoding(fptr)); } else { StringValue(c); } if (NEED_READCONV(fptr)) { SET_BINARY_MODE(fptr); len = RSTRING_LEN(c); #if SIZEOF_LONG > SIZEOF_INT if (len > INT_MAX) rb_raise(rb_eIOError, "ungetc failed"); #endif make_readconv(fptr, (int)len); if (fptr->cbuf.capa - fptr->cbuf.len < len) rb_raise(rb_eIOError, "ungetc failed"); if (fptr->cbuf.off < len) { MEMMOVE(fptr->cbuf.ptr+fptr->cbuf.capa-fptr->cbuf.len, fptr->cbuf.ptr+fptr->cbuf.off, char, fptr->cbuf.len); fptr->cbuf.off = fptr->cbuf.capa-fptr->cbuf.len; } fptr->cbuf.off -= (int)len; fptr->cbuf.len += (int)len; MEMMOVE(fptr->cbuf.ptr+fptr->cbuf.off, RSTRING_PTR(c), char, len); } else { NEED_NEWLINE_DECORATOR_ON_READ_CHECK(fptr); io_ungetbyte(c, fptr); } return Qnil; } /* * call-seq: * isatty -> true or false * * Returns +true+ if the stream is associated with a terminal device (tty), * +false+ otherwise: * * f = File.new('t.txt').isatty #=> false * f.close * f = File.new('/dev/tty').isatty #=> true * f.close * */ static VALUE rb_io_isatty(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); return RBOOL(isatty(fptr->fd) != 0); } #if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(F_SETFD) && defined(FD_CLOEXEC) /* * call-seq: * close_on_exec? -> true or false * * Returns +true+ if the stream will be closed on exec, +false+ otherwise: * * f = File.open('t.txt') * f.close_on_exec? # => true * f.close_on_exec = false * f.close_on_exec? # => false * f.close * */ static VALUE rb_io_close_on_exec_p(VALUE io) { rb_io_t *fptr; VALUE write_io; int fd, ret; write_io = GetWriteIO(io); if (io != write_io) { GetOpenFile(write_io, fptr); if (fptr && 0 <= (fd = fptr->fd)) { if ((ret = fcntl(fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv); if (!(ret & FD_CLOEXEC)) return Qfalse; } } GetOpenFile(io, fptr); if (fptr && 0 <= (fd = fptr->fd)) { if ((ret = fcntl(fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv); if (!(ret & FD_CLOEXEC)) return Qfalse; } return Qtrue; } #else #define rb_io_close_on_exec_p rb_f_notimplement #endif #if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(F_SETFD) && defined(FD_CLOEXEC) /* * call-seq: * self.close_on_exec = bool -> true or false * * Sets a close-on-exec flag. * * f = File.open(File::NULL) * f.close_on_exec = true * system("cat", "/proc/self/fd/#{f.fileno}") # cat: /proc/self/fd/3: No such file or directory * f.closed? #=> false * * Ruby sets close-on-exec flags of all file descriptors by default * since Ruby 2.0.0. * So you don't need to set by yourself. * Also, unsetting a close-on-exec flag can cause file descriptor leak * if another thread use fork() and exec() (via system() method for example). * If you really needs file descriptor inheritance to child process, * use spawn()'s argument such as fd=>fd. */ static VALUE rb_io_set_close_on_exec(VALUE io, VALUE arg) { int flag = RTEST(arg) ? FD_CLOEXEC : 0; rb_io_t *fptr; VALUE write_io; int fd, ret; write_io = GetWriteIO(io); if (io != write_io) { GetOpenFile(write_io, fptr); if (fptr && 0 <= (fd = fptr->fd)) { if ((ret = fcntl(fptr->fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv); if ((ret & FD_CLOEXEC) != flag) { ret = (ret & ~FD_CLOEXEC) | flag; ret = fcntl(fd, F_SETFD, ret); if (ret != 0) rb_sys_fail_path(fptr->pathv); } } } GetOpenFile(io, fptr); if (fptr && 0 <= (fd = fptr->fd)) { if ((ret = fcntl(fd, F_GETFD)) == -1) rb_sys_fail_path(fptr->pathv); if ((ret & FD_CLOEXEC) != flag) { ret = (ret & ~FD_CLOEXEC) | flag; ret = fcntl(fd, F_SETFD, ret); if (ret != 0) rb_sys_fail_path(fptr->pathv); } } return Qnil; } #else #define rb_io_set_close_on_exec rb_f_notimplement #endif #define RUBY_IO_EXTERNAL_P(f) ((f)->mode & FMODE_EXTERNAL) #define PREP_STDIO_NAME(f) (RSTRING_PTR((f)->pathv)) static VALUE finish_writeconv(rb_io_t *fptr, int noalloc) { unsigned char *ds, *dp, *de; rb_econv_result_t res; if (!fptr->wbuf.ptr) { unsigned char buf[1024]; res = econv_destination_buffer_full; while (res == econv_destination_buffer_full) { ds = dp = buf; de = buf + sizeof(buf); res = rb_econv_convert(fptr->writeconv, NULL, NULL, &dp, de, 0); while (dp-ds) { size_t remaining = dp-ds; long result = rb_io_write_memory(fptr, ds, remaining); if (result > 0) { ds += result; if ((size_t)result == remaining) break; } else if (rb_io_maybe_wait_writable(errno, fptr->self, RUBY_IO_TIMEOUT_DEFAULT)) { if (fptr->fd < 0) return noalloc ? Qtrue : rb_exc_new3(rb_eIOError, rb_str_new_cstr(closed_stream)); } else { return noalloc ? Qtrue : INT2NUM(errno); } } if (res == econv_invalid_byte_sequence || res == econv_incomplete_input || res == econv_undefined_conversion) { return noalloc ? Qtrue : rb_econv_make_exception(fptr->writeconv); } } return Qnil; } res = econv_destination_buffer_full; while (res == econv_destination_buffer_full) { if (fptr->wbuf.len == fptr->wbuf.capa) { if (io_fflush(fptr) < 0) { return noalloc ? Qtrue : INT2NUM(errno); } } ds = dp = (unsigned char *)fptr->wbuf.ptr + fptr->wbuf.off + fptr->wbuf.len; de = (unsigned char *)fptr->wbuf.ptr + fptr->wbuf.capa; res = rb_econv_convert(fptr->writeconv, NULL, NULL, &dp, de, 0); fptr->wbuf.len += (int)(dp - ds); if (res == econv_invalid_byte_sequence || res == econv_incomplete_input || res == econv_undefined_conversion) { return noalloc ? Qtrue : rb_econv_make_exception(fptr->writeconv); } } return Qnil; } struct finish_writeconv_arg { rb_io_t *fptr; int noalloc; }; static VALUE finish_writeconv_sync(VALUE arg) { struct finish_writeconv_arg *p = (struct finish_writeconv_arg *)arg; return finish_writeconv(p->fptr, p->noalloc); } static void* nogvl_close(void *ptr) { int *fd = ptr; return (void*)(intptr_t)close(*fd); } static int maygvl_close(int fd, int keepgvl) { if (keepgvl) return close(fd); /* * close() may block for certain file types (NFS, SO_LINGER sockets, * inotify), so let other threads run. */ return IO_WITHOUT_GVL_INT(nogvl_close, &fd); } static void* nogvl_fclose(void *ptr) { FILE *file = ptr; return (void*)(intptr_t)fclose(file); } static int maygvl_fclose(FILE *file, int keepgvl) { if (keepgvl) return fclose(file); return IO_WITHOUT_GVL_INT(nogvl_fclose, file); } static void free_io_buffer(rb_io_buffer_t *buf); static void clear_codeconv(rb_io_t *fptr); static void fptr_finalize_flush(rb_io_t *fptr, int noraise, int keepgvl, struct rb_io_close_wait_list *busy) { VALUE error = Qnil; int fd = fptr->fd; FILE *stdio_file = fptr->stdio_file; int mode = fptr->mode; if (fptr->writeconv) { if (!NIL_P(fptr->write_lock) && !noraise) { struct finish_writeconv_arg arg; arg.fptr = fptr; arg.noalloc = noraise; error = rb_mutex_synchronize(fptr->write_lock, finish_writeconv_sync, (VALUE)&arg); } else { error = finish_writeconv(fptr, noraise); } } if (fptr->wbuf.len) { if (noraise) { io_flush_buffer_sync(fptr); } else { if (io_fflush(fptr) < 0 && NIL_P(error)) { error = INT2NUM(errno); } } } int done = 0; if (RUBY_IO_EXTERNAL_P(fptr) || fd <= 2) { // Need to keep FILE objects of stdin, stdout and stderr, so we are done: done = 1; } fptr->fd = -1; fptr->stdio_file = 0; fptr->mode &= ~(FMODE_READABLE|FMODE_WRITABLE); // Ensure waiting_fd users do not hit EBADF. if (busy) { // Wait for them to exit before we call close(). rb_notify_fd_close_wait(busy); } // Disable for now. // if (!done && fd >= 0) { // VALUE scheduler = rb_fiber_scheduler_current(); // if (scheduler != Qnil) { // VALUE result = rb_fiber_scheduler_io_close(scheduler, fptr->self); // if (!UNDEF_P(result)) done = 1; // } // } if (!done && stdio_file) { // stdio_file is deallocated anyway even if fclose failed. if ((maygvl_fclose(stdio_file, noraise) < 0) && NIL_P(error)) { if (!noraise) { error = INT2NUM(errno); } } done = 1; } if (!done && fd >= 0) { // fptr->fd may be closed even if close fails. POSIX doesn't specify it. // We assumes it is closed. keepgvl |= !(mode & FMODE_WRITABLE); keepgvl |= noraise; if ((maygvl_close(fd, keepgvl) < 0) && NIL_P(error)) { if (!noraise) { error = INT2NUM(errno); } } done = 1; } if (!NIL_P(error) && !noraise) { if (RB_INTEGER_TYPE_P(error)) rb_syserr_fail_path(NUM2INT(error), fptr->pathv); else rb_exc_raise(error); } } static void fptr_finalize(rb_io_t *fptr, int noraise) { fptr_finalize_flush(fptr, noraise, FALSE, 0); free_io_buffer(&fptr->rbuf); free_io_buffer(&fptr->wbuf); clear_codeconv(fptr); } static void rb_io_fptr_cleanup(rb_io_t *fptr, int noraise) { if (fptr->finalize) { (*fptr->finalize)(fptr, noraise); } else { fptr_finalize(fptr, noraise); } } static void free_io_buffer(rb_io_buffer_t *buf) { if (buf->ptr) { ruby_sized_xfree(buf->ptr, (size_t)buf->capa); buf->ptr = NULL; } } static void clear_readconv(rb_io_t *fptr) { if (fptr->readconv) { rb_econv_close(fptr->readconv); fptr->readconv = NULL; } free_io_buffer(&fptr->cbuf); } static void clear_writeconv(rb_io_t *fptr) { if (fptr->writeconv) { rb_econv_close(fptr->writeconv); fptr->writeconv = NULL; } fptr->writeconv_initialized = 0; } static void clear_codeconv(rb_io_t *fptr) { clear_readconv(fptr); clear_writeconv(fptr); } static void rb_io_fptr_cleanup_all(rb_io_t *fptr) { fptr->pathv = Qnil; if (0 <= fptr->fd) rb_io_fptr_cleanup(fptr, TRUE); fptr->write_lock = Qnil; free_io_buffer(&fptr->rbuf); free_io_buffer(&fptr->wbuf); clear_codeconv(fptr); } void rb_io_fptr_finalize_internal(void *ptr) { if (!ptr) return; rb_io_fptr_cleanup_all(ptr); free(ptr); } #undef rb_io_fptr_finalize int rb_io_fptr_finalize(rb_io_t *fptr) { if (!fptr) { return 0; } else { rb_io_fptr_finalize_internal(fptr); return 1; } } #define rb_io_fptr_finalize(fptr) rb_io_fptr_finalize_internal(fptr) size_t rb_io_memsize(const rb_io_t *fptr) { size_t size = sizeof(rb_io_t); size += fptr->rbuf.capa; size += fptr->wbuf.capa; size += fptr->cbuf.capa; if (fptr->readconv) size += rb_econv_memsize(fptr->readconv); if (fptr->writeconv) size += rb_econv_memsize(fptr->writeconv); return size; } #ifdef _WIN32 /* keep GVL while closing to prevent crash on Windows */ # define KEEPGVL TRUE #else # define KEEPGVL FALSE #endif static rb_io_t * io_close_fptr(VALUE io) { rb_io_t *fptr; VALUE write_io; rb_io_t *write_fptr; struct rb_io_close_wait_list busy; write_io = GetWriteIO(io); if (io != write_io) { write_fptr = RFILE(write_io)->fptr; if (write_fptr && 0 <= write_fptr->fd) { rb_io_fptr_cleanup(write_fptr, TRUE); } } fptr = RFILE(io)->fptr; if (!fptr) return 0; if (fptr->fd < 0) return 0; if (rb_notify_fd_close(fptr->fd, &busy)) { /* calls close(fptr->fd): */ fptr_finalize_flush(fptr, FALSE, KEEPGVL, &busy); } rb_io_fptr_cleanup(fptr, FALSE); return fptr; } static void fptr_waitpid(rb_io_t *fptr, int nohang) { int status; if (fptr->pid) { rb_last_status_clear(); rb_waitpid(fptr->pid, &status, nohang ? WNOHANG : 0); fptr->pid = 0; } } VALUE rb_io_close(VALUE io) { rb_io_t *fptr = io_close_fptr(io); if (fptr) fptr_waitpid(fptr, 0); return Qnil; } /* * call-seq: * close -> nil * * Closes the stream for both reading and writing * if open for either or both; returns +nil+. * See {Open and Closed Streams}[rdoc-ref:IO@Open+and+Closed+Streams]. * * If the stream is open for writing, flushes any buffered writes * to the operating system before closing. * * If the stream was opened by IO.popen, sets global variable $? * (child exit status). * * It is not an error to close an IO object that has already been closed. * It just returns nil. * * Example: * * IO.popen('ruby', 'r+') do |pipe| * puts pipe.closed? * pipe.close * puts $? * puts pipe.closed? * end * * Output: * * false * pid 13760 exit 0 * true * * Related: IO#close_read, IO#close_write, IO#closed?. */ static VALUE rb_io_close_m(VALUE io) { rb_io_t *fptr = rb_io_get_fptr(io); if (fptr->fd < 0) { return Qnil; } rb_io_close(io); return Qnil; } static VALUE io_call_close(VALUE io) { rb_check_funcall(io, rb_intern("close"), 0, 0); return io; } static VALUE ignore_closed_stream(VALUE io, VALUE exc) { enum {mesg_len = sizeof(closed_stream)-1}; VALUE mesg = rb_attr_get(exc, idMesg); if (!RB_TYPE_P(mesg, T_STRING) || RSTRING_LEN(mesg) != mesg_len || memcmp(RSTRING_PTR(mesg), closed_stream, mesg_len)) { rb_exc_raise(exc); } return io; } static VALUE io_close(VALUE io) { VALUE closed = rb_check_funcall(io, rb_intern("closed?"), 0, 0); if (!UNDEF_P(closed) && RTEST(closed)) return io; rb_rescue2(io_call_close, io, ignore_closed_stream, io, rb_eIOError, (VALUE)0); return io; } /* * call-seq: * closed? -> true or false * * Returns +true+ if the stream is closed for both reading and writing, * +false+ otherwise. * See {Open and Closed Streams}[rdoc-ref:IO@Open+and+Closed+Streams]. * * IO.popen('ruby', 'r+') do |pipe| * puts pipe.closed? * pipe.close_read * puts pipe.closed? * pipe.close_write * puts pipe.closed? * end * * Output: * * false * false * true * * Related: IO#close_read, IO#close_write, IO#close. */ VALUE rb_io_closed_p(VALUE io) { rb_io_t *fptr; VALUE write_io; rb_io_t *write_fptr; write_io = GetWriteIO(io); if (io != write_io) { write_fptr = RFILE(write_io)->fptr; if (write_fptr && 0 <= write_fptr->fd) { return Qfalse; } } fptr = rb_io_get_fptr(io); return RBOOL(0 > fptr->fd); } /* * call-seq: * close_read -> nil * * Closes the stream for reading if open for reading; * returns +nil+. * See {Open and Closed Streams}[rdoc-ref:IO@Open+and+Closed+Streams]. * * If the stream was opened by IO.popen and is also closed for writing, * sets global variable $? (child exit status). * * Example: * * IO.popen('ruby', 'r+') do |pipe| * puts pipe.closed? * pipe.close_write * puts pipe.closed? * pipe.close_read * puts $? * puts pipe.closed? * end * * Output: * * false * false * pid 14748 exit 0 * true * * Related: IO#close, IO#close_write, IO#closed?. */ static VALUE rb_io_close_read(VALUE io) { rb_io_t *fptr; VALUE write_io; fptr = rb_io_get_fptr(rb_io_taint_check(io)); if (fptr->fd < 0) return Qnil; if (is_socket(fptr->fd, fptr->pathv)) { #ifndef SHUT_RD # define SHUT_RD 0 #endif if (shutdown(fptr->fd, SHUT_RD) < 0) rb_sys_fail_path(fptr->pathv); fptr->mode &= ~FMODE_READABLE; if (!(fptr->mode & FMODE_WRITABLE)) return rb_io_close(io); return Qnil; } write_io = GetWriteIO(io); if (io != write_io) { rb_io_t *wfptr; wfptr = rb_io_get_fptr(rb_io_taint_check(write_io)); wfptr->pid = fptr->pid; fptr->pid = 0; RFILE(io)->fptr = wfptr; /* bind to write_io temporarily to get rid of memory/fd leak */ fptr->tied_io_for_writing = 0; RFILE(write_io)->fptr = fptr; rb_io_fptr_cleanup(fptr, FALSE); /* should not finalize fptr because another thread may be reading it */ return Qnil; } if ((fptr->mode & (FMODE_DUPLEX|FMODE_WRITABLE)) == FMODE_WRITABLE) { rb_raise(rb_eIOError, "closing non-duplex IO for reading"); } return rb_io_close(io); } /* * call-seq: * close_write -> nil * * Closes the stream for writing if open for writing; * returns +nil+. * See {Open and Closed Streams}[rdoc-ref:IO@Open+and+Closed+Streams]. * * Flushes any buffered writes to the operating system before closing. * * If the stream was opened by IO.popen and is also closed for reading, * sets global variable $? (child exit status). * * IO.popen('ruby', 'r+') do |pipe| * puts pipe.closed? * pipe.close_read * puts pipe.closed? * pipe.close_write * puts $? * puts pipe.closed? * end * * Output: * * false * false * pid 15044 exit 0 * true * * Related: IO#close, IO#close_read, IO#closed?. */ static VALUE rb_io_close_write(VALUE io) { rb_io_t *fptr; VALUE write_io; write_io = GetWriteIO(io); fptr = rb_io_get_fptr(rb_io_taint_check(write_io)); if (fptr->fd < 0) return Qnil; if (is_socket(fptr->fd, fptr->pathv)) { #ifndef SHUT_WR # define SHUT_WR 1 #endif if (shutdown(fptr->fd, SHUT_WR) < 0) rb_sys_fail_path(fptr->pathv); fptr->mode &= ~FMODE_WRITABLE; if (!(fptr->mode & FMODE_READABLE)) return rb_io_close(write_io); return Qnil; } if ((fptr->mode & (FMODE_DUPLEX|FMODE_READABLE)) == FMODE_READABLE) { rb_raise(rb_eIOError, "closing non-duplex IO for writing"); } if (io != write_io) { fptr = rb_io_get_fptr(rb_io_taint_check(io)); fptr->tied_io_for_writing = 0; } rb_io_close(write_io); return Qnil; } /* * call-seq: * sysseek(offset, whence = IO::SEEK_SET) -> integer * * Behaves like IO#seek, except that it: * * - Uses low-level system functions. * - Returns the new position. * */ static VALUE rb_io_sysseek(int argc, VALUE *argv, VALUE io) { VALUE offset, ptrname; int whence = SEEK_SET; rb_io_t *fptr; rb_off_t pos; if (rb_scan_args(argc, argv, "11", &offset, &ptrname) == 2) { whence = interpret_seek_whence(ptrname); } pos = NUM2OFFT(offset); GetOpenFile(io, fptr); if ((fptr->mode & FMODE_READABLE) && (READ_DATA_BUFFERED(fptr) || READ_CHAR_PENDING(fptr))) { rb_raise(rb_eIOError, "sysseek for buffered IO"); } if ((fptr->mode & FMODE_WRITABLE) && fptr->wbuf.len) { rb_warn("sysseek for buffered IO"); } errno = 0; pos = lseek(fptr->fd, pos, whence); if (pos < 0 && errno) rb_sys_fail_path(fptr->pathv); return OFFT2NUM(pos); } /* * call-seq: * syswrite(object) -> integer * * Writes the given +object+ to self, which must be opened for writing (see Modes); * returns the number bytes written. * If +object+ is not a string is converted via method to_s: * * f = File.new('t.tmp', 'w') * f.syswrite('foo') # => 3 * f.syswrite(30) # => 2 * f.syswrite(:foo) # => 3 * f.close * * This methods should not be used with other stream-writer methods. * */ static VALUE rb_io_syswrite(VALUE io, VALUE str) { VALUE tmp; rb_io_t *fptr; long n, len; const char *ptr; if (!RB_TYPE_P(str, T_STRING)) str = rb_obj_as_string(str); io = GetWriteIO(io); GetOpenFile(io, fptr); rb_io_check_writable(fptr); if (fptr->wbuf.len) { rb_warn("syswrite for buffered IO"); } tmp = rb_str_tmp_frozen_acquire(str); RSTRING_GETMEM(tmp, ptr, len); n = rb_io_write_memory(fptr, ptr, len); if (n < 0) rb_sys_fail_path(fptr->pathv); rb_str_tmp_frozen_release(str, tmp); return LONG2FIX(n); } /* * call-seq: * sysread(maxlen) -> string * sysread(maxlen, out_string) -> string * * Behaves like IO#readpartial, except that it uses low-level system functions. * * This method should not be used with other stream-reader methods. * */ static VALUE rb_io_sysread(int argc, VALUE *argv, VALUE io) { VALUE len, str; rb_io_t *fptr; long n, ilen; struct io_internal_read_struct iis; int shrinkable; rb_scan_args(argc, argv, "11", &len, &str); ilen = NUM2LONG(len); shrinkable = io_setstrbuf(&str, ilen); if (ilen == 0) return str; GetOpenFile(io, fptr); rb_io_check_byte_readable(fptr); if (READ_DATA_BUFFERED(fptr)) { rb_raise(rb_eIOError, "sysread for buffered IO"); } rb_io_check_closed(fptr); io_setstrbuf(&str, ilen); iis.th = rb_thread_current(); iis.fptr = fptr; iis.nonblock = 0; iis.fd = fptr->fd; iis.buf = RSTRING_PTR(str); iis.capa = ilen; iis.timeout = NULL; n = io_read_memory_locktmp(str, &iis); if (n < 0) { rb_sys_fail_path(fptr->pathv); } io_set_read_length(str, n, shrinkable); if (n == 0 && ilen > 0) { rb_eof_error(); } return str; } struct prdwr_internal_arg { struct rb_io *io; int fd; void *buf; size_t count; rb_off_t offset; }; static VALUE internal_pread_func(void *_arg) { struct prdwr_internal_arg *arg = _arg; return (VALUE)pread(arg->fd, arg->buf, arg->count, arg->offset); } static VALUE pread_internal_call(VALUE _arg) { struct prdwr_internal_arg *arg = (struct prdwr_internal_arg *)_arg; VALUE scheduler = rb_fiber_scheduler_current(); if (scheduler != Qnil) { VALUE result = rb_fiber_scheduler_io_pread_memory(scheduler, arg->io->self, arg->offset, arg->buf, arg->count, 0); if (!UNDEF_P(result)) { return rb_fiber_scheduler_io_result_apply(result); } } return rb_io_blocking_region_wait(arg->io, internal_pread_func, arg, RUBY_IO_READABLE); } /* * call-seq: * pread(maxlen, offset) -> string * pread(maxlen, offset, out_string) -> string * * Behaves like IO#readpartial, except that it: * * - Reads at the given +offset+ (in bytes). * - Disregards, and does not modify, the stream's position * (see {Position}[rdoc-ref:IO@Position]). * - Bypasses any user space buffering in the stream. * * Because this method does not disturb the stream's state * (its position, in particular), +pread+ allows multiple threads and processes * to use the same \IO object for reading at various offsets. * * f = File.open('t.txt') * f.read # => "First line\nSecond line\n\nFourth line\nFifth line\n" * f.pos # => 52 * # Read 12 bytes at offset 0. * f.pread(12, 0) # => "First line\n" * # Read 9 bytes at offset 8. * f.pread(9, 8) # => "ne\nSecon" * f.close * * Not available on some platforms. * */ static VALUE rb_io_pread(int argc, VALUE *argv, VALUE io) { VALUE len, offset, str; rb_io_t *fptr; ssize_t n; struct prdwr_internal_arg arg; int shrinkable; rb_scan_args(argc, argv, "21", &len, &offset, &str); arg.count = NUM2SIZET(len); arg.offset = NUM2OFFT(offset); shrinkable = io_setstrbuf(&str, (long)arg.count); if (arg.count == 0) return str; arg.buf = RSTRING_PTR(str); GetOpenFile(io, fptr); rb_io_check_byte_readable(fptr); arg.io = fptr; arg.fd = fptr->fd; rb_io_check_closed(fptr); rb_str_locktmp(str); n = (ssize_t)rb_ensure(pread_internal_call, (VALUE)&arg, rb_str_unlocktmp, str); if (n < 0) { rb_sys_fail_path(fptr->pathv); } io_set_read_length(str, n, shrinkable); if (n == 0 && arg.count > 0) { rb_eof_error(); } return str; } static VALUE internal_pwrite_func(void *_arg) { struct prdwr_internal_arg *arg = _arg; VALUE scheduler = rb_fiber_scheduler_current(); if (scheduler != Qnil) { VALUE result = rb_fiber_scheduler_io_pwrite_memory(scheduler, arg->io->self, arg->offset, arg->buf, arg->count, 0); if (!UNDEF_P(result)) { return rb_fiber_scheduler_io_result_apply(result); } } return (VALUE)pwrite(arg->fd, arg->buf, arg->count, arg->offset); } /* * call-seq: * pwrite(object, offset) -> integer * * Behaves like IO#write, except that it: * * - Writes at the given +offset+ (in bytes). * - Disregards, and does not modify, the stream's position * (see {Position}[rdoc-ref:IO@Position]). * - Bypasses any user space buffering in the stream. * * Because this method does not disturb the stream's state * (its position, in particular), +pwrite+ allows multiple threads and processes * to use the same \IO object for writing at various offsets. * * f = File.open('t.tmp', 'w+') * # Write 6 bytes at offset 3. * f.pwrite('ABCDEF', 3) # => 6 * f.rewind * f.read # => "\u0000\u0000\u0000ABCDEF" * f.close * * Not available on some platforms. * */ static VALUE rb_io_pwrite(VALUE io, VALUE str, VALUE offset) { rb_io_t *fptr; ssize_t n; struct prdwr_internal_arg arg; VALUE tmp; if (!RB_TYPE_P(str, T_STRING)) str = rb_obj_as_string(str); arg.offset = NUM2OFFT(offset); io = GetWriteIO(io); GetOpenFile(io, fptr); rb_io_check_writable(fptr); arg.io = fptr; arg.fd = fptr->fd; tmp = rb_str_tmp_frozen_acquire(str); arg.buf = RSTRING_PTR(tmp); arg.count = (size_t)RSTRING_LEN(tmp); n = (ssize_t)rb_io_blocking_region_wait(fptr, internal_pwrite_func, &arg, RUBY_IO_WRITABLE); if (n < 0) rb_sys_fail_path(fptr->pathv); rb_str_tmp_frozen_release(str, tmp); return SSIZET2NUM(n); } VALUE rb_io_binmode(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); if (fptr->readconv) rb_econv_binmode(fptr->readconv); if (fptr->writeconv) rb_econv_binmode(fptr->writeconv); fptr->mode |= FMODE_BINMODE; fptr->mode &= ~FMODE_TEXTMODE; fptr->writeconv_pre_ecflags &= ~ECONV_NEWLINE_DECORATOR_MASK; #ifdef O_BINARY if (!fptr->readconv) { SET_BINARY_MODE_WITH_SEEK_CUR(fptr); } else { setmode(fptr->fd, O_BINARY); } #endif return io; } static void io_ascii8bit_binmode(rb_io_t *fptr) { if (fptr->readconv) { rb_econv_close(fptr->readconv); fptr->readconv = NULL; } if (fptr->writeconv) { rb_econv_close(fptr->writeconv); fptr->writeconv = NULL; } fptr->mode |= FMODE_BINMODE; fptr->mode &= ~FMODE_TEXTMODE; SET_BINARY_MODE_WITH_SEEK_CUR(fptr); fptr->encs.enc = rb_ascii8bit_encoding(); fptr->encs.enc2 = NULL; fptr->encs.ecflags = 0; fptr->encs.ecopts = Qnil; clear_codeconv(fptr); } VALUE rb_io_ascii8bit_binmode(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); io_ascii8bit_binmode(fptr); return io; } /* * call-seq: * binmode -> self * * Sets the stream's data mode as binary * (see {Data Mode}[rdoc-ref:File@Data+Mode]). * * A stream's data mode may not be changed from binary to text. * */ static VALUE rb_io_binmode_m(VALUE io) { VALUE write_io; rb_io_ascii8bit_binmode(io); write_io = GetWriteIO(io); if (write_io != io) rb_io_ascii8bit_binmode(write_io); return io; } /* * call-seq: * binmode? -> true or false * * Returns +true+ if the stream is on binary mode, +false+ otherwise. * See {Data Mode}[rdoc-ref:File@Data+Mode]. * */ static VALUE rb_io_binmode_p(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); return RBOOL(fptr->mode & FMODE_BINMODE); } static const char* rb_io_fmode_modestr(int fmode) { if (fmode & FMODE_APPEND) { if ((fmode & FMODE_READWRITE) == FMODE_READWRITE) { return MODE_BTMODE("a+", "ab+", "at+"); } return MODE_BTMODE("a", "ab", "at"); } switch (fmode & FMODE_READWRITE) { default: rb_raise(rb_eArgError, "invalid access fmode 0x%x", fmode); case FMODE_READABLE: return MODE_BTMODE("r", "rb", "rt"); case FMODE_WRITABLE: return MODE_BTXMODE("w", "wb", "wt", "wx", "wbx", "wtx"); case FMODE_READWRITE: if (fmode & FMODE_CREATE) { return MODE_BTXMODE("w+", "wb+", "wt+", "w+x", "wb+x", "wt+x"); } return MODE_BTMODE("r+", "rb+", "rt+"); } } static const char bom_prefix[] = "bom|"; static const char utf_prefix[] = "utf-"; enum {bom_prefix_len = (int)sizeof(bom_prefix) - 1}; enum {utf_prefix_len = (int)sizeof(utf_prefix) - 1}; static int io_encname_bom_p(const char *name, long len) { return len > bom_prefix_len && STRNCASECMP(name, bom_prefix, bom_prefix_len) == 0; } int rb_io_modestr_fmode(const char *modestr) { int fmode = 0; const char *m = modestr, *p = NULL; switch (*m++) { case 'r': fmode |= FMODE_READABLE; break; case 'w': fmode |= FMODE_WRITABLE | FMODE_TRUNC | FMODE_CREATE; break; case 'a': fmode |= FMODE_WRITABLE | FMODE_APPEND | FMODE_CREATE; break; default: goto error; } while (*m) { switch (*m++) { case 'b': fmode |= FMODE_BINMODE; break; case 't': fmode |= FMODE_TEXTMODE; break; case '+': fmode |= FMODE_READWRITE; break; case 'x': if (modestr[0] != 'w') goto error; fmode |= FMODE_EXCL; break; default: goto error; case ':': p = strchr(m, ':'); if (io_encname_bom_p(m, p ? (long)(p - m) : (long)strlen(m))) fmode |= FMODE_SETENC_BY_BOM; goto finished; } } finished: if ((fmode & FMODE_BINMODE) && (fmode & FMODE_TEXTMODE)) goto error; return fmode; error: rb_raise(rb_eArgError, "invalid access mode %s", modestr); UNREACHABLE_RETURN(Qundef); } int rb_io_oflags_fmode(int oflags) { int fmode = 0; switch (oflags & O_ACCMODE) { case O_RDONLY: fmode = FMODE_READABLE; break; case O_WRONLY: fmode = FMODE_WRITABLE; break; case O_RDWR: fmode = FMODE_READWRITE; break; } if (oflags & O_APPEND) { fmode |= FMODE_APPEND; } if (oflags & O_TRUNC) { fmode |= FMODE_TRUNC; } if (oflags & O_CREAT) { fmode |= FMODE_CREATE; } if (oflags & O_EXCL) { fmode |= FMODE_EXCL; } #ifdef O_BINARY if (oflags & O_BINARY) { fmode |= FMODE_BINMODE; } #endif return fmode; } static int rb_io_fmode_oflags(int fmode) { int oflags = 0; switch (fmode & FMODE_READWRITE) { case FMODE_READABLE: oflags |= O_RDONLY; break; case FMODE_WRITABLE: oflags |= O_WRONLY; break; case FMODE_READWRITE: oflags |= O_RDWR; break; } if (fmode & FMODE_APPEND) { oflags |= O_APPEND; } if (fmode & FMODE_TRUNC) { oflags |= O_TRUNC; } if (fmode & FMODE_CREATE) { oflags |= O_CREAT; } if (fmode & FMODE_EXCL) { oflags |= O_EXCL; } #ifdef O_BINARY if (fmode & FMODE_BINMODE) { oflags |= O_BINARY; } #endif return oflags; } int rb_io_modestr_oflags(const char *modestr) { return rb_io_fmode_oflags(rb_io_modestr_fmode(modestr)); } static const char* rb_io_oflags_modestr(int oflags) { #ifdef O_BINARY # define MODE_BINARY(a,b) ((oflags & O_BINARY) ? (b) : (a)) #else # define MODE_BINARY(a,b) (a) #endif int accmode; if (oflags & O_EXCL) { rb_raise(rb_eArgError, "exclusive access mode is not supported"); } accmode = oflags & (O_RDONLY|O_WRONLY|O_RDWR); if (oflags & O_APPEND) { if (accmode == O_WRONLY) { return MODE_BINARY("a", "ab"); } if (accmode == O_RDWR) { return MODE_BINARY("a+", "ab+"); } } switch (accmode) { default: rb_raise(rb_eArgError, "invalid access oflags 0x%x", oflags); case O_RDONLY: return MODE_BINARY("r", "rb"); case O_WRONLY: return MODE_BINARY("w", "wb"); case O_RDWR: if (oflags & O_TRUNC) { return MODE_BINARY("w+", "wb+"); } return MODE_BINARY("r+", "rb+"); } } /* * Convert external/internal encodings to enc/enc2 * NULL => use default encoding * Qnil => no encoding specified (internal only) */ static void rb_io_ext_int_to_encs(rb_encoding *ext, rb_encoding *intern, rb_encoding **enc, rb_encoding **enc2, int fmode) { int default_ext = 0; if (ext == NULL) { ext = rb_default_external_encoding(); default_ext = 1; } if (rb_is_ascii8bit_enc(ext)) { /* If external is ASCII-8BIT, no transcoding */ intern = NULL; } else if (intern == NULL) { intern = rb_default_internal_encoding(); } if (intern == NULL || intern == (rb_encoding *)Qnil || (!(fmode & FMODE_SETENC_BY_BOM) && (intern == ext))) { /* No internal encoding => use external + no transcoding */ *enc = (default_ext && intern != ext) ? NULL : ext; *enc2 = NULL; } else { *enc = intern; *enc2 = ext; } } static void unsupported_encoding(const char *name, rb_encoding *enc) { rb_enc_warn(enc, "Unsupported encoding %s ignored", name); } static void parse_mode_enc(const char *estr, rb_encoding *estr_enc, rb_encoding **enc_p, rb_encoding **enc2_p, int *fmode_p) { const char *p; char encname[ENCODING_MAXNAMELEN+1]; int idx, idx2; int fmode = fmode_p ? *fmode_p : 0; rb_encoding *ext_enc, *int_enc; long len; /* parse estr as "enc" or "enc2:enc" or "enc:-" */ p = strrchr(estr, ':'); len = p ? (p++ - estr) : (long)strlen(estr); if ((fmode & FMODE_SETENC_BY_BOM) || io_encname_bom_p(estr, len)) { estr += bom_prefix_len; len -= bom_prefix_len; if (!STRNCASECMP(estr, utf_prefix, utf_prefix_len)) { fmode |= FMODE_SETENC_BY_BOM; } else { rb_enc_warn(estr_enc, "BOM with non-UTF encoding %s is nonsense", estr); fmode &= ~FMODE_SETENC_BY_BOM; } } if (len == 0 || len > ENCODING_MAXNAMELEN) { idx = -1; } else { if (p) { memcpy(encname, estr, len); encname[len] = '\0'; estr = encname; } idx = rb_enc_find_index(estr); } if (fmode_p) *fmode_p = fmode; if (idx >= 0) ext_enc = rb_enc_from_index(idx); else { if (idx != -2) unsupported_encoding(estr, estr_enc); ext_enc = NULL; } int_enc = NULL; if (p) { if (*p == '-' && *(p+1) == '\0') { /* Special case - "-" => no transcoding */ int_enc = (rb_encoding *)Qnil; } else { idx2 = rb_enc_find_index(p); if (idx2 < 0) unsupported_encoding(p, estr_enc); else if (!(fmode & FMODE_SETENC_BY_BOM) && (idx2 == idx)) { int_enc = (rb_encoding *)Qnil; } else int_enc = rb_enc_from_index(idx2); } } rb_io_ext_int_to_encs(ext_enc, int_enc, enc_p, enc2_p, fmode); } int rb_io_extract_encoding_option(VALUE opt, rb_encoding **enc_p, rb_encoding **enc2_p, int *fmode_p) { VALUE encoding=Qnil, extenc=Qundef, intenc=Qundef, tmp; int extracted = 0; rb_encoding *extencoding = NULL; rb_encoding *intencoding = NULL; if (!NIL_P(opt)) { VALUE v; v = rb_hash_lookup2(opt, sym_encoding, Qnil); if (v != Qnil) encoding = v; v = rb_hash_lookup2(opt, sym_extenc, Qundef); if (v != Qnil) extenc = v; v = rb_hash_lookup2(opt, sym_intenc, Qundef); if (!UNDEF_P(v)) intenc = v; } if ((!UNDEF_P(extenc) || !UNDEF_P(intenc)) && !NIL_P(encoding)) { if (!NIL_P(ruby_verbose)) { int idx = rb_to_encoding_index(encoding); if (idx >= 0) encoding = rb_enc_from_encoding(rb_enc_from_index(idx)); rb_warn("Ignoring encoding parameter '%"PRIsVALUE"': %s_encoding is used", encoding, UNDEF_P(extenc) ? "internal" : "external"); } encoding = Qnil; } if (!UNDEF_P(extenc) && !NIL_P(extenc)) { extencoding = rb_to_encoding(extenc); } if (!UNDEF_P(intenc)) { if (NIL_P(intenc)) { /* internal_encoding: nil => no transcoding */ intencoding = (rb_encoding *)Qnil; } else if (!NIL_P(tmp = rb_check_string_type(intenc))) { char *p = StringValueCStr(tmp); if (*p == '-' && *(p+1) == '\0') { /* Special case - "-" => no transcoding */ intencoding = (rb_encoding *)Qnil; } else { intencoding = rb_to_encoding(intenc); } } else { intencoding = rb_to_encoding(intenc); } if (extencoding == intencoding) { intencoding = (rb_encoding *)Qnil; } } if (!NIL_P(encoding)) { extracted = 1; if (!NIL_P(tmp = rb_check_string_type(encoding))) { parse_mode_enc(StringValueCStr(tmp), rb_enc_get(tmp), enc_p, enc2_p, fmode_p); } else { rb_io_ext_int_to_encs(rb_to_encoding(encoding), NULL, enc_p, enc2_p, 0); } } else if (!UNDEF_P(extenc) || !UNDEF_P(intenc)) { extracted = 1; rb_io_ext_int_to_encs(extencoding, intencoding, enc_p, enc2_p, 0); } return extracted; } static void validate_enc_binmode(int *fmode_p, int ecflags, rb_encoding *enc, rb_encoding *enc2) { int fmode = *fmode_p; if ((fmode & FMODE_READABLE) && !enc2 && !(fmode & FMODE_BINMODE) && !rb_enc_asciicompat(enc ? enc : rb_default_external_encoding())) rb_raise(rb_eArgError, "ASCII incompatible encoding needs binmode"); if ((fmode & FMODE_BINMODE) && (ecflags & ECONV_NEWLINE_DECORATOR_MASK)) { rb_raise(rb_eArgError, "newline decorator with binary mode"); } if (!(fmode & FMODE_BINMODE) && (DEFAULT_TEXTMODE || (ecflags & ECONV_NEWLINE_DECORATOR_MASK))) { fmode |= FMODE_TEXTMODE; *fmode_p = fmode; } #if !DEFAULT_TEXTMODE else if (!(ecflags & ECONV_NEWLINE_DECORATOR_MASK)) { fmode &= ~FMODE_TEXTMODE; *fmode_p = fmode; } #endif } static void extract_binmode(VALUE opthash, int *fmode) { if (!NIL_P(opthash)) { VALUE v; v = rb_hash_aref(opthash, sym_textmode); if (!NIL_P(v)) { if (*fmode & FMODE_TEXTMODE) rb_raise(rb_eArgError, "textmode specified twice"); if (*fmode & FMODE_BINMODE) rb_raise(rb_eArgError, "both textmode and binmode specified"); if (RTEST(v)) *fmode |= FMODE_TEXTMODE; } v = rb_hash_aref(opthash, sym_binmode); if (!NIL_P(v)) { if (*fmode & FMODE_BINMODE) rb_raise(rb_eArgError, "binmode specified twice"); if (*fmode & FMODE_TEXTMODE) rb_raise(rb_eArgError, "both textmode and binmode specified"); if (RTEST(v)) *fmode |= FMODE_BINMODE; } if ((*fmode & FMODE_BINMODE) && (*fmode & FMODE_TEXTMODE)) rb_raise(rb_eArgError, "both textmode and binmode specified"); } } void rb_io_extract_modeenc(VALUE *vmode_p, VALUE *vperm_p, VALUE opthash, int *oflags_p, int *fmode_p, struct rb_io_encoding *convconfig_p) { VALUE vmode; int oflags, fmode; rb_encoding *enc, *enc2; int ecflags; VALUE ecopts; int has_enc = 0, has_vmode = 0; VALUE intmode; vmode = *vmode_p; /* Set to defaults */ rb_io_ext_int_to_encs(NULL, NULL, &enc, &enc2, 0); vmode_handle: if (NIL_P(vmode)) { fmode = FMODE_READABLE; oflags = O_RDONLY; } else if (!NIL_P(intmode = rb_check_to_integer(vmode, "to_int"))) { vmode = intmode; oflags = NUM2INT(intmode); fmode = rb_io_oflags_fmode(oflags); } else { const char *p; StringValue(vmode); p = StringValueCStr(vmode); fmode = rb_io_modestr_fmode(p); oflags = rb_io_fmode_oflags(fmode); p = strchr(p, ':'); if (p) { has_enc = 1; parse_mode_enc(p+1, rb_enc_get(vmode), &enc, &enc2, &fmode); } else { rb_encoding *e; e = (fmode & FMODE_BINMODE) ? rb_ascii8bit_encoding() : NULL; rb_io_ext_int_to_encs(e, NULL, &enc, &enc2, fmode); } } if (NIL_P(opthash)) { ecflags = (fmode & FMODE_READABLE) ? MODE_BTMODE(ECONV_DEFAULT_NEWLINE_DECORATOR, 0, ECONV_UNIVERSAL_NEWLINE_DECORATOR) : 0; #ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE ecflags |= (fmode & FMODE_WRITABLE) ? MODE_BTMODE(TEXTMODE_NEWLINE_DECORATOR_ON_WRITE, 0, TEXTMODE_NEWLINE_DECORATOR_ON_WRITE) : 0; #endif SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags); ecopts = Qnil; if (fmode & FMODE_BINMODE) { #ifdef O_BINARY oflags |= O_BINARY; #endif if (!has_enc) rb_io_ext_int_to_encs(rb_ascii8bit_encoding(), NULL, &enc, &enc2, fmode); } #if DEFAULT_TEXTMODE else if (NIL_P(vmode)) { fmode |= DEFAULT_TEXTMODE; } #endif } else { VALUE v; if (!has_vmode) { v = rb_hash_aref(opthash, sym_mode); if (!NIL_P(v)) { if (!NIL_P(vmode)) { rb_raise(rb_eArgError, "mode specified twice"); } has_vmode = 1; vmode = v; goto vmode_handle; } } v = rb_hash_aref(opthash, sym_flags); if (!NIL_P(v)) { v = rb_to_int(v); oflags |= NUM2INT(v); vmode = INT2NUM(oflags); fmode = rb_io_oflags_fmode(oflags); } extract_binmode(opthash, &fmode); if (fmode & FMODE_BINMODE) { #ifdef O_BINARY oflags |= O_BINARY; #endif if (!has_enc) rb_io_ext_int_to_encs(rb_ascii8bit_encoding(), NULL, &enc, &enc2, fmode); } #if DEFAULT_TEXTMODE else if (NIL_P(vmode)) { fmode |= DEFAULT_TEXTMODE; } #endif v = rb_hash_aref(opthash, sym_perm); if (!NIL_P(v)) { if (vperm_p) { if (!NIL_P(*vperm_p)) { rb_raise(rb_eArgError, "perm specified twice"); } *vperm_p = v; } else { /* perm no use, just ignore */ } } ecflags = (fmode & FMODE_READABLE) ? MODE_BTMODE(ECONV_DEFAULT_NEWLINE_DECORATOR, 0, ECONV_UNIVERSAL_NEWLINE_DECORATOR) : 0; #ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE ecflags |= (fmode & FMODE_WRITABLE) ? MODE_BTMODE(TEXTMODE_NEWLINE_DECORATOR_ON_WRITE, 0, TEXTMODE_NEWLINE_DECORATOR_ON_WRITE) : 0; #endif if (rb_io_extract_encoding_option(opthash, &enc, &enc2, &fmode)) { if (has_enc) { rb_raise(rb_eArgError, "encoding specified twice"); } } SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags); ecflags = rb_econv_prepare_options(opthash, &ecopts, ecflags); } validate_enc_binmode(&fmode, ecflags, enc, enc2); *vmode_p = vmode; *oflags_p = oflags; *fmode_p = fmode; convconfig_p->enc = enc; convconfig_p->enc2 = enc2; convconfig_p->ecflags = ecflags; convconfig_p->ecopts = ecopts; } struct sysopen_struct { VALUE fname; int oflags; mode_t perm; }; static void * sysopen_func(void *ptr) { const struct sysopen_struct *data = ptr; const char *fname = RSTRING_PTR(data->fname); return (void *)(VALUE)rb_cloexec_open(fname, data->oflags, data->perm); } static inline int rb_sysopen_internal(struct sysopen_struct *data) { int fd; do { fd = IO_WITHOUT_GVL_INT(sysopen_func, data); } while (fd < 0 && errno == EINTR); if (0 <= fd) rb_update_max_fd(fd); return fd; } static int rb_sysopen(VALUE fname, int oflags, mode_t perm) { int fd = -1; struct sysopen_struct data; data.fname = rb_str_encode_ospath(fname); StringValueCStr(data.fname); data.oflags = oflags; data.perm = perm; TRY_WITH_GC((fd = rb_sysopen_internal(&data)) >= 0) { rb_syserr_fail_path(first_errno, fname); } return fd; } static inline FILE * fdopen_internal(int fd, const char *modestr) { FILE *file; #if defined(__sun) errno = 0; #endif file = fdopen(fd, modestr); if (!file) { #ifdef _WIN32 if (errno == 0) errno = EINVAL; #elif defined(__sun) if (errno == 0) errno = EMFILE; #endif } return file; } FILE * rb_fdopen(int fd, const char *modestr) { FILE *file = 0; TRY_WITH_GC((file = fdopen_internal(fd, modestr)) != 0) { rb_syserr_fail(first_errno, 0); } /* xxx: should be _IONBF? A buffer in FILE may have trouble. */ #ifdef USE_SETVBUF if (setvbuf(file, NULL, _IOFBF, 0) != 0) rb_warn("setvbuf() can't be honoured (fd=%d)", fd); #endif return file; } static int io_check_tty(rb_io_t *fptr) { int t = isatty(fptr->fd); if (t) fptr->mode |= FMODE_TTY|FMODE_DUPLEX; return t; } static VALUE rb_io_internal_encoding(VALUE); static void io_encoding_set(rb_io_t *, VALUE, VALUE, VALUE); static int io_strip_bom(VALUE io) { VALUE b1, b2, b3, b4; rb_io_t *fptr; GetOpenFile(io, fptr); if (!(fptr->mode & FMODE_READABLE)) return 0; if (NIL_P(b1 = rb_io_getbyte(io))) return 0; switch (b1) { case INT2FIX(0xEF): if (NIL_P(b2 = rb_io_getbyte(io))) break; if (b2 == INT2FIX(0xBB) && !NIL_P(b3 = rb_io_getbyte(io))) { if (b3 == INT2FIX(0xBF)) { return rb_utf8_encindex(); } rb_io_ungetbyte(io, b3); } rb_io_ungetbyte(io, b2); break; case INT2FIX(0xFE): if (NIL_P(b2 = rb_io_getbyte(io))) break; if (b2 == INT2FIX(0xFF)) { return ENCINDEX_UTF_16BE; } rb_io_ungetbyte(io, b2); break; case INT2FIX(0xFF): if (NIL_P(b2 = rb_io_getbyte(io))) break; if (b2 == INT2FIX(0xFE)) { b3 = rb_io_getbyte(io); if (b3 == INT2FIX(0) && !NIL_P(b4 = rb_io_getbyte(io))) { if (b4 == INT2FIX(0)) { return ENCINDEX_UTF_32LE; } rb_io_ungetbyte(io, b4); } rb_io_ungetbyte(io, b3); return ENCINDEX_UTF_16LE; } rb_io_ungetbyte(io, b2); break; case INT2FIX(0): if (NIL_P(b2 = rb_io_getbyte(io))) break; if (b2 == INT2FIX(0) && !NIL_P(b3 = rb_io_getbyte(io))) { if (b3 == INT2FIX(0xFE) && !NIL_P(b4 = rb_io_getbyte(io))) { if (b4 == INT2FIX(0xFF)) { return ENCINDEX_UTF_32BE; } rb_io_ungetbyte(io, b4); } rb_io_ungetbyte(io, b3); } rb_io_ungetbyte(io, b2); break; } rb_io_ungetbyte(io, b1); return 0; } static rb_encoding * io_set_encoding_by_bom(VALUE io) { int idx = io_strip_bom(io); rb_io_t *fptr; rb_encoding *extenc = NULL; GetOpenFile(io, fptr); if (idx) { extenc = rb_enc_from_index(idx); io_encoding_set(fptr, rb_enc_from_encoding(extenc), rb_io_internal_encoding(io), Qnil); } else { fptr->encs.enc2 = NULL; } return extenc; } static VALUE rb_file_open_generic(VALUE io, VALUE filename, int oflags, int fmode, const struct rb_io_encoding *convconfig, mode_t perm) { VALUE pathv; rb_io_t *fptr; struct rb_io_encoding cc; if (!convconfig) { /* Set to default encodings */ rb_io_ext_int_to_encs(NULL, NULL, &cc.enc, &cc.enc2, fmode); cc.ecflags = 0; cc.ecopts = Qnil; convconfig = &cc; } validate_enc_binmode(&fmode, convconfig->ecflags, convconfig->enc, convconfig->enc2); MakeOpenFile(io, fptr); fptr->mode = fmode; fptr->encs = *convconfig; pathv = rb_str_new_frozen(filename); #ifdef O_TMPFILE if (!(oflags & O_TMPFILE)) { fptr->pathv = pathv; } #else fptr->pathv = pathv; #endif fptr->fd = rb_sysopen(pathv, oflags, perm); io_check_tty(fptr); if (fmode & FMODE_SETENC_BY_BOM) io_set_encoding_by_bom(io); return io; } static VALUE rb_file_open_internal(VALUE io, VALUE filename, const char *modestr) { int fmode = rb_io_modestr_fmode(modestr); const char *p = strchr(modestr, ':'); struct rb_io_encoding convconfig; if (p) { parse_mode_enc(p+1, rb_usascii_encoding(), &convconfig.enc, &convconfig.enc2, &fmode); } else { rb_encoding *e; /* Set to default encodings */ e = (fmode & FMODE_BINMODE) ? rb_ascii8bit_encoding() : NULL; rb_io_ext_int_to_encs(e, NULL, &convconfig.enc, &convconfig.enc2, fmode); } convconfig.ecflags = (fmode & FMODE_READABLE) ? MODE_BTMODE(ECONV_DEFAULT_NEWLINE_DECORATOR, 0, ECONV_UNIVERSAL_NEWLINE_DECORATOR) : 0; #ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE convconfig.ecflags |= (fmode & FMODE_WRITABLE) ? MODE_BTMODE(TEXTMODE_NEWLINE_DECORATOR_ON_WRITE, 0, TEXTMODE_NEWLINE_DECORATOR_ON_WRITE) : 0; #endif SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(convconfig.enc2, convconfig.ecflags); convconfig.ecopts = Qnil; return rb_file_open_generic(io, filename, rb_io_fmode_oflags(fmode), fmode, &convconfig, 0666); } VALUE rb_file_open_str(VALUE fname, const char *modestr) { FilePathValue(fname); return rb_file_open_internal(io_alloc(rb_cFile), fname, modestr); } VALUE rb_file_open(const char *fname, const char *modestr) { return rb_file_open_internal(io_alloc(rb_cFile), rb_str_new_cstr(fname), modestr); } #if defined(__CYGWIN__) || !defined(HAVE_WORKING_FORK) static struct pipe_list { rb_io_t *fptr; struct pipe_list *next; } *pipe_list; static void pipe_add_fptr(rb_io_t *fptr) { struct pipe_list *list; list = ALLOC(struct pipe_list); list->fptr = fptr; list->next = pipe_list; pipe_list = list; } static void pipe_del_fptr(rb_io_t *fptr) { struct pipe_list **prev = &pipe_list; struct pipe_list *tmp; while ((tmp = *prev) != 0) { if (tmp->fptr == fptr) { *prev = tmp->next; free(tmp); return; } prev = &tmp->next; } } #if defined (_WIN32) || defined(__CYGWIN__) static void pipe_atexit(void) { struct pipe_list *list = pipe_list; struct pipe_list *tmp; while (list) { tmp = list->next; rb_io_fptr_finalize(list->fptr); list = tmp; } } #endif static void pipe_finalize(rb_io_t *fptr, int noraise) { #if !defined(HAVE_WORKING_FORK) && !defined(_WIN32) int status = 0; if (fptr->stdio_file) { status = pclose(fptr->stdio_file); } fptr->fd = -1; fptr->stdio_file = 0; rb_last_status_set(status, fptr->pid); #else fptr_finalize(fptr, noraise); #endif pipe_del_fptr(fptr); } #endif static void fptr_copy_finalizer(rb_io_t *fptr, const rb_io_t *orig) { #if defined(__CYGWIN__) || !defined(HAVE_WORKING_FORK) void (*const old_finalize)(struct rb_io*,int) = fptr->finalize; if (old_finalize == orig->finalize) return; #endif fptr->finalize = orig->finalize; #if defined(__CYGWIN__) || !defined(HAVE_WORKING_FORK) if (old_finalize != pipe_finalize) { struct pipe_list *list; for (list = pipe_list; list; list = list->next) { if (list->fptr == fptr) break; } if (!list) pipe_add_fptr(fptr); } else { pipe_del_fptr(fptr); } #endif } void rb_io_synchronized(rb_io_t *fptr) { rb_io_check_initialized(fptr); fptr->mode |= FMODE_SYNC; } void rb_io_unbuffered(rb_io_t *fptr) { rb_io_synchronized(fptr); } int rb_pipe(int *pipes) { int ret; TRY_WITH_GC((ret = rb_cloexec_pipe(pipes)) >= 0); if (ret == 0) { rb_update_max_fd(pipes[0]); rb_update_max_fd(pipes[1]); } return ret; } #ifdef _WIN32 #define HAVE_SPAWNV 1 #define spawnv(mode, cmd, args) rb_w32_uaspawn((mode), (cmd), (args)) #define spawn(mode, cmd) rb_w32_uspawn((mode), (cmd), 0) #endif #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) struct popen_arg { VALUE execarg_obj; struct rb_execarg *eargp; int modef; int pair[2]; int write_pair[2]; }; #endif #ifdef HAVE_WORKING_FORK # ifndef __EMSCRIPTEN__ static void popen_redirect(struct popen_arg *p) { if ((p->modef & FMODE_READABLE) && (p->modef & FMODE_WRITABLE)) { close(p->write_pair[1]); if (p->write_pair[0] != 0) { dup2(p->write_pair[0], 0); close(p->write_pair[0]); } close(p->pair[0]); if (p->pair[1] != 1) { dup2(p->pair[1], 1); close(p->pair[1]); } } else if (p->modef & FMODE_READABLE) { close(p->pair[0]); if (p->pair[1] != 1) { dup2(p->pair[1], 1); close(p->pair[1]); } } else { close(p->pair[1]); if (p->pair[0] != 0) { dup2(p->pair[0], 0); close(p->pair[0]); } } } # endif #if defined(__linux__) /* Linux /proc/self/status contains a line: "FDSize:\t\n" * Since /proc may not be available, linux_get_maxfd is just a hint. * This function, linux_get_maxfd, must be async-signal-safe. * I.e. opendir() is not usable. * * Note that memchr() and memcmp is *not* async-signal-safe in POSIX. * However they are easy to re-implement in async-signal-safe manner. * (Also note that there is missing/memcmp.c.) */ static int linux_get_maxfd(void) { int fd; char buf[4096], *p, *np, *e; ssize_t ss; fd = rb_cloexec_open("/proc/self/status", O_RDONLY|O_NOCTTY, 0); if (fd < 0) return fd; ss = read(fd, buf, sizeof(buf)); if (ss < 0) goto err; p = buf; e = buf + ss; while ((int)sizeof("FDSize:\t0\n")-1 <= e-p && (np = memchr(p, '\n', e-p)) != NULL) { if (memcmp(p, "FDSize:", sizeof("FDSize:")-1) == 0) { int fdsize; p += sizeof("FDSize:")-1; *np = '\0'; fdsize = (int)ruby_strtoul(p, (char **)NULL, 10); close(fd); return fdsize; } p = np+1; } /* fall through */ err: close(fd); return (int)ss; } #endif /* This function should be async-signal-safe. */ void rb_close_before_exec(int lowfd, int maxhint, VALUE noclose_fds) { #if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(F_SETFD) && defined(FD_CLOEXEC) int fd, ret; int max = (int)max_file_descriptor; # ifdef F_MAXFD /* F_MAXFD is available since NetBSD 2.0. */ ret = fcntl(0, F_MAXFD); /* async-signal-safe */ if (ret != -1) maxhint = max = ret; # elif defined(__linux__) ret = linux_get_maxfd(); if (maxhint < ret) maxhint = ret; /* maxhint = max = ret; if (ret == -1) abort(); // test */ # endif if (max < maxhint) max = maxhint; for (fd = lowfd; fd <= max; fd++) { if (!NIL_P(noclose_fds) && RTEST(rb_hash_lookup(noclose_fds, INT2FIX(fd)))) /* async-signal-safe */ continue; ret = fcntl(fd, F_GETFD); /* async-signal-safe */ if (ret != -1 && !(ret & FD_CLOEXEC)) { fcntl(fd, F_SETFD, ret|FD_CLOEXEC); /* async-signal-safe */ } # define CONTIGUOUS_CLOSED_FDS 20 if (ret != -1) { if (max < fd + CONTIGUOUS_CLOSED_FDS) max = fd + CONTIGUOUS_CLOSED_FDS; } } #endif } # ifndef __EMSCRIPTEN__ static int popen_exec(void *pp, char *errmsg, size_t errmsg_len) { struct popen_arg *p = (struct popen_arg*)pp; return rb_exec_async_signal_safe(p->eargp, errmsg, errmsg_len); } # endif #endif #if (defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)) && !defined __EMSCRIPTEN__ static VALUE rb_execarg_fixup_v(VALUE execarg_obj) { rb_execarg_parent_start(execarg_obj); return Qnil; } #else char *rb_execarg_commandline(const struct rb_execarg *eargp, VALUE *prog); #endif #ifndef __EMSCRIPTEN__ static VALUE pipe_open(VALUE execarg_obj, const char *modestr, int fmode, const struct rb_io_encoding *convconfig) { struct rb_execarg *eargp = NIL_P(execarg_obj) ? NULL : rb_execarg_get(execarg_obj); VALUE prog = eargp ? (eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name) : Qfalse ; rb_pid_t pid = 0; rb_io_t *fptr; VALUE port; rb_io_t *write_fptr; VALUE write_port; #if defined(HAVE_WORKING_FORK) int status; char errmsg[80] = { '\0' }; #endif #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) int state; struct popen_arg arg; #endif int e = 0; #if defined(HAVE_SPAWNV) # if defined(HAVE_SPAWNVE) # define DO_SPAWN(cmd, args, envp) ((args) ? \ spawnve(P_NOWAIT, (cmd), (args), (envp)) : \ spawne(P_NOWAIT, (cmd), (envp))) # else # define DO_SPAWN(cmd, args, envp) ((args) ? \ spawnv(P_NOWAIT, (cmd), (args)) : \ spawn(P_NOWAIT, (cmd))) # endif # if !defined(HAVE_WORKING_FORK) char **args = NULL; # if defined(HAVE_SPAWNVE) char **envp = NULL; # endif # endif #endif #if !defined(HAVE_WORKING_FORK) struct rb_execarg sarg, *sargp = &sarg; #endif FILE *fp = 0; int fd = -1; int write_fd = -1; #if !defined(HAVE_WORKING_FORK) const char *cmd = 0; if (prog) cmd = StringValueCStr(prog); #endif #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) arg.execarg_obj = execarg_obj; arg.eargp = eargp; arg.modef = fmode; arg.pair[0] = arg.pair[1] = -1; arg.write_pair[0] = arg.write_pair[1] = -1; # if !defined(HAVE_WORKING_FORK) if (eargp && !eargp->use_shell) { args = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str); } # endif switch (fmode & (FMODE_READABLE|FMODE_WRITABLE)) { case FMODE_READABLE|FMODE_WRITABLE: if (rb_pipe(arg.write_pair) < 0) rb_sys_fail_str(prog); if (rb_pipe(arg.pair) < 0) { e = errno; close(arg.write_pair[0]); close(arg.write_pair[1]); rb_syserr_fail_str(e, prog); } if (eargp) { rb_execarg_addopt(execarg_obj, INT2FIX(0), INT2FIX(arg.write_pair[0])); rb_execarg_addopt(execarg_obj, INT2FIX(1), INT2FIX(arg.pair[1])); } break; case FMODE_READABLE: if (rb_pipe(arg.pair) < 0) rb_sys_fail_str(prog); if (eargp) rb_execarg_addopt(execarg_obj, INT2FIX(1), INT2FIX(arg.pair[1])); break; case FMODE_WRITABLE: if (rb_pipe(arg.pair) < 0) rb_sys_fail_str(prog); if (eargp) rb_execarg_addopt(execarg_obj, INT2FIX(0), INT2FIX(arg.pair[0])); break; default: rb_sys_fail_str(prog); } if (!NIL_P(execarg_obj)) { rb_protect(rb_execarg_fixup_v, execarg_obj, &state); if (state) { if (0 <= arg.write_pair[0]) close(arg.write_pair[0]); if (0 <= arg.write_pair[1]) close(arg.write_pair[1]); if (0 <= arg.pair[0]) close(arg.pair[0]); if (0 <= arg.pair[1]) close(arg.pair[1]); rb_execarg_parent_end(execarg_obj); rb_jump_tag(state); } # if defined(HAVE_WORKING_FORK) pid = rb_fork_async_signal_safe(&status, popen_exec, &arg, arg.eargp->redirect_fds, errmsg, sizeof(errmsg)); # else rb_execarg_run_options(eargp, sargp, NULL, 0); # if defined(HAVE_SPAWNVE) if (eargp->envp_str) envp = (char **)RSTRING_PTR(eargp->envp_str); # endif while ((pid = DO_SPAWN(cmd, args, envp)) < 0) { /* exec failed */ switch (e = errno) { case EAGAIN: # if EWOULDBLOCK != EAGAIN case EWOULDBLOCK: # endif rb_thread_sleep(1); continue; } break; } if (eargp) rb_execarg_run_options(sargp, NULL, NULL, 0); # endif rb_execarg_parent_end(execarg_obj); } else { # if defined(HAVE_WORKING_FORK) pid = rb_call_proc__fork(); if (pid == 0) { /* child */ popen_redirect(&arg); rb_io_synchronized(RFILE(orig_stdout)->fptr); rb_io_synchronized(RFILE(orig_stderr)->fptr); return Qnil; } # else rb_notimplement(); # endif } /* parent */ if (pid < 0) { # if defined(HAVE_WORKING_FORK) e = errno; # endif close(arg.pair[0]); close(arg.pair[1]); if ((fmode & (FMODE_READABLE|FMODE_WRITABLE)) == (FMODE_READABLE|FMODE_WRITABLE)) { close(arg.write_pair[0]); close(arg.write_pair[1]); } # if defined(HAVE_WORKING_FORK) if (errmsg[0]) rb_syserr_fail(e, errmsg); # endif rb_syserr_fail_str(e, prog); } if ((fmode & FMODE_READABLE) && (fmode & FMODE_WRITABLE)) { close(arg.pair[1]); fd = arg.pair[0]; close(arg.write_pair[0]); write_fd = arg.write_pair[1]; } else if (fmode & FMODE_READABLE) { close(arg.pair[1]); fd = arg.pair[0]; } else { close(arg.pair[0]); fd = arg.pair[1]; } #else cmd = rb_execarg_commandline(eargp, &prog); if (!NIL_P(execarg_obj)) { rb_execarg_parent_start(execarg_obj); rb_execarg_run_options(eargp, sargp, NULL, 0); } fp = popen(cmd, modestr); e = errno; if (eargp) { rb_execarg_parent_end(execarg_obj); rb_execarg_run_options(sargp, NULL, NULL, 0); } if (!fp) rb_syserr_fail_path(e, prog); fd = fileno(fp); #endif port = io_alloc(rb_cIO); MakeOpenFile(port, fptr); fptr->fd = fd; fptr->stdio_file = fp; fptr->mode = fmode | FMODE_SYNC|FMODE_DUPLEX; if (convconfig) { fptr->encs = *convconfig; #if RUBY_CRLF_ENVIRONMENT if (fptr->encs.ecflags & ECONV_DEFAULT_NEWLINE_DECORATOR) { fptr->encs.ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR; } #endif } else { if (NEED_NEWLINE_DECORATOR_ON_READ(fptr)) { fptr->encs.ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR; } #ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE if (NEED_NEWLINE_DECORATOR_ON_WRITE(fptr)) { fptr->encs.ecflags |= TEXTMODE_NEWLINE_DECORATOR_ON_WRITE; } #endif } fptr->pid = pid; if (0 <= write_fd) { write_port = io_alloc(rb_cIO); MakeOpenFile(write_port, write_fptr); write_fptr->fd = write_fd; write_fptr->mode = (fmode & ~FMODE_READABLE)| FMODE_SYNC|FMODE_DUPLEX; fptr->mode &= ~FMODE_WRITABLE; fptr->tied_io_for_writing = write_port; rb_ivar_set(port, rb_intern("@tied_io_for_writing"), write_port); } #if defined (__CYGWIN__) || !defined(HAVE_WORKING_FORK) fptr->finalize = pipe_finalize; pipe_add_fptr(fptr); #endif return port; } #else static VALUE pipe_open(VALUE execarg_obj, const char *modestr, int fmode, const struct rb_io_encoding *convconfig) { rb_raise(rb_eNotImpError, "popen() is not available"); } #endif static int is_popen_fork(VALUE prog) { if (RSTRING_LEN(prog) == 1 && RSTRING_PTR(prog)[0] == '-') { #if !defined(HAVE_WORKING_FORK) rb_raise(rb_eNotImpError, "fork() function is unimplemented on this machine"); #else return TRUE; #endif } return FALSE; } static VALUE pipe_open_s(VALUE prog, const char *modestr, int fmode, const struct rb_io_encoding *convconfig) { int argc = 1; VALUE *argv = &prog; VALUE execarg_obj = Qnil; if (!is_popen_fork(prog)) execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); return pipe_open(execarg_obj, modestr, fmode, convconfig); } static VALUE pipe_close(VALUE io) { rb_io_t *fptr = io_close_fptr(io); if (fptr) { fptr_waitpid(fptr, rb_thread_to_be_killed(rb_thread_current())); } return Qnil; } static VALUE popen_finish(VALUE port, VALUE klass); /* * call-seq: * IO.popen(env = {}, cmd, mode = 'r', **opts) -> io * IO.popen(env = {}, cmd, mode = 'r', **opts) {|io| ... } -> object * * Executes the given command +cmd+ as a subprocess * whose $stdin and $stdout are connected to a new stream +io+. * * This method has potential security vulnerabilities if called with untrusted input; * see {Command Injection}[rdoc-ref:command_injection.rdoc]. * * If no block is given, returns the new stream, * which depending on given +mode+ may be open for reading, writing, or both. * The stream should be explicitly closed (eventually) to avoid resource leaks. * * If a block is given, the stream is passed to the block * (again, open for reading, writing, or both); * when the block exits, the stream is closed, * and the block's value is assigned to global variable $? and returned. * * Optional argument +mode+ may be any valid \IO mode. * See {Access Modes}[rdoc-ref:File@Access+Modes]. * * Required argument +cmd+ determines which of the following occurs: * * - The process forks. * - A specified program runs in a shell. * - A specified program runs with specified arguments. * - A specified program runs with specified arguments and a specified +argv0+. * * Each of these is detailed below. * * The optional hash argument +env+ specifies name/value pairs that are to be added * to the environment variables for the subprocess: * * IO.popen({'FOO' => 'bar'}, 'ruby', 'r+') do |pipe| * pipe.puts 'puts ENV["FOO"]' * pipe.close_write * pipe.gets * end => "bar\n" * * Optional keyword arguments +opts+ specify: * * - {Open options}[rdoc-ref:IO@Open+Options]. * - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * - Options for Kernel#spawn. * * Forked \Process * * When argument +cmd+ is the 1-character string '-', causes the process to fork: * IO.popen('-') do |pipe| * if pipe * $stderr.puts "In parent, child pid is #{pipe.pid}\n" * else * $stderr.puts "In child, pid is #{$$}\n" * end * end * * Output: * * In parent, child pid is 26253 * In child, pid is 26253 * * Note that this is not supported on all platforms. * * Shell Subprocess * * When argument +cmd+ is a single string (but not '-'), * the program named +cmd+ is run as a shell command: * * IO.popen('uname') do |pipe| * pipe.readlines * end * * Output: * * ["Linux\n"] * * Another example: * * IO.popen('/bin/sh', 'r+') do |pipe| * pipe.puts('ls') * pipe.close_write * $stderr.puts pipe.readlines.size * end * * Output: * * 213 * * Program Subprocess * * When argument +cmd+ is an array of strings, * the program named cmd[0] is run with all elements of +cmd+ as its arguments: * * IO.popen(['du', '..', '.']) do |pipe| * $stderr.puts pipe.readlines.size * end * * Output: * * 1111 * * Program Subprocess with argv0 * * When argument +cmd+ is an array whose first element is a 2-element string array * and whose remaining elements (if any) are strings: * * - cmd[0][0] (the first string in the nested array) is the name of a program that is run. * - cmd[0][1] (the second string in the nested array) is set as the program's argv[0]. * - cmd[1..-1] (the strings in the outer array) are the program's arguments. * * Example (sets $0 to 'foo'): * * IO.popen([['/bin/sh', 'foo'], '-c', 'echo $0']).read # => "foo\n" * * Some Special Examples * * # Set IO encoding. * IO.popen("nkf -e filename", :external_encoding=>"EUC-JP") {|nkf_io| * euc_jp_string = nkf_io.read * } * * # Merge standard output and standard error using Kernel#spawn option. See Kernel#spawn. * IO.popen(["ls", "/", :err=>[:child, :out]]) do |io| * ls_result_with_error = io.read * end * * # Use mixture of spawn options and IO options. * IO.popen(["ls", "/"], :err=>[:child, :out]) do |io| * ls_result_with_error = io.read * end * * f = IO.popen("uname") * p f.readlines * f.close * puts "Parent is #{Process.pid}" * IO.popen("date") {|f| puts f.gets } * IO.popen("-") {|f| $stderr.puts "#{Process.pid} is here, f is #{f.inspect}"} * p $? * IO.popen(%w"sed -e s|^|| -e s&$&;zot;&", "r+") {|f| * f.puts "bar"; f.close_write; puts f.gets * } * * Output (from last section): * * ["Linux\n"] * Parent is 21346 * Thu Jan 15 22:41:19 JST 2009 * 21346 is here, f is # * 21352 is here, f is nil * # * bar;zot; * * Raises exceptions that IO.pipe and Kernel.spawn raise. * */ static VALUE rb_io_s_popen(int argc, VALUE *argv, VALUE klass) { VALUE pname, pmode = Qnil, opt = Qnil, env = Qnil; if (argc > 1 && !NIL_P(opt = rb_check_hash_type(argv[argc-1]))) --argc; if (argc > 1 && !NIL_P(env = rb_check_hash_type(argv[0]))) --argc, ++argv; switch (argc) { case 2: pmode = argv[1]; case 1: pname = argv[0]; break; default: { int ex = !NIL_P(opt); rb_error_arity(argc + ex, 1 + ex, 2 + ex); } } return popen_finish(rb_io_popen(pname, pmode, env, opt), klass); } VALUE rb_io_popen(VALUE pname, VALUE pmode, VALUE env, VALUE opt) { const char *modestr; VALUE tmp, execarg_obj = Qnil; int oflags, fmode; struct rb_io_encoding convconfig; tmp = rb_check_array_type(pname); if (!NIL_P(tmp)) { long len = RARRAY_LEN(tmp); #if SIZEOF_LONG > SIZEOF_INT if (len > INT_MAX) { rb_raise(rb_eArgError, "too many arguments"); } #endif execarg_obj = rb_execarg_new((int)len, RARRAY_CONST_PTR(tmp), FALSE, FALSE); RB_GC_GUARD(tmp); } else { StringValue(pname); execarg_obj = Qnil; if (!is_popen_fork(pname)) execarg_obj = rb_execarg_new(1, &pname, TRUE, FALSE); } if (!NIL_P(execarg_obj)) { if (!NIL_P(opt)) opt = rb_execarg_extract_options(execarg_obj, opt); if (!NIL_P(env)) rb_execarg_setenv(execarg_obj, env); } rb_io_extract_modeenc(&pmode, 0, opt, &oflags, &fmode, &convconfig); modestr = rb_io_oflags_modestr(oflags); return pipe_open(execarg_obj, modestr, fmode, &convconfig); } static VALUE popen_finish(VALUE port, VALUE klass) { if (NIL_P(port)) { /* child */ if (rb_block_given_p()) { rb_yield(Qnil); rb_io_flush(rb_ractor_stdout()); rb_io_flush(rb_ractor_stderr()); _exit(0); } return Qnil; } RBASIC_SET_CLASS(port, klass); if (rb_block_given_p()) { return rb_ensure(rb_yield, port, pipe_close, port); } return port; } #if defined(HAVE_WORKING_FORK) && !defined(__EMSCRIPTEN__) struct popen_writer_arg { char *const *argv; struct popen_arg popen; }; static int exec_popen_writer(void *arg, char *errmsg, size_t buflen) { struct popen_writer_arg *pw = arg; pw->popen.modef = FMODE_WRITABLE; popen_redirect(&pw->popen); execv(pw->argv[0], pw->argv); strlcpy(errmsg, strerror(errno), buflen); return -1; } #endif FILE * ruby_popen_writer(char *const *argv, rb_pid_t *pid) { #if (defined(HAVE_WORKING_FORK) && !defined(__EMSCRIPTEN__)) || defined(_WIN32) # ifdef HAVE_WORKING_FORK struct popen_writer_arg pw; int *const write_pair = pw.popen.pair; # else int write_pair[2]; # endif int result = rb_cloexec_pipe(write_pair); *pid = -1; if (result == 0) { # ifdef HAVE_WORKING_FORK pw.argv = argv; int status; char errmsg[80] = {'\0'}; *pid = rb_fork_async_signal_safe(&status, exec_popen_writer, &pw, Qnil, errmsg, sizeof(errmsg)); # else *pid = rb_w32_uspawn_process(P_NOWAIT, argv[0], argv, write_pair[0], -1, -1, 0); const char *errmsg = (*pid < 0) ? strerror(errno) : NULL; # endif close(write_pair[0]); if (*pid < 0) { close(write_pair[1]); fprintf(stderr, "ruby_popen_writer(%s): %s\n", argv[0], errmsg); } else { return fdopen(write_pair[1], "w"); } } #endif return NULL; } static VALUE rb_open_file(VALUE io, VALUE fname, VALUE vmode, VALUE vperm, VALUE opt) { struct rb_io_encoding convconfig; int oflags, fmode; mode_t perm; FilePathValue(fname); rb_io_extract_modeenc(&vmode, &vperm, opt, &oflags, &fmode, &convconfig); perm = NIL_P(vperm) ? 0666 : NUM2MODET(vperm); rb_file_open_generic(io, fname, oflags, fmode, &convconfig, perm); return io; } /* * Document-method: File::open * * call-seq: * File.open(path, mode = 'r', perm = 0666, **opts) -> file * File.open(path, mode = 'r', perm = 0666, **opts) {|f| ... } -> object * * Creates a new File object, via File.new with the given arguments. * * With no block given, returns the File object. * * With a block given, calls the block with the File object * and returns the block's value. * */ /* * Document-method: IO::open * * call-seq: * IO.open(fd, mode = 'r', **opts) -> io * IO.open(fd, mode = 'r', **opts) {|io| ... } -> object * * Creates a new \IO object, via IO.new with the given arguments. * * With no block given, returns the \IO object. * * With a block given, calls the block with the \IO object * and returns the block's value. * */ static VALUE rb_io_s_open(int argc, VALUE *argv, VALUE klass) { VALUE io = rb_class_new_instance_kw(argc, argv, klass, RB_PASS_CALLED_KEYWORDS); if (rb_block_given_p()) { return rb_ensure(rb_yield, io, io_close, io); } return io; } /* * call-seq: * IO.sysopen(path, mode = 'r', perm = 0666) -> integer * * Opens the file at the given path with the given mode and permissions; * returns the integer file descriptor. * * If the file is to be readable, it must exist; * if the file is to be writable and does not exist, * it is created with the given permissions: * * File.write('t.tmp', '') # => 0 * IO.sysopen('t.tmp') # => 8 * IO.sysopen('t.tmp', 'w') # => 9 * * */ static VALUE rb_io_s_sysopen(int argc, VALUE *argv, VALUE _) { VALUE fname, vmode, vperm; VALUE intmode; int oflags, fd; mode_t perm; rb_scan_args(argc, argv, "12", &fname, &vmode, &vperm); FilePathValue(fname); if (NIL_P(vmode)) oflags = O_RDONLY; else if (!NIL_P(intmode = rb_check_to_integer(vmode, "to_int"))) oflags = NUM2INT(intmode); else { StringValue(vmode); oflags = rb_io_modestr_oflags(StringValueCStr(vmode)); } if (NIL_P(vperm)) perm = 0666; else perm = NUM2MODET(vperm); RB_GC_GUARD(fname) = rb_str_new4(fname); fd = rb_sysopen(fname, oflags, perm); return INT2NUM(fd); } static VALUE check_pipe_command(VALUE filename_or_command) { char *s = RSTRING_PTR(filename_or_command); long l = RSTRING_LEN(filename_or_command); char *e = s + l; int chlen; if (rb_enc_ascget(s, e, &chlen, rb_enc_get(filename_or_command)) == '|') { VALUE cmd = rb_str_new(s+chlen, l-chlen); return cmd; } return Qnil; } /* * call-seq: * open(path, mode = 'r', perm = 0666, **opts) -> io or nil * open(path, mode = 'r', perm = 0666, **opts) {|io| ... } -> obj * * Creates an IO object connected to the given file. * * This method has potential security vulnerabilities if called with untrusted input; * see {Command Injection}[rdoc-ref:command_injection.rdoc]. * * With no block given, file stream is returned: * * open('t.txt') # => # * * With a block given, calls the block with the open file stream, * then closes the stream: * * open('t.txt') {|f| p f } # => # * * Output: * * # * * See File.open for details. * */ static VALUE rb_f_open(int argc, VALUE *argv, VALUE _) { ID to_open = 0; int redirect = FALSE; if (argc >= 1) { CONST_ID(to_open, "to_open"); if (rb_respond_to(argv[0], to_open)) { redirect = TRUE; } else { VALUE tmp = argv[0]; FilePathValue(tmp); if (NIL_P(tmp)) { redirect = TRUE; } else { VALUE cmd = check_pipe_command(tmp); if (!NIL_P(cmd)) { // TODO: when removed in 4.0, update command_injection.rdoc rb_warn_deprecated_to_remove_at(4.0, "Calling Kernel#open with a leading '|'", "IO.popen"); argv[0] = cmd; return rb_io_s_popen(argc, argv, rb_cIO); } } } } if (redirect) { VALUE io = rb_funcallv_kw(argv[0], to_open, argc-1, argv+1, RB_PASS_CALLED_KEYWORDS); if (rb_block_given_p()) { return rb_ensure(rb_yield, io, io_close, io); } return io; } return rb_io_s_open(argc, argv, rb_cFile); } static VALUE rb_io_open_generic(VALUE, VALUE, int, int, const struct rb_io_encoding *, mode_t); static VALUE rb_io_open(VALUE io, VALUE filename, VALUE vmode, VALUE vperm, VALUE opt) { int oflags, fmode; struct rb_io_encoding convconfig; mode_t perm; rb_io_extract_modeenc(&vmode, &vperm, opt, &oflags, &fmode, &convconfig); perm = NIL_P(vperm) ? 0666 : NUM2MODET(vperm); return rb_io_open_generic(io, filename, oflags, fmode, &convconfig, perm); } static VALUE rb_io_open_generic(VALUE klass, VALUE filename, int oflags, int fmode, const struct rb_io_encoding *convconfig, mode_t perm) { VALUE cmd; if (klass == rb_cIO && !NIL_P(cmd = check_pipe_command(filename))) { // TODO: when removed in 4.0, update command_injection.rdoc rb_warn_deprecated_to_remove_at(4.0, "IO process creation with a leading '|'", "IO.popen"); return pipe_open_s(cmd, rb_io_oflags_modestr(oflags), fmode, convconfig); } else { return rb_file_open_generic(io_alloc(klass), filename, oflags, fmode, convconfig, perm); } } static VALUE io_reopen(VALUE io, VALUE nfile) { rb_io_t *fptr, *orig; int fd, fd2; rb_off_t pos = 0; nfile = rb_io_get_io(nfile); GetOpenFile(io, fptr); GetOpenFile(nfile, orig); if (fptr == orig) return io; if (RUBY_IO_EXTERNAL_P(fptr)) { if ((fptr->stdio_file == stdin && !(orig->mode & FMODE_READABLE)) || (fptr->stdio_file == stdout && !(orig->mode & FMODE_WRITABLE)) || (fptr->stdio_file == stderr && !(orig->mode & FMODE_WRITABLE))) { rb_raise(rb_eArgError, "%s can't change access mode from \"%s\" to \"%s\"", PREP_STDIO_NAME(fptr), rb_io_fmode_modestr(fptr->mode), rb_io_fmode_modestr(orig->mode)); } } if (fptr->mode & FMODE_WRITABLE) { if (io_fflush(fptr) < 0) rb_sys_fail_on_write(fptr); } else { flush_before_seek(fptr); } if (orig->mode & FMODE_READABLE) { pos = io_tell(orig); } if (orig->mode & FMODE_WRITABLE) { if (io_fflush(orig) < 0) rb_sys_fail_on_write(fptr); } /* copy rb_io_t structure */ fptr->mode = orig->mode | (fptr->mode & FMODE_EXTERNAL); fptr->pid = orig->pid; fptr->lineno = orig->lineno; if (RTEST(orig->pathv)) fptr->pathv = orig->pathv; else if (!RUBY_IO_EXTERNAL_P(fptr)) fptr->pathv = Qnil; fptr_copy_finalizer(fptr, orig); fd = fptr->fd; fd2 = orig->fd; if (fd != fd2) { if (RUBY_IO_EXTERNAL_P(fptr) || fd <= 2 || !fptr->stdio_file) { /* need to keep FILE objects of stdin, stdout and stderr */ if (rb_cloexec_dup2(fd2, fd) < 0) rb_sys_fail_path(orig->pathv); rb_update_max_fd(fd); } else { fclose(fptr->stdio_file); fptr->stdio_file = 0; fptr->fd = -1; if (rb_cloexec_dup2(fd2, fd) < 0) rb_sys_fail_path(orig->pathv); rb_update_max_fd(fd); fptr->fd = fd; } rb_thread_fd_close(fd); if ((orig->mode & FMODE_READABLE) && pos >= 0) { if (io_seek(fptr, pos, SEEK_SET) < 0 && errno) { rb_sys_fail_path(fptr->pathv); } if (io_seek(orig, pos, SEEK_SET) < 0 && errno) { rb_sys_fail_path(orig->pathv); } } } if (fptr->mode & FMODE_BINMODE) { rb_io_binmode(io); } RBASIC_SET_CLASS(io, rb_obj_class(nfile)); return io; } #ifdef _WIN32 int rb_freopen(VALUE fname, const char *mode, FILE *fp); #else static int rb_freopen(VALUE fname, const char *mode, FILE *fp) { if (!freopen(RSTRING_PTR(fname), mode, fp)) { RB_GC_GUARD(fname); return errno; } return 0; } #endif /* * call-seq: * reopen(other_io) -> self * reopen(path, mode = 'r', **opts) -> self * * Reassociates the stream with another stream, * which may be of a different class. * This method may be used to redirect an existing stream * to a new destination. * * With argument +other_io+ given, reassociates with that stream: * * # Redirect $stdin from a file. * f = File.open('t.txt') * $stdin.reopen(f) * f.close * * # Redirect $stdout to a file. * f = File.open('t.tmp', 'w') * $stdout.reopen(f) * f.close * * With argument +path+ given, reassociates with a new stream to that file path: * * $stdin.reopen('t.txt') * $stdout.reopen('t.tmp', 'w') * * Optional keyword arguments +opts+ specify: * * - {Open Options}[rdoc-ref:IO@Open+Options]. * - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * */ static VALUE rb_io_reopen(int argc, VALUE *argv, VALUE file) { VALUE fname, nmode, opt; int oflags; rb_io_t *fptr; if (rb_scan_args(argc, argv, "11:", &fname, &nmode, &opt) == 1) { VALUE tmp = rb_io_check_io(fname); if (!NIL_P(tmp)) { return io_reopen(file, tmp); } } FilePathValue(fname); rb_io_taint_check(file); fptr = RFILE(file)->fptr; if (!fptr) { fptr = RFILE(file)->fptr = ZALLOC(rb_io_t); } if (!NIL_P(nmode) || !NIL_P(opt)) { int fmode; struct rb_io_encoding convconfig; rb_io_extract_modeenc(&nmode, 0, opt, &oflags, &fmode, &convconfig); if (RUBY_IO_EXTERNAL_P(fptr) && ((fptr->mode & FMODE_READWRITE) & (fmode & FMODE_READWRITE)) != (fptr->mode & FMODE_READWRITE)) { rb_raise(rb_eArgError, "%s can't change access mode from \"%s\" to \"%s\"", PREP_STDIO_NAME(fptr), rb_io_fmode_modestr(fptr->mode), rb_io_fmode_modestr(fmode)); } fptr->mode = fmode; fptr->encs = convconfig; } else { oflags = rb_io_fmode_oflags(fptr->mode); } fptr->pathv = fname; if (fptr->fd < 0) { fptr->fd = rb_sysopen(fptr->pathv, oflags, 0666); fptr->stdio_file = 0; return file; } if (fptr->mode & FMODE_WRITABLE) { if (io_fflush(fptr) < 0) rb_sys_fail_on_write(fptr); } fptr->rbuf.off = fptr->rbuf.len = 0; if (fptr->stdio_file) { int e = rb_freopen(rb_str_encode_ospath(fptr->pathv), rb_io_oflags_modestr(oflags), fptr->stdio_file); if (e) rb_syserr_fail_path(e, fptr->pathv); fptr->fd = fileno(fptr->stdio_file); rb_fd_fix_cloexec(fptr->fd); #ifdef USE_SETVBUF if (setvbuf(fptr->stdio_file, NULL, _IOFBF, 0) != 0) rb_warn("setvbuf() can't be honoured for %"PRIsVALUE, fptr->pathv); #endif if (fptr->stdio_file == stderr) { if (setvbuf(fptr->stdio_file, NULL, _IONBF, BUFSIZ) != 0) rb_warn("setvbuf() can't be honoured for %"PRIsVALUE, fptr->pathv); } else if (fptr->stdio_file == stdout && isatty(fptr->fd)) { if (setvbuf(fptr->stdio_file, NULL, _IOLBF, BUFSIZ) != 0) rb_warn("setvbuf() can't be honoured for %"PRIsVALUE, fptr->pathv); } } else { int tmpfd = rb_sysopen(fptr->pathv, oflags, 0666); int err = 0; if (rb_cloexec_dup2(tmpfd, fptr->fd) < 0) err = errno; (void)close(tmpfd); if (err) { rb_syserr_fail_path(err, fptr->pathv); } } return file; } /* :nodoc: */ static VALUE rb_io_init_copy(VALUE dest, VALUE io) { rb_io_t *fptr, *orig; int fd; VALUE write_io; rb_off_t pos; io = rb_io_get_io(io); if (!OBJ_INIT_COPY(dest, io)) return dest; GetOpenFile(io, orig); MakeOpenFile(dest, fptr); rb_io_flush(io); /* copy rb_io_t structure */ fptr->mode = orig->mode & ~FMODE_EXTERNAL; fptr->encs = orig->encs; fptr->pid = orig->pid; fptr->lineno = orig->lineno; fptr->timeout = orig->timeout; if (!NIL_P(orig->pathv)) fptr->pathv = orig->pathv; fptr_copy_finalizer(fptr, orig); fd = ruby_dup(orig->fd); fptr->fd = fd; pos = io_tell(orig); if (0 <= pos) io_seek(fptr, pos, SEEK_SET); if (fptr->mode & FMODE_BINMODE) { rb_io_binmode(dest); } write_io = GetWriteIO(io); if (io != write_io) { write_io = rb_obj_dup(write_io); fptr->tied_io_for_writing = write_io; rb_ivar_set(dest, rb_intern("@tied_io_for_writing"), write_io); } return dest; } /* * call-seq: * printf(format_string, *objects) -> nil * * Formats and writes +objects+ to the stream. * * For details on +format_string+, see * {Format Specifications}[rdoc-ref:format_specifications.rdoc]. * */ VALUE rb_io_printf(int argc, const VALUE *argv, VALUE out) { rb_io_write(out, rb_f_sprintf(argc, argv)); return Qnil; } /* * call-seq: * printf(format_string, *objects) -> nil * printf(io, format_string, *objects) -> nil * * Equivalent to: * * io.write(sprintf(format_string, *objects)) * * For details on +format_string+, see * {Format Specifications}[rdoc-ref:format_specifications.rdoc]. * * With the single argument +format_string+, formats +objects+ into the string, * then writes the formatted string to $stdout: * * printf('%4.4d %10s %2.2f', 24, 24, 24.0) * * Output (on $stdout): * * 0024 24 24.00# * * With arguments +io+ and +format_string+, formats +objects+ into the string, * then writes the formatted string to +io+: * * printf($stderr, '%4.4d %10s %2.2f', 24, 24, 24.0) * * Output (on $stderr): * * 0024 24 24.00# => nil * * With no arguments, does nothing. * */ static VALUE rb_f_printf(int argc, VALUE *argv, VALUE _) { VALUE out; if (argc == 0) return Qnil; if (RB_TYPE_P(argv[0], T_STRING)) { out = rb_ractor_stdout(); } else { out = argv[0]; argv++; argc--; } rb_io_write(out, rb_f_sprintf(argc, argv)); return Qnil; } static void deprecated_str_setter(VALUE val, ID id, VALUE *var) { rb_str_setter(val, id, &val); if (!NIL_P(val)) { rb_warn_deprecated("'%s'", NULL, rb_id2name(id)); } *var = val; } /* * call-seq: * print(*objects) -> nil * * Writes the given objects to the stream; returns +nil+. * Appends the output record separator $OUTPUT_RECORD_SEPARATOR * ($\\), if it is not +nil+. * See {Line IO}[rdoc-ref:IO@Line+IO]. * * With argument +objects+ given, for each object: * * - Converts via its method +to_s+ if not a string. * - Writes to the stream. * - If not the last object, writes the output field separator * $OUTPUT_FIELD_SEPARATOR ($,) if it is not +nil+. * * With default separators: * * f = File.open('t.tmp', 'w+') * objects = [0, 0.0, Rational(0, 1), Complex(0, 0), :zero, 'zero'] * p $OUTPUT_RECORD_SEPARATOR * p $OUTPUT_FIELD_SEPARATOR * f.print(*objects) * f.rewind * p f.read * f.close * * Output: * * nil * nil * "00.00/10+0izerozero" * * With specified separators: * * $\ = "\n" * $, = ',' * f.rewind * f.print(*objects) * f.rewind * p f.read * * Output: * * "0,0.0,0/1,0+0i,zero,zero\n" * * With no argument given, writes the content of $_ * (which is usually the most recent user input): * * f = File.open('t.tmp', 'w+') * gets # Sets $_ to the most recent user input. * f.print * f.close * */ VALUE rb_io_print(int argc, const VALUE *argv, VALUE out) { int i; VALUE line; /* if no argument given, print `$_' */ if (argc == 0) { argc = 1; line = rb_lastline_get(); argv = &line; } if (argc > 1 && !NIL_P(rb_output_fs)) { rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "$, is set to non-nil value"); } for (i=0; i0) { rb_io_write(out, rb_output_fs); } rb_io_write(out, argv[i]); } if (argc > 0 && !NIL_P(rb_output_rs)) { rb_io_write(out, rb_output_rs); } return Qnil; } /* * call-seq: * print(*objects) -> nil * * Equivalent to $stdout.print(*objects), * this method is the straightforward way to write to $stdout. * * Writes the given objects to $stdout; returns +nil+. * Appends the output record separator $OUTPUT_RECORD_SEPARATOR * $\\), if it is not +nil+. * * With argument +objects+ given, for each object: * * - Converts via its method +to_s+ if not a string. * - Writes to stdout. * - If not the last object, writes the output field separator * $OUTPUT_FIELD_SEPARATOR ($, if it is not +nil+. * * With default separators: * * objects = [0, 0.0, Rational(0, 1), Complex(0, 0), :zero, 'zero'] * $OUTPUT_RECORD_SEPARATOR * $OUTPUT_FIELD_SEPARATOR * print(*objects) * * Output: * * nil * nil * 00.00/10+0izerozero * * With specified separators: * * $OUTPUT_RECORD_SEPARATOR = "\n" * $OUTPUT_FIELD_SEPARATOR = ',' * print(*objects) * * Output: * * 0,0.0,0/1,0+0i,zero,zero * * With no argument given, writes the content of $_ * (which is usually the most recent user input): * * gets # Sets $_ to the most recent user input. * print # Prints $_. * */ static VALUE rb_f_print(int argc, const VALUE *argv, VALUE _) { rb_io_print(argc, argv, rb_ractor_stdout()); return Qnil; } /* * call-seq: * putc(object) -> object * * Writes a character to the stream. * See {Character IO}[rdoc-ref:IO@Character+IO]. * * If +object+ is numeric, converts to integer if necessary, * then writes the character whose code is the * least significant byte; * if +object+ is a string, writes the first character: * * $stdout.putc "A" * $stdout.putc 65 * * Output: * * AA * */ static VALUE rb_io_putc(VALUE io, VALUE ch) { VALUE str; if (RB_TYPE_P(ch, T_STRING)) { str = rb_str_substr(ch, 0, 1); } else { char c = NUM2CHR(ch); str = rb_str_new(&c, 1); } rb_io_write(io, str); return ch; } #define forward(obj, id, argc, argv) \ rb_funcallv_kw(obj, id, argc, argv, RB_PASS_CALLED_KEYWORDS) #define forward_public(obj, id, argc, argv) \ rb_funcallv_public_kw(obj, id, argc, argv, RB_PASS_CALLED_KEYWORDS) #define forward_current(id, argc, argv) \ forward_public(ARGF.current_file, id, argc, argv) /* * call-seq: * putc(int) -> int * * Equivalent to: * * $stdout.putc(int) * * See IO#putc for important information regarding multi-byte characters. * */ static VALUE rb_f_putc(VALUE recv, VALUE ch) { VALUE r_stdout = rb_ractor_stdout(); if (recv == r_stdout) { return rb_io_putc(recv, ch); } return forward(r_stdout, rb_intern("putc"), 1, &ch); } int rb_str_end_with_asciichar(VALUE str, int c) { long len = RSTRING_LEN(str); const char *ptr = RSTRING_PTR(str); rb_encoding *enc = rb_enc_from_index(ENCODING_GET(str)); int n; if (len == 0) return 0; if ((n = rb_enc_mbminlen(enc)) == 1) { return ptr[len - 1] == c; } return rb_enc_ascget(ptr + ((len - 1) / n) * n, ptr + len, &n, enc) == c; } static VALUE io_puts_ary(VALUE ary, VALUE out, int recur) { VALUE tmp; long i; if (recur) { tmp = rb_str_new2("[...]"); rb_io_puts(1, &tmp, out); return Qtrue; } ary = rb_check_array_type(ary); if (NIL_P(ary)) return Qfalse; for (i=0; i nil * * Writes the given +objects+ to the stream, which must be open for writing; * returns +nil+.\ * Writes a newline after each that does not already end with a newline sequence. * If called without arguments, writes a newline. * See {Line IO}[rdoc-ref:IO@Line+IO]. * * Note that each added newline is the character "\n", * not the output record separator ($\\). * * Treatment for each object: * * - String: writes the string. * - Neither string nor array: writes object.to_s. * - Array: writes each element of the array; arrays may be nested. * * To keep these examples brief, we define this helper method: * * def show(*objects) * # Puts objects to file. * f = File.new('t.tmp', 'w+') * f.puts(objects) * # Return file content. * f.rewind * p f.read * f.close * end * * # Strings without newlines. * show('foo', 'bar', 'baz') # => "foo\nbar\nbaz\n" * # Strings, some with newlines. * show("foo\n", 'bar', "baz\n") # => "foo\nbar\nbaz\n" * * # Neither strings nor arrays: * show(0, 0.0, Rational(0, 1), Complex(9, 0), :zero) * # => "0\n0.0\n0/1\n9+0i\nzero\n" * * # Array of strings. * show(['foo', "bar\n", 'baz']) # => "foo\nbar\nbaz\n" * # Nested arrays. * show([[[0, 1], 2, 3], 4, 5]) # => "0\n1\n2\n3\n4\n5\n" * */ VALUE rb_io_puts(int argc, const VALUE *argv, VALUE out) { VALUE line, args[2]; /* if no argument given, print newline. */ if (argc == 0) { rb_io_write(out, rb_default_rs); return Qnil; } for (int i = 0; i < argc; i++) { // Convert the argument to a string: if (RB_TYPE_P(argv[i], T_STRING)) { line = argv[i]; } else if (rb_exec_recursive(io_puts_ary, argv[i], out)) { continue; } else { line = rb_obj_as_string(argv[i]); } // Write the line: int n = 0; if (RSTRING_LEN(line) == 0) { args[n++] = rb_default_rs; } else { args[n++] = line; if (!rb_str_end_with_asciichar(line, '\n')) { args[n++] = rb_default_rs; } } rb_io_writev(out, n, args); } return Qnil; } /* * call-seq: * puts(*objects) -> nil * * Equivalent to * * $stdout.puts(objects) */ static VALUE rb_f_puts(int argc, VALUE *argv, VALUE recv) { VALUE r_stdout = rb_ractor_stdout(); if (recv == r_stdout) { return rb_io_puts(argc, argv, recv); } return forward(r_stdout, rb_intern("puts"), argc, argv); } static VALUE rb_p_write(VALUE str) { VALUE args[2]; args[0] = str; args[1] = rb_default_rs; VALUE r_stdout = rb_ractor_stdout(); if (RB_TYPE_P(r_stdout, T_FILE) && rb_method_basic_definition_p(CLASS_OF(r_stdout), id_write)) { io_writev(2, args, r_stdout); } else { rb_io_writev(r_stdout, 2, args); } return Qnil; } void rb_p(VALUE obj) /* for debug print within C code */ { rb_p_write(rb_obj_as_string(rb_inspect(obj))); } static VALUE rb_p_result(int argc, const VALUE *argv) { VALUE ret = Qnil; if (argc == 1) { ret = argv[0]; } else if (argc > 1) { ret = rb_ary_new4(argc, argv); } VALUE r_stdout = rb_ractor_stdout(); if (RB_TYPE_P(r_stdout, T_FILE)) { rb_uninterruptible(rb_io_flush, r_stdout); } return ret; } /* * call-seq: * p(object) -> obj * p(*objects) -> array of objects * p -> nil * * For each object +obj+, executes: * * $stdout.write(obj.inspect, "\n") * * With one object given, returns the object; * with multiple objects given, returns an array containing the objects; * with no object given, returns +nil+. * * Examples: * * r = Range.new(0, 4) * p r # => 0..4 * p [r, r, r] # => [0..4, 0..4, 0..4] * p # => nil * * Output: * * 0..4 * [0..4, 0..4, 0..4] * * Kernel#p is designed for debugging purposes. * Ruby implementations may define Kernel#p to be uninterruptible * in whole or in part. * On CRuby, Kernel#p's writing of data is uninterruptible. */ static VALUE rb_f_p(int argc, VALUE *argv, VALUE self) { int i; for (i=0; i) -> nil * * Writes +self+ on the given port: * * 1.display * "cat".display * [ 4, 5, 6 ].display * puts * * Output: * * 1cat[4, 5, 6] * */ static VALUE rb_obj_display(int argc, VALUE *argv, VALUE self) { VALUE out; out = (!rb_check_arity(argc, 0, 1) ? rb_ractor_stdout() : argv[0]); rb_io_write(out, self); return Qnil; } static int rb_stderr_to_original_p(VALUE err) { return (err == orig_stderr || RFILE(orig_stderr)->fptr->fd < 0); } void rb_write_error2(const char *mesg, long len) { VALUE out = rb_ractor_stderr(); if (rb_stderr_to_original_p(out)) { #ifdef _WIN32 if (isatty(fileno(stderr))) { if (rb_w32_write_console(rb_str_new(mesg, len), fileno(stderr)) > 0) return; } #endif if (fwrite(mesg, sizeof(char), (size_t)len, stderr) < (size_t)len) { /* failed to write to stderr, what can we do? */ return; } } else { rb_io_write(out, rb_str_new(mesg, len)); } } void rb_write_error(const char *mesg) { rb_write_error2(mesg, strlen(mesg)); } void rb_write_error_str(VALUE mesg) { VALUE out = rb_ractor_stderr(); /* a stopgap measure for the time being */ if (rb_stderr_to_original_p(out)) { size_t len = (size_t)RSTRING_LEN(mesg); #ifdef _WIN32 if (isatty(fileno(stderr))) { if (rb_w32_write_console(mesg, fileno(stderr)) > 0) return; } #endif if (fwrite(RSTRING_PTR(mesg), sizeof(char), len, stderr) < len) { RB_GC_GUARD(mesg); return; } } else { /* may unlock GVL, and */ rb_io_write(out, mesg); } } int rb_stderr_tty_p(void) { if (rb_stderr_to_original_p(rb_ractor_stderr())) return isatty(fileno(stderr)); return 0; } static void must_respond_to(ID mid, VALUE val, ID id) { if (!rb_respond_to(val, mid)) { rb_raise(rb_eTypeError, "%"PRIsVALUE" must have %"PRIsVALUE" method, %"PRIsVALUE" given", rb_id2str(id), rb_id2str(mid), rb_obj_class(val)); } } static void stdin_setter(VALUE val, ID id, VALUE *ptr) { rb_ractor_stdin_set(val); } static VALUE stdin_getter(ID id, VALUE *ptr) { return rb_ractor_stdin(); } static void stdout_setter(VALUE val, ID id, VALUE *ptr) { must_respond_to(id_write, val, id); rb_ractor_stdout_set(val); } static VALUE stdout_getter(ID id, VALUE *ptr) { return rb_ractor_stdout(); } static void stderr_setter(VALUE val, ID id, VALUE *ptr) { must_respond_to(id_write, val, id); rb_ractor_stderr_set(val); } static VALUE stderr_getter(ID id, VALUE *ptr) { return rb_ractor_stderr(); } static VALUE allocate_and_open_new_file(VALUE klass) { VALUE self = io_alloc(klass); rb_io_make_open_file(self); return self; } VALUE rb_io_open_descriptor(VALUE klass, int descriptor, int mode, VALUE path, VALUE timeout, struct rb_io_encoding *encoding) { int state; VALUE self = rb_protect(allocate_and_open_new_file, klass, &state); if (state) { /* if we raised an exception allocating an IO object, but the caller intended to transfer ownership of this FD to us, close the fd before raising the exception. Otherwise, we would leak a FD - the caller expects GC to close the file, but we never got around to assigning it to a rb_io. */ if (!(mode & FMODE_EXTERNAL)) { maygvl_close(descriptor, 0); } rb_jump_tag(state); } rb_io_t *io = RFILE(self)->fptr; io->self = self; io->fd = descriptor; io->mode = mode; /* At this point, Ruby fully owns the descriptor, and will close it when the IO gets GC'd (unless FMODE_EXTERNAL was set), no matter what happens in the rest of this method. */ if (NIL_P(path)) { io->pathv = Qnil; } else { StringValue(path); io->pathv = rb_str_new_frozen(path); } io->timeout = timeout; if (encoding) { io->encs = *encoding; } rb_update_max_fd(descriptor); return self; } static VALUE prep_io(int fd, int fmode, VALUE klass, const char *path) { VALUE path_value = Qnil; rb_encoding *e; struct rb_io_encoding convconfig; if (path) { path_value = rb_obj_freeze(rb_str_new_cstr(path)); } e = (fmode & FMODE_BINMODE) ? rb_ascii8bit_encoding() : NULL; rb_io_ext_int_to_encs(e, NULL, &convconfig.enc, &convconfig.enc2, fmode); convconfig.ecflags = (fmode & FMODE_READABLE) ? MODE_BTMODE(ECONV_DEFAULT_NEWLINE_DECORATOR, 0, ECONV_UNIVERSAL_NEWLINE_DECORATOR) : 0; #ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE convconfig.ecflags |= (fmode & FMODE_WRITABLE) ? MODE_BTMODE(TEXTMODE_NEWLINE_DECORATOR_ON_WRITE, 0, TEXTMODE_NEWLINE_DECORATOR_ON_WRITE) : 0; #endif SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(convconfig.enc2, convconfig.ecflags); convconfig.ecopts = Qnil; VALUE self = rb_io_open_descriptor(klass, fd, fmode, path_value, Qnil, &convconfig); rb_io_t*io = RFILE(self)->fptr; if (!io_check_tty(io)) { #ifdef __CYGWIN__ io->mode |= FMODE_BINMODE; setmode(fd, O_BINARY); #endif } return self; } VALUE rb_io_fdopen(int fd, int oflags, const char *path) { VALUE klass = rb_cIO; if (path && strcmp(path, "-")) klass = rb_cFile; return prep_io(fd, rb_io_oflags_fmode(oflags), klass, path); } static VALUE prep_stdio(FILE *f, int fmode, VALUE klass, const char *path) { rb_io_t *fptr; VALUE io = prep_io(fileno(f), fmode|FMODE_EXTERNAL|DEFAULT_TEXTMODE, klass, path); GetOpenFile(io, fptr); fptr->encs.ecflags |= ECONV_DEFAULT_NEWLINE_DECORATOR; #ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE fptr->encs.ecflags |= TEXTMODE_NEWLINE_DECORATOR_ON_WRITE; if (fmode & FMODE_READABLE) { fptr->encs.ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR; } #endif fptr->stdio_file = f; return io; } VALUE rb_io_prep_stdin(void) { return prep_stdio(stdin, FMODE_READABLE, rb_cIO, ""); } VALUE rb_io_prep_stdout(void) { return prep_stdio(stdout, FMODE_WRITABLE|FMODE_SIGNAL_ON_EPIPE, rb_cIO, ""); } VALUE rb_io_prep_stderr(void) { return prep_stdio(stderr, FMODE_WRITABLE|FMODE_SYNC, rb_cIO, ""); } FILE * rb_io_stdio_file(rb_io_t *fptr) { if (!fptr->stdio_file) { int oflags = rb_io_fmode_oflags(fptr->mode) & ~O_EXCL; fptr->stdio_file = rb_fdopen(fptr->fd, rb_io_oflags_modestr(oflags)); } return fptr->stdio_file; } static inline void rb_io_buffer_init(struct rb_io_internal_buffer *buf) { buf->ptr = NULL; buf->off = 0; buf->len = 0; buf->capa = 0; } static inline rb_io_t * rb_io_fptr_new(void) { rb_io_t *fp = ALLOC(rb_io_t); fp->self = Qnil; fp->fd = -1; fp->stdio_file = NULL; fp->mode = 0; fp->pid = 0; fp->lineno = 0; fp->pathv = Qnil; fp->finalize = 0; rb_io_buffer_init(&fp->wbuf); rb_io_buffer_init(&fp->rbuf); rb_io_buffer_init(&fp->cbuf); fp->readconv = NULL; fp->writeconv = NULL; fp->writeconv_asciicompat = Qnil; fp->writeconv_pre_ecflags = 0; fp->writeconv_pre_ecopts = Qnil; fp->writeconv_initialized = 0; fp->tied_io_for_writing = 0; fp->encs.enc = NULL; fp->encs.enc2 = NULL; fp->encs.ecflags = 0; fp->encs.ecopts = Qnil; fp->write_lock = Qnil; fp->timeout = Qnil; return fp; } rb_io_t * rb_io_make_open_file(VALUE obj) { rb_io_t *fp = 0; Check_Type(obj, T_FILE); if (RFILE(obj)->fptr) { rb_io_close(obj); rb_io_fptr_finalize(RFILE(obj)->fptr); RFILE(obj)->fptr = 0; } fp = rb_io_fptr_new(); fp->self = obj; RFILE(obj)->fptr = fp; return fp; } static VALUE io_initialize(VALUE io, VALUE fnum, VALUE vmode, VALUE opt); /* * call-seq: * IO.new(fd, mode = 'r', **opts) -> io * * Creates and returns a new \IO object (file stream) from a file descriptor. * * \IO.new may be useful for interaction with low-level libraries. * For higher-level interactions, it may be simpler to create * the file stream using File.open. * * Argument +fd+ must be a valid file descriptor (integer): * * path = 't.tmp' * fd = IO.sysopen(path) # => 3 * IO.new(fd) # => # * * The new \IO object does not inherit encoding * (because the integer file descriptor does not have an encoding): * * fd = IO.sysopen('t.rus', 'rb') * io = IO.new(fd) * io.external_encoding # => # # Not ASCII-8BIT. * * Optional argument +mode+ (defaults to 'r') must specify a valid mode; * see {Access Modes}[rdoc-ref:File@Access+Modes]: * * IO.new(fd, 'w') # => # * IO.new(fd, File::WRONLY) # => # * * Optional keyword arguments +opts+ specify: * * - {Open Options}[rdoc-ref:IO@Open+Options]. * - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * * Examples: * * IO.new(fd, internal_encoding: nil) # => # * IO.new(fd, autoclose: true) # => # * */ static VALUE rb_io_initialize(int argc, VALUE *argv, VALUE io) { VALUE fnum, vmode; VALUE opt; rb_scan_args(argc, argv, "11:", &fnum, &vmode, &opt); return io_initialize(io, fnum, vmode, opt); } static VALUE io_initialize(VALUE io, VALUE fnum, VALUE vmode, VALUE opt) { rb_io_t *fp; int fd, fmode, oflags = O_RDONLY; struct rb_io_encoding convconfig; #if defined(HAVE_FCNTL) && defined(F_GETFL) int ofmode; #else struct stat st; #endif rb_io_extract_modeenc(&vmode, 0, opt, &oflags, &fmode, &convconfig); fd = NUM2INT(fnum); if (rb_reserved_fd_p(fd)) { rb_raise(rb_eArgError, "The given fd is not accessible because RubyVM reserves it"); } #if defined(HAVE_FCNTL) && defined(F_GETFL) oflags = fcntl(fd, F_GETFL); if (oflags == -1) rb_sys_fail(0); #else if (fstat(fd, &st) < 0) rb_sys_fail(0); #endif rb_update_max_fd(fd); #if defined(HAVE_FCNTL) && defined(F_GETFL) ofmode = rb_io_oflags_fmode(oflags); if (NIL_P(vmode)) { fmode = ofmode; } else if ((~ofmode & fmode) & FMODE_READWRITE) { VALUE error = INT2FIX(EINVAL); rb_exc_raise(rb_class_new_instance(1, &error, rb_eSystemCallError)); } #endif VALUE path = Qnil; if (!NIL_P(opt)) { if (rb_hash_aref(opt, sym_autoclose) == Qfalse) { fmode |= FMODE_EXTERNAL; } path = rb_hash_aref(opt, RB_ID2SYM(idPath)); if (!NIL_P(path)) { StringValue(path); path = rb_str_new_frozen(path); } } MakeOpenFile(io, fp); fp->self = io; fp->fd = fd; fp->mode = fmode; fp->encs = convconfig; fp->pathv = path; fp->timeout = Qnil; clear_codeconv(fp); io_check_tty(fp); if (fileno(stdin) == fd) fp->stdio_file = stdin; else if (fileno(stdout) == fd) fp->stdio_file = stdout; else if (fileno(stderr) == fd) fp->stdio_file = stderr; if (fmode & FMODE_SETENC_BY_BOM) io_set_encoding_by_bom(io); return io; } /* * call-seq: * set_encoding_by_bom -> encoding or nil * * If the stream begins with a BOM * ({byte order marker}[https://en.wikipedia.org/wiki/Byte_order_mark]), * consumes the BOM and sets the external encoding accordingly; * returns the result encoding if found, or +nil+ otherwise: * * File.write('t.tmp', "\u{FEFF}abc") * io = File.open('t.tmp', 'rb') * io.set_encoding_by_bom # => # * io.close * * File.write('t.tmp', 'abc') * io = File.open('t.tmp', 'rb') * io.set_encoding_by_bom # => nil * io.close * * Raises an exception if the stream is not binmode * or its encoding has already been set. * */ static VALUE rb_io_set_encoding_by_bom(VALUE io) { rb_io_t *fptr; GetOpenFile(io, fptr); if (!(fptr->mode & FMODE_BINMODE)) { rb_raise(rb_eArgError, "ASCII incompatible encoding needs binmode"); } if (fptr->encs.enc2) { rb_raise(rb_eArgError, "encoding conversion is set"); } else if (fptr->encs.enc && fptr->encs.enc != rb_ascii8bit_encoding()) { rb_raise(rb_eArgError, "encoding is set to %s already", rb_enc_name(fptr->encs.enc)); } if (!io_set_encoding_by_bom(io)) return Qnil; return rb_enc_from_encoding(fptr->encs.enc); } /* * call-seq: * File.new(path, mode = 'r', perm = 0666, **opts) -> file * * Opens the file at the given +path+ according to the given +mode+; * creates and returns a new File object for that file. * * The new File object is buffered mode (or non-sync mode), unless * +filename+ is a tty. * See IO#flush, IO#fsync, IO#fdatasync, and IO#sync=. * * Argument +path+ must be a valid file path: * * f = File.new('/etc/fstab') * f.close * f = File.new('t.txt') * f.close * * Optional argument +mode+ (defaults to 'r') must specify a valid mode; * see {Access Modes}[rdoc-ref:File@Access+Modes]: * * f = File.new('t.tmp', 'w') * f.close * f = File.new('t.tmp', File::RDONLY) * f.close * * Optional argument +perm+ (defaults to 0666) must specify valid permissions * see {File Permissions}[rdoc-ref:File@File+Permissions]: * * f = File.new('t.tmp', File::CREAT, 0644) * f.close * f = File.new('t.tmp', File::CREAT, 0444) * f.close * * Optional keyword arguments +opts+ specify: * * - {Open Options}[rdoc-ref:IO@Open+Options]. * - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * */ static VALUE rb_file_initialize(int argc, VALUE *argv, VALUE io) { if (RFILE(io)->fptr) { rb_raise(rb_eRuntimeError, "reinitializing File"); } VALUE fname, vmode, vperm, opt; int posargc = rb_scan_args(argc, argv, "12:", &fname, &vmode, &vperm, &opt); if (posargc < 3) { /* perm is File only */ VALUE fd = rb_check_to_int(fname); if (!NIL_P(fd)) { return io_initialize(io, fd, vmode, opt); } } return rb_open_file(io, fname, vmode, vperm, opt); } /* :nodoc: */ static VALUE rb_io_s_new(int argc, VALUE *argv, VALUE klass) { if (rb_block_given_p()) { VALUE cname = rb_obj_as_string(klass); rb_warn("%"PRIsVALUE"::new() does not take block; use %"PRIsVALUE"::open() instead", cname, cname); } return rb_class_new_instance_kw(argc, argv, klass, RB_PASS_CALLED_KEYWORDS); } /* * call-seq: * IO.for_fd(fd, mode = 'r', **opts) -> io * * Synonym for IO.new. * */ static VALUE rb_io_s_for_fd(int argc, VALUE *argv, VALUE klass) { VALUE io = rb_obj_alloc(klass); rb_io_initialize(argc, argv, io); return io; } /* * call-seq: * ios.autoclose? -> true or false * * Returns +true+ if the underlying file descriptor of _ios_ will be * closed at its finalization or at calling #close, otherwise +false+. */ static VALUE rb_io_autoclose_p(VALUE io) { rb_io_t *fptr = RFILE(io)->fptr; rb_io_check_closed(fptr); return RBOOL(!(fptr->mode & FMODE_EXTERNAL)); } /* * call-seq: * io.autoclose = bool -> true or false * * Sets auto-close flag. * * f = File.open(File::NULL) * IO.for_fd(f.fileno).close * f.gets # raises Errno::EBADF * * f = File.open(File::NULL) * g = IO.for_fd(f.fileno) * g.autoclose = false * g.close * f.gets # won't cause Errno::EBADF */ static VALUE rb_io_set_autoclose(VALUE io, VALUE autoclose) { rb_io_t *fptr; GetOpenFile(io, fptr); if (!RTEST(autoclose)) fptr->mode |= FMODE_EXTERNAL; else fptr->mode &= ~FMODE_EXTERNAL; return autoclose; } static VALUE io_wait_event(VALUE io, int event, VALUE timeout, int return_io) { VALUE result = rb_io_wait(io, RB_INT2NUM(event), timeout); if (!RB_TEST(result)) { return Qnil; } int mask = RB_NUM2INT(result); if (mask & event) { if (return_io) return io; else return result; } else { return Qfalse; } } /* * call-seq: * io.wait_readable -> truthy or falsy * io.wait_readable(timeout) -> truthy or falsy * * Waits until IO is readable and returns a truthy value, or a falsy * value when times out. Returns a truthy value immediately when * buffered data is available. */ static VALUE io_wait_readable(int argc, VALUE *argv, VALUE io) { rb_io_t *fptr; RB_IO_POINTER(io, fptr); rb_io_check_readable(fptr); if (rb_io_read_pending(fptr)) return Qtrue; rb_check_arity(argc, 0, 1); VALUE timeout = (argc == 1 ? argv[0] : Qnil); return io_wait_event(io, RUBY_IO_READABLE, timeout, 1); } /* * call-seq: * io.wait_writable -> truthy or falsy * io.wait_writable(timeout) -> truthy or falsy * * Waits until IO is writable and returns a truthy value or a falsy * value when times out. */ static VALUE io_wait_writable(int argc, VALUE *argv, VALUE io) { rb_io_t *fptr; RB_IO_POINTER(io, fptr); rb_io_check_writable(fptr); rb_check_arity(argc, 0, 1); VALUE timeout = (argc == 1 ? argv[0] : Qnil); return io_wait_event(io, RUBY_IO_WRITABLE, timeout, 1); } /* * call-seq: * io.wait_priority -> truthy or falsy * io.wait_priority(timeout) -> truthy or falsy * * Waits until IO is priority and returns a truthy value or a falsy * value when times out. Priority data is sent and received using * the Socket::MSG_OOB flag and is typically limited to streams. */ static VALUE io_wait_priority(int argc, VALUE *argv, VALUE io) { rb_io_t *fptr = NULL; RB_IO_POINTER(io, fptr); rb_io_check_readable(fptr); if (rb_io_read_pending(fptr)) return Qtrue; rb_check_arity(argc, 0, 1); VALUE timeout = argc == 1 ? argv[0] : Qnil; return io_wait_event(io, RUBY_IO_PRIORITY, timeout, 1); } static int wait_mode_sym(VALUE mode) { if (mode == ID2SYM(rb_intern("r"))) { return RB_WAITFD_IN; } if (mode == ID2SYM(rb_intern("read"))) { return RB_WAITFD_IN; } if (mode == ID2SYM(rb_intern("readable"))) { return RB_WAITFD_IN; } if (mode == ID2SYM(rb_intern("w"))) { return RB_WAITFD_OUT; } if (mode == ID2SYM(rb_intern("write"))) { return RB_WAITFD_OUT; } if (mode == ID2SYM(rb_intern("writable"))) { return RB_WAITFD_OUT; } if (mode == ID2SYM(rb_intern("rw"))) { return RB_WAITFD_IN|RB_WAITFD_OUT; } if (mode == ID2SYM(rb_intern("read_write"))) { return RB_WAITFD_IN|RB_WAITFD_OUT; } if (mode == ID2SYM(rb_intern("readable_writable"))) { return RB_WAITFD_IN|RB_WAITFD_OUT; } rb_raise(rb_eArgError, "unsupported mode: %"PRIsVALUE, mode); } static inline enum rb_io_event io_event_from_value(VALUE value) { int events = RB_NUM2INT(value); if (events <= 0) rb_raise(rb_eArgError, "Events must be positive integer!"); return events; } /* * call-seq: * io.wait(events, timeout) -> event mask, false or nil * io.wait(timeout = nil, mode = :read) -> self, true, or false * * Waits until the IO becomes ready for the specified events and returns the * subset of events that become ready, or a falsy value when times out. * * The events can be a bit mask of +IO::READABLE+, +IO::WRITABLE+ or * +IO::PRIORITY+. * * Returns an event mask (truthy value) immediately when buffered data is available. * * Optional parameter +mode+ is one of +:read+, +:write+, or * +:read_write+. */ static VALUE io_wait(int argc, VALUE *argv, VALUE io) { VALUE timeout = Qundef; enum rb_io_event events = 0; int return_io = 0; // The documented signature for this method is actually incorrect. // A single timeout is allowed in any position, and multiple symbols can be given. // Whether this is intentional or not, I don't know, and as such I consider this to // be a legacy/slow path. if (argc != 2 || (RB_SYMBOL_P(argv[0]) || RB_SYMBOL_P(argv[1]))) { // We'd prefer to return the actual mask, but this form would return the io itself: return_io = 1; // Slow/messy path: for (int i = 0; i < argc; i += 1) { if (RB_SYMBOL_P(argv[i])) { events |= wait_mode_sym(argv[i]); } else if (UNDEF_P(timeout)) { rb_time_interval(timeout = argv[i]); } else { rb_raise(rb_eArgError, "timeout given more than once"); } } if (UNDEF_P(timeout)) timeout = Qnil; if (events == 0) { events = RUBY_IO_READABLE; } } else /* argc == 2 and neither are symbols */ { // This is the fast path: events = io_event_from_value(argv[0]); timeout = argv[1]; } if (events & RUBY_IO_READABLE) { rb_io_t *fptr = NULL; RB_IO_POINTER(io, fptr); if (rb_io_read_pending(fptr)) { // This was the original behaviour: if (return_io) return Qtrue; // New behaviour always returns an event mask: else return RB_INT2NUM(RUBY_IO_READABLE); } } return io_wait_event(io, events, timeout, return_io); } static void argf_mark(void *ptr) { struct argf *p = ptr; rb_gc_mark(p->filename); rb_gc_mark(p->current_file); rb_gc_mark(p->argv); rb_gc_mark(p->inplace); rb_gc_mark(p->encs.ecopts); } static size_t argf_memsize(const void *ptr) { const struct argf *p = ptr; size_t size = sizeof(*p); return size; } static const rb_data_type_t argf_type = { "ARGF", {argf_mark, RUBY_TYPED_DEFAULT_FREE, argf_memsize}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static inline void argf_init(struct argf *p, VALUE v) { p->filename = Qnil; p->current_file = Qnil; p->lineno = 0; p->argv = v; } static VALUE argf_alloc(VALUE klass) { struct argf *p; VALUE argf = TypedData_Make_Struct(klass, struct argf, &argf_type, p); argf_init(p, Qnil); return argf; } #undef rb_argv /* :nodoc: */ static VALUE argf_initialize(VALUE argf, VALUE argv) { memset(&ARGF, 0, sizeof(ARGF)); argf_init(&ARGF, argv); return argf; } /* :nodoc: */ static VALUE argf_initialize_copy(VALUE argf, VALUE orig) { if (!OBJ_INIT_COPY(argf, orig)) return argf; ARGF = argf_of(orig); ARGF.argv = rb_obj_dup(ARGF.argv); return argf; } /* * call-seq: * ARGF.lineno = integer -> integer * * Sets the line number of ARGF as a whole to the given Integer. * * ARGF sets the line number automatically as you read data, so normally * you will not need to set it explicitly. To access the current line number * use ARGF.lineno. * * For example: * * ARGF.lineno #=> 0 * ARGF.readline #=> "This is line 1\n" * ARGF.lineno #=> 1 * ARGF.lineno = 0 #=> 0 * ARGF.lineno #=> 0 */ static VALUE argf_set_lineno(VALUE argf, VALUE val) { ARGF.lineno = NUM2INT(val); ARGF.last_lineno = ARGF.lineno; return val; } /* * call-seq: * ARGF.lineno -> integer * * Returns the current line number of ARGF as a whole. This value * can be set manually with ARGF.lineno=. * * For example: * * ARGF.lineno #=> 0 * ARGF.readline #=> "This is line 1\n" * ARGF.lineno #=> 1 */ static VALUE argf_lineno(VALUE argf) { return INT2FIX(ARGF.lineno); } static VALUE argf_forward(int argc, VALUE *argv, VALUE argf) { return forward_current(rb_frame_this_func(), argc, argv); } #define next_argv() argf_next_argv(argf) #define ARGF_GENERIC_INPUT_P() \ (ARGF.current_file == rb_stdin && !RB_TYPE_P(ARGF.current_file, T_FILE)) #define ARGF_FORWARD(argc, argv) do {\ if (ARGF_GENERIC_INPUT_P())\ return argf_forward((argc), (argv), argf);\ } while (0) #define NEXT_ARGF_FORWARD(argc, argv) do {\ if (!next_argv()) return Qnil;\ ARGF_FORWARD((argc), (argv));\ } while (0) static void argf_close(VALUE argf) { VALUE file = ARGF.current_file; if (file == rb_stdin) return; if (RB_TYPE_P(file, T_FILE)) { rb_io_set_write_io(file, Qnil); } io_close(file); ARGF.init_p = -1; } static int argf_next_argv(VALUE argf) { char *fn; rb_io_t *fptr; int stdout_binmode = 0; int fmode; VALUE r_stdout = rb_ractor_stdout(); if (RB_TYPE_P(r_stdout, T_FILE)) { GetOpenFile(r_stdout, fptr); if (fptr->mode & FMODE_BINMODE) stdout_binmode = 1; } if (ARGF.init_p == 0) { if (!NIL_P(ARGF.argv) && RARRAY_LEN(ARGF.argv) > 0) { ARGF.next_p = 1; } else { ARGF.next_p = -1; } ARGF.init_p = 1; } else { if (NIL_P(ARGF.argv)) { ARGF.next_p = -1; } else if (ARGF.next_p == -1 && RARRAY_LEN(ARGF.argv) > 0) { ARGF.next_p = 1; } } if (ARGF.next_p == 1) { if (ARGF.init_p == 1) argf_close(argf); retry: if (RARRAY_LEN(ARGF.argv) > 0) { VALUE filename = rb_ary_shift(ARGF.argv); FilePathValue(filename); ARGF.filename = filename; filename = rb_str_encode_ospath(filename); fn = StringValueCStr(filename); if (RSTRING_LEN(filename) == 1 && fn[0] == '-') { ARGF.current_file = rb_stdin; if (ARGF.inplace) { rb_warn("Can't do inplace edit for stdio; skipping"); goto retry; } } else { VALUE write_io = Qnil; int fr = rb_sysopen(filename, O_RDONLY, 0); if (ARGF.inplace) { struct stat st; #ifndef NO_SAFE_RENAME struct stat st2; #endif VALUE str; int fw; if (RB_TYPE_P(r_stdout, T_FILE) && r_stdout != orig_stdout) { rb_io_close(r_stdout); } fstat(fr, &st); str = filename; if (!NIL_P(ARGF.inplace)) { VALUE suffix = ARGF.inplace; str = rb_str_dup(str); if (NIL_P(rb_str_cat_conv_enc_opts(str, RSTRING_LEN(str), RSTRING_PTR(suffix), RSTRING_LEN(suffix), rb_enc_get(suffix), 0, Qnil))) { rb_str_append(str, suffix); } #ifdef NO_SAFE_RENAME (void)close(fr); (void)unlink(RSTRING_PTR(str)); if (rename(fn, RSTRING_PTR(str)) < 0) { rb_warn("Can't rename %"PRIsVALUE" to %"PRIsVALUE": %s, skipping file", filename, str, strerror(errno)); goto retry; } fr = rb_sysopen(str, O_RDONLY, 0); #else if (rename(fn, RSTRING_PTR(str)) < 0) { rb_warn("Can't rename %"PRIsVALUE" to %"PRIsVALUE": %s, skipping file", filename, str, strerror(errno)); close(fr); goto retry; } #endif } else { #ifdef NO_SAFE_RENAME rb_fatal("Can't do inplace edit without backup"); #else if (unlink(fn) < 0) { rb_warn("Can't remove %"PRIsVALUE": %s, skipping file", filename, strerror(errno)); close(fr); goto retry; } #endif } fw = rb_sysopen(filename, O_WRONLY|O_CREAT|O_TRUNC, 0666); #ifndef NO_SAFE_RENAME fstat(fw, &st2); #ifdef HAVE_FCHMOD fchmod(fw, st.st_mode); #else chmod(fn, st.st_mode); #endif if (st.st_uid!=st2.st_uid || st.st_gid!=st2.st_gid) { int err; #ifdef HAVE_FCHOWN err = fchown(fw, st.st_uid, st.st_gid); #else err = chown(fn, st.st_uid, st.st_gid); #endif if (err && getuid() == 0 && st2.st_uid == 0) { const char *wkfn = RSTRING_PTR(filename); rb_warn("Can't set owner/group of %"PRIsVALUE" to same as %"PRIsVALUE": %s, skipping file", filename, str, strerror(errno)); (void)close(fr); (void)close(fw); (void)unlink(wkfn); goto retry; } } #endif write_io = prep_io(fw, FMODE_WRITABLE, rb_cFile, fn); rb_ractor_stdout_set(write_io); if (stdout_binmode) rb_io_binmode(rb_stdout); } fmode = FMODE_READABLE; if (!ARGF.binmode) { fmode |= DEFAULT_TEXTMODE; } ARGF.current_file = prep_io(fr, fmode, rb_cFile, fn); if (!NIL_P(write_io)) { rb_io_set_write_io(ARGF.current_file, write_io); } RB_GC_GUARD(filename); } if (ARGF.binmode) rb_io_ascii8bit_binmode(ARGF.current_file); GetOpenFile(ARGF.current_file, fptr); if (ARGF.encs.enc) { fptr->encs = ARGF.encs; clear_codeconv(fptr); } else { fptr->encs.ecflags &= ~ECONV_NEWLINE_DECORATOR_MASK; if (!ARGF.binmode) { fptr->encs.ecflags |= ECONV_DEFAULT_NEWLINE_DECORATOR; #ifdef TEXTMODE_NEWLINE_DECORATOR_ON_WRITE fptr->encs.ecflags |= TEXTMODE_NEWLINE_DECORATOR_ON_WRITE; #endif } } ARGF.next_p = 0; } else { ARGF.next_p = 1; return FALSE; } } else if (ARGF.next_p == -1) { ARGF.current_file = rb_stdin; ARGF.filename = rb_str_new2("-"); if (ARGF.inplace) { rb_warn("Can't do inplace edit for stdio"); rb_ractor_stdout_set(orig_stdout); } } if (ARGF.init_p == -1) ARGF.init_p = 1; return TRUE; } static VALUE argf_getline(int argc, VALUE *argv, VALUE argf) { VALUE line; long lineno = ARGF.lineno; retry: if (!next_argv()) return Qnil; if (ARGF_GENERIC_INPUT_P()) { line = forward_current(idGets, argc, argv); } else { if (argc == 0 && rb_rs == rb_default_rs) { line = rb_io_gets(ARGF.current_file); } else { line = rb_io_getline(argc, argv, ARGF.current_file); } if (NIL_P(line) && ARGF.next_p != -1) { argf_close(argf); ARGF.next_p = 1; goto retry; } } if (!NIL_P(line)) { ARGF.lineno = ++lineno; ARGF.last_lineno = ARGF.lineno; } return line; } static VALUE argf_lineno_getter(ID id, VALUE *var) { VALUE argf = *var; return INT2FIX(ARGF.last_lineno); } static void argf_lineno_setter(VALUE val, ID id, VALUE *var) { VALUE argf = *var; int n = NUM2INT(val); ARGF.last_lineno = ARGF.lineno = n; } void rb_reset_argf_lineno(long n) { ARGF.last_lineno = ARGF.lineno = n; } static VALUE argf_gets(int, VALUE *, VALUE); /* * call-seq: * gets(sep=$/ [, getline_args]) -> string or nil * gets(limit [, getline_args]) -> string or nil * gets(sep, limit [, getline_args]) -> string or nil * * Returns (and assigns to $_) the next line from the list * of files in +ARGV+ (or $*), or from standard input if * no files are present on the command line. Returns +nil+ at end of * file. The optional argument specifies the record separator. The * separator is included with the contents of each record. A separator * of +nil+ reads the entire contents, and a zero-length separator * reads the input one paragraph at a time, where paragraphs are * divided by two consecutive newlines. If the first argument is an * integer, or optional second argument is given, the returning string * would not be longer than the given value in bytes. If multiple * filenames are present in +ARGV+, gets(nil) will read * the contents one file at a time. * * ARGV << "testfile" * print while gets * * produces: * * This is line one * This is line two * This is line three * And so on... * * The style of programming using $_ as an implicit * parameter is gradually losing favor in the Ruby community. */ static VALUE rb_f_gets(int argc, VALUE *argv, VALUE recv) { if (recv == argf) { return argf_gets(argc, argv, argf); } return forward(argf, idGets, argc, argv); } /* * call-seq: * ARGF.gets(sep=$/ [, getline_args]) -> string or nil * ARGF.gets(limit [, getline_args]) -> string or nil * ARGF.gets(sep, limit [, getline_args]) -> string or nil * * Returns the next line from the current file in ARGF. * * By default lines are assumed to be separated by $/; * to use a different character as a separator, supply it as a String * for the _sep_ argument. * * The optional _limit_ argument specifies how many characters of each line * to return. By default all characters are returned. * * See IO.readlines for details about getline_args. * */ static VALUE argf_gets(int argc, VALUE *argv, VALUE argf) { VALUE line; line = argf_getline(argc, argv, argf); rb_lastline_set(line); return line; } VALUE rb_gets(void) { VALUE line; if (rb_rs != rb_default_rs) { return rb_f_gets(0, 0, argf); } retry: if (!next_argv()) return Qnil; line = rb_io_gets(ARGF.current_file); if (NIL_P(line) && ARGF.next_p != -1) { rb_io_close(ARGF.current_file); ARGF.next_p = 1; goto retry; } rb_lastline_set(line); if (!NIL_P(line)) { ARGF.lineno++; ARGF.last_lineno = ARGF.lineno; } return line; } static VALUE argf_readline(int, VALUE *, VALUE); /* * call-seq: * readline(sep = $/, chomp: false) -> string * readline(limit, chomp: false) -> string * readline(sep, limit, chomp: false) -> string * * Equivalent to method Kernel#gets, except that it raises an exception * if called at end-of-stream: * * $ cat t.txt | ruby -e "p readlines; readline" * ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] * in `readline': end of file reached (EOFError) * * Optional keyword argument +chomp+ specifies whether line separators * are to be omitted. */ static VALUE rb_f_readline(int argc, VALUE *argv, VALUE recv) { if (recv == argf) { return argf_readline(argc, argv, argf); } return forward(argf, rb_intern("readline"), argc, argv); } /* * call-seq: * ARGF.readline(sep=$/) -> string * ARGF.readline(limit) -> string * ARGF.readline(sep, limit) -> string * * Returns the next line from the current file in ARGF. * * By default lines are assumed to be separated by $/; * to use a different character as a separator, supply it as a String * for the _sep_ argument. * * The optional _limit_ argument specifies how many characters of each line * to return. By default all characters are returned. * * An EOFError is raised at the end of the file. */ static VALUE argf_readline(int argc, VALUE *argv, VALUE argf) { VALUE line; if (!next_argv()) rb_eof_error(); ARGF_FORWARD(argc, argv); line = argf_gets(argc, argv, argf); if (NIL_P(line)) { rb_eof_error(); } return line; } static VALUE argf_readlines(int, VALUE *, VALUE); /* * call-seq: * readlines(sep = $/, chomp: false, **enc_opts) -> array * readlines(limit, chomp: false, **enc_opts) -> array * readlines(sep, limit, chomp: false, **enc_opts) -> array * * Returns an array containing the lines returned by calling * Kernel#gets until the end-of-stream is reached; * (see {Line IO}[rdoc-ref:IO@Line+IO]). * * With only string argument +sep+ given, * returns the remaining lines as determined by line separator +sep+, * or +nil+ if none; * see {Line Separator}[rdoc-ref:IO@Line+Separator]: * * # Default separator. * $ cat t.txt | ruby -e "p readlines" * ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] * * # Specified separator. * $ cat t.txt | ruby -e "p readlines 'li'" * ["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"] * * # Get-all separator. * $ cat t.txt | ruby -e "p readlines nil" * ["First line\nSecond line\n\nFourth line\nFifth line\n"] * * # Get-paragraph separator. * $ cat t.txt | ruby -e "p readlines ''" * ["First line\nSecond line\n\n", "Fourth line\nFifth line\n"] * * With only integer argument +limit+ given, * limits the number of bytes in the line; * see {Line Limit}[rdoc-ref:IO@Line+Limit]: * * $cat t.txt | ruby -e "p readlines 10" * ["First line", "\n", "Second lin", "e\n", "\n", "Fourth lin", "e\n", "Fifth line", "\n"] * * $cat t.txt | ruby -e "p readlines 11" * ["First line\n", "Second line", "\n", "\n", "Fourth line", "\n", "Fifth line\n"] * * $cat t.txt | ruby -e "p readlines 12" * ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] * * With arguments +sep+ and +limit+ given, * combines the two behaviors * (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]). * * Optional keyword argument +chomp+ specifies whether line separators * are to be omitted: * * $ cat t.txt | ruby -e "p readlines(chomp: true)" * ["First line", "Second line", "", "Fourth line", "Fifth line"] * * Optional keyword arguments +enc_opts+ specify encoding options; * see {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * */ static VALUE rb_f_readlines(int argc, VALUE *argv, VALUE recv) { if (recv == argf) { return argf_readlines(argc, argv, argf); } return forward(argf, rb_intern("readlines"), argc, argv); } /* * call-seq: * ARGF.readlines(sep = $/, chomp: false) -> array * ARGF.readlines(limit, chomp: false) -> array * ARGF.readlines(sep, limit, chomp: false) -> array * * ARGF.to_a(sep = $/, chomp: false) -> array * ARGF.to_a(limit, chomp: false) -> array * ARGF.to_a(sep, limit, chomp: false) -> array * * Reads each file in ARGF in its entirety, returning an Array containing * lines from the files. Lines are assumed to be separated by _sep_. * * lines = ARGF.readlines * lines[0] #=> "This is line one\n" * * See +IO.readlines+ for a full description of all options. */ static VALUE argf_readlines(int argc, VALUE *argv, VALUE argf) { long lineno = ARGF.lineno; VALUE lines, ary; ary = rb_ary_new(); while (next_argv()) { if (ARGF_GENERIC_INPUT_P()) { lines = forward_current(rb_intern("readlines"), argc, argv); } else { lines = rb_io_readlines(argc, argv, ARGF.current_file); argf_close(argf); } ARGF.next_p = 1; rb_ary_concat(ary, lines); ARGF.lineno = lineno + RARRAY_LEN(ary); ARGF.last_lineno = ARGF.lineno; } ARGF.init_p = 0; return ary; } /* * call-seq: * `command` -> string * * Returns the $stdout output from running +command+ in a subshell; * sets global variable $? to the process status. * * This method has potential security vulnerabilities if called with untrusted input; * see {Command Injection}[rdoc-ref:command_injection.rdoc]. * * Examples: * * $ `date` # => "Wed Apr 9 08:56:30 CDT 2003\n" * $ `echo oops && exit 99` # => "oops\n" * $ $? # => # * $ $?.status # => 99> * * The built-in syntax %x{...} uses this method. * */ static VALUE rb_f_backquote(VALUE obj, VALUE str) { VALUE port; VALUE result; rb_io_t *fptr; StringValue(str); rb_last_status_clear(); port = pipe_open_s(str, "r", FMODE_READABLE|DEFAULT_TEXTMODE, NULL); if (NIL_P(port)) return rb_str_new(0,0); GetOpenFile(port, fptr); result = read_all(fptr, remain_size(fptr), Qnil); rb_io_close(port); rb_io_fptr_cleanup_all(fptr); RB_GC_GUARD(port); return result; } #ifdef HAVE_SYS_SELECT_H #include #endif static VALUE select_internal(VALUE read, VALUE write, VALUE except, struct timeval *tp, rb_fdset_t *fds) { VALUE res, list; rb_fdset_t *rp, *wp, *ep; rb_io_t *fptr; long i; int max = 0, n; int pending = 0; struct timeval timerec; if (!NIL_P(read)) { Check_Type(read, T_ARRAY); for (i=0; ifd, &fds[0]); if (READ_DATA_PENDING(fptr) || READ_CHAR_PENDING(fptr)) { /* check for buffered data */ pending++; rb_fd_set(fptr->fd, &fds[3]); } if (max < fptr->fd) max = fptr->fd; } if (pending) { /* no blocking if there's buffered data */ timerec.tv_sec = timerec.tv_usec = 0; tp = &timerec; } rp = &fds[0]; } else rp = 0; if (!NIL_P(write)) { Check_Type(write, T_ARRAY); for (i=0; ifd, &fds[1]); if (max < fptr->fd) max = fptr->fd; } wp = &fds[1]; } else wp = 0; if (!NIL_P(except)) { Check_Type(except, T_ARRAY); for (i=0; ifd, &fds[2]); if (max < fptr->fd) max = fptr->fd; if (io != write_io) { GetOpenFile(write_io, fptr); rb_fd_set(fptr->fd, &fds[2]); if (max < fptr->fd) max = fptr->fd; } } ep = &fds[2]; } else { ep = 0; } max++; n = rb_thread_fd_select(max, rp, wp, ep, tp); if (n < 0) { rb_sys_fail(0); } if (!pending && n == 0) return Qnil; /* returns nil on timeout */ res = rb_ary_new2(3); rb_ary_push(res, rp?rb_ary_new():rb_ary_new2(0)); rb_ary_push(res, wp?rb_ary_new():rb_ary_new2(0)); rb_ary_push(res, ep?rb_ary_new():rb_ary_new2(0)); if (rp) { list = RARRAY_AREF(res, 0); for (i=0; i< RARRAY_LEN(read); i++) { VALUE obj = rb_ary_entry(read, i); VALUE io = rb_io_get_io(obj); GetOpenFile(io, fptr); if (rb_fd_isset(fptr->fd, &fds[0]) || rb_fd_isset(fptr->fd, &fds[3])) { rb_ary_push(list, obj); } } } if (wp) { list = RARRAY_AREF(res, 1); for (i=0; i< RARRAY_LEN(write); i++) { VALUE obj = rb_ary_entry(write, i); VALUE io = rb_io_get_io(obj); VALUE write_io = GetWriteIO(io); GetOpenFile(write_io, fptr); if (rb_fd_isset(fptr->fd, &fds[1])) { rb_ary_push(list, obj); } } } if (ep) { list = RARRAY_AREF(res, 2); for (i=0; i< RARRAY_LEN(except); i++) { VALUE obj = rb_ary_entry(except, i); VALUE io = rb_io_get_io(obj); VALUE write_io = GetWriteIO(io); GetOpenFile(io, fptr); if (rb_fd_isset(fptr->fd, &fds[2])) { rb_ary_push(list, obj); } else if (io != write_io) { GetOpenFile(write_io, fptr); if (rb_fd_isset(fptr->fd, &fds[2])) { rb_ary_push(list, obj); } } } } return res; /* returns an empty array on interrupt */ } struct select_args { VALUE read, write, except; struct timeval *timeout; rb_fdset_t fdsets[4]; }; static VALUE select_call(VALUE arg) { struct select_args *p = (struct select_args *)arg; return select_internal(p->read, p->write, p->except, p->timeout, p->fdsets); } static VALUE select_end(VALUE arg) { struct select_args *p = (struct select_args *)arg; int i; for (i = 0; i < numberof(p->fdsets); ++i) rb_fd_term(&p->fdsets[i]); return Qnil; } static VALUE sym_normal, sym_sequential, sym_random, sym_willneed, sym_dontneed, sym_noreuse; #ifdef HAVE_POSIX_FADVISE struct io_advise_struct { int fd; int advice; rb_off_t offset; rb_off_t len; }; static VALUE io_advise_internal(void *arg) { struct io_advise_struct *ptr = arg; return posix_fadvise(ptr->fd, ptr->offset, ptr->len, ptr->advice); } static VALUE io_advise_sym_to_const(VALUE sym) { #ifdef POSIX_FADV_NORMAL if (sym == sym_normal) return INT2NUM(POSIX_FADV_NORMAL); #endif #ifdef POSIX_FADV_RANDOM if (sym == sym_random) return INT2NUM(POSIX_FADV_RANDOM); #endif #ifdef POSIX_FADV_SEQUENTIAL if (sym == sym_sequential) return INT2NUM(POSIX_FADV_SEQUENTIAL); #endif #ifdef POSIX_FADV_WILLNEED if (sym == sym_willneed) return INT2NUM(POSIX_FADV_WILLNEED); #endif #ifdef POSIX_FADV_DONTNEED if (sym == sym_dontneed) return INT2NUM(POSIX_FADV_DONTNEED); #endif #ifdef POSIX_FADV_NOREUSE if (sym == sym_noreuse) return INT2NUM(POSIX_FADV_NOREUSE); #endif return Qnil; } static VALUE do_io_advise(rb_io_t *fptr, VALUE advice, rb_off_t offset, rb_off_t len) { int rv; struct io_advise_struct ias; VALUE num_adv; num_adv = io_advise_sym_to_const(advice); /* * The platform doesn't support this hint. We don't raise exception, instead * silently ignore it. Because IO::advise is only hint. */ if (NIL_P(num_adv)) return Qnil; ias.fd = fptr->fd; ias.advice = NUM2INT(num_adv); ias.offset = offset; ias.len = len; rv = (int)rb_io_blocking_region(fptr, io_advise_internal, &ias); if (rv && rv != ENOSYS) { /* posix_fadvise(2) doesn't set errno. On success it returns 0; otherwise it returns the error code. */ VALUE message = rb_sprintf("%"PRIsVALUE" " "(%"PRI_OFFT_PREFIX"d, " "%"PRI_OFFT_PREFIX"d, " "%"PRIsVALUE")", fptr->pathv, offset, len, advice); rb_syserr_fail_str(rv, message); } return Qnil; } #endif /* HAVE_POSIX_FADVISE */ static void advice_arg_check(VALUE advice) { if (!SYMBOL_P(advice)) rb_raise(rb_eTypeError, "advice must be a Symbol"); if (advice != sym_normal && advice != sym_sequential && advice != sym_random && advice != sym_willneed && advice != sym_dontneed && advice != sym_noreuse) { rb_raise(rb_eNotImpError, "Unsupported advice: %+"PRIsVALUE, advice); } } /* * call-seq: * advise(advice, offset = 0, len = 0) -> nil * * Invokes Posix system call * {posix_fadvise(2)}[https://linux.die.net/man/2/posix_fadvise], * which announces an intention to access data from the current file * in a particular manner. * * The arguments and results are platform-dependent. * * The relevant data is specified by: * * - +offset+: The offset of the first byte of data. * - +len+: The number of bytes to be accessed; * if +len+ is zero, or is larger than the number of bytes remaining, * all remaining bytes will be accessed. * * Argument +advice+ is one of the following symbols: * * - +:normal+: The application has no advice to give * about its access pattern for the specified data. * If no advice is given for an open file, this is the default assumption. * - +:sequential+: The application expects to access the specified data sequentially * (with lower offsets read before higher ones). * - +:random+: The specified data will be accessed in random order. * - +:noreuse+: The specified data will be accessed only once. * - +:willneed+: The specified data will be accessed in the near future. * - +:dontneed+: The specified data will not be accessed in the near future. * * Not implemented on all platforms. * */ static VALUE rb_io_advise(int argc, VALUE *argv, VALUE io) { VALUE advice, offset, len; rb_off_t off, l; rb_io_t *fptr; rb_scan_args(argc, argv, "12", &advice, &offset, &len); advice_arg_check(advice); io = GetWriteIO(io); GetOpenFile(io, fptr); off = NIL_P(offset) ? 0 : NUM2OFFT(offset); l = NIL_P(len) ? 0 : NUM2OFFT(len); #ifdef HAVE_POSIX_FADVISE return do_io_advise(fptr, advice, off, l); #else ((void)off, (void)l); /* Ignore all hint */ return Qnil; #endif } /* * call-seq: * IO.select(read_ios, write_ios = [], error_ios = [], timeout = nil) -> array or nil * * Invokes system call {select(2)}[https://linux.die.net/man/2/select], * which monitors multiple file descriptors, * waiting until one or more of the file descriptors * becomes ready for some class of I/O operation. * * Not implemented on all platforms. * * Each of the arguments +read_ios+, +write_ios+, and +error_ios+ * is an array of IO objects. * * Argument +timeout+ is a numeric value (such as integer or float) timeout * interval in seconds. * * The method monitors the \IO objects given in all three arrays, * waiting for some to be ready; * returns a 3-element array whose elements are: * * - An array of the objects in +read_ios+ that are ready for reading. * - An array of the objects in +write_ios+ that are ready for writing. * - An array of the objects in +error_ios+ have pending exceptions. * * If no object becomes ready within the given +timeout+, +nil+ is returned. * * \IO.select peeks the buffer of \IO objects for testing readability. * If the \IO buffer is not empty, \IO.select immediately notifies * readability. This "peek" only happens for \IO objects. It does not * happen for IO-like objects such as OpenSSL::SSL::SSLSocket. * * The best way to use \IO.select is invoking it after non-blocking * methods such as #read_nonblock, #write_nonblock, etc. The methods * raise an exception which is extended by IO::WaitReadable or * IO::WaitWritable. The modules notify how the caller should wait * with \IO.select. If IO::WaitReadable is raised, the caller should * wait for reading. If IO::WaitWritable is raised, the caller should * wait for writing. * * So, blocking read (#readpartial) can be emulated using * #read_nonblock and \IO.select as follows: * * begin * result = io_like.read_nonblock(maxlen) * rescue IO::WaitReadable * IO.select([io_like]) * retry * rescue IO::WaitWritable * IO.select(nil, [io_like]) * retry * end * * Especially, the combination of non-blocking methods and \IO.select is * preferred for IO like objects such as OpenSSL::SSL::SSLSocket. It * has #to_io method to return underlying IO object. IO.select calls * #to_io to obtain the file descriptor to wait. * * This means that readability notified by \IO.select doesn't mean * readability from OpenSSL::SSL::SSLSocket object. * * The most likely situation is that OpenSSL::SSL::SSLSocket buffers * some data. \IO.select doesn't see the buffer. So \IO.select can * block when OpenSSL::SSL::SSLSocket#readpartial doesn't block. * * However, several more complicated situations exist. * * SSL is a protocol which is sequence of records. * The record consists of multiple bytes. * So, the remote side of SSL sends a partial record, IO.select * notifies readability but OpenSSL::SSL::SSLSocket cannot decrypt a * byte and OpenSSL::SSL::SSLSocket#readpartial will block. * * Also, the remote side can request SSL renegotiation which forces * the local SSL engine to write some data. * This means OpenSSL::SSL::SSLSocket#readpartial may invoke #write * system call and it can block. * In such a situation, OpenSSL::SSL::SSLSocket#read_nonblock raises * IO::WaitWritable instead of blocking. * So, the caller should wait for ready for writability as above * example. * * The combination of non-blocking methods and \IO.select is also useful * for streams such as tty, pipe socket socket when multiple processes * read from a stream. * * Finally, Linux kernel developers don't guarantee that * readability of select(2) means readability of following read(2) even * for a single process; * see {select(2)}[https://linux.die.net/man/2/select] * * Invoking \IO.select before IO#readpartial works well as usual. * However it is not the best way to use \IO.select. * * The writability notified by select(2) doesn't show * how many bytes are writable. * IO#write method blocks until given whole string is written. * So, IO#write(two or more bytes) can block after * writability is notified by \IO.select. IO#write_nonblock is required * to avoid the blocking. * * Blocking write (#write) can be emulated using #write_nonblock and * IO.select as follows: IO::WaitReadable should also be rescued for * SSL renegotiation in OpenSSL::SSL::SSLSocket. * * while 0 < string.bytesize * begin * written = io_like.write_nonblock(string) * rescue IO::WaitReadable * IO.select([io_like]) * retry * rescue IO::WaitWritable * IO.select(nil, [io_like]) * retry * end * string = string.byteslice(written..-1) * end * * Example: * * rp, wp = IO.pipe * mesg = "ping " * 100.times { * # IO.select follows IO#read. Not the best way to use IO.select. * rs, ws, = IO.select([rp], [wp]) * if r = rs[0] * ret = r.read(5) * print ret * case ret * when /ping/ * mesg = "pong\n" * when /pong/ * mesg = "ping " * end * end * if w = ws[0] * w.write(mesg) * end * } * * Output: * * ping pong * ping pong * ping pong * (snipped) * ping * */ static VALUE rb_f_select(int argc, VALUE *argv, VALUE obj) { VALUE scheduler = rb_fiber_scheduler_current(); if (scheduler != Qnil) { // It's optionally supported. VALUE result = rb_fiber_scheduler_io_selectv(scheduler, argc, argv); if (!UNDEF_P(result)) return result; } VALUE timeout; struct select_args args; struct timeval timerec; int i; rb_scan_args(argc, argv, "13", &args.read, &args.write, &args.except, &timeout); if (NIL_P(timeout)) { args.timeout = 0; } else { timerec = rb_time_interval(timeout); args.timeout = &timerec; } for (i = 0; i < numberof(args.fdsets); ++i) rb_fd_init(&args.fdsets[i]); return rb_ensure(select_call, (VALUE)&args, select_end, (VALUE)&args); } #ifdef IOCTL_REQ_TYPE typedef IOCTL_REQ_TYPE ioctl_req_t; #else typedef int ioctl_req_t; # define NUM2IOCTLREQ(num) ((int)NUM2LONG(num)) #endif #ifdef HAVE_IOCTL struct ioctl_arg { int fd; ioctl_req_t cmd; long narg; }; static VALUE nogvl_ioctl(void *ptr) { struct ioctl_arg *arg = ptr; return (VALUE)ioctl(arg->fd, arg->cmd, arg->narg); } static int do_ioctl(struct rb_io *io, ioctl_req_t cmd, long narg) { int retval; struct ioctl_arg arg; arg.fd = io->fd; arg.cmd = cmd; arg.narg = narg; retval = (int)rb_io_blocking_region(io, nogvl_ioctl, &arg); return retval; } #endif #define DEFAULT_IOCTL_NARG_LEN (256) #if defined(__linux__) && defined(_IOC_SIZE) static long linux_iocparm_len(ioctl_req_t cmd) { long len; if ((cmd & 0xFFFF0000) == 0) { /* legacy and unstructured ioctl number. */ return DEFAULT_IOCTL_NARG_LEN; } len = _IOC_SIZE(cmd); /* paranoia check for silly drivers which don't keep ioctl convention */ if (len < DEFAULT_IOCTL_NARG_LEN) len = DEFAULT_IOCTL_NARG_LEN; return len; } #endif #ifdef HAVE_IOCTL static long ioctl_narg_len(ioctl_req_t cmd) { long len; #ifdef IOCPARM_MASK #ifndef IOCPARM_LEN #define IOCPARM_LEN(x) (((x) >> 16) & IOCPARM_MASK) #endif #endif #ifdef IOCPARM_LEN len = IOCPARM_LEN(cmd); /* on BSDish systems we're safe */ #elif defined(__linux__) && defined(_IOC_SIZE) len = linux_iocparm_len(cmd); #else /* otherwise guess at what's safe */ len = DEFAULT_IOCTL_NARG_LEN; #endif return len; } #endif #ifdef HAVE_FCNTL #ifdef __linux__ typedef long fcntl_arg_t; #else /* posix */ typedef int fcntl_arg_t; #endif static long fcntl_narg_len(ioctl_req_t cmd) { long len; switch (cmd) { #ifdef F_DUPFD case F_DUPFD: len = sizeof(fcntl_arg_t); break; #endif #ifdef F_DUP2FD /* bsd specific */ case F_DUP2FD: len = sizeof(int); break; #endif #ifdef F_DUPFD_CLOEXEC /* linux specific */ case F_DUPFD_CLOEXEC: len = sizeof(fcntl_arg_t); break; #endif #ifdef F_GETFD case F_GETFD: len = 1; break; #endif #ifdef F_SETFD case F_SETFD: len = sizeof(fcntl_arg_t); break; #endif #ifdef F_GETFL case F_GETFL: len = 1; break; #endif #ifdef F_SETFL case F_SETFL: len = sizeof(fcntl_arg_t); break; #endif #ifdef F_GETOWN case F_GETOWN: len = 1; break; #endif #ifdef F_SETOWN case F_SETOWN: len = sizeof(fcntl_arg_t); break; #endif #ifdef F_GETOWN_EX /* linux specific */ case F_GETOWN_EX: len = sizeof(struct f_owner_ex); break; #endif #ifdef F_SETOWN_EX /* linux specific */ case F_SETOWN_EX: len = sizeof(struct f_owner_ex); break; #endif #ifdef F_GETLK case F_GETLK: len = sizeof(struct flock); break; #endif #ifdef F_SETLK case F_SETLK: len = sizeof(struct flock); break; #endif #ifdef F_SETLKW case F_SETLKW: len = sizeof(struct flock); break; #endif #ifdef F_READAHEAD /* bsd specific */ case F_READAHEAD: len = sizeof(int); break; #endif #ifdef F_RDAHEAD /* Darwin specific */ case F_RDAHEAD: len = sizeof(int); break; #endif #ifdef F_GETSIG /* linux specific */ case F_GETSIG: len = 1; break; #endif #ifdef F_SETSIG /* linux specific */ case F_SETSIG: len = sizeof(fcntl_arg_t); break; #endif #ifdef F_GETLEASE /* linux specific */ case F_GETLEASE: len = 1; break; #endif #ifdef F_SETLEASE /* linux specific */ case F_SETLEASE: len = sizeof(fcntl_arg_t); break; #endif #ifdef F_NOTIFY /* linux specific */ case F_NOTIFY: len = sizeof(fcntl_arg_t); break; #endif default: len = 256; break; } return len; } #else /* HAVE_FCNTL */ static long fcntl_narg_len(ioctl_req_t cmd) { return 0; } #endif /* HAVE_FCNTL */ #define NARG_SENTINEL 17 static long setup_narg(ioctl_req_t cmd, VALUE *argp, long (*narg_len)(ioctl_req_t)) { long narg = 0; VALUE arg = *argp; if (!RTEST(arg)) { narg = 0; } else if (FIXNUM_P(arg)) { narg = FIX2LONG(arg); } else if (arg == Qtrue) { narg = 1; } else { VALUE tmp = rb_check_string_type(arg); if (NIL_P(tmp)) { narg = NUM2LONG(arg); } else { char *ptr; long len, slen; *argp = arg = tmp; len = narg_len(cmd); rb_str_modify(arg); slen = RSTRING_LEN(arg); /* expand for data + sentinel. */ if (slen < len+1) { rb_str_resize(arg, len+1); MEMZERO(RSTRING_PTR(arg)+slen, char, len-slen); slen = len+1; } /* a little sanity check here */ ptr = RSTRING_PTR(arg); ptr[slen - 1] = NARG_SENTINEL; narg = (long)(SIGNED_VALUE)ptr; } } return narg; } static VALUE finish_narg(int retval, VALUE arg, const rb_io_t *fptr) { if (retval < 0) rb_sys_fail_path(fptr->pathv); if (RB_TYPE_P(arg, T_STRING)) { char *ptr; long slen; RSTRING_GETMEM(arg, ptr, slen); if (ptr[slen-1] != NARG_SENTINEL) rb_raise(rb_eArgError, "return value overflowed string"); ptr[slen-1] = '\0'; } return INT2NUM(retval); } #ifdef HAVE_IOCTL static VALUE rb_ioctl(VALUE io, VALUE req, VALUE arg) { ioctl_req_t cmd = NUM2IOCTLREQ(req); rb_io_t *fptr; long narg; int retval; narg = setup_narg(cmd, &arg, ioctl_narg_len); GetOpenFile(io, fptr); retval = do_ioctl(fptr, cmd, narg); return finish_narg(retval, arg, fptr); } /* * call-seq: * ioctl(integer_cmd, argument) -> integer * * Invokes Posix system call {ioctl(2)}[https://linux.die.net/man/2/ioctl], * which issues a low-level command to an I/O device. * * Issues a low-level command to an I/O device. * The arguments and returned value are platform-dependent. * The effect of the call is platform-dependent. * * If argument +argument+ is an integer, it is passed directly; * if it is a string, it is interpreted as a binary sequence of bytes. * * Not implemented on all platforms. * */ static VALUE rb_io_ioctl(int argc, VALUE *argv, VALUE io) { VALUE req, arg; rb_scan_args(argc, argv, "11", &req, &arg); return rb_ioctl(io, req, arg); } #else #define rb_io_ioctl rb_f_notimplement #endif #ifdef HAVE_FCNTL struct fcntl_arg { int fd; int cmd; long narg; }; static VALUE nogvl_fcntl(void *ptr) { struct fcntl_arg *arg = ptr; #if defined(F_DUPFD) if (arg->cmd == F_DUPFD) return (VALUE)rb_cloexec_fcntl_dupfd(arg->fd, (int)arg->narg); #endif return (VALUE)fcntl(arg->fd, arg->cmd, arg->narg); } static int do_fcntl(struct rb_io *io, int cmd, long narg) { int retval; struct fcntl_arg arg; arg.fd = io->fd; arg.cmd = cmd; arg.narg = narg; retval = (int)rb_io_blocking_region(io, nogvl_fcntl, &arg); if (retval != -1) { switch (cmd) { #if defined(F_DUPFD) case F_DUPFD: #endif #if defined(F_DUPFD_CLOEXEC) case F_DUPFD_CLOEXEC: #endif rb_update_max_fd(retval); } } return retval; } static VALUE rb_fcntl(VALUE io, VALUE req, VALUE arg) { int cmd = NUM2INT(req); rb_io_t *fptr; long narg; int retval; narg = setup_narg(cmd, &arg, fcntl_narg_len); GetOpenFile(io, fptr); retval = do_fcntl(fptr, cmd, narg); return finish_narg(retval, arg, fptr); } /* * call-seq: * fcntl(integer_cmd, argument) -> integer * * Invokes Posix system call {fcntl(2)}[https://linux.die.net/man/2/fcntl], * which provides a mechanism for issuing low-level commands to control or query * a file-oriented I/O stream. Arguments and results are platform * dependent. * * If +argument+ is a number, its value is passed directly; * if it is a string, it is interpreted as a binary sequence of bytes. * (Array#pack might be a useful way to build this string.) * * Not implemented on all platforms. * */ static VALUE rb_io_fcntl(int argc, VALUE *argv, VALUE io) { VALUE req, arg; rb_scan_args(argc, argv, "11", &req, &arg); return rb_fcntl(io, req, arg); } #else #define rb_io_fcntl rb_f_notimplement #endif #if defined(HAVE_SYSCALL) || defined(HAVE___SYSCALL) /* * call-seq: * syscall(integer_callno, *arguments) -> integer * * Invokes Posix system call {syscall(2)}[https://linux.die.net/man/2/syscall], * which calls a specified function. * * Calls the operating system function identified by +integer_callno+; * returns the result of the function or raises SystemCallError if it failed. * The effect of the call is platform-dependent. * The arguments and returned value are platform-dependent. * * For each of +arguments+: if it is an integer, it is passed directly; * if it is a string, it is interpreted as a binary sequence of bytes. * There may be as many as nine such arguments. * * Arguments +integer_callno+ and +argument+, as well as the returned value, * are platform-dependent. * * Note: Method +syscall+ is essentially unsafe and unportable. * The DL (Fiddle) library is preferred for safer and a bit * more portable programming. * * Not implemented on all platforms. * */ static VALUE rb_f_syscall(int argc, VALUE *argv, VALUE _) { VALUE arg[8]; #if SIZEOF_VOIDP == 8 && defined(HAVE___SYSCALL) && SIZEOF_INT != 8 /* mainly *BSD */ # define SYSCALL __syscall # define NUM2SYSCALLID(x) NUM2LONG(x) # define RETVAL2NUM(x) LONG2NUM(x) # if SIZEOF_LONG == 8 long num, retval = -1; # elif SIZEOF_LONG_LONG == 8 long long num, retval = -1; # else # error ---->> it is asserted that __syscall takes the first argument and returns retval in 64bit signed integer. <<---- # endif #elif defined(__linux__) # define SYSCALL syscall # define NUM2SYSCALLID(x) NUM2LONG(x) # define RETVAL2NUM(x) LONG2NUM(x) /* * Linux man page says, syscall(2) function prototype is below. * * int syscall(int number, ...); * * But, it's incorrect. Actual one takes and returned long. (see unistd.h) */ long num, retval = -1; #else # define SYSCALL syscall # define NUM2SYSCALLID(x) NUM2INT(x) # define RETVAL2NUM(x) INT2NUM(x) int num, retval = -1; #endif int i; if (RTEST(ruby_verbose)) { rb_category_warning(RB_WARN_CATEGORY_DEPRECATED, "We plan to remove a syscall function at future release. DL(Fiddle) provides safer alternative."); } if (argc == 0) rb_raise(rb_eArgError, "too few arguments for syscall"); if (argc > numberof(arg)) rb_raise(rb_eArgError, "too many arguments for syscall"); num = NUM2SYSCALLID(argv[0]); ++argv; for (i = argc - 1; i--; ) { VALUE v = rb_check_string_type(argv[i]); if (!NIL_P(v)) { StringValue(v); rb_str_modify(v); arg[i] = (VALUE)StringValueCStr(v); } else { arg[i] = (VALUE)NUM2LONG(argv[i]); } } switch (argc) { case 1: retval = SYSCALL(num); break; case 2: retval = SYSCALL(num, arg[0]); break; case 3: retval = SYSCALL(num, arg[0],arg[1]); break; case 4: retval = SYSCALL(num, arg[0],arg[1],arg[2]); break; case 5: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3]); break; case 6: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4]); break; case 7: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5]); break; case 8: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6]); break; } if (retval == -1) rb_sys_fail(0); return RETVAL2NUM(retval); #undef SYSCALL #undef NUM2SYSCALLID #undef RETVAL2NUM } #else #define rb_f_syscall rb_f_notimplement #endif static VALUE io_new_instance(VALUE args) { return rb_class_new_instance(2, (VALUE*)args+1, *(VALUE*)args); } static rb_encoding * find_encoding(VALUE v) { rb_encoding *enc = rb_find_encoding(v); if (!enc) rb_warn("Unsupported encoding %"PRIsVALUE" ignored", v); return enc; } static void io_encoding_set(rb_io_t *fptr, VALUE v1, VALUE v2, VALUE opt) { rb_encoding *enc, *enc2; int ecflags = fptr->encs.ecflags; VALUE ecopts, tmp; if (!NIL_P(v2)) { enc2 = find_encoding(v1); tmp = rb_check_string_type(v2); if (!NIL_P(tmp)) { if (RSTRING_LEN(tmp) == 1 && RSTRING_PTR(tmp)[0] == '-') { /* Special case - "-" => no transcoding */ enc = enc2; enc2 = NULL; } else enc = find_encoding(v2); if (enc == enc2) { /* Special case - "-" => no transcoding */ enc2 = NULL; } } else { enc = find_encoding(v2); if (enc == enc2) { /* Special case - "-" => no transcoding */ enc2 = NULL; } } if (enc2 == rb_ascii8bit_encoding()) { /* If external is ASCII-8BIT, no transcoding */ enc = enc2; enc2 = NULL; } SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags); ecflags = rb_econv_prepare_options(opt, &ecopts, ecflags); } else { if (NIL_P(v1)) { /* Set to default encodings */ rb_io_ext_int_to_encs(NULL, NULL, &enc, &enc2, 0); SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags); ecopts = Qnil; } else { tmp = rb_check_string_type(v1); if (!NIL_P(tmp) && rb_enc_asciicompat(enc = rb_enc_get(tmp))) { parse_mode_enc(RSTRING_PTR(tmp), enc, &enc, &enc2, NULL); SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags); ecflags = rb_econv_prepare_options(opt, &ecopts, ecflags); } else { rb_io_ext_int_to_encs(find_encoding(v1), NULL, &enc, &enc2, 0); SET_UNIVERSAL_NEWLINE_DECORATOR_IF_ENC2(enc2, ecflags); ecopts = Qnil; } } } validate_enc_binmode(&fptr->mode, ecflags, enc, enc2); fptr->encs.enc = enc; fptr->encs.enc2 = enc2; fptr->encs.ecflags = ecflags; fptr->encs.ecopts = ecopts; clear_codeconv(fptr); } struct io_encoding_set_args { rb_io_t *fptr; VALUE v1; VALUE v2; VALUE opt; }; static VALUE io_encoding_set_v(VALUE v) { struct io_encoding_set_args *arg = (struct io_encoding_set_args *)v; io_encoding_set(arg->fptr, arg->v1, arg->v2, arg->opt); return Qnil; } static VALUE pipe_pair_close(VALUE rw) { VALUE *rwp = (VALUE *)rw; return rb_ensure(io_close, rwp[0], io_close, rwp[1]); } /* * call-seq: * IO.pipe(**opts) -> [read_io, write_io] * IO.pipe(enc, **opts) -> [read_io, write_io] * IO.pipe(ext_enc, int_enc, **opts) -> [read_io, write_io] * IO.pipe(**opts) {|read_io, write_io| ...} -> object * IO.pipe(enc, **opts) {|read_io, write_io| ...} -> object * IO.pipe(ext_enc, int_enc, **opts) {|read_io, write_io| ...} -> object * * Creates a pair of pipe endpoints, +read_io+ and +write_io+, * connected to each other. * * If argument +enc_string+ is given, it must be a string containing one of: * * - The name of the encoding to be used as the external encoding. * - The colon-separated names of two encodings to be used as the external * and internal encodings. * * If argument +int_enc+ is given, it must be an Encoding object * or encoding name string that specifies the internal encoding to be used; * if argument +ext_enc+ is also given, it must be an Encoding object * or encoding name string that specifies the external encoding to be used. * * The string read from +read_io+ is tagged with the external encoding; * if an internal encoding is also specified, the string is converted * to, and tagged with, that encoding. * * If any encoding is specified, * optional hash arguments specify the conversion option. * * Optional keyword arguments +opts+ specify: * * - {Open Options}[rdoc-ref:IO@Open+Options]. * - {Encoding Options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * * With no block given, returns the two endpoints in an array: * * IO.pipe # => [#, #] * * With a block given, calls the block with the two endpoints; * closes both endpoints and returns the value of the block: * * IO.pipe {|read_io, write_io| p read_io; p write_io } * * Output: * * # * # * * Not available on all platforms. * * In the example below, the two processes close the ends of the pipe * that they are not using. This is not just a cosmetic nicety. The * read end of a pipe will not generate an end of file condition if * there are any writers with the pipe still open. In the case of the * parent process, the rd.read will never return if it * does not first issue a wr.close: * * rd, wr = IO.pipe * * if fork * wr.close * puts "Parent got: <#{rd.read}>" * rd.close * Process.wait * else * rd.close * puts 'Sending message to parent' * wr.write "Hi Dad" * wr.close * end * * produces: * * Sending message to parent * Parent got: * */ static VALUE rb_io_s_pipe(int argc, VALUE *argv, VALUE klass) { int pipes[2], state; VALUE r, w, args[3], v1, v2; VALUE opt; rb_io_t *fptr, *fptr2; struct io_encoding_set_args ies_args; int fmode = 0; VALUE ret; argc = rb_scan_args(argc, argv, "02:", &v1, &v2, &opt); if (rb_pipe(pipes) < 0) rb_sys_fail(0); args[0] = klass; args[1] = INT2NUM(pipes[0]); args[2] = INT2FIX(O_RDONLY); r = rb_protect(io_new_instance, (VALUE)args, &state); if (state) { close(pipes[0]); close(pipes[1]); rb_jump_tag(state); } GetOpenFile(r, fptr); ies_args.fptr = fptr; ies_args.v1 = v1; ies_args.v2 = v2; ies_args.opt = opt; rb_protect(io_encoding_set_v, (VALUE)&ies_args, &state); if (state) { close(pipes[1]); io_close(r); rb_jump_tag(state); } args[1] = INT2NUM(pipes[1]); args[2] = INT2FIX(O_WRONLY); w = rb_protect(io_new_instance, (VALUE)args, &state); if (state) { close(pipes[1]); if (!NIL_P(r)) rb_io_close(r); rb_jump_tag(state); } GetOpenFile(w, fptr2); rb_io_synchronized(fptr2); extract_binmode(opt, &fmode); if ((fmode & FMODE_BINMODE) && NIL_P(v1)) { rb_io_ascii8bit_binmode(r); rb_io_ascii8bit_binmode(w); } #if DEFAULT_TEXTMODE if ((fptr->mode & FMODE_TEXTMODE) && (fmode & FMODE_BINMODE)) { fptr->mode &= ~FMODE_TEXTMODE; setmode(fptr->fd, O_BINARY); } #if RUBY_CRLF_ENVIRONMENT if (fptr->encs.ecflags & ECONV_DEFAULT_NEWLINE_DECORATOR) { fptr->encs.ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR; } #endif #endif fptr->mode |= fmode; #if DEFAULT_TEXTMODE if ((fptr2->mode & FMODE_TEXTMODE) && (fmode & FMODE_BINMODE)) { fptr2->mode &= ~FMODE_TEXTMODE; setmode(fptr2->fd, O_BINARY); } #endif fptr2->mode |= fmode; ret = rb_assoc_new(r, w); if (rb_block_given_p()) { VALUE rw[2]; rw[0] = r; rw[1] = w; return rb_ensure(rb_yield, ret, pipe_pair_close, (VALUE)rw); } return ret; } struct foreach_arg { int argc; VALUE *argv; VALUE io; }; static void open_key_args(VALUE klass, int argc, VALUE *argv, VALUE opt, struct foreach_arg *arg) { VALUE path, v; VALUE vmode = Qnil, vperm = Qnil; path = *argv++; argc--; FilePathValue(path); arg->io = 0; arg->argc = argc; arg->argv = argv; if (NIL_P(opt)) { vmode = INT2NUM(O_RDONLY); vperm = INT2FIX(0666); } else if (!NIL_P(v = rb_hash_aref(opt, sym_open_args))) { int n; v = rb_to_array_type(v); n = RARRAY_LENINT(v); rb_check_arity(n, 0, 3); /* rb_io_open */ rb_scan_args_kw(RB_SCAN_ARGS_LAST_HASH_KEYWORDS, n, RARRAY_CONST_PTR(v), "02:", &vmode, &vperm, &opt); } arg->io = rb_io_open(klass, path, vmode, vperm, opt); } static VALUE io_s_foreach(VALUE v) { struct getline_arg *arg = (void *)v; VALUE str; if (arg->limit == 0) rb_raise(rb_eArgError, "invalid limit: 0 for foreach"); while (!NIL_P(str = rb_io_getline_1(arg->rs, arg->limit, arg->chomp, arg->io))) { rb_lastline_set(str); rb_yield(str); } rb_lastline_set(Qnil); return Qnil; } /* * call-seq: * IO.foreach(path, sep = $/, **opts) {|line| block } -> nil * IO.foreach(path, limit, **opts) {|line| block } -> nil * IO.foreach(path, sep, limit, **opts) {|line| block } -> nil * IO.foreach(...) -> an_enumerator * * Calls the block with each successive line read from the stream. * * When called from class \IO (but not subclasses of \IO), * this method has potential security vulnerabilities if called with untrusted input; * see {Command Injection}[rdoc-ref:command_injection.rdoc]. * * The first argument must be a string that is the path to a file. * * With only argument +path+ given, parses lines from the file at the given +path+, * as determined by the default line separator, * and calls the block with each successive line: * * File.foreach('t.txt') {|line| p line } * * Output: the same as above. * * For both forms, command and path, the remaining arguments are the same. * * With argument +sep+ given, parses lines as determined by that line separator * (see {Line Separator}[rdoc-ref:IO@Line+Separator]): * * File.foreach('t.txt', 'li') {|line| p line } * * Output: * * "First li" * "ne\nSecond li" * "ne\n\nThird li" * "ne\nFourth li" * "ne\n" * * Each paragraph: * * File.foreach('t.txt', '') {|paragraph| p paragraph } * * Output: * * "First line\nSecond line\n\n" * "Third line\nFourth line\n" * * With argument +limit+ given, parses lines as determined by the default * line separator and the given line-length limit * (see {Line Separator}[rdoc-ref:IO@Line+Separator] and {Line Limit}[rdoc-ref:IO@Line+Limit]): * * File.foreach('t.txt', 7) {|line| p line } * * Output: * * "First l" * "ine\n" * "Second " * "line\n" * "\n" * "Third l" * "ine\n" * "Fourth l" * "line\n" * * With arguments +sep+ and +limit+ given, * combines the two behaviors * (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]). * * Optional keyword arguments +opts+ specify: * * - {Open Options}[rdoc-ref:IO@Open+Options]. * - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * - {Line Options}[rdoc-ref:IO@Line+IO]. * * Returns an Enumerator if no block is given. * */ static VALUE rb_io_s_foreach(int argc, VALUE *argv, VALUE self) { VALUE opt; int orig_argc = argc; struct foreach_arg arg; struct getline_arg garg; argc = rb_scan_args(argc, argv, "12:", NULL, NULL, NULL, &opt); RETURN_ENUMERATOR(self, orig_argc, argv); extract_getline_args(argc-1, argv+1, &garg); open_key_args(self, argc, argv, opt, &arg); if (NIL_P(arg.io)) return Qnil; extract_getline_opts(opt, &garg); check_getline_args(&garg.rs, &garg.limit, garg.io = arg.io); return rb_ensure(io_s_foreach, (VALUE)&garg, rb_io_close, arg.io); } static VALUE io_s_readlines(VALUE v) { struct getline_arg *arg = (void *)v; return io_readlines(arg, arg->io); } /* * call-seq: * IO.readlines(path, sep = $/, **opts) -> array * IO.readlines(path, limit, **opts) -> array * IO.readlines(path, sep, limit, **opts) -> array * * Returns an array of all lines read from the stream. * * When called from class \IO (but not subclasses of \IO), * this method has potential security vulnerabilities if called with untrusted input; * see {Command Injection}[rdoc-ref:command_injection.rdoc]. * * The first argument must be a string that is the path to a file. * * With only argument +path+ given, parses lines from the file at the given +path+, * as determined by the default line separator, * and returns those lines in an array: * * IO.readlines('t.txt') * # => ["First line\n", "Second line\n", "\n", "Third line\n", "Fourth line\n"] * * With argument +sep+ given, parses lines as determined by that line separator * (see {Line Separator}[rdoc-ref:IO@Line+Separator]): * * # Ordinary separator. * IO.readlines('t.txt', 'li') * # =>["First li", "ne\nSecond li", "ne\n\nThird li", "ne\nFourth li", "ne\n"] * # Get-paragraphs separator. * IO.readlines('t.txt', '') * # => ["First line\nSecond line\n\n", "Third line\nFourth line\n"] * # Get-all separator. * IO.readlines('t.txt', nil) * # => ["First line\nSecond line\n\nThird line\nFourth line\n"] * * With argument +limit+ given, parses lines as determined by the default * line separator and the given line-length limit * (see {Line Separator}[rdoc-ref:IO@Line+Separator] and {Line Limit}[rdoc-ref:IO@Line+Limit]: * * IO.readlines('t.txt', 7) * # => ["First l", "ine\n", "Second ", "line\n", "\n", "Third l", "ine\n", "Fourth ", "line\n"] * * With arguments +sep+ and +limit+ given, * combines the two behaviors * (see {Line Separator and Line Limit}[rdoc-ref:IO@Line+Separator+and+Line+Limit]). * * Optional keyword arguments +opts+ specify: * * - {Open Options}[rdoc-ref:IO@Open+Options]. * - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * - {Line Options}[rdoc-ref:IO@Line+IO]. * */ static VALUE rb_io_s_readlines(int argc, VALUE *argv, VALUE io) { VALUE opt; struct foreach_arg arg; struct getline_arg garg; argc = rb_scan_args(argc, argv, "12:", NULL, NULL, NULL, &opt); extract_getline_args(argc-1, argv+1, &garg); open_key_args(io, argc, argv, opt, &arg); if (NIL_P(arg.io)) return Qnil; extract_getline_opts(opt, &garg); check_getline_args(&garg.rs, &garg.limit, garg.io = arg.io); return rb_ensure(io_s_readlines, (VALUE)&garg, rb_io_close, arg.io); } static VALUE io_s_read(VALUE v) { struct foreach_arg *arg = (void *)v; return io_read(arg->argc, arg->argv, arg->io); } struct seek_arg { VALUE io; VALUE offset; int mode; }; static VALUE seek_before_access(VALUE argp) { struct seek_arg *arg = (struct seek_arg *)argp; rb_io_binmode(arg->io); return rb_io_seek(arg->io, arg->offset, arg->mode); } /* * call-seq: * IO.read(path, length = nil, offset = 0, **opts) -> string or nil * * Opens the stream, reads and returns some or all of its content, * and closes the stream; returns +nil+ if no bytes were read. * * When called from class \IO (but not subclasses of \IO), * this method has potential security vulnerabilities if called with untrusted input; * see {Command Injection}[rdoc-ref:command_injection.rdoc]. * * The first argument must be a string that is the path to a file. * * With only argument +path+ given, reads in text mode and returns the entire content * of the file at the given path: * * IO.read('t.txt') * # => "First line\nSecond line\n\nThird line\nFourth line\n" * * On Windows, text mode can terminate reading and leave bytes in the file * unread when encountering certain special bytes. Consider using * IO.binread if all bytes in the file should be read. * * With argument +length+, returns +length+ bytes if available: * * IO.read('t.txt', 7) # => "First l" * IO.read('t.txt', 700) * # => "First line\r\nSecond line\r\n\r\nFourth line\r\nFifth line\r\n" * * With arguments +length+ and +offset+, returns +length+ bytes * if available, beginning at the given +offset+: * * IO.read('t.txt', 10, 2) # => "rst line\nS" * IO.read('t.txt', 10, 200) # => nil * * Optional keyword arguments +opts+ specify: * * - {Open Options}[rdoc-ref:IO@Open+Options]. * - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * */ static VALUE rb_io_s_read(int argc, VALUE *argv, VALUE io) { VALUE opt, offset; long off; struct foreach_arg arg; argc = rb_scan_args(argc, argv, "13:", NULL, NULL, &offset, NULL, &opt); if (!NIL_P(offset) && (off = NUM2LONG(offset)) < 0) { rb_raise(rb_eArgError, "negative offset %ld given", off); } open_key_args(io, argc, argv, opt, &arg); if (NIL_P(arg.io)) return Qnil; if (!NIL_P(offset)) { struct seek_arg sarg; int state = 0; sarg.io = arg.io; sarg.offset = offset; sarg.mode = SEEK_SET; rb_protect(seek_before_access, (VALUE)&sarg, &state); if (state) { rb_io_close(arg.io); rb_jump_tag(state); } if (arg.argc == 2) arg.argc = 1; } return rb_ensure(io_s_read, (VALUE)&arg, rb_io_close, arg.io); } /* * call-seq: * IO.binread(path, length = nil, offset = 0) -> string or nil * * Behaves like IO.read, except that the stream is opened in binary mode * with ASCII-8BIT encoding. * * When called from class \IO (but not subclasses of \IO), * this method has potential security vulnerabilities if called with untrusted input; * see {Command Injection}[rdoc-ref:command_injection.rdoc]. * */ static VALUE rb_io_s_binread(int argc, VALUE *argv, VALUE io) { VALUE offset; struct foreach_arg arg; enum { fmode = FMODE_READABLE|FMODE_BINMODE, oflags = O_RDONLY #ifdef O_BINARY |O_BINARY #endif }; struct rb_io_encoding convconfig = {NULL, NULL, 0, Qnil}; rb_scan_args(argc, argv, "12", NULL, NULL, &offset); FilePathValue(argv[0]); convconfig.enc = rb_ascii8bit_encoding(); arg.io = rb_io_open_generic(io, argv[0], oflags, fmode, &convconfig, 0); if (NIL_P(arg.io)) return Qnil; arg.argv = argv+1; arg.argc = (argc > 1) ? 1 : 0; if (!NIL_P(offset)) { struct seek_arg sarg; int state = 0; sarg.io = arg.io; sarg.offset = offset; sarg.mode = SEEK_SET; rb_protect(seek_before_access, (VALUE)&sarg, &state); if (state) { rb_io_close(arg.io); rb_jump_tag(state); } } return rb_ensure(io_s_read, (VALUE)&arg, rb_io_close, arg.io); } static VALUE io_s_write0(VALUE v) { struct write_arg *arg = (void *)v; return io_write(arg->io,arg->str,arg->nosync); } static VALUE io_s_write(int argc, VALUE *argv, VALUE klass, int binary) { VALUE string, offset, opt; struct foreach_arg arg; struct write_arg warg; rb_scan_args(argc, argv, "21:", NULL, &string, &offset, &opt); if (NIL_P(opt)) opt = rb_hash_new(); else opt = rb_hash_dup(opt); if (NIL_P(rb_hash_aref(opt,sym_mode))) { int mode = O_WRONLY|O_CREAT; #ifdef O_BINARY if (binary) mode |= O_BINARY; #endif if (NIL_P(offset)) mode |= O_TRUNC; rb_hash_aset(opt,sym_mode,INT2NUM(mode)); } open_key_args(klass, argc, argv, opt, &arg); #ifndef O_BINARY if (binary) rb_io_binmode_m(arg.io); #endif if (NIL_P(arg.io)) return Qnil; if (!NIL_P(offset)) { struct seek_arg sarg; int state = 0; sarg.io = arg.io; sarg.offset = offset; sarg.mode = SEEK_SET; rb_protect(seek_before_access, (VALUE)&sarg, &state); if (state) { rb_io_close(arg.io); rb_jump_tag(state); } } warg.io = arg.io; warg.str = string; warg.nosync = 0; return rb_ensure(io_s_write0, (VALUE)&warg, rb_io_close, arg.io); } /* * call-seq: * IO.write(path, data, offset = 0, **opts) -> integer * * Opens the stream, writes the given +data+ to it, * and closes the stream; returns the number of bytes written. * * When called from class \IO (but not subclasses of \IO), * this method has potential security vulnerabilities if called with untrusted input; * see {Command Injection}[rdoc-ref:command_injection.rdoc]. * * The first argument must be a string that is the path to a file. * * With only argument +path+ given, writes the given +data+ to the file at that path: * * IO.write('t.tmp', 'abc') # => 3 * File.read('t.tmp') # => "abc" * * If +offset+ is zero (the default), the file is overwritten: * * IO.write('t.tmp', 'A') # => 1 * File.read('t.tmp') # => "A" * * If +offset+ in within the file content, the file is partly overwritten: * * IO.write('t.tmp', 'abcdef') # => 3 * File.read('t.tmp') # => "abcdef" * # Offset within content. * IO.write('t.tmp', '012', 2) # => 3 * File.read('t.tmp') # => "ab012f" * * If +offset+ is outside the file content, * the file is padded with null characters "\u0000": * * IO.write('t.tmp', 'xyz', 10) # => 3 * File.read('t.tmp') # => "ab012f\u0000\u0000\u0000\u0000xyz" * * Optional keyword arguments +opts+ specify: * * - {Open Options}[rdoc-ref:IO@Open+Options]. * - {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * */ static VALUE rb_io_s_write(int argc, VALUE *argv, VALUE io) { return io_s_write(argc, argv, io, 0); } /* * call-seq: * IO.binwrite(path, string, offset = 0) -> integer * * Behaves like IO.write, except that the stream is opened in binary mode * with ASCII-8BIT encoding. * * When called from class \IO (but not subclasses of \IO), * this method has potential security vulnerabilities if called with untrusted input; * see {Command Injection}[rdoc-ref:command_injection.rdoc]. * */ static VALUE rb_io_s_binwrite(int argc, VALUE *argv, VALUE io) { return io_s_write(argc, argv, io, 1); } struct copy_stream_struct { VALUE src; VALUE dst; rb_off_t copy_length; /* (rb_off_t)-1 if not specified */ rb_off_t src_offset; /* (rb_off_t)-1 if not specified */ rb_io_t *src_fptr; rb_io_t *dst_fptr; unsigned close_src : 1; unsigned close_dst : 1; int error_no; rb_off_t total; const char *syserr; const char *notimp; VALUE th; struct stat src_stat; struct stat dst_stat; #ifdef HAVE_FCOPYFILE copyfile_state_t copyfile_state; #endif }; static void * exec_interrupts(void *arg) { VALUE th = (VALUE)arg; rb_thread_execute_interrupts(th); return NULL; } /* * returns TRUE if the preceding system call was interrupted * so we can continue. If the thread was interrupted, we * reacquire the GVL to execute interrupts before continuing. */ static int maygvl_copy_stream_continue_p(int has_gvl, struct copy_stream_struct *stp) { switch (errno) { case EINTR: #if defined(ERESTART) case ERESTART: #endif if (rb_thread_interrupted(stp->th)) { if (has_gvl) rb_thread_execute_interrupts(stp->th); else rb_thread_call_with_gvl(exec_interrupts, (void *)stp->th); } return TRUE; } return FALSE; } struct fiber_scheduler_wait_for_arguments { VALUE scheduler; rb_io_t *fptr; short events; VALUE result; }; static void * fiber_scheduler_wait_for(void * _arguments) { struct fiber_scheduler_wait_for_arguments *arguments = (struct fiber_scheduler_wait_for_arguments *)_arguments; arguments->result = rb_fiber_scheduler_io_wait(arguments->scheduler, arguments->fptr->self, INT2NUM(arguments->events), RUBY_IO_TIMEOUT_DEFAULT); return NULL; } #if USE_POLL # define IOWAIT_SYSCALL "poll" STATIC_ASSERT(pollin_expected, POLLIN == RB_WAITFD_IN); STATIC_ASSERT(pollout_expected, POLLOUT == RB_WAITFD_OUT); static int nogvl_wait_for(VALUE th, rb_io_t *fptr, short events, struct timeval *timeout) { VALUE scheduler = rb_fiber_scheduler_current_for_thread(th); if (scheduler != Qnil) { struct fiber_scheduler_wait_for_arguments args = {.scheduler = scheduler, .fptr = fptr, .events = events}; rb_thread_call_with_gvl(fiber_scheduler_wait_for, &args); return RTEST(args.result); } int fd = fptr->fd; if (fd == -1) return 0; struct pollfd fds; fds.fd = fd; fds.events = events; int timeout_milliseconds = -1; if (timeout) { timeout_milliseconds = (int)(timeout->tv_sec * 1000) + (int)(timeout->tv_usec / 1000); } return poll(&fds, 1, timeout_milliseconds); } #else /* !USE_POLL */ # define IOWAIT_SYSCALL "select" static int nogvl_wait_for(VALUE th, rb_io_t *fptr, short events, struct timeval *timeout) { VALUE scheduler = rb_fiber_scheduler_current_for_thread(th); if (scheduler != Qnil) { struct fiber_scheduler_wait_for_arguments args = {.scheduler = scheduler, .fptr = fptr, .events = events}; rb_thread_call_with_gvl(fiber_scheduler_wait_for, &args); return RTEST(args.result); } int fd = fptr->fd; if (fd == -1) { errno = EBADF; return -1; } rb_fdset_t fds; int ret; rb_fd_init(&fds); rb_fd_set(fd, &fds); switch (events) { case RB_WAITFD_IN: ret = rb_fd_select(fd + 1, &fds, 0, 0, timeout); break; case RB_WAITFD_OUT: ret = rb_fd_select(fd + 1, 0, &fds, 0, timeout); break; default: VM_UNREACHABLE(nogvl_wait_for); } rb_fd_term(&fds); // On timeout, this returns 0. return ret; } #endif /* !USE_POLL */ static int maygvl_copy_stream_wait_read(int has_gvl, struct copy_stream_struct *stp) { int ret; do { if (has_gvl) { ret = RB_NUM2INT(rb_io_wait(stp->src, RB_INT2NUM(RUBY_IO_READABLE), Qnil)); } else { ret = nogvl_wait_for(stp->th, stp->src_fptr, RB_WAITFD_IN, NULL); } } while (ret < 0 && maygvl_copy_stream_continue_p(has_gvl, stp)); if (ret < 0) { stp->syserr = IOWAIT_SYSCALL; stp->error_no = errno; return ret; } return 0; } static int nogvl_copy_stream_wait_write(struct copy_stream_struct *stp) { int ret; do { ret = nogvl_wait_for(stp->th, stp->dst_fptr, RB_WAITFD_OUT, NULL); } while (ret < 0 && maygvl_copy_stream_continue_p(0, stp)); if (ret < 0) { stp->syserr = IOWAIT_SYSCALL; stp->error_no = errno; return ret; } return 0; } #ifdef USE_COPY_FILE_RANGE static ssize_t simple_copy_file_range(int in_fd, rb_off_t *in_offset, int out_fd, rb_off_t *out_offset, size_t count, unsigned int flags) { #ifdef HAVE_COPY_FILE_RANGE return copy_file_range(in_fd, in_offset, out_fd, out_offset, count, flags); #else return syscall(__NR_copy_file_range, in_fd, in_offset, out_fd, out_offset, count, flags); #endif } static int nogvl_copy_file_range(struct copy_stream_struct *stp) { ssize_t ss; rb_off_t src_size; rb_off_t copy_length, src_offset, *src_offset_ptr; if (!S_ISREG(stp->src_stat.st_mode)) return 0; src_size = stp->src_stat.st_size; src_offset = stp->src_offset; if (src_offset >= (rb_off_t)0) { src_offset_ptr = &src_offset; } else { src_offset_ptr = NULL; /* if src_offset_ptr is NULL, then bytes are read from in_fd starting from the file offset */ } copy_length = stp->copy_length; if (copy_length < (rb_off_t)0) { if (src_offset < (rb_off_t)0) { rb_off_t current_offset; errno = 0; current_offset = lseek(stp->src_fptr->fd, 0, SEEK_CUR); if (current_offset < (rb_off_t)0 && errno) { stp->syserr = "lseek"; stp->error_no = errno; return (int)current_offset; } copy_length = src_size - current_offset; } else { copy_length = src_size - src_offset; } } retry_copy_file_range: # if SIZEOF_OFF_T > SIZEOF_SIZE_T /* we are limited by the 32-bit ssize_t return value on 32-bit */ ss = (copy_length > (rb_off_t)SSIZE_MAX) ? SSIZE_MAX : (ssize_t)copy_length; # else ss = (ssize_t)copy_length; # endif ss = simple_copy_file_range(stp->src_fptr->fd, src_offset_ptr, stp->dst_fptr->fd, NULL, ss, 0); if (0 < ss) { stp->total += ss; copy_length -= ss; if (0 < copy_length) { goto retry_copy_file_range; } } if (ss < 0) { if (maygvl_copy_stream_continue_p(0, stp)) { goto retry_copy_file_range; } switch (errno) { case EINVAL: case EPERM: /* copy_file_range(2) doesn't exist (may happen in docker container) */ #ifdef ENOSYS case ENOSYS: #endif #ifdef EXDEV case EXDEV: /* in_fd and out_fd are not on the same filesystem */ #endif return 0; case EAGAIN: #if EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif { int ret = nogvl_copy_stream_wait_write(stp); if (ret < 0) return ret; } goto retry_copy_file_range; case EBADF: { int e = errno; int flags = fcntl(stp->dst_fptr->fd, F_GETFL); if (flags != -1 && flags & O_APPEND) { return 0; } errno = e; } } stp->syserr = "copy_file_range"; stp->error_no = errno; return (int)ss; } return 1; } #endif #ifdef HAVE_FCOPYFILE static int nogvl_fcopyfile(struct copy_stream_struct *stp) { rb_off_t cur, ss = 0; const rb_off_t src_offset = stp->src_offset; int ret; if (stp->copy_length >= (rb_off_t)0) { /* copy_length can't be specified in fcopyfile(3) */ return 0; } if (!S_ISREG(stp->src_stat.st_mode)) return 0; if (!S_ISREG(stp->dst_stat.st_mode)) return 0; if (lseek(stp->dst_fptr->fd, 0, SEEK_CUR) > (rb_off_t)0) /* if dst IO was already written */ return 0; if (fcntl(stp->dst_fptr->fd, F_GETFL) & O_APPEND) { /* fcopyfile(3) appends src IO to dst IO and then truncates * dst IO to src IO's original size. */ rb_off_t end = lseek(stp->dst_fptr->fd, 0, SEEK_END); lseek(stp->dst_fptr->fd, 0, SEEK_SET); if (end > (rb_off_t)0) return 0; } if (src_offset > (rb_off_t)0) { rb_off_t r; /* get current offset */ errno = 0; cur = lseek(stp->src_fptr->fd, 0, SEEK_CUR); if (cur < (rb_off_t)0 && errno) { stp->error_no = errno; return 1; } errno = 0; r = lseek(stp->src_fptr->fd, src_offset, SEEK_SET); if (r < (rb_off_t)0 && errno) { stp->error_no = errno; return 1; } } stp->copyfile_state = copyfile_state_alloc(); /* this will be freed by copy_stream_finalize() */ ret = fcopyfile(stp->src_fptr->fd, stp->dst_fptr->fd, stp->copyfile_state, COPYFILE_DATA); copyfile_state_get(stp->copyfile_state, COPYFILE_STATE_COPIED, &ss); /* get copied bytes */ if (ret == 0) { /* success */ stp->total = ss; if (src_offset > (rb_off_t)0) { rb_off_t r; errno = 0; /* reset offset */ r = lseek(stp->src_fptr->fd, cur, SEEK_SET); if (r < (rb_off_t)0 && errno) { stp->error_no = errno; return 1; } } } else { switch (errno) { case ENOTSUP: case EPERM: case EINVAL: return 0; } stp->syserr = "fcopyfile"; stp->error_no = errno; return (int)ret; } return 1; } #endif #ifdef HAVE_SENDFILE # ifdef __linux__ # define USE_SENDFILE # ifdef HAVE_SYS_SENDFILE_H # include # endif static ssize_t simple_sendfile(int out_fd, int in_fd, rb_off_t *offset, rb_off_t count) { return sendfile(out_fd, in_fd, offset, (size_t)count); } # elif 0 /* defined(__FreeBSD__) || defined(__DragonFly__) */ || defined(__APPLE__) /* This runs on FreeBSD8.1 r30210, but sendfiles blocks its execution * without cpuset -l 0. */ # define USE_SENDFILE static ssize_t simple_sendfile(int out_fd, int in_fd, rb_off_t *offset, rb_off_t count) { int r; rb_off_t pos = offset ? *offset : lseek(in_fd, 0, SEEK_CUR); rb_off_t sbytes; # ifdef __APPLE__ r = sendfile(in_fd, out_fd, pos, &count, NULL, 0); sbytes = count; # else r = sendfile(in_fd, out_fd, pos, (size_t)count, NULL, &sbytes, 0); # endif if (r != 0 && sbytes == 0) return r; if (offset) { *offset += sbytes; } else { lseek(in_fd, sbytes, SEEK_CUR); } return (ssize_t)sbytes; } # endif #endif #ifdef USE_SENDFILE static int nogvl_copy_stream_sendfile(struct copy_stream_struct *stp) { ssize_t ss; rb_off_t src_size; rb_off_t copy_length; rb_off_t src_offset; int use_pread; if (!S_ISREG(stp->src_stat.st_mode)) return 0; src_size = stp->src_stat.st_size; #ifndef __linux__ if ((stp->dst_stat.st_mode & S_IFMT) != S_IFSOCK) return 0; #endif src_offset = stp->src_offset; use_pread = src_offset >= (rb_off_t)0; copy_length = stp->copy_length; if (copy_length < (rb_off_t)0) { if (use_pread) copy_length = src_size - src_offset; else { rb_off_t cur; errno = 0; cur = lseek(stp->src_fptr->fd, 0, SEEK_CUR); if (cur < (rb_off_t)0 && errno) { stp->syserr = "lseek"; stp->error_no = errno; return (int)cur; } copy_length = src_size - cur; } } retry_sendfile: # if SIZEOF_OFF_T > SIZEOF_SIZE_T /* we are limited by the 32-bit ssize_t return value on 32-bit */ ss = (copy_length > (rb_off_t)SSIZE_MAX) ? SSIZE_MAX : (ssize_t)copy_length; # else ss = (ssize_t)copy_length; # endif if (use_pread) { ss = simple_sendfile(stp->dst_fptr->fd, stp->src_fptr->fd, &src_offset, ss); } else { ss = simple_sendfile(stp->dst_fptr->fd, stp->src_fptr->fd, NULL, ss); } if (0 < ss) { stp->total += ss; copy_length -= ss; if (0 < copy_length) { goto retry_sendfile; } } if (ss < 0) { if (maygvl_copy_stream_continue_p(0, stp)) goto retry_sendfile; switch (errno) { case EINVAL: #ifdef ENOSYS case ENOSYS: #endif #ifdef EOPNOTSUP /* some RedHat kernels may return EOPNOTSUP on an NFS mount. see also: [Feature #16965] */ case EOPNOTSUP: #endif return 0; case EAGAIN: #if EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif { int ret; #ifndef __linux__ /* * Linux requires stp->src_fptr->fd to be a mmap-able (regular) file, * select() reports regular files to always be "ready", so * there is no need to select() on it. * Other OSes may have the same limitation for sendfile() which * allow us to bypass maygvl_copy_stream_wait_read()... */ ret = maygvl_copy_stream_wait_read(0, stp); if (ret < 0) return ret; #endif ret = nogvl_copy_stream_wait_write(stp); if (ret < 0) return ret; } goto retry_sendfile; } stp->syserr = "sendfile"; stp->error_no = errno; return (int)ss; } return 1; } #endif static ssize_t maygvl_read(int has_gvl, rb_io_t *fptr, void *buf, size_t count) { if (has_gvl) return rb_io_read_memory(fptr, buf, count); else return read(fptr->fd, buf, count); } static ssize_t maygvl_copy_stream_read(int has_gvl, struct copy_stream_struct *stp, char *buf, size_t len, rb_off_t offset) { ssize_t ss; retry_read: if (offset < (rb_off_t)0) { ss = maygvl_read(has_gvl, stp->src_fptr, buf, len); } else { ss = pread(stp->src_fptr->fd, buf, len, offset); } if (ss == 0) { return 0; } if (ss < 0) { if (maygvl_copy_stream_continue_p(has_gvl, stp)) goto retry_read; switch (errno) { case EAGAIN: #if EWOULDBLOCK != EAGAIN case EWOULDBLOCK: #endif { int ret = maygvl_copy_stream_wait_read(has_gvl, stp); if (ret < 0) return ret; } goto retry_read; #ifdef ENOSYS case ENOSYS: stp->notimp = "pread"; return ss; #endif } stp->syserr = offset < (rb_off_t)0 ? "read" : "pread"; stp->error_no = errno; } return ss; } static int nogvl_copy_stream_write(struct copy_stream_struct *stp, char *buf, size_t len) { ssize_t ss; int off = 0; while (len) { ss = write(stp->dst_fptr->fd, buf+off, len); if (ss < 0) { if (maygvl_copy_stream_continue_p(0, stp)) continue; if (io_again_p(errno)) { int ret = nogvl_copy_stream_wait_write(stp); if (ret < 0) return ret; continue; } stp->syserr = "write"; stp->error_no = errno; return (int)ss; } off += (int)ss; len -= (int)ss; stp->total += ss; } return 0; } static void nogvl_copy_stream_read_write(struct copy_stream_struct *stp) { char buf[1024*16]; size_t len; ssize_t ss; int ret; rb_off_t copy_length; rb_off_t src_offset; int use_eof; int use_pread; copy_length = stp->copy_length; use_eof = copy_length < (rb_off_t)0; src_offset = stp->src_offset; use_pread = src_offset >= (rb_off_t)0; if (use_pread && stp->close_src) { rb_off_t r; errno = 0; r = lseek(stp->src_fptr->fd, src_offset, SEEK_SET); if (r < (rb_off_t)0 && errno) { stp->syserr = "lseek"; stp->error_no = errno; return; } src_offset = (rb_off_t)-1; use_pread = 0; } while (use_eof || 0 < copy_length) { if (!use_eof && copy_length < (rb_off_t)sizeof(buf)) { len = (size_t)copy_length; } else { len = sizeof(buf); } if (use_pread) { ss = maygvl_copy_stream_read(0, stp, buf, len, src_offset); if (0 < ss) src_offset += ss; } else { ss = maygvl_copy_stream_read(0, stp, buf, len, (rb_off_t)-1); } if (ss <= 0) /* EOF or error */ return; ret = nogvl_copy_stream_write(stp, buf, ss); if (ret < 0) return; if (!use_eof) copy_length -= ss; } } static void * nogvl_copy_stream_func(void *arg) { struct copy_stream_struct *stp = (struct copy_stream_struct *)arg; #if defined(USE_SENDFILE) || defined(USE_COPY_FILE_RANGE) || defined(HAVE_FCOPYFILE) int ret; #endif #ifdef USE_COPY_FILE_RANGE ret = nogvl_copy_file_range(stp); if (ret != 0) goto finish; /* error or success */ #endif #ifdef HAVE_FCOPYFILE ret = nogvl_fcopyfile(stp); if (ret != 0) goto finish; /* error or success */ #endif #ifdef USE_SENDFILE ret = nogvl_copy_stream_sendfile(stp); if (ret != 0) goto finish; /* error or success */ #endif nogvl_copy_stream_read_write(stp); #if defined(USE_SENDFILE) || defined(USE_COPY_FILE_RANGE) || defined(HAVE_FCOPYFILE) finish: #endif return 0; } static VALUE copy_stream_fallback_body(VALUE arg) { struct copy_stream_struct *stp = (struct copy_stream_struct *)arg; const int buflen = 16*1024; VALUE n; VALUE buf = rb_str_buf_new(buflen); rb_off_t rest = stp->copy_length; rb_off_t off = stp->src_offset; ID read_method = id_readpartial; if (!stp->src_fptr) { if (!rb_respond_to(stp->src, read_method)) { read_method = id_read; } } while (1) { long numwrote; long l; if (stp->copy_length < (rb_off_t)0) { l = buflen; } else { if (rest == 0) { rb_str_resize(buf, 0); break; } l = buflen < rest ? buflen : (long)rest; } if (!stp->src_fptr) { VALUE rc = rb_funcall(stp->src, read_method, 2, INT2FIX(l), buf); if (read_method == id_read && NIL_P(rc)) break; } else { ssize_t ss; rb_str_resize(buf, buflen); ss = maygvl_copy_stream_read(1, stp, RSTRING_PTR(buf), l, off); rb_str_resize(buf, ss > 0 ? ss : 0); if (ss < 0) return Qnil; if (ss == 0) rb_eof_error(); if (off >= (rb_off_t)0) off += ss; } n = rb_io_write(stp->dst, buf); numwrote = NUM2LONG(n); stp->total += numwrote; rest -= numwrote; if (read_method == id_read && RSTRING_LEN(buf) == 0) { break; } } return Qnil; } static VALUE copy_stream_fallback(struct copy_stream_struct *stp) { if (!stp->src_fptr && stp->src_offset >= (rb_off_t)0) { rb_raise(rb_eArgError, "cannot specify src_offset for non-IO"); } rb_rescue2(copy_stream_fallback_body, (VALUE)stp, (VALUE (*) (VALUE, VALUE))0, (VALUE)0, rb_eEOFError, (VALUE)0); return Qnil; } static VALUE copy_stream_body(VALUE arg) { struct copy_stream_struct *stp = (struct copy_stream_struct *)arg; VALUE src_io = stp->src, dst_io = stp->dst; const int common_oflags = 0 #ifdef O_NOCTTY | O_NOCTTY #endif ; stp->th = rb_thread_current(); stp->total = 0; if (src_io == argf || !(RB_TYPE_P(src_io, T_FILE) || RB_TYPE_P(src_io, T_STRING) || rb_respond_to(src_io, rb_intern("to_path")))) { stp->src_fptr = NULL; } else { int stat_ret; VALUE tmp_io = rb_io_check_io(src_io); if (!NIL_P(tmp_io)) { src_io = tmp_io; } else if (!RB_TYPE_P(src_io, T_FILE)) { VALUE args[2]; FilePathValue(src_io); args[0] = src_io; args[1] = INT2NUM(O_RDONLY|common_oflags); src_io = rb_class_new_instance(2, args, rb_cFile); stp->src = src_io; stp->close_src = 1; } RB_IO_POINTER(src_io, stp->src_fptr); rb_io_check_byte_readable(stp->src_fptr); stat_ret = fstat(stp->src_fptr->fd, &stp->src_stat); if (stat_ret < 0) { stp->syserr = "fstat"; stp->error_no = errno; return Qnil; } } if (dst_io == argf || !(RB_TYPE_P(dst_io, T_FILE) || RB_TYPE_P(dst_io, T_STRING) || rb_respond_to(dst_io, rb_intern("to_path")))) { stp->dst_fptr = NULL; } else { int stat_ret; VALUE tmp_io = rb_io_check_io(dst_io); if (!NIL_P(tmp_io)) { dst_io = GetWriteIO(tmp_io); } else if (!RB_TYPE_P(dst_io, T_FILE)) { VALUE args[3]; FilePathValue(dst_io); args[0] = dst_io; args[1] = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC|common_oflags); args[2] = INT2FIX(0666); dst_io = rb_class_new_instance(3, args, rb_cFile); stp->dst = dst_io; stp->close_dst = 1; } else { dst_io = GetWriteIO(dst_io); stp->dst = dst_io; } RB_IO_POINTER(dst_io, stp->dst_fptr); rb_io_check_writable(stp->dst_fptr); stat_ret = fstat(stp->dst_fptr->fd, &stp->dst_stat); if (stat_ret < 0) { stp->syserr = "fstat"; stp->error_no = errno; return Qnil; } } #ifdef O_BINARY if (stp->src_fptr) SET_BINARY_MODE_WITH_SEEK_CUR(stp->src_fptr); #endif if (stp->dst_fptr) io_ascii8bit_binmode(stp->dst_fptr); if (stp->src_offset < (rb_off_t)0 && stp->src_fptr && stp->src_fptr->rbuf.len) { size_t len = stp->src_fptr->rbuf.len; VALUE str; if (stp->copy_length >= (rb_off_t)0 && stp->copy_length < (rb_off_t)len) { len = (size_t)stp->copy_length; } str = rb_str_buf_new(len); rb_str_resize(str,len); read_buffered_data(RSTRING_PTR(str), len, stp->src_fptr); if (stp->dst_fptr) { /* IO or filename */ if (io_binwrite(RSTRING_PTR(str), RSTRING_LEN(str), stp->dst_fptr, 0) < 0) rb_sys_fail_on_write(stp->dst_fptr); } else /* others such as StringIO */ rb_io_write(dst_io, str); rb_str_resize(str, 0); stp->total += len; if (stp->copy_length >= (rb_off_t)0) stp->copy_length -= len; } if (stp->dst_fptr && io_fflush(stp->dst_fptr) < 0) { rb_raise(rb_eIOError, "flush failed"); } if (stp->copy_length == 0) return Qnil; if (stp->src_fptr == NULL || stp->dst_fptr == NULL) { return copy_stream_fallback(stp); } IO_WITHOUT_GVL(nogvl_copy_stream_func, stp); return Qnil; } static VALUE copy_stream_finalize(VALUE arg) { struct copy_stream_struct *stp = (struct copy_stream_struct *)arg; #ifdef HAVE_FCOPYFILE if (stp->copyfile_state) { copyfile_state_free(stp->copyfile_state); } #endif if (stp->close_src) { rb_io_close_m(stp->src); } if (stp->close_dst) { rb_io_close_m(stp->dst); } if (stp->syserr) { rb_syserr_fail(stp->error_no, stp->syserr); } if (stp->notimp) { rb_raise(rb_eNotImpError, "%s() not implemented", stp->notimp); } return Qnil; } /* * call-seq: * IO.copy_stream(src, dst, src_length = nil, src_offset = 0) -> integer * * Copies from the given +src+ to the given +dst+, * returning the number of bytes copied. * * - The given +src+ must be one of the following: * * - The path to a readable file, from which source data is to be read. * - An \IO-like object, opened for reading and capable of responding * to method +:readpartial+ or method +:read+. * * - The given +dst+ must be one of the following: * * - The path to a writable file, to which data is to be written. * - An \IO-like object, opened for writing and capable of responding * to method +:write+. * * The examples here use file t.txt as source: * * File.read('t.txt') * # => "First line\nSecond line\n\nThird line\nFourth line\n" * File.read('t.txt').size # => 47 * * If only arguments +src+ and +dst+ are given, * the entire source stream is copied: * * # Paths. * IO.copy_stream('t.txt', 't.tmp') # => 47 * * # IOs (recall that a File is also an IO). * src_io = File.open('t.txt', 'r') # => # * dst_io = File.open('t.tmp', 'w') # => # * IO.copy_stream(src_io, dst_io) # => 47 * src_io.close * dst_io.close * * With argument +src_length+ a non-negative integer, * no more than that many bytes are copied: * * IO.copy_stream('t.txt', 't.tmp', 10) # => 10 * File.read('t.tmp') # => "First line" * * With argument +src_offset+ also given, * the source stream is read beginning at that offset: * * IO.copy_stream('t.txt', 't.tmp', 11, 11) # => 11 * IO.read('t.tmp') # => "Second line" * */ static VALUE rb_io_s_copy_stream(int argc, VALUE *argv, VALUE io) { VALUE src, dst, length, src_offset; struct copy_stream_struct st; MEMZERO(&st, struct copy_stream_struct, 1); rb_scan_args(argc, argv, "22", &src, &dst, &length, &src_offset); st.src = src; st.dst = dst; st.src_fptr = NULL; st.dst_fptr = NULL; if (NIL_P(length)) st.copy_length = (rb_off_t)-1; else st.copy_length = NUM2OFFT(length); if (NIL_P(src_offset)) st.src_offset = (rb_off_t)-1; else st.src_offset = NUM2OFFT(src_offset); rb_ensure(copy_stream_body, (VALUE)&st, copy_stream_finalize, (VALUE)&st); return OFFT2NUM(st.total); } /* * call-seq: * external_encoding -> encoding or nil * * Returns the Encoding object that represents the encoding of the stream, * or +nil+ if the stream is in write mode and no encoding is specified. * * See {Encodings}[rdoc-ref:File@Encodings]. * */ static VALUE rb_io_external_encoding(VALUE io) { rb_io_t *fptr = RFILE(rb_io_taint_check(io))->fptr; if (fptr->encs.enc2) { return rb_enc_from_encoding(fptr->encs.enc2); } if (fptr->mode & FMODE_WRITABLE) { if (fptr->encs.enc) return rb_enc_from_encoding(fptr->encs.enc); return Qnil; } return rb_enc_from_encoding(io_read_encoding(fptr)); } /* * call-seq: * internal_encoding -> encoding or nil * * Returns the Encoding object that represents the encoding of the internal string, * if conversion is specified, * or +nil+ otherwise. * * See {Encodings}[rdoc-ref:File@Encodings]. * */ static VALUE rb_io_internal_encoding(VALUE io) { rb_io_t *fptr = RFILE(rb_io_taint_check(io))->fptr; if (!fptr->encs.enc2) return Qnil; return rb_enc_from_encoding(io_read_encoding(fptr)); } /* * call-seq: * set_encoding(ext_enc) -> self * set_encoding(ext_enc, int_enc, **enc_opts) -> self * set_encoding('ext_enc:int_enc', **enc_opts) -> self * * See {Encodings}[rdoc-ref:File@Encodings]. * * Argument +ext_enc+, if given, must be an Encoding object * or a String with the encoding name; * it is assigned as the encoding for the stream. * * Argument +int_enc+, if given, must be an Encoding object * or a String with the encoding name; * it is assigned as the encoding for the internal string. * * Argument 'ext_enc:int_enc', if given, is a string * containing two colon-separated encoding names; * corresponding Encoding objects are assigned as the external * and internal encodings for the stream. * * If the external encoding of a string is binary/ASCII-8BIT, * the internal encoding of the string is set to nil, since no * transcoding is needed. * * Optional keyword arguments +enc_opts+ specify * {Encoding options}[rdoc-ref:encodings.rdoc@Encoding+Options]. * */ static VALUE rb_io_set_encoding(int argc, VALUE *argv, VALUE io) { rb_io_t *fptr; VALUE v1, v2, opt; if (!RB_TYPE_P(io, T_FILE)) { return forward(io, id_set_encoding, argc, argv); } argc = rb_scan_args(argc, argv, "11:", &v1, &v2, &opt); GetOpenFile(io, fptr); io_encoding_set(fptr, v1, v2, opt); return io; } void rb_stdio_set_default_encoding(void) { VALUE val = Qnil; #ifdef _WIN32 if (isatty(fileno(stdin))) { rb_encoding *external = rb_locale_encoding(); rb_encoding *internal = rb_default_internal_encoding(); if (!internal) internal = rb_default_external_encoding(); io_encoding_set(RFILE(rb_stdin)->fptr, rb_enc_from_encoding(external), rb_enc_from_encoding(internal), Qnil); } else #endif rb_io_set_encoding(1, &val, rb_stdin); rb_io_set_encoding(1, &val, rb_stdout); rb_io_set_encoding(1, &val, rb_stderr); } static inline int global_argf_p(VALUE arg) { return arg == argf; } typedef VALUE (*argf_encoding_func)(VALUE io); static VALUE argf_encoding(VALUE argf, argf_encoding_func func) { if (!RTEST(ARGF.current_file)) { return rb_enc_default_external(); } return func(rb_io_check_io(ARGF.current_file)); } /* * call-seq: * ARGF.external_encoding -> encoding * * Returns the external encoding for files read from ARGF as an Encoding * object. The external encoding is the encoding of the text as stored in a * file. Contrast with ARGF.internal_encoding, which is the encoding used to * represent this text within Ruby. * * To set the external encoding use ARGF.set_encoding. * * For example: * * ARGF.external_encoding #=> # * */ static VALUE argf_external_encoding(VALUE argf) { return argf_encoding(argf, rb_io_external_encoding); } /* * call-seq: * ARGF.internal_encoding -> encoding * * Returns the internal encoding for strings read from ARGF as an * Encoding object. * * If ARGF.set_encoding has been called with two encoding names, the second * is returned. Otherwise, if +Encoding.default_external+ has been set, that * value is returned. Failing that, if a default external encoding was * specified on the command-line, that value is used. If the encoding is * unknown, +nil+ is returned. */ static VALUE argf_internal_encoding(VALUE argf) { return argf_encoding(argf, rb_io_internal_encoding); } /* * call-seq: * ARGF.set_encoding(ext_enc) -> ARGF * ARGF.set_encoding("ext_enc:int_enc") -> ARGF * ARGF.set_encoding(ext_enc, int_enc) -> ARGF * ARGF.set_encoding("ext_enc:int_enc", opt) -> ARGF * ARGF.set_encoding(ext_enc, int_enc, opt) -> ARGF * * If single argument is specified, strings read from ARGF are tagged with * the encoding specified. * * If two encoding names separated by a colon are given, e.g. "ascii:utf-8", * the read string is converted from the first encoding (external encoding) * to the second encoding (internal encoding), then tagged with the second * encoding. * * If two arguments are specified, they must be encoding objects or encoding * names. Again, the first specifies the external encoding; the second * specifies the internal encoding. * * If the external encoding and the internal encoding are specified, the * optional Hash argument can be used to adjust the conversion process. The * structure of this hash is explained in the String#encode documentation. * * For example: * * ARGF.set_encoding('ascii') # Tag the input as US-ASCII text * ARGF.set_encoding(Encoding::UTF_8) # Tag the input as UTF-8 text * ARGF.set_encoding('utf-8','ascii') # Transcode the input from US-ASCII * # to UTF-8. */ static VALUE argf_set_encoding(int argc, VALUE *argv, VALUE argf) { rb_io_t *fptr; if (!next_argv()) { rb_raise(rb_eArgError, "no stream to set encoding"); } rb_io_set_encoding(argc, argv, ARGF.current_file); GetOpenFile(ARGF.current_file, fptr); ARGF.encs = fptr->encs; return argf; } /* * call-seq: * ARGF.tell -> Integer * ARGF.pos -> Integer * * Returns the current offset (in bytes) of the current file in ARGF. * * ARGF.pos #=> 0 * ARGF.gets #=> "This is line one\n" * ARGF.pos #=> 17 * */ static VALUE argf_tell(VALUE argf) { if (!next_argv()) { rb_raise(rb_eArgError, "no stream to tell"); } ARGF_FORWARD(0, 0); return rb_io_tell(ARGF.current_file); } /* * call-seq: * ARGF.seek(amount, whence=IO::SEEK_SET) -> 0 * * Seeks to offset _amount_ (an Integer) in the ARGF stream according to * the value of _whence_. See IO#seek for further details. */ static VALUE argf_seek_m(int argc, VALUE *argv, VALUE argf) { if (!next_argv()) { rb_raise(rb_eArgError, "no stream to seek"); } ARGF_FORWARD(argc, argv); return rb_io_seek_m(argc, argv, ARGF.current_file); } /* * call-seq: * ARGF.pos = position -> Integer * * Seeks to the position given by _position_ (in bytes) in ARGF. * * For example: * * ARGF.pos = 17 * ARGF.gets #=> "This is line two\n" */ static VALUE argf_set_pos(VALUE argf, VALUE offset) { if (!next_argv()) { rb_raise(rb_eArgError, "no stream to set position"); } ARGF_FORWARD(1, &offset); return rb_io_set_pos(ARGF.current_file, offset); } /* * call-seq: * ARGF.rewind -> 0 * * Positions the current file to the beginning of input, resetting * ARGF.lineno to zero. * * ARGF.readline #=> "This is line one\n" * ARGF.rewind #=> 0 * ARGF.lineno #=> 0 * ARGF.readline #=> "This is line one\n" */ static VALUE argf_rewind(VALUE argf) { VALUE ret; int old_lineno; if (!next_argv()) { rb_raise(rb_eArgError, "no stream to rewind"); } ARGF_FORWARD(0, 0); old_lineno = RFILE(ARGF.current_file)->fptr->lineno; ret = rb_io_rewind(ARGF.current_file); if (!global_argf_p(argf)) { ARGF.last_lineno = ARGF.lineno -= old_lineno; } return ret; } /* * call-seq: * ARGF.fileno -> integer * ARGF.to_i -> integer * * Returns an integer representing the numeric file descriptor for * the current file. Raises an ArgumentError if there isn't a current file. * * ARGF.fileno #=> 3 */ static VALUE argf_fileno(VALUE argf) { if (!next_argv()) { rb_raise(rb_eArgError, "no stream"); } ARGF_FORWARD(0, 0); return rb_io_fileno(ARGF.current_file); } /* * call-seq: * ARGF.to_io -> IO * * Returns an IO object representing the current file. This will be a * File object unless the current file is a stream such as STDIN. * * For example: * * ARGF.to_io #=> # * ARGF.to_io #=> #> */ static VALUE argf_to_io(VALUE argf) { next_argv(); ARGF_FORWARD(0, 0); return ARGF.current_file; } /* * call-seq: * ARGF.eof? -> true or false * ARGF.eof -> true or false * * Returns true if the current file in ARGF is at end of file, i.e. it has * no data to read. The stream must be opened for reading or an IOError * will be raised. * * $ echo "eof" | ruby argf.rb * * ARGF.eof? #=> false * 3.times { ARGF.readchar } * ARGF.eof? #=> false * ARGF.readchar #=> "\n" * ARGF.eof? #=> true */ static VALUE argf_eof(VALUE argf) { next_argv(); if (RTEST(ARGF.current_file)) { if (ARGF.init_p == 0) return Qtrue; next_argv(); ARGF_FORWARD(0, 0); if (rb_io_eof(ARGF.current_file)) { return Qtrue; } } return Qfalse; } /* * call-seq: * ARGF.read([length [, outbuf]]) -> string, outbuf, or nil * * Reads _length_ bytes from ARGF. The files named on the command line * are concatenated and treated as a single file by this method, so when * called without arguments the contents of this pseudo file are returned in * their entirety. * * _length_ must be a non-negative integer or +nil+. * * If _length_ is a positive integer, +read+ tries to read * _length_ bytes without any conversion (binary mode). * It returns +nil+ if an EOF is encountered before anything can be read. * Fewer than _length_ bytes are returned if an EOF is encountered during * the read. * In the case of an integer _length_, the resulting string is always * in ASCII-8BIT encoding. * * If _length_ is omitted or is +nil+, it reads until EOF * and the encoding conversion is applied, if applicable. * A string is returned even if EOF is encountered before any data is read. * * If _length_ is zero, it returns an empty string (""). * * If the optional _outbuf_ argument is present, * it must reference a String, which will receive the data. * The _outbuf_ will contain only the received data after the method call * even if it is not empty at the beginning. * * For example: * * $ echo "small" > small.txt * $ echo "large" > large.txt * $ ./glark.rb small.txt large.txt * * ARGF.read #=> "small\nlarge" * ARGF.read(200) #=> "small\nlarge" * ARGF.read(2) #=> "sm" * ARGF.read(0) #=> "" * * Note that this method behaves like the fread() function in C. * This means it retries to invoke read(2) system calls to read data * with the specified length. * If you need the behavior like a single read(2) system call, * consider ARGF#readpartial or ARGF#read_nonblock. */ static VALUE argf_read(int argc, VALUE *argv, VALUE argf) { VALUE tmp, str, length; long len = 0; rb_scan_args(argc, argv, "02", &length, &str); if (!NIL_P(length)) { len = NUM2LONG(argv[0]); } if (!NIL_P(str)) { StringValue(str); rb_str_resize(str,0); argv[1] = Qnil; } retry: if (!next_argv()) { return str; } if (ARGF_GENERIC_INPUT_P()) { tmp = argf_forward(argc, argv, argf); } else { tmp = io_read(argc, argv, ARGF.current_file); } if (NIL_P(str)) str = tmp; else if (!NIL_P(tmp)) rb_str_append(str, tmp); if (NIL_P(tmp) || NIL_P(length)) { if (ARGF.next_p != -1) { argf_close(argf); ARGF.next_p = 1; goto retry; } } else if (argc >= 1) { long slen = RSTRING_LEN(str); if (slen < len) { argv[0] = LONG2NUM(len - slen); goto retry; } } return str; } struct argf_call_arg { int argc; VALUE *argv; VALUE argf; }; static VALUE argf_forward_call(VALUE arg) { struct argf_call_arg *p = (struct argf_call_arg *)arg; argf_forward(p->argc, p->argv, p->argf); return Qnil; } static VALUE argf_getpartial(int argc, VALUE *argv, VALUE argf, VALUE opts, int nonblock); /* * call-seq: * ARGF.readpartial(maxlen) -> string * ARGF.readpartial(maxlen, outbuf) -> outbuf * * Reads at most _maxlen_ bytes from the ARGF stream. * * If the optional _outbuf_ argument is present, * it must reference a String, which will receive the data. * The _outbuf_ will contain only the received data after the method call * even if it is not empty at the beginning. * * It raises EOFError on end of ARGF stream. * Since ARGF stream is a concatenation of multiple files, * internally EOF is occur for each file. * ARGF.readpartial returns empty strings for EOFs except the last one and * raises EOFError for the last one. * */ static VALUE argf_readpartial(int argc, VALUE *argv, VALUE argf) { return argf_getpartial(argc, argv, argf, Qnil, 0); } /* * call-seq: * ARGF.read_nonblock(maxlen[, options]) -> string * ARGF.read_nonblock(maxlen, outbuf[, options]) -> outbuf * * Reads at most _maxlen_ bytes from the ARGF stream in non-blocking mode. */ static VALUE argf_read_nonblock(int argc, VALUE *argv, VALUE argf) { VALUE opts; rb_scan_args(argc, argv, "11:", NULL, NULL, &opts); if (!NIL_P(opts)) argc--; return argf_getpartial(argc, argv, argf, opts, 1); } static VALUE argf_getpartial(int argc, VALUE *argv, VALUE argf, VALUE opts, int nonblock) { VALUE tmp, str, length; int no_exception; rb_scan_args(argc, argv, "11", &length, &str); if (!NIL_P(str)) { StringValue(str); argv[1] = str; } no_exception = no_exception_p(opts); if (!next_argv()) { if (!NIL_P(str)) { rb_str_resize(str, 0); } rb_eof_error(); } if (ARGF_GENERIC_INPUT_P()) { VALUE (*const rescue_does_nothing)(VALUE, VALUE) = 0; struct argf_call_arg arg; arg.argc = argc; arg.argv = argv; arg.argf = argf; tmp = rb_rescue2(argf_forward_call, (VALUE)&arg, rescue_does_nothing, Qnil, rb_eEOFError, (VALUE)0); } else { tmp = io_getpartial(argc, argv, ARGF.current_file, no_exception, nonblock); } if (NIL_P(tmp)) { if (ARGF.next_p == -1) { return io_nonblock_eof(no_exception); } argf_close(argf); ARGF.next_p = 1; if (RARRAY_LEN(ARGF.argv) == 0) { return io_nonblock_eof(no_exception); } if (NIL_P(str)) str = rb_str_new(NULL, 0); return str; } return tmp; } /* * call-seq: * ARGF.getc -> String or nil * * Reads the next character from ARGF and returns it as a String. Returns * +nil+ at the end of the stream. * * ARGF treats the files named on the command line as a single file created * by concatenating their contents. After returning the last character of the * first file, it returns the first character of the second file, and so on. * * For example: * * $ echo "foo" > file * $ ruby argf.rb file * * ARGF.getc #=> "f" * ARGF.getc #=> "o" * ARGF.getc #=> "o" * ARGF.getc #=> "\n" * ARGF.getc #=> nil * ARGF.getc #=> nil */ static VALUE argf_getc(VALUE argf) { VALUE ch; retry: if (!next_argv()) return Qnil; if (ARGF_GENERIC_INPUT_P()) { ch = forward_current(rb_intern("getc"), 0, 0); } else { ch = rb_io_getc(ARGF.current_file); } if (NIL_P(ch) && ARGF.next_p != -1) { argf_close(argf); ARGF.next_p = 1; goto retry; } return ch; } /* * call-seq: * ARGF.getbyte -> Integer or nil * * Gets the next 8-bit byte (0..255) from ARGF. Returns +nil+ if called at * the end of the stream. * * For example: * * $ echo "foo" > file * $ ruby argf.rb file * * ARGF.getbyte #=> 102 * ARGF.getbyte #=> 111 * ARGF.getbyte #=> 111 * ARGF.getbyte #=> 10 * ARGF.getbyte #=> nil */ static VALUE argf_getbyte(VALUE argf) { VALUE ch; retry: if (!next_argv()) return Qnil; if (!RB_TYPE_P(ARGF.current_file, T_FILE)) { ch = forward_current(rb_intern("getbyte"), 0, 0); } else { ch = rb_io_getbyte(ARGF.current_file); } if (NIL_P(ch) && ARGF.next_p != -1) { argf_close(argf); ARGF.next_p = 1; goto retry; } return ch; } /* * call-seq: * ARGF.readchar -> String or nil * * Reads the next character from ARGF and returns it as a String. Raises * an EOFError after the last character of the last file has been read. * * For example: * * $ echo "foo" > file * $ ruby argf.rb file * * ARGF.readchar #=> "f" * ARGF.readchar #=> "o" * ARGF.readchar #=> "o" * ARGF.readchar #=> "\n" * ARGF.readchar #=> end of file reached (EOFError) */ static VALUE argf_readchar(VALUE argf) { VALUE ch; retry: if (!next_argv()) rb_eof_error(); if (!RB_TYPE_P(ARGF.current_file, T_FILE)) { ch = forward_current(rb_intern("getc"), 0, 0); } else { ch = rb_io_getc(ARGF.current_file); } if (NIL_P(ch) && ARGF.next_p != -1) { argf_close(argf); ARGF.next_p = 1; goto retry; } return ch; } /* * call-seq: * ARGF.readbyte -> Integer * * Reads the next 8-bit byte from ARGF and returns it as an Integer. Raises * an EOFError after the last byte of the last file has been read. * * For example: * * $ echo "foo" > file * $ ruby argf.rb file * * ARGF.readbyte #=> 102 * ARGF.readbyte #=> 111 * ARGF.readbyte #=> 111 * ARGF.readbyte #=> 10 * ARGF.readbyte #=> end of file reached (EOFError) */ static VALUE argf_readbyte(VALUE argf) { VALUE c; NEXT_ARGF_FORWARD(0, 0); c = argf_getbyte(argf); if (NIL_P(c)) { rb_eof_error(); } return c; } #define FOREACH_ARGF() while (next_argv()) static VALUE argf_block_call_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, argf)) { const VALUE current = ARGF.current_file; rb_yield_values2(argc, argv); if (ARGF.init_p == -1 || current != ARGF.current_file) { rb_iter_break_value(Qundef); } return Qnil; } #define ARGF_block_call(mid, argc, argv, func, argf) \ rb_block_call_kw(ARGF.current_file, mid, argc, argv, \ func, argf, rb_keyword_given_p()) static void argf_block_call(ID mid, int argc, VALUE *argv, VALUE argf) { VALUE ret = ARGF_block_call(mid, argc, argv, argf_block_call_i, argf); if (!UNDEF_P(ret)) ARGF.next_p = 1; } static VALUE argf_block_call_line_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, argf)) { if (!global_argf_p(argf)) { ARGF.last_lineno = ++ARGF.lineno; } return argf_block_call_i(i, argf, argc, argv, blockarg); } static void argf_block_call_line(ID mid, int argc, VALUE *argv, VALUE argf) { VALUE ret = ARGF_block_call(mid, argc, argv, argf_block_call_line_i, argf); if (!UNDEF_P(ret)) ARGF.next_p = 1; } /* * call-seq: * ARGF.each(sep=$/) {|line| block } -> ARGF * ARGF.each(sep=$/, limit) {|line| block } -> ARGF * ARGF.each(...) -> an_enumerator * * ARGF.each_line(sep=$/) {|line| block } -> ARGF * ARGF.each_line(sep=$/, limit) {|line| block } -> ARGF * ARGF.each_line(...) -> an_enumerator * * Returns an enumerator which iterates over each line (separated by _sep_, * which defaults to your platform's newline character) of each file in * +ARGV+. If a block is supplied, each line in turn will be yielded to the * block, otherwise an enumerator is returned. * The optional _limit_ argument is an Integer specifying the maximum * length of each line; longer lines will be split according to this limit. * * This method allows you to treat the files supplied on the command line as * a single file consisting of the concatenation of each named file. After * the last line of the first file has been returned, the first line of the * second file is returned. The ARGF.filename and ARGF.lineno methods can be * used to determine the filename of the current line and line number of the * whole input, respectively. * * For example, the following code prints out each line of each named file * prefixed with its line number, displaying the filename once per file: * * ARGF.each_line do |line| * puts ARGF.filename if ARGF.file.lineno == 1 * puts "#{ARGF.file.lineno}: #{line}" * end * * While the following code prints only the first file's name at first, and * the contents with line number counted through all named files. * * ARGF.each_line do |line| * puts ARGF.filename if ARGF.lineno == 1 * puts "#{ARGF.lineno}: #{line}" * end */ static VALUE argf_each_line(int argc, VALUE *argv, VALUE argf) { RETURN_ENUMERATOR(argf, argc, argv); FOREACH_ARGF() { argf_block_call_line(rb_intern("each_line"), argc, argv, argf); } return argf; } /* * call-seq: * ARGF.each_byte {|byte| block } -> ARGF * ARGF.each_byte -> an_enumerator * * Iterates over each byte of each file in +ARGV+. * A byte is returned as an Integer in the range 0..255. * * This method allows you to treat the files supplied on the command line as * a single file consisting of the concatenation of each named file. After * the last byte of the first file has been returned, the first byte of the * second file is returned. The ARGF.filename method can be used to * determine the filename of the current byte. * * If no block is given, an enumerator is returned instead. * * For example: * * ARGF.bytes.to_a #=> [35, 32, ... 95, 10] * */ static VALUE argf_each_byte(VALUE argf) { RETURN_ENUMERATOR(argf, 0, 0); FOREACH_ARGF() { argf_block_call(rb_intern("each_byte"), 0, 0, argf); } return argf; } /* * call-seq: * ARGF.each_char {|char| block } -> ARGF * ARGF.each_char -> an_enumerator * * Iterates over each character of each file in ARGF. * * This method allows you to treat the files supplied on the command line as * a single file consisting of the concatenation of each named file. After * the last character of the first file has been returned, the first * character of the second file is returned. The ARGF.filename method can * be used to determine the name of the file in which the current character * appears. * * If no block is given, an enumerator is returned instead. */ static VALUE argf_each_char(VALUE argf) { RETURN_ENUMERATOR(argf, 0, 0); FOREACH_ARGF() { argf_block_call(rb_intern("each_char"), 0, 0, argf); } return argf; } /* * call-seq: * ARGF.each_codepoint {|codepoint| block } -> ARGF * ARGF.each_codepoint -> an_enumerator * * Iterates over each codepoint of each file in ARGF. * * This method allows you to treat the files supplied on the command line as * a single file consisting of the concatenation of each named file. After * the last codepoint of the first file has been returned, the first * codepoint of the second file is returned. The ARGF.filename method can * be used to determine the name of the file in which the current codepoint * appears. * * If no block is given, an enumerator is returned instead. */ static VALUE argf_each_codepoint(VALUE argf) { RETURN_ENUMERATOR(argf, 0, 0); FOREACH_ARGF() { argf_block_call(rb_intern("each_codepoint"), 0, 0, argf); } return argf; } /* * call-seq: * ARGF.filename -> String * ARGF.path -> String * * Returns the current filename. "-" is returned when the current file is * STDIN. * * For example: * * $ echo "foo" > foo * $ echo "bar" > bar * $ echo "glark" > glark * * $ ruby argf.rb foo bar glark * * ARGF.filename #=> "foo" * ARGF.read(5) #=> "foo\nb" * ARGF.filename #=> "bar" * ARGF.skip * ARGF.filename #=> "glark" */ static VALUE argf_filename(VALUE argf) { next_argv(); return ARGF.filename; } static VALUE argf_filename_getter(ID id, VALUE *var) { return argf_filename(*var); } /* * call-seq: * ARGF.file -> IO or File object * * Returns the current file as an IO or File object. * $stdin is returned when the current file is STDIN. * * For example: * * $ echo "foo" > foo * $ echo "bar" > bar * * $ ruby argf.rb foo bar * * ARGF.file #=> # * ARGF.read(5) #=> "foo\nb" * ARGF.file #=> # */ static VALUE argf_file(VALUE argf) { next_argv(); return ARGF.current_file; } /* * call-seq: * ARGF.binmode -> ARGF * * Puts ARGF into binary mode. Once a stream is in binary mode, it cannot * be reset to non-binary mode. This option has the following effects: * * * Newline conversion is disabled. * * Encoding conversion is disabled. * * Content is treated as ASCII-8BIT. */ static VALUE argf_binmode_m(VALUE argf) { ARGF.binmode = 1; next_argv(); ARGF_FORWARD(0, 0); rb_io_ascii8bit_binmode(ARGF.current_file); return argf; } /* * call-seq: * ARGF.binmode? -> true or false * * Returns true if ARGF is being read in binary mode; false otherwise. * To enable binary mode use ARGF.binmode. * * For example: * * ARGF.binmode? #=> false * ARGF.binmode * ARGF.binmode? #=> true */ static VALUE argf_binmode_p(VALUE argf) { return RBOOL(ARGF.binmode); } /* * call-seq: * ARGF.skip -> ARGF * * Sets the current file to the next file in ARGV. If there aren't any more * files it has no effect. * * For example: * * $ ruby argf.rb foo bar * ARGF.filename #=> "foo" * ARGF.skip * ARGF.filename #=> "bar" */ static VALUE argf_skip(VALUE argf) { if (ARGF.init_p && ARGF.next_p == 0) { argf_close(argf); ARGF.next_p = 1; } return argf; } /* * call-seq: * ARGF.close -> ARGF * * Closes the current file and skips to the next file in ARGV. If there are * no more files to open, just closes the current file. STDIN will not be * closed. * * For example: * * $ ruby argf.rb foo bar * * ARGF.filename #=> "foo" * ARGF.close * ARGF.filename #=> "bar" * ARGF.close */ static VALUE argf_close_m(VALUE argf) { next_argv(); argf_close(argf); if (ARGF.next_p != -1) { ARGF.next_p = 1; } ARGF.lineno = 0; return argf; } /* * call-seq: * ARGF.closed? -> true or false * * Returns _true_ if the current file has been closed; _false_ otherwise. Use * ARGF.close to actually close the current file. */ static VALUE argf_closed(VALUE argf) { next_argv(); ARGF_FORWARD(0, 0); return rb_io_closed_p(ARGF.current_file); } /* * call-seq: * ARGF.to_s -> String * * Returns "ARGF". */ static VALUE argf_to_s(VALUE argf) { return rb_str_new2("ARGF"); } /* * call-seq: * ARGF.inplace_mode -> String * * Returns the file extension appended to the names of backup copies of * modified files under in-place edit mode. This value can be set using * ARGF.inplace_mode= or passing the +-i+ switch to the Ruby binary. */ static VALUE argf_inplace_mode_get(VALUE argf) { if (!ARGF.inplace) return Qnil; if (NIL_P(ARGF.inplace)) return rb_str_new(0, 0); return rb_str_dup(ARGF.inplace); } static VALUE opt_i_get(ID id, VALUE *var) { return argf_inplace_mode_get(*var); } /* * call-seq: * ARGF.inplace_mode = ext -> ARGF * * Sets the filename extension for in-place editing mode to the given String. * The backup copy of each file being edited has this value appended to its * filename. * * For example: * * $ ruby argf.rb file.txt * * ARGF.inplace_mode = '.bak' * ARGF.each_line do |line| * print line.sub("foo","bar") * end * * First, _file.txt.bak_ is created as a backup copy of _file.txt_. * Then, each line of _file.txt_ has the first occurrence of "foo" replaced with * "bar". */ static VALUE argf_inplace_mode_set(VALUE argf, VALUE val) { if (!RTEST(val)) { ARGF.inplace = Qfalse; } else if (StringValueCStr(val), !RSTRING_LEN(val)) { ARGF.inplace = Qnil; } else { ARGF.inplace = rb_str_new_frozen(val); } return argf; } static void opt_i_set(VALUE val, ID id, VALUE *var) { argf_inplace_mode_set(*var, val); } void ruby_set_inplace_mode(const char *suffix) { ARGF.inplace = !suffix ? Qfalse : !*suffix ? Qnil : rb_str_new(suffix, strlen(suffix)); } /* * call-seq: * ARGF.argv -> ARGV * * Returns the +ARGV+ array, which contains the arguments passed to your * script, one per element. * * For example: * * $ ruby argf.rb -v glark.txt * * ARGF.argv #=> ["-v", "glark.txt"] * */ static VALUE argf_argv(VALUE argf) { return ARGF.argv; } static VALUE argf_argv_getter(ID id, VALUE *var) { return argf_argv(*var); } VALUE rb_get_argv(void) { return ARGF.argv; } /* * call-seq: * ARGF.to_write_io -> io * * Returns IO instance tied to _ARGF_ for writing if inplace mode is * enabled. */ static VALUE argf_write_io(VALUE argf) { if (!RTEST(ARGF.current_file)) { rb_raise(rb_eIOError, "not opened for writing"); } return GetWriteIO(ARGF.current_file); } /* * call-seq: * ARGF.write(*objects) -> integer * * Writes each of the given +objects+ if inplace mode. */ static VALUE argf_write(int argc, VALUE *argv, VALUE argf) { return rb_io_writev(argf_write_io(argf), argc, argv); } void rb_readwrite_sys_fail(enum rb_io_wait_readwrite waiting, const char *mesg) { rb_readwrite_syserr_fail(waiting, errno, mesg); } void rb_readwrite_syserr_fail(enum rb_io_wait_readwrite waiting, int n, const char *mesg) { VALUE arg, c = Qnil; arg = mesg ? rb_str_new2(mesg) : Qnil; switch (waiting) { case RB_IO_WAIT_WRITABLE: switch (n) { case EAGAIN: c = rb_eEAGAINWaitWritable; break; #if EAGAIN != EWOULDBLOCK case EWOULDBLOCK: c = rb_eEWOULDBLOCKWaitWritable; break; #endif case EINPROGRESS: c = rb_eEINPROGRESSWaitWritable; break; default: rb_mod_syserr_fail_str(rb_mWaitWritable, n, arg); } break; case RB_IO_WAIT_READABLE: switch (n) { case EAGAIN: c = rb_eEAGAINWaitReadable; break; #if EAGAIN != EWOULDBLOCK case EWOULDBLOCK: c = rb_eEWOULDBLOCKWaitReadable; break; #endif case EINPROGRESS: c = rb_eEINPROGRESSWaitReadable; break; default: rb_mod_syserr_fail_str(rb_mWaitReadable, n, arg); } break; default: rb_bug("invalid read/write type passed to rb_readwrite_sys_fail: %d", waiting); } rb_exc_raise(rb_class_new_instance(1, &arg, c)); } static VALUE get_LAST_READ_LINE(ID _x, VALUE *_y) { return rb_lastline_get(); } static void set_LAST_READ_LINE(VALUE val, ID _x, VALUE *_y) { rb_lastline_set(val); } /* * Document-class: IOError * * Raised when an IO operation fails. * * File.open("/etc/hosts") {|f| f << "example"} * #=> IOError: not opened for writing * * File.open("/etc/hosts") {|f| f.close; f.read } * #=> IOError: closed stream * * Note that some IO failures raise SystemCallErrors * and these are not subclasses of IOError: * * File.open("does/not/exist") * #=> Errno::ENOENT: No such file or directory - does/not/exist */ /* * Document-class: EOFError * * Raised by some IO operations when reaching the end of file. Many IO * methods exist in two forms, * * one that returns +nil+ when the end of file is reached, the other * raises EOFError. * * EOFError is a subclass of IOError. * * file = File.open("/etc/hosts") * file.read * file.gets #=> nil * file.readline #=> EOFError: end of file reached * file.close */ /* * Document-class: ARGF * * == \ARGF and +ARGV+ * * The \ARGF object works with the array at global variable +ARGV+ * to make $stdin and file streams available in the Ruby program: * * - **ARGV** may be thought of as the argument vector array. * * Initially, it contains the command-line arguments and options * that are passed to the Ruby program; * the program can modify that array as it likes. * * - **ARGF** may be thought of as the argument files object. * * It can access file streams and/or the $stdin stream, * based on what it finds in +ARGV+. * This provides a convenient way for the command line * to specify streams for a Ruby program to read. * * == Reading * * \ARGF may read from _source_ streams, * which at any particular time are determined by the content of +ARGV+. * * === Simplest Case * * When the very first \ARGF read occurs with an empty +ARGV+ ([]), * the source is $stdin: * * - \File +t.rb+: * * p ['ARGV', ARGV] * p ['ARGF.read', ARGF.read] * * - Commands and outputs * (see below for the content of files +foo.txt+ and +bar.txt+): * * $ echo "Open the pod bay doors, Hal." | ruby t.rb * ["ARGV", []] * ["ARGF.read", "Open the pod bay doors, Hal.\n"] * * $ cat foo.txt bar.txt | ruby t.rb * ["ARGV", []] * ["ARGF.read", "Foo 0\nFoo 1\nBar 0\nBar 1\nBar 2\nBar 3\n"] * * === About the Examples * * Many examples here assume the existence of files +foo.txt+ and +bar.txt+: * * $ cat foo.txt * Foo 0 * Foo 1 * $ cat bar.txt * Bar 0 * Bar 1 * Bar 2 * Bar 3 * * === Sources in +ARGV+ * * For any \ARGF read _except_ the {simplest case}[rdoc-ref:ARGF@Simplest+Case] * (that is, _except_ for the very first \ARGF read with an empty +ARGV+), * the sources are found in +ARGV+. * * \ARGF assumes that each element in array +ARGV+ is a potential source, * and is one of: * * - The string path to a file that may be opened as a stream. * - The character '-', meaning stream $stdin. * * Each element that is _not_ one of these * should be removed from +ARGV+ before \ARGF accesses that source. * * In the following example: * * - Filepaths +foo.txt+ and +bar.txt+ may be retained as potential sources. * - Options --xyzzy and --mojo should be removed. * * Example: * * - \File +t.rb+: * * # Print arguments (and options, if any) found on command line. * p ['ARGV', ARGV] * * - Command and output: * * $ ruby t.rb --xyzzy --mojo foo.txt bar.txt * ["ARGV", ["--xyzzy", "--mojo", "foo.txt", "bar.txt"]] * * \ARGF's stream access considers the elements of +ARGV+, left to right: * * - \File +t.rb+: * * p "ARGV: #{ARGV}" * p "Line: #{ARGF.read}" # Read everything from all specified streams. * * - Command and output: * * $ ruby t.rb foo.txt bar.txt * "ARGV: [\"foo.txt\", \"bar.txt\"]" * "Read: Foo 0\nFoo 1\nBar 0\nBar 1\nBar 2\nBar 3\n" * * Because the value at +ARGV+ is an ordinary array, * you can manipulate it to control which sources \ARGF considers: * * - If you remove an element from +ARGV+, \ARGF will not consider the corresponding source. * - If you add an element to +ARGV+, \ARGF will consider the corresponding source. * * Each element in +ARGV+ is removed when its corresponding source is accessed; * when all sources have been accessed, the array is empty: * * - \File +t.rb+: * * until ARGV.empty? && ARGF.eof? * p "ARGV: #{ARGV}" * p "Line: #{ARGF.readline}" # Read each line from each specified stream. * end * * - Command and output: * * $ ruby t.rb foo.txt bar.txt * "ARGV: [\"foo.txt\", \"bar.txt\"]" * "Line: Foo 0\n" * "ARGV: [\"bar.txt\"]" * "Line: Foo 1\n" * "ARGV: [\"bar.txt\"]" * "Line: Bar 0\n" * "ARGV: []" * "Line: Bar 1\n" * "ARGV: []" * "Line: Bar 2\n" * "ARGV: []" * "Line: Bar 3\n" * * ==== Filepaths in +ARGV+ * * The +ARGV+ array may contain filepaths the specify sources for \ARGF reading. * * This program prints what it reads from files at the paths specified * on the command line: * * - \File +t.rb+: * * p ['ARGV', ARGV] * # Read and print all content from the specified sources. * p ['ARGF.read', ARGF.read] * * - Command and output: * * $ ruby t.rb foo.txt bar.txt * ["ARGV", [foo.txt, bar.txt] * ["ARGF.read", "Foo 0\nFoo 1\nBar 0\nBar 1\nBar 2\nBar 3\n"] * * ==== Specifying $stdin in +ARGV+ * * To specify stream $stdin in +ARGV+, us the character '-': * * - \File +t.rb+: * * p ['ARGV', ARGV] * p ['ARGF.read', ARGF.read] * * - Command and output: * * $ echo "Open the pod bay doors, Hal." | ruby t.rb - * ["ARGV", ["-"]] * ["ARGF.read", "Open the pod bay doors, Hal.\n"] * * When no character '-' is given, stream $stdin is ignored * (exception: * see {Specifying $stdin in ARGV}[rdoc-ref:ARGF@Specifying+-24stdin+in+ARGV]): * * - Command and output: * * $ echo "Open the pod bay doors, Hal." | ruby t.rb foo.txt bar.txt * "ARGV: [\"foo.txt\", \"bar.txt\"]" * "Read: Foo 0\nFoo 1\nBar 0\nBar 1\nBar 2\nBar 3\n" * * ==== Mixtures and Repetitions in +ARGV+ * * For an \ARGF reader, +ARGV+ may contain any mixture of filepaths * and character '-', including repetitions. * * ==== Modifications to +ARGV+ * * The running Ruby program may make any modifications to the +ARGV+ array; * the current value of +ARGV+ affects \ARGF reading. * * ==== Empty +ARGV+ * * For an empty +ARGV+, an \ARGF read method either returns +nil+ * or raises an exception, depending on the specific method. * * === More Read Methods * * As seen above, method ARGF#read reads the content of all sources * into a single string. * Other \ARGF methods provide other ways to access that content; * these include: * * - Byte access: #each_byte, #getbyte, #readbyte. * - Character access: #each_char, #getc, #readchar. * - Codepoint access: #each_codepoint. * - Line access: #each_line, #gets, #readline, #readlines. * - Source access: #read, #read_nonblock, #readpartial. * * === About \Enumerable * * \ARGF includes module Enumerable. * Virtually all methods in \Enumerable call method #each in the including class. * * Note well: In \ARGF, method #each returns data from the _sources_, * _not_ from +ARGV+; * therefore, for example, ARGF#entries returns an array of lines from the sources, * not an array of the strings from +ARGV+: * * - \File +t.rb+: * * p ['ARGV', ARGV] * p ['ARGF.entries', ARGF.entries] * * - Command and output: * * $ ruby t.rb foo.txt bar.txt * ["ARGV", ["foo.txt", "bar.txt"]] * ["ARGF.entries", ["Foo 0\n", "Foo 1\n", "Bar 0\n", "Bar 1\n", "Bar 2\n", "Bar 3\n"]] * * == Writing * * If inplace mode is in effect, * \ARGF may write to target streams, * which at any particular time are determined by the content of ARGV. * * Methods about inplace mode: * * - #inplace_mode * - #inplace_mode= * - #to_write_io * * Methods for writing: * * - #print * - #printf * - #putc * - #puts * - #write * */ /* * An instance of class \IO (commonly called a _stream_) * represents an input/output stream in the underlying operating system. * \Class \IO is the basis for input and output in Ruby. * * \Class File is the only class in the Ruby core that is a subclass of \IO. * Some classes in the Ruby standard library are also subclasses of \IO; * these include TCPSocket and UDPSocket. * * The global constant ARGF (also accessible as $<) * provides an IO-like stream that allows access to all file paths * found in ARGV (or found in STDIN if ARGV is empty). * ARGF is not itself a subclass of \IO. * * \Class StringIO provides an IO-like stream that handles a String. * StringIO is not itself a subclass of \IO. * * Important objects based on \IO include: * * - $stdin. * - $stdout. * - $stderr. * - Instances of class File. * * An instance of \IO may be created using: * * - IO.new: returns a new \IO object for the given integer file descriptor. * - IO.open: passes a new \IO object to the given block. * - IO.popen: returns a new \IO object that is connected to the $stdin and $stdout * of a newly-launched subprocess. * - Kernel#open: Returns a new \IO object connected to a given source: * stream, file, or subprocess. * * Like a File stream, an \IO stream has: * * - A read/write mode, which may be read-only, write-only, or read/write; * see {Read/Write Mode}[rdoc-ref:File@Read-2FWrite+Mode]. * - A data mode, which may be text-only or binary; * see {Data Mode}[rdoc-ref:File@Data+Mode]. * - Internal and external encodings; * see {Encodings}[rdoc-ref:File@Encodings]. * * And like other \IO streams, it has: * * - A position, which determines where in the stream the next * read or write is to occur; * see {Position}[rdoc-ref:IO@Position]. * - A line number, which is a special, line-oriented, "position" * (different from the position mentioned above); * see {Line Number}[rdoc-ref:IO@Line+Number]. * * == Extension io/console * * Extension io/console provides numerous methods * for interacting with the console; * requiring it adds numerous methods to class \IO. * * == Example Files * * Many examples here use these variables: * * :include: doc/examples/files.rdoc * * == Open Options * * A number of \IO methods accept optional keyword arguments * that determine how a new stream is to be opened: * * - +:mode+: Stream mode. * - +:flags+: Integer file open flags; * If +mode+ is also given, the two are bitwise-ORed. * - +:external_encoding+: External encoding for the stream. * - +:internal_encoding+: Internal encoding for the stream. * '-' is a synonym for the default internal encoding. * If the value is +nil+ no conversion occurs. * - +:encoding+: Specifies external and internal encodings as 'extern:intern'. * - +:textmode+: If a truthy value, specifies the mode as text-only, binary otherwise. * - +:binmode+: If a truthy value, specifies the mode as binary, text-only otherwise. * - +:autoclose+: If a truthy value, specifies that the +fd+ will close * when the stream closes; otherwise it remains open. * - +:path:+ If a string value is provided, it is used in #inspect and is available as * #path method. * * Also available are the options offered in String#encode, * which may control conversion between external and internal encoding. * * == Basic \IO * * You can perform basic stream \IO with these methods, * which typically operate on multi-byte strings: * * - IO#read: Reads and returns some or all of the remaining bytes from the stream. * - IO#write: Writes zero or more strings to the stream; * each given object that is not already a string is converted via +to_s+. * * === Position * * An \IO stream has a nonnegative integer _position_, * which is the byte offset at which the next read or write is to occur. * A new stream has position zero (and line number zero); * method +rewind+ resets the position (and line number) to zero. * * The relevant methods: * * - IO#tell (aliased as +#pos+): Returns the current position (in bytes) in the stream. * - IO#pos=: Sets the position of the stream to a given integer +new_position+ (in bytes). * - IO#seek: Sets the position of the stream to a given integer +offset+ (in bytes), * relative to a given position +whence+ * (indicating the beginning, end, or current position). * - IO#rewind: Positions the stream at the beginning (also resetting the line number). * * === Open and Closed Streams * * A new \IO stream may be open for reading, open for writing, or both. * * A stream is automatically closed when claimed by the garbage collector. * * Attempted reading or writing on a closed stream raises an exception. * * The relevant methods: * * - IO#close: Closes the stream for both reading and writing. * - IO#close_read: Closes the stream for reading. * - IO#close_write: Closes the stream for writing. * - IO#closed?: Returns whether the stream is closed. * * === End-of-Stream * * You can query whether a stream is positioned at its end: * * - IO#eof? (also aliased as +#eof+): Returns whether the stream is at end-of-stream. * * You can reposition to end-of-stream by using method IO#seek: * * f = File.new('t.txt') * f.eof? # => false * f.seek(0, :END) * f.eof? # => true * f.close * * Or by reading all stream content (which is slower than using IO#seek): * * f.rewind * f.eof? # => false * f.read # => "First line\nSecond line\n\nFourth line\nFifth line\n" * f.eof? # => true * * == Line \IO * * \Class \IO supports line-oriented * {input}[rdoc-ref:IO@Line+Input] and {output}[rdoc-ref:IO@Line+Output] * * === Line Input * * \Class \IO supports line-oriented input for * {files}[rdoc-ref:IO@File+Line+Input] and {IO streams}[rdoc-ref:IO@Stream+Line+Input] * * ==== \File Line Input * * You can read lines from a file using these methods: * * - IO.foreach: Reads each line and passes it to the given block. * - IO.readlines: Reads and returns all lines in an array. * * For each of these methods: * * - You can specify {open options}[rdoc-ref:IO@Open+Options]. * - Line parsing depends on the effective line separator; * see {Line Separator}[rdoc-ref:IO@Line+Separator]. * - The length of each returned line depends on the effective line limit; * see {Line Limit}[rdoc-ref:IO@Line+Limit]. * * ==== Stream Line Input * * You can read lines from an \IO stream using these methods: * * - IO#each_line: Reads each remaining line, passing it to the given block. * - IO#gets: Returns the next line. * - IO#readline: Like #gets, but raises an exception at end-of-stream. * - IO#readlines: Returns all remaining lines in an array. * * For each of these methods: * * - Reading may begin mid-line, * depending on the stream's _position_; * see {Position}[rdoc-ref:IO@Position]. * - Line parsing depends on the effective line separator; * see {Line Separator}[rdoc-ref:IO@Line+Separator]. * - The length of each returned line depends on the effective line limit; * see {Line Limit}[rdoc-ref:IO@Line+Limit]. * * ===== Line Separator * * Each of the {line input methods}[rdoc-ref:IO@Line+Input] uses a line separator: * the string that determines what is considered a line; * it is sometimes called the input record separator. * * The default line separator is taken from global variable $/, * whose initial value is "\n". * * Generally, the line to be read next is all data * from the current {position}[rdoc-ref:IO@Position] * to the next line separator * (but see {Special Line Separator Values}[rdoc-ref:IO@Special+Line+Separator+Values]): * * f = File.new('t.txt') * # Method gets with no sep argument returns the next line, according to $/. * f.gets # => "First line\n" * f.gets # => "Second line\n" * f.gets # => "\n" * f.gets # => "Fourth line\n" * f.gets # => "Fifth line\n" * f.close * * You can use a different line separator by passing argument +sep+: * * f = File.new('t.txt') * f.gets('l') # => "First l" * f.gets('li') # => "ine\nSecond li" * f.gets('lin') # => "ne\n\nFourth lin" * f.gets # => "e\n" * f.close * * Or by setting global variable $/: * * f = File.new('t.txt') * $/ = 'l' * f.gets # => "First l" * f.gets # => "ine\nSecond l" * f.gets # => "ine\n\nFourth l" * f.close * * ===== Special Line Separator Values * * Each of the {line input methods}[rdoc-ref:IO@Line+Input] * accepts two special values for parameter +sep+: * * - +nil+: The entire stream is to be read ("slurped") into a single string: * * f = File.new('t.txt') * f.gets(nil) # => "First line\nSecond line\n\nFourth line\nFifth line\n" * f.close * * - '' (the empty string): The next "paragraph" is to be read * (paragraphs being separated by two consecutive line separators): * * f = File.new('t.txt') * f.gets('') # => "First line\nSecond line\n\n" * f.gets('') # => "Fourth line\nFifth line\n" * f.close * * ===== Line Limit * * Each of the {line input methods}[rdoc-ref:IO@Line+Input] * uses an integer line limit, * which restricts the number of bytes that may be returned. * (A multi-byte character will not be split, and so a returned line may be slightly longer * than the limit). * * The default limit value is -1; * any negative limit value means that there is no limit. * * If there is no limit, the line is determined only by +sep+. * * # Text with 1-byte characters. * File.open('t.txt') {|f| f.gets(1) } # => "F" * File.open('t.txt') {|f| f.gets(2) } # => "Fi" * File.open('t.txt') {|f| f.gets(3) } # => "Fir" * File.open('t.txt') {|f| f.gets(4) } # => "Firs" * # No more than one line. * File.open('t.txt') {|f| f.gets(10) } # => "First line" * File.open('t.txt') {|f| f.gets(11) } # => "First line\n" * File.open('t.txt') {|f| f.gets(12) } # => "First line\n" * * # Text with 2-byte characters, which will not be split. * File.open('t.rus') {|f| f.gets(1).size } # => 1 * File.open('t.rus') {|f| f.gets(2).size } # => 1 * File.open('t.rus') {|f| f.gets(3).size } # => 2 * File.open('t.rus') {|f| f.gets(4).size } # => 2 * * ===== Line Separator and Line Limit * * With arguments +sep+ and +limit+ given, combines the two behaviors: * * - Returns the next line as determined by line separator +sep+. * - But returns no more bytes than are allowed by the limit +limit+. * * Example: * * File.open('t.txt') {|f| f.gets('li', 20) } # => "First li" * File.open('t.txt') {|f| f.gets('li', 2) } # => "Fi" * * ===== Line Number * * A readable \IO stream has a non-negative integer line number: * * - IO#lineno: Returns the line number. * - IO#lineno=: Resets and returns the line number. * * Unless modified by a call to method IO#lineno=, * the line number is the number of lines read * by certain line-oriented methods, * according to the effective {line separator}[rdoc-ref:IO@Line+Separator]: * * - IO.foreach: Increments the line number on each call to the block. * - IO#each_line: Increments the line number on each call to the block. * - IO#gets: Increments the line number. * - IO#readline: Increments the line number. * - IO#readlines: Increments the line number for each line read. * * A new stream is initially has line number zero (and position zero); * method +rewind+ resets the line number (and position) to zero: * * f = File.new('t.txt') * f.lineno # => 0 * f.gets # => "First line\n" * f.lineno # => 1 * f.rewind * f.lineno # => 0 * f.close * * Reading lines from a stream usually changes its line number: * * f = File.new('t.txt', 'r') * f.lineno # => 0 * f.readline # => "This is line one.\n" * f.lineno # => 1 * f.readline # => "This is the second line.\n" * f.lineno # => 2 * f.readline # => "Here's the third line.\n" * f.lineno # => 3 * f.eof? # => true * f.close * * Iterating over lines in a stream usually changes its line number: * * File.open('t.txt') do |f| * f.each_line do |line| * p "position=#{f.pos} eof?=#{f.eof?} lineno=#{f.lineno}" * end * end * * Output: * * "position=11 eof?=false lineno=1" * "position=23 eof?=false lineno=2" * "position=24 eof?=false lineno=3" * "position=36 eof?=false lineno=4" * "position=47 eof?=true lineno=5" * * Unlike the stream's {position}[rdoc-ref:IO@Position], * the line number does not affect where the next read or write will occur: * * f = File.new('t.txt') * f.lineno = 1000 * f.lineno # => 1000 * f.gets # => "First line\n" * f.lineno # => 1001 * f.close * * Associated with the line number is the global variable $.: * * - When a stream is opened, $. is not set; * its value is left over from previous activity in the process: * * $. = 41 * f = File.new('t.txt') * $. = 41 * # => 41 * f.close * * - When a stream is read, $. is set to the line number for that stream: * * f0 = File.new('t.txt') * f1 = File.new('t.dat') * f0.readlines # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] * $. # => 5 * f1.readlines # => ["\xFE\xFF\x99\x90\x99\x91\x99\x92\x99\x93\x99\x94"] * $. # => 1 * f0.close * f1.close * * - Methods IO#rewind and IO#seek do not affect $.: * * f = File.new('t.txt') * f.readlines # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] * $. # => 5 * f.rewind * f.seek(0, :SET) * $. # => 5 * f.close * * === Line Output * * You can write to an \IO stream line-by-line using this method: * * - IO#puts: Writes objects to the stream. * * == Character \IO * * You can process an \IO stream character-by-character using these methods: * * - IO#getc: Reads and returns the next character from the stream. * - IO#readchar: Like #getc, but raises an exception at end-of-stream. * - IO#ungetc: Pushes back ("unshifts") a character or integer onto the stream. * - IO#putc: Writes a character to the stream. * - IO#each_char: Reads each remaining character in the stream, * passing the character to the given block. * == Byte \IO * * You can process an \IO stream byte-by-byte using these methods: * * - IO#getbyte: Returns the next 8-bit byte as an integer in range 0..255. * - IO#readbyte: Like #getbyte, but raises an exception if at end-of-stream. * - IO#ungetbyte: Pushes back ("unshifts") a byte back onto the stream. * - IO#each_byte: Reads each remaining byte in the stream, * passing the byte to the given block. * * == Codepoint \IO * * You can process an \IO stream codepoint-by-codepoint: * * - IO#each_codepoint: Reads each remaining codepoint, passing it to the given block. * * == What's Here * * First, what's elsewhere. \Class \IO: * * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here]. * - Includes {module Enumerable}[rdoc-ref:Enumerable@What-27s+Here], * which provides dozens of additional methods. * * Here, class \IO provides methods that are useful for: * * - {Creating}[rdoc-ref:IO@Creating] * - {Reading}[rdoc-ref:IO@Reading] * - {Writing}[rdoc-ref:IO@Writing] * - {Positioning}[rdoc-ref:IO@Positioning] * - {Iterating}[rdoc-ref:IO@Iterating] * - {Settings}[rdoc-ref:IO@Settings] * - {Querying}[rdoc-ref:IO@Querying] * - {Buffering}[rdoc-ref:IO@Buffering] * - {Low-Level Access}[rdoc-ref:IO@Low-Level+Access] * - {Other}[rdoc-ref:IO@Other] * * === Creating * * - ::new (aliased as ::for_fd): Creates and returns a new \IO object for the given * integer file descriptor. * - ::open: Creates a new \IO object. * - ::pipe: Creates a connected pair of reader and writer \IO objects. * - ::popen: Creates an \IO object to interact with a subprocess. * - ::select: Selects which given \IO instances are ready for reading, * writing, or have pending exceptions. * * === Reading * * - ::binread: Returns a binary string with all or a subset of bytes * from the given file. * - ::read: Returns a string with all or a subset of bytes from the given file. * - ::readlines: Returns an array of strings, which are the lines from the given file. * - #getbyte: Returns the next 8-bit byte read from +self+ as an integer. * - #getc: Returns the next character read from +self+ as a string. * - #gets: Returns the line read from +self+. * - #pread: Returns all or the next _n_ bytes read from +self+, * not updating the receiver's offset. * - #read: Returns all remaining or the next _n_ bytes read from +self+ * for a given _n_. * - #read_nonblock: the next _n_ bytes read from +self+ for a given _n_, * in non-block mode. * - #readbyte: Returns the next byte read from +self+; * same as #getbyte, but raises an exception on end-of-stream. * - #readchar: Returns the next character read from +self+; * same as #getc, but raises an exception on end-of-stream. * - #readline: Returns the next line read from +self+; * same as #getline, but raises an exception of end-of-stream. * - #readlines: Returns an array of all lines read read from +self+. * - #readpartial: Returns up to the given number of bytes from +self+. * * === Writing * * - ::binwrite: Writes the given string to the file at the given filepath, * in binary mode. * - ::write: Writes the given string to +self+. * - #<<: Appends the given string to +self+. * - #print: Prints last read line or given objects to +self+. * - #printf: Writes to +self+ based on the given format string and objects. * - #putc: Writes a character to +self+. * - #puts: Writes lines to +self+, making sure line ends with a newline. * - #pwrite: Writes the given string at the given offset, * not updating the receiver's offset. * - #write: Writes one or more given strings to +self+. * - #write_nonblock: Writes one or more given strings to +self+ in non-blocking mode. * * === Positioning * * - #lineno: Returns the current line number in +self+. * - #lineno=: Sets the line number is +self+. * - #pos (aliased as #tell): Returns the current byte offset in +self+. * - #pos=: Sets the byte offset in +self+. * - #reopen: Reassociates +self+ with a new or existing \IO stream. * - #rewind: Positions +self+ to the beginning of input. * - #seek: Sets the offset for +self+ relative to given position. * * === Iterating * * - ::foreach: Yields each line of given file to the block. * - #each (aliased as #each_line): Calls the given block * with each successive line in +self+. * - #each_byte: Calls the given block with each successive byte in +self+ * as an integer. * - #each_char: Calls the given block with each successive character in +self+ * as a string. * - #each_codepoint: Calls the given block with each successive codepoint in +self+ * as an integer. * * === Settings * * - #autoclose=: Sets whether +self+ auto-closes. * - #binmode: Sets +self+ to binary mode. * - #close: Closes +self+. * - #close_on_exec=: Sets the close-on-exec flag. * - #close_read: Closes +self+ for reading. * - #close_write: Closes +self+ for writing. * - #set_encoding: Sets the encoding for +self+. * - #set_encoding_by_bom: Sets the encoding for +self+, based on its * Unicode byte-order-mark. * - #sync=: Sets the sync-mode to the given value. * * === Querying * * - #autoclose?: Returns whether +self+ auto-closes. * - #binmode?: Returns whether +self+ is in binary mode. * - #close_on_exec?: Returns the close-on-exec flag for +self+. * - #closed?: Returns whether +self+ is closed. * - #eof? (aliased as #eof): Returns whether +self+ is at end-of-stream. * - #external_encoding: Returns the external encoding object for +self+. * - #fileno (aliased as #to_i): Returns the integer file descriptor for +self+ * - #internal_encoding: Returns the internal encoding object for +self+. * - #pid: Returns the process ID of a child process associated with +self+, * if +self+ was created by ::popen. * - #stat: Returns the File::Stat object containing status information for +self+. * - #sync: Returns whether +self+ is in sync-mode. * - #tty? (aliased as #isatty): Returns whether +self+ is a terminal. * * === Buffering * * - #fdatasync: Immediately writes all buffered data in +self+ to disk. * - #flush: Flushes any buffered data within +self+ to the underlying * operating system. * - #fsync: Immediately writes all buffered data and attributes in +self+ to disk. * - #ungetbyte: Prepends buffer for +self+ with given integer byte or string. * - #ungetc: Prepends buffer for +self+ with given string. * * === Low-Level Access * * - ::sysopen: Opens the file given by its path, * returning the integer file descriptor. * - #advise: Announces the intention to access data from +self+ in a specific way. * - #fcntl: Passes a low-level command to the file specified * by the given file descriptor. * - #ioctl: Passes a low-level command to the device specified * by the given file descriptor. * - #sysread: Returns up to the next _n_ bytes read from self using a low-level read. * - #sysseek: Sets the offset for +self+. * - #syswrite: Writes the given string to +self+ using a low-level write. * * === Other * * - ::copy_stream: Copies data from a source to a destination, * each of which is a filepath or an \IO-like object. * - ::try_convert: Returns a new \IO object resulting from converting * the given object. * - #inspect: Returns the string representation of +self+. * */ void Init_IO(void) { VALUE rb_cARGF; #ifdef __CYGWIN__ #include static struct __cygwin_perfile pf[] = { {"", O_RDONLY | O_BINARY}, {"", O_WRONLY | O_BINARY}, {"", O_RDWR | O_BINARY}, {"", O_APPEND | O_BINARY}, {NULL, 0} }; cygwin_internal(CW_PERFILE, pf); #endif rb_eIOError = rb_define_class("IOError", rb_eStandardError); rb_eEOFError = rb_define_class("EOFError", rb_eIOError); id_write = rb_intern_const("write"); id_read = rb_intern_const("read"); id_getc = rb_intern_const("getc"); id_flush = rb_intern_const("flush"); id_readpartial = rb_intern_const("readpartial"); id_set_encoding = rb_intern_const("set_encoding"); id_fileno = rb_intern_const("fileno"); rb_define_global_function("syscall", rb_f_syscall, -1); rb_define_global_function("open", rb_f_open, -1); rb_define_global_function("printf", rb_f_printf, -1); rb_define_global_function("print", rb_f_print, -1); rb_define_global_function("putc", rb_f_putc, 1); rb_define_global_function("puts", rb_f_puts, -1); rb_define_global_function("gets", rb_f_gets, -1); rb_define_global_function("readline", rb_f_readline, -1); rb_define_global_function("select", rb_f_select, -1); rb_define_global_function("readlines", rb_f_readlines, -1); rb_define_global_function("`", rb_f_backquote, 1); rb_define_global_function("p", rb_f_p, -1); rb_define_method(rb_mKernel, "display", rb_obj_display, -1); rb_cIO = rb_define_class("IO", rb_cObject); rb_include_module(rb_cIO, rb_mEnumerable); /* Can be raised by IO operations when IO#timeout= is set. */ rb_eIOTimeoutError = rb_define_class_under(rb_cIO, "TimeoutError", rb_eIOError); /* Readable event mask for IO#wait. */ rb_define_const(rb_cIO, "READABLE", INT2NUM(RUBY_IO_READABLE)); /* Writable event mask for IO#wait. */ rb_define_const(rb_cIO, "WRITABLE", INT2NUM(RUBY_IO_WRITABLE)); /* Priority event mask for IO#wait. */ rb_define_const(rb_cIO, "PRIORITY", INT2NUM(RUBY_IO_PRIORITY)); /* exception to wait for reading. see IO.select. */ rb_mWaitReadable = rb_define_module_under(rb_cIO, "WaitReadable"); /* exception to wait for writing. see IO.select. */ rb_mWaitWritable = rb_define_module_under(rb_cIO, "WaitWritable"); /* exception to wait for reading by EAGAIN. see IO.select. */ rb_eEAGAINWaitReadable = rb_define_class_under(rb_cIO, "EAGAINWaitReadable", rb_eEAGAIN); rb_include_module(rb_eEAGAINWaitReadable, rb_mWaitReadable); /* exception to wait for writing by EAGAIN. see IO.select. */ rb_eEAGAINWaitWritable = rb_define_class_under(rb_cIO, "EAGAINWaitWritable", rb_eEAGAIN); rb_include_module(rb_eEAGAINWaitWritable, rb_mWaitWritable); #if EAGAIN == EWOULDBLOCK rb_eEWOULDBLOCKWaitReadable = rb_eEAGAINWaitReadable; /* same as IO::EAGAINWaitReadable */ rb_define_const(rb_cIO, "EWOULDBLOCKWaitReadable", rb_eEAGAINWaitReadable); rb_eEWOULDBLOCKWaitWritable = rb_eEAGAINWaitWritable; /* same as IO::EAGAINWaitWritable */ rb_define_const(rb_cIO, "EWOULDBLOCKWaitWritable", rb_eEAGAINWaitWritable); #else /* exception to wait for reading by EWOULDBLOCK. see IO.select. */ rb_eEWOULDBLOCKWaitReadable = rb_define_class_under(rb_cIO, "EWOULDBLOCKWaitReadable", rb_eEWOULDBLOCK); rb_include_module(rb_eEWOULDBLOCKWaitReadable, rb_mWaitReadable); /* exception to wait for writing by EWOULDBLOCK. see IO.select. */ rb_eEWOULDBLOCKWaitWritable = rb_define_class_under(rb_cIO, "EWOULDBLOCKWaitWritable", rb_eEWOULDBLOCK); rb_include_module(rb_eEWOULDBLOCKWaitWritable, rb_mWaitWritable); #endif /* exception to wait for reading by EINPROGRESS. see IO.select. */ rb_eEINPROGRESSWaitReadable = rb_define_class_under(rb_cIO, "EINPROGRESSWaitReadable", rb_eEINPROGRESS); rb_include_module(rb_eEINPROGRESSWaitReadable, rb_mWaitReadable); /* exception to wait for writing by EINPROGRESS. see IO.select. */ rb_eEINPROGRESSWaitWritable = rb_define_class_under(rb_cIO, "EINPROGRESSWaitWritable", rb_eEINPROGRESS); rb_include_module(rb_eEINPROGRESSWaitWritable, rb_mWaitWritable); #if 0 /* This is necessary only for forcing rdoc handle File::open */ rb_define_singleton_method(rb_cFile, "open", rb_io_s_open, -1); #endif rb_define_alloc_func(rb_cIO, io_alloc); rb_define_singleton_method(rb_cIO, "new", rb_io_s_new, -1); rb_define_singleton_method(rb_cIO, "open", rb_io_s_open, -1); rb_define_singleton_method(rb_cIO, "sysopen", rb_io_s_sysopen, -1); rb_define_singleton_method(rb_cIO, "for_fd", rb_io_s_for_fd, -1); rb_define_singleton_method(rb_cIO, "popen", rb_io_s_popen, -1); rb_define_singleton_method(rb_cIO, "foreach", rb_io_s_foreach, -1); rb_define_singleton_method(rb_cIO, "readlines", rb_io_s_readlines, -1); rb_define_singleton_method(rb_cIO, "read", rb_io_s_read, -1); rb_define_singleton_method(rb_cIO, "binread", rb_io_s_binread, -1); rb_define_singleton_method(rb_cIO, "write", rb_io_s_write, -1); rb_define_singleton_method(rb_cIO, "binwrite", rb_io_s_binwrite, -1); rb_define_singleton_method(rb_cIO, "select", rb_f_select, -1); rb_define_singleton_method(rb_cIO, "pipe", rb_io_s_pipe, -1); rb_define_singleton_method(rb_cIO, "try_convert", rb_io_s_try_convert, 1); rb_define_singleton_method(rb_cIO, "copy_stream", rb_io_s_copy_stream, -1); rb_define_method(rb_cIO, "initialize", rb_io_initialize, -1); rb_output_fs = Qnil; rb_define_hooked_variable("$,", &rb_output_fs, 0, deprecated_str_setter); rb_default_rs = rb_fstring_lit("\n"); /* avoid modifying RS_default */ rb_vm_register_global_object(rb_default_rs); rb_rs = rb_default_rs; rb_output_rs = Qnil; rb_define_hooked_variable("$/", &rb_rs, 0, deprecated_str_setter); rb_define_hooked_variable("$-0", &rb_rs, 0, deprecated_str_setter); rb_define_hooked_variable("$\\", &rb_output_rs, 0, deprecated_str_setter); rb_define_virtual_variable("$_", get_LAST_READ_LINE, set_LAST_READ_LINE); rb_gvar_ractor_local("$_"); rb_define_method(rb_cIO, "initialize_copy", rb_io_init_copy, 1); rb_define_method(rb_cIO, "reopen", rb_io_reopen, -1); rb_define_method(rb_cIO, "print", rb_io_print, -1); rb_define_method(rb_cIO, "putc", rb_io_putc, 1); rb_define_method(rb_cIO, "puts", rb_io_puts, -1); rb_define_method(rb_cIO, "printf", rb_io_printf, -1); rb_define_method(rb_cIO, "each", rb_io_each_line, -1); rb_define_method(rb_cIO, "each_line", rb_io_each_line, -1); rb_define_method(rb_cIO, "each_byte", rb_io_each_byte, 0); rb_define_method(rb_cIO, "each_char", rb_io_each_char, 0); rb_define_method(rb_cIO, "each_codepoint", rb_io_each_codepoint, 0); rb_define_method(rb_cIO, "syswrite", rb_io_syswrite, 1); rb_define_method(rb_cIO, "sysread", rb_io_sysread, -1); rb_define_method(rb_cIO, "pread", rb_io_pread, -1); rb_define_method(rb_cIO, "pwrite", rb_io_pwrite, 2); rb_define_method(rb_cIO, "fileno", rb_io_fileno, 0); rb_define_alias(rb_cIO, "to_i", "fileno"); rb_define_method(rb_cIO, "to_io", rb_io_to_io, 0); rb_define_method(rb_cIO, "timeout", rb_io_timeout, 0); rb_define_method(rb_cIO, "timeout=", rb_io_set_timeout, 1); rb_define_method(rb_cIO, "fsync", rb_io_fsync, 0); rb_define_method(rb_cIO, "fdatasync", rb_io_fdatasync, 0); rb_define_method(rb_cIO, "sync", rb_io_sync, 0); rb_define_method(rb_cIO, "sync=", rb_io_set_sync, 1); rb_define_method(rb_cIO, "lineno", rb_io_lineno, 0); rb_define_method(rb_cIO, "lineno=", rb_io_set_lineno, 1); rb_define_method(rb_cIO, "readlines", rb_io_readlines, -1); rb_define_method(rb_cIO, "readpartial", io_readpartial, -1); rb_define_method(rb_cIO, "read", io_read, -1); rb_define_method(rb_cIO, "write", io_write_m, -1); rb_define_method(rb_cIO, "gets", rb_io_gets_m, -1); rb_define_method(rb_cIO, "getc", rb_io_getc, 0); rb_define_method(rb_cIO, "getbyte", rb_io_getbyte, 0); rb_define_method(rb_cIO, "readchar", rb_io_readchar, 0); rb_define_method(rb_cIO, "readbyte", rb_io_readbyte, 0); rb_define_method(rb_cIO, "ungetbyte",rb_io_ungetbyte, 1); rb_define_method(rb_cIO, "ungetc",rb_io_ungetc, 1); rb_define_method(rb_cIO, "<<", rb_io_addstr, 1); rb_define_method(rb_cIO, "flush", rb_io_flush, 0); rb_define_method(rb_cIO, "tell", rb_io_tell, 0); rb_define_method(rb_cIO, "seek", rb_io_seek_m, -1); /* Set I/O position from the beginning */ rb_define_const(rb_cIO, "SEEK_SET", INT2FIX(SEEK_SET)); /* Set I/O position from the current position */ rb_define_const(rb_cIO, "SEEK_CUR", INT2FIX(SEEK_CUR)); /* Set I/O position from the end */ rb_define_const(rb_cIO, "SEEK_END", INT2FIX(SEEK_END)); #ifdef SEEK_DATA /* Set I/O position to the next location containing data */ rb_define_const(rb_cIO, "SEEK_DATA", INT2FIX(SEEK_DATA)); #endif #ifdef SEEK_HOLE /* Set I/O position to the next hole */ rb_define_const(rb_cIO, "SEEK_HOLE", INT2FIX(SEEK_HOLE)); #endif rb_define_method(rb_cIO, "rewind", rb_io_rewind, 0); rb_define_method(rb_cIO, "pos", rb_io_tell, 0); rb_define_method(rb_cIO, "pos=", rb_io_set_pos, 1); rb_define_method(rb_cIO, "eof", rb_io_eof, 0); rb_define_method(rb_cIO, "eof?", rb_io_eof, 0); rb_define_method(rb_cIO, "close_on_exec?", rb_io_close_on_exec_p, 0); rb_define_method(rb_cIO, "close_on_exec=", rb_io_set_close_on_exec, 1); rb_define_method(rb_cIO, "close", rb_io_close_m, 0); rb_define_method(rb_cIO, "closed?", rb_io_closed_p, 0); rb_define_method(rb_cIO, "close_read", rb_io_close_read, 0); rb_define_method(rb_cIO, "close_write", rb_io_close_write, 0); rb_define_method(rb_cIO, "isatty", rb_io_isatty, 0); rb_define_method(rb_cIO, "tty?", rb_io_isatty, 0); rb_define_method(rb_cIO, "binmode", rb_io_binmode_m, 0); rb_define_method(rb_cIO, "binmode?", rb_io_binmode_p, 0); rb_define_method(rb_cIO, "sysseek", rb_io_sysseek, -1); rb_define_method(rb_cIO, "advise", rb_io_advise, -1); rb_define_method(rb_cIO, "ioctl", rb_io_ioctl, -1); rb_define_method(rb_cIO, "fcntl", rb_io_fcntl, -1); rb_define_method(rb_cIO, "pid", rb_io_pid, 0); rb_define_method(rb_cIO, "path", rb_io_path, 0); rb_define_method(rb_cIO, "to_path", rb_io_path, 0); rb_define_method(rb_cIO, "inspect", rb_io_inspect, 0); rb_define_method(rb_cIO, "external_encoding", rb_io_external_encoding, 0); rb_define_method(rb_cIO, "internal_encoding", rb_io_internal_encoding, 0); rb_define_method(rb_cIO, "set_encoding", rb_io_set_encoding, -1); rb_define_method(rb_cIO, "set_encoding_by_bom", rb_io_set_encoding_by_bom, 0); rb_define_method(rb_cIO, "autoclose?", rb_io_autoclose_p, 0); rb_define_method(rb_cIO, "autoclose=", rb_io_set_autoclose, 1); rb_define_method(rb_cIO, "wait", io_wait, -1); rb_define_method(rb_cIO, "wait_readable", io_wait_readable, -1); rb_define_method(rb_cIO, "wait_writable", io_wait_writable, -1); rb_define_method(rb_cIO, "wait_priority", io_wait_priority, -1); rb_define_virtual_variable("$stdin", stdin_getter, stdin_setter); rb_define_virtual_variable("$stdout", stdout_getter, stdout_setter); rb_define_virtual_variable("$>", stdout_getter, stdout_setter); rb_define_virtual_variable("$stderr", stderr_getter, stderr_setter); rb_gvar_ractor_local("$stdin"); rb_gvar_ractor_local("$stdout"); rb_gvar_ractor_local("$>"); rb_gvar_ractor_local("$stderr"); rb_global_variable(&rb_stdin); rb_stdin = rb_io_prep_stdin(); rb_global_variable(&rb_stdout); rb_stdout = rb_io_prep_stdout(); rb_global_variable(&rb_stderr); rb_stderr = rb_io_prep_stderr(); orig_stdout = rb_stdout; orig_stderr = rb_stderr; /* Holds the original stdin */ rb_define_global_const("STDIN", rb_stdin); /* Holds the original stdout */ rb_define_global_const("STDOUT", rb_stdout); /* Holds the original stderr */ rb_define_global_const("STDERR", rb_stderr); #if 0 /* Hack to get rdoc to regard ARGF as a class: */ rb_cARGF = rb_define_class("ARGF", rb_cObject); #endif rb_cARGF = rb_class_new(rb_cObject); rb_set_class_path(rb_cARGF, rb_cObject, "ARGF.class"); rb_define_alloc_func(rb_cARGF, argf_alloc); rb_include_module(rb_cARGF, rb_mEnumerable); rb_define_method(rb_cARGF, "initialize", argf_initialize, -2); rb_define_method(rb_cARGF, "initialize_copy", argf_initialize_copy, 1); rb_define_method(rb_cARGF, "to_s", argf_to_s, 0); rb_define_alias(rb_cARGF, "inspect", "to_s"); rb_define_method(rb_cARGF, "argv", argf_argv, 0); rb_define_method(rb_cARGF, "fileno", argf_fileno, 0); rb_define_method(rb_cARGF, "to_i", argf_fileno, 0); rb_define_method(rb_cARGF, "to_io", argf_to_io, 0); rb_define_method(rb_cARGF, "to_write_io", argf_write_io, 0); rb_define_method(rb_cARGF, "each", argf_each_line, -1); rb_define_method(rb_cARGF, "each_line", argf_each_line, -1); rb_define_method(rb_cARGF, "each_byte", argf_each_byte, 0); rb_define_method(rb_cARGF, "each_char", argf_each_char, 0); rb_define_method(rb_cARGF, "each_codepoint", argf_each_codepoint, 0); rb_define_method(rb_cARGF, "read", argf_read, -1); rb_define_method(rb_cARGF, "readpartial", argf_readpartial, -1); rb_define_method(rb_cARGF, "read_nonblock", argf_read_nonblock, -1); rb_define_method(rb_cARGF, "readlines", argf_readlines, -1); rb_define_method(rb_cARGF, "to_a", argf_readlines, -1); rb_define_method(rb_cARGF, "gets", argf_gets, -1); rb_define_method(rb_cARGF, "readline", argf_readline, -1); rb_define_method(rb_cARGF, "getc", argf_getc, 0); rb_define_method(rb_cARGF, "getbyte", argf_getbyte, 0); rb_define_method(rb_cARGF, "readchar", argf_readchar, 0); rb_define_method(rb_cARGF, "readbyte", argf_readbyte, 0); rb_define_method(rb_cARGF, "tell", argf_tell, 0); rb_define_method(rb_cARGF, "seek", argf_seek_m, -1); rb_define_method(rb_cARGF, "rewind", argf_rewind, 0); rb_define_method(rb_cARGF, "pos", argf_tell, 0); rb_define_method(rb_cARGF, "pos=", argf_set_pos, 1); rb_define_method(rb_cARGF, "eof", argf_eof, 0); rb_define_method(rb_cARGF, "eof?", argf_eof, 0); rb_define_method(rb_cARGF, "binmode", argf_binmode_m, 0); rb_define_method(rb_cARGF, "binmode?", argf_binmode_p, 0); rb_define_method(rb_cARGF, "write", argf_write, -1); rb_define_method(rb_cARGF, "print", rb_io_print, -1); rb_define_method(rb_cARGF, "putc", rb_io_putc, 1); rb_define_method(rb_cARGF, "puts", rb_io_puts, -1); rb_define_method(rb_cARGF, "printf", rb_io_printf, -1); rb_define_method(rb_cARGF, "filename", argf_filename, 0); rb_define_method(rb_cARGF, "path", argf_filename, 0); rb_define_method(rb_cARGF, "file", argf_file, 0); rb_define_method(rb_cARGF, "skip", argf_skip, 0); rb_define_method(rb_cARGF, "close", argf_close_m, 0); rb_define_method(rb_cARGF, "closed?", argf_closed, 0); rb_define_method(rb_cARGF, "lineno", argf_lineno, 0); rb_define_method(rb_cARGF, "lineno=", argf_set_lineno, 1); rb_define_method(rb_cARGF, "inplace_mode", argf_inplace_mode_get, 0); rb_define_method(rb_cARGF, "inplace_mode=", argf_inplace_mode_set, 1); rb_define_method(rb_cARGF, "external_encoding", argf_external_encoding, 0); rb_define_method(rb_cARGF, "internal_encoding", argf_internal_encoding, 0); rb_define_method(rb_cARGF, "set_encoding", argf_set_encoding, -1); argf = rb_class_new_instance(0, 0, rb_cARGF); rb_define_readonly_variable("$<", &argf); /* * ARGF is a stream designed for use in scripts that process files given * as command-line arguments or passed in via STDIN. * * See ARGF (the class) for more details. */ rb_define_global_const("ARGF", argf); rb_define_hooked_variable("$.", &argf, argf_lineno_getter, argf_lineno_setter); rb_define_hooked_variable("$FILENAME", &argf, argf_filename_getter, rb_gvar_readonly_setter); ARGF.filename = rb_str_new2("-"); rb_define_hooked_variable("$-i", &argf, opt_i_get, opt_i_set); rb_gvar_ractor_local("$-i"); rb_define_hooked_variable("$*", &argf, argf_argv_getter, rb_gvar_readonly_setter); #if defined (_WIN32) || defined(__CYGWIN__) atexit(pipe_atexit); #endif Init_File(); rb_define_method(rb_cFile, "initialize", rb_file_initialize, -1); sym_mode = ID2SYM(rb_intern_const("mode")); sym_perm = ID2SYM(rb_intern_const("perm")); sym_flags = ID2SYM(rb_intern_const("flags")); sym_extenc = ID2SYM(rb_intern_const("external_encoding")); sym_intenc = ID2SYM(rb_intern_const("internal_encoding")); sym_encoding = ID2SYM(rb_id_encoding()); sym_open_args = ID2SYM(rb_intern_const("open_args")); sym_textmode = ID2SYM(rb_intern_const("textmode")); sym_binmode = ID2SYM(rb_intern_const("binmode")); sym_autoclose = ID2SYM(rb_intern_const("autoclose")); sym_normal = ID2SYM(rb_intern_const("normal")); sym_sequential = ID2SYM(rb_intern_const("sequential")); sym_random = ID2SYM(rb_intern_const("random")); sym_willneed = ID2SYM(rb_intern_const("willneed")); sym_dontneed = ID2SYM(rb_intern_const("dontneed")); sym_noreuse = ID2SYM(rb_intern_const("noreuse")); sym_SET = ID2SYM(rb_intern_const("SET")); sym_CUR = ID2SYM(rb_intern_const("CUR")); sym_END = ID2SYM(rb_intern_const("END")); #ifdef SEEK_DATA sym_DATA = ID2SYM(rb_intern_const("DATA")); #endif #ifdef SEEK_HOLE sym_HOLE = ID2SYM(rb_intern_const("HOLE")); #endif sym_wait_readable = ID2SYM(rb_intern_const("wait_readable")); sym_wait_writable = ID2SYM(rb_intern_const("wait_writable")); } #include "io.rbinc"