class Numeric
#
# call-seq:
# num.real? -> true or false
#
# Returns +true+ if +num+ is a real number (i.e. not Complex).
#
def real?
true
end
#
# call-seq:
# num.real -> self
#
# Returns self.
#
def real
self
end
#
# call-seq:
# num.integer? -> true or false
#
# Returns +true+ if +num+ is an Integer.
#
# 1.0.integer? #=> false
# 1.integer? #=> true
#
def integer?
false
end
#
# call-seq:
# num.finite? -> true or false
#
# Returns +true+ if +num+ is a finite number, otherwise returns +false+.
#
def finite?
true
end
#
# call-seq:
# num.infinite? -> -1, 1, or nil
#
# Returns +nil+, -1, or 1 depending on whether the value is
# finite, -Infinity
, or +Infinity
.
#
def infinite?
nil
end
#
# call-seq:
# num.imag -> 0
# num.imaginary -> 0
#
# Returns zero.
#
def imaginary
0
end
alias imag imaginary
#
# call-seq:
# num.conj -> self
# num.conjugate -> self
#
# Returns self.
#
def conjugate
self
end
alias conj conjugate
end
class Integer
# call-seq:
# -int -> integer
#
# Returns +int+, negated.
def -@
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_uminus(self)'
end
# call-seq:
# ~int -> integer
#
# One's complement: returns a number where each bit is flipped.
#
# Inverts the bits in an Integer. As integers are conceptually of
# infinite length, the result acts as if it had an infinite number of
# one bits to the left. In hex representations, this is displayed
# as two periods to the left of the digits.
#
# sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
def ~
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_comp(self)'
end
# call-seq:
# int.abs -> integer
# int.magnitude -> integer
#
# Returns the absolute value of +int+.
#
# (-12345).abs #=> 12345
# -12345.abs #=> 12345
# 12345.abs #=> 12345
#
def abs
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_abs(self)'
end
# call-seq:
# int.bit_length -> integer
#
# Returns the number of bits of the value of +int+.
#
# "Number of bits" means the bit position of the highest bit
# which is different from the sign bit
# (where the least significant bit has bit position 1).
# If there is no such bit (zero or minus one), zero is returned.
#
# I.e. this method returns ceil(log2(int < 0 ? -int : int+1)).
#
# (-2**1000-1).bit_length #=> 1001
# (-2**1000).bit_length #=> 1000
# (-2**1000+1).bit_length #=> 1000
# (-2**12-1).bit_length #=> 13
# (-2**12).bit_length #=> 12
# (-2**12+1).bit_length #=> 12
# -0x101.bit_length #=> 9
# -0x100.bit_length #=> 8
# -0xff.bit_length #=> 8
# -2.bit_length #=> 1
# -1.bit_length #=> 0
# 0.bit_length #=> 0
# 1.bit_length #=> 1
# 0xff.bit_length #=> 8
# 0x100.bit_length #=> 9
# (2**12-1).bit_length #=> 12
# (2**12).bit_length #=> 13
# (2**12+1).bit_length #=> 13
# (2**1000-1).bit_length #=> 1000
# (2**1000).bit_length #=> 1001
# (2**1000+1).bit_length #=> 1001
#
# This method can be used to detect overflow in Array#pack as follows:
#
# if n.bit_length < 32
# [n].pack("l") # no overflow
# else
# raise "overflow"
# end
def bit_length
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_bit_length(self)'
end
# call-seq:
# int.even? -> true or false
#
# Returns +true+ if +int+ is an even number.
def even?
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_even_p(self)'
end
# call-seq:
# int.integer? -> true
#
# Since +int+ is already an Integer, this always returns +true+.
def integer?
true
end
alias magnitude abs
# call-seq:
# int.odd? -> true or false
#
# Returns +true+ if +int+ is an odd number.
def odd?
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_odd_p(self)'
end
# call-seq:
# int.ord -> self
#
# Returns the +int+ itself.
#
# 97.ord #=> 97
#
# This method is intended for compatibility to character literals
# in Ruby 1.9.
#
# For example, ?a.ord
returns 97 both in 1.8 and 1.9.
def ord
self
end
# call-seq:
# int.size -> int
#
# Returns the number of bytes in the machine representation of +int+
# (machine dependent).
#
# 1.size #=> 8
# -1.size #=> 8
# 2147483647.size #=> 8
# (256**10 - 1).size #=> 10
# (256**20 - 1).size #=> 20
# (256**40 - 1).size #=> 40
#
def size
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_size(self)'
end
# call-seq:
# int.to_i -> integer
#
# Since +int+ is already an Integer, returns +self+.
def to_i
self
end
# call-seq:
# int.to_int -> integer
#
# Since +int+ is already an Integer, returns +self+.
def to_int
self
end
# call-seq:
# int.zero? -> true or false
#
# Returns +true+ if +int+ has a zero value.
def zero?
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_zero_p(self)'
end
# call-seq:
# ceildiv(other) -> integer
#
# Returns the result of division +self+ by +other+. The result is rounded up to the nearest integer.
#
# 3.ceildiv(3) # => 1
# 4.ceildiv(3) # => 2
#
# 4.ceildiv(-3) # => -1
# -4.ceildiv(3) # => -1
# -4.ceildiv(-3) # => 2
#
# 3.ceildiv(1.2) # => 3
def ceildiv(other)
-div(0 - other)
end
#
# call-seq:
# int.numerator -> self
#
# Returns self.
#
def numerator
self
end
#
# call-seq:
# int.denominator -> 1
#
# Returns 1.
#
def denominator
1
end
end
class Float
#
# call-seq:
# float.to_f -> self
#
# Since +float+ is already a Float, returns +self+.
#
def to_f
self
end
#
# call-seq:
# float.abs -> float
# float.magnitude -> float
#
# Returns the absolute value of +float+.
#
# (-34.56).abs #=> 34.56
# -34.56.abs #=> 34.56
# 34.56.abs #=> 34.56
#
def abs
Primitive.attr! :leaf
Primitive.cexpr! 'rb_float_abs(self)'
end
def magnitude
Primitive.attr! :leaf
Primitive.cexpr! 'rb_float_abs(self)'
end
#
# call-seq:
# -float -> float
#
# Returns +float+, negated.
#
def -@
Primitive.attr! :leaf
Primitive.cexpr! 'rb_float_uminus(self)'
end
#
# call-seq:
# float.zero? -> true or false
#
# Returns +true+ if +float+ is 0.0.
#
def zero?
Primitive.attr! :leaf
Primitive.cexpr! 'RBOOL(FLOAT_ZERO_P(self))'
end
#
# call-seq:
# float.positive? -> true or false
#
# Returns +true+ if +float+ is greater than 0.
#
def positive?
Primitive.attr! :leaf
Primitive.cexpr! 'RBOOL(RFLOAT_VALUE(self) > 0.0)'
end
#
# call-seq:
# float.negative? -> true or false
#
# Returns +true+ if +float+ is less than 0.
#
def negative?
Primitive.attr! :leaf
Primitive.cexpr! 'RBOOL(RFLOAT_VALUE(self) < 0.0)'
end
end