/* complex.c: Coded by Tadayoshi Funaba 2008-2012 This implementation is based on Keiju Ishitsuka's Complex library which is written in ruby. */ #include "ruby/internal/config.h" #if defined _MSC_VER /* Microsoft Visual C does not define M_PI and others by default */ # define _USE_MATH_DEFINES 1 #endif #include #include #include "id.h" #include "internal.h" #include "internal/array.h" #include "internal/class.h" #include "internal/complex.h" #include "internal/math.h" #include "internal/numeric.h" #include "internal/object.h" #include "internal/rational.h" #include "internal/string.h" #include "ruby_assert.h" #define ZERO INT2FIX(0) #define ONE INT2FIX(1) #define TWO INT2FIX(2) #if USE_FLONUM #define RFLOAT_0 DBL2NUM(0) #else static VALUE RFLOAT_0; #endif VALUE rb_cComplex; static ID id_abs, id_arg, id_denominator, id_numerator, id_real_p, id_i_real, id_i_imag, id_finite_p, id_infinite_p, id_rationalize, id_PI; #define id_to_i idTo_i #define id_to_r idTo_r #define id_negate idUMinus #define id_expt idPow #define id_to_f idTo_f #define id_quo idQuo #define id_fdiv idFdiv #define fun1(n) \ inline static VALUE \ f_##n(VALUE x)\ {\ return rb_funcall(x, id_##n, 0);\ } #define fun2(n) \ inline static VALUE \ f_##n(VALUE x, VALUE y)\ {\ return rb_funcall(x, id_##n, 1, y);\ } #define PRESERVE_SIGNEDZERO inline static VALUE f_add(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(x) && LIKELY(rb_method_basic_definition_p(rb_cInteger, idPLUS))) { if (FIXNUM_ZERO_P(x)) return y; if (FIXNUM_ZERO_P(y)) return x; return rb_int_plus(x, y); } else if (RB_FLOAT_TYPE_P(x) && LIKELY(rb_method_basic_definition_p(rb_cFloat, idPLUS))) { if (FIXNUM_ZERO_P(y)) return x; return rb_float_plus(x, y); } else if (RB_TYPE_P(x, T_RATIONAL) && LIKELY(rb_method_basic_definition_p(rb_cRational, idPLUS))) { if (FIXNUM_ZERO_P(y)) return x; return rb_rational_plus(x, y); } return rb_funcall(x, '+', 1, y); } inline static VALUE f_div(VALUE x, VALUE y) { if (FIXNUM_P(y) && FIX2LONG(y) == 1) return x; return rb_funcall(x, '/', 1, y); } inline static int f_gt_p(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(x)) { if (FIXNUM_P(x) && FIXNUM_P(y)) return (SIGNED_VALUE)x > (SIGNED_VALUE)y; return RTEST(rb_int_gt(x, y)); } else if (RB_FLOAT_TYPE_P(x)) return RTEST(rb_float_gt(x, y)); else if (RB_TYPE_P(x, T_RATIONAL)) { int const cmp = rb_cmpint(rb_rational_cmp(x, y), x, y); return cmp > 0; } return RTEST(rb_funcall(x, '>', 1, y)); } inline static VALUE f_mul(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(x) && LIKELY(rb_method_basic_definition_p(rb_cInteger, idMULT))) { if (FIXNUM_ZERO_P(y)) return ZERO; if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y)) return ZERO; if (x == ONE) return y; if (y == ONE) return x; return rb_int_mul(x, y); } else if (RB_FLOAT_TYPE_P(x) && LIKELY(rb_method_basic_definition_p(rb_cFloat, idMULT))) { if (y == ONE) return x; return rb_float_mul(x, y); } else if (RB_TYPE_P(x, T_RATIONAL) && LIKELY(rb_method_basic_definition_p(rb_cRational, idMULT))) { if (y == ONE) return x; return rb_rational_mul(x, y); } else if (LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMULT))) { if (y == ONE) return x; } return rb_funcall(x, '*', 1, y); } inline static VALUE f_sub(VALUE x, VALUE y) { if (FIXNUM_ZERO_P(y) && LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMINUS))) { return x; } return rb_funcall(x, '-', 1, y); } inline static VALUE f_abs(VALUE x) { if (RB_INTEGER_TYPE_P(x)) { return rb_int_abs(x); } else if (RB_FLOAT_TYPE_P(x)) { return rb_float_abs(x); } else if (RB_TYPE_P(x, T_RATIONAL)) { return rb_rational_abs(x); } else if (RB_TYPE_P(x, T_COMPLEX)) { return rb_complex_abs(x); } return rb_funcall(x, id_abs, 0); } static VALUE numeric_arg(VALUE self); static VALUE float_arg(VALUE self); inline static VALUE f_arg(VALUE x) { if (RB_INTEGER_TYPE_P(x)) { return numeric_arg(x); } else if (RB_FLOAT_TYPE_P(x)) { return float_arg(x); } else if (RB_TYPE_P(x, T_RATIONAL)) { return numeric_arg(x); } else if (RB_TYPE_P(x, T_COMPLEX)) { return rb_complex_arg(x); } return rb_funcall(x, id_arg, 0); } inline static VALUE f_numerator(VALUE x) { if (RB_TYPE_P(x, T_RATIONAL)) { return RRATIONAL(x)->num; } if (RB_FLOAT_TYPE_P(x)) { return rb_float_numerator(x); } return x; } inline static VALUE f_denominator(VALUE x) { if (RB_TYPE_P(x, T_RATIONAL)) { return RRATIONAL(x)->den; } if (RB_FLOAT_TYPE_P(x)) { return rb_float_denominator(x); } return INT2FIX(1); } inline static VALUE f_negate(VALUE x) { if (RB_INTEGER_TYPE_P(x)) { return rb_int_uminus(x); } else if (RB_FLOAT_TYPE_P(x)) { return rb_float_uminus(x); } else if (RB_TYPE_P(x, T_RATIONAL)) { return rb_rational_uminus(x); } else if (RB_TYPE_P(x, T_COMPLEX)) { return rb_complex_uminus(x); } return rb_funcall(x, id_negate, 0); } static bool nucomp_real_p(VALUE self); static inline bool f_real_p(VALUE x) { if (RB_INTEGER_TYPE_P(x)) { return true; } else if (RB_FLOAT_TYPE_P(x)) { return true; } else if (RB_TYPE_P(x, T_RATIONAL)) { return true; } else if (RB_TYPE_P(x, T_COMPLEX)) { return nucomp_real_p(x); } return rb_funcall(x, id_real_p, 0); } inline static VALUE f_to_i(VALUE x) { if (RB_TYPE_P(x, T_STRING)) return rb_str_to_inum(x, 10, 0); return rb_funcall(x, id_to_i, 0); } inline static VALUE f_to_f(VALUE x) { if (RB_TYPE_P(x, T_STRING)) return DBL2NUM(rb_str_to_dbl(x, 0)); return rb_funcall(x, id_to_f, 0); } fun1(to_r) inline static int f_eqeq_p(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) return x == y; else if (RB_FLOAT_TYPE_P(x) || RB_FLOAT_TYPE_P(y)) return NUM2DBL(x) == NUM2DBL(y); return (int)rb_equal(x, y); } fun2(expt) fun2(fdiv) static VALUE f_quo(VALUE x, VALUE y) { if (RB_INTEGER_TYPE_P(x)) return rb_numeric_quo(x, y); if (RB_FLOAT_TYPE_P(x)) return rb_float_div(x, y); if (RB_TYPE_P(x, T_RATIONAL)) return rb_numeric_quo(x, y); return rb_funcallv(x, id_quo, 1, &y); } inline static int f_negative_p(VALUE x) { if (RB_INTEGER_TYPE_P(x)) return INT_NEGATIVE_P(x); else if (RB_FLOAT_TYPE_P(x)) return RFLOAT_VALUE(x) < 0.0; else if (RB_TYPE_P(x, T_RATIONAL)) return INT_NEGATIVE_P(RRATIONAL(x)->num); return rb_num_negative_p(x); } #define f_positive_p(x) (!f_negative_p(x)) inline static bool f_zero_p(VALUE x) { if (RB_FLOAT_TYPE_P(x)) { return FLOAT_ZERO_P(x); } else if (RB_INTEGER_TYPE_P(x)) { return FIXNUM_ZERO_P(x); } else if (RB_TYPE_P(x, T_RATIONAL)) { const VALUE num = RRATIONAL(x)->num; return FIXNUM_ZERO_P(num); } return rb_equal(x, ZERO) != 0; } #define f_nonzero_p(x) (!f_zero_p(x)) static inline bool always_finite_type_p(VALUE x) { if (FIXNUM_P(x)) return true; if (FLONUM_P(x)) return true; /* Infinity can't be a flonum */ return (RB_INTEGER_TYPE_P(x) || RB_TYPE_P(x, T_RATIONAL)); } inline static int f_finite_p(VALUE x) { if (always_finite_type_p(x)) { return TRUE; } else if (RB_FLOAT_TYPE_P(x)) { return isfinite(RFLOAT_VALUE(x)); } return RTEST(rb_funcallv(x, id_finite_p, 0, 0)); } inline static int f_infinite_p(VALUE x) { if (always_finite_type_p(x)) { return FALSE; } else if (RB_FLOAT_TYPE_P(x)) { return isinf(RFLOAT_VALUE(x)); } return RTEST(rb_funcallv(x, id_infinite_p, 0, 0)); } inline static int f_kind_of_p(VALUE x, VALUE c) { return (int)rb_obj_is_kind_of(x, c); } inline static int k_numeric_p(VALUE x) { return f_kind_of_p(x, rb_cNumeric); } #define k_exact_p(x) (!RB_FLOAT_TYPE_P(x)) #define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x)) #define get_dat1(x) \ struct RComplex *dat = RCOMPLEX(x) #define get_dat2(x,y) \ struct RComplex *adat = RCOMPLEX(x), *bdat = RCOMPLEX(y) inline static VALUE nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag) { NEWOBJ_OF(obj, struct RComplex, klass, T_COMPLEX | (RGENGC_WB_PROTECTED_COMPLEX ? FL_WB_PROTECTED : 0), sizeof(struct RComplex), 0); RCOMPLEX_SET_REAL(obj, real); RCOMPLEX_SET_IMAG(obj, imag); OBJ_FREEZE((VALUE)obj); return (VALUE)obj; } static VALUE nucomp_s_alloc(VALUE klass) { return nucomp_s_new_internal(klass, ZERO, ZERO); } inline static VALUE f_complex_new_bang1(VALUE klass, VALUE x) { RUBY_ASSERT(!RB_TYPE_P(x, T_COMPLEX)); return nucomp_s_new_internal(klass, x, ZERO); } inline static VALUE f_complex_new_bang2(VALUE klass, VALUE x, VALUE y) { RUBY_ASSERT(!RB_TYPE_P(x, T_COMPLEX)); RUBY_ASSERT(!RB_TYPE_P(y, T_COMPLEX)); return nucomp_s_new_internal(klass, x, y); } WARN_UNUSED_RESULT(inline static VALUE nucomp_real_check(VALUE num)); inline static VALUE nucomp_real_check(VALUE num) { if (!RB_INTEGER_TYPE_P(num) && !RB_FLOAT_TYPE_P(num) && !RB_TYPE_P(num, T_RATIONAL)) { if (RB_TYPE_P(num, T_COMPLEX) && nucomp_real_p(num)) { VALUE real = RCOMPLEX(num)->real; RUBY_ASSERT(!RB_TYPE_P(real, T_COMPLEX)); return real; } if (!k_numeric_p(num) || !f_real_p(num)) rb_raise(rb_eTypeError, "not a real"); } return num; } inline static VALUE nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag) { int complex_r, complex_i; complex_r = RB_TYPE_P(real, T_COMPLEX); complex_i = RB_TYPE_P(imag, T_COMPLEX); if (!complex_r && !complex_i) { return nucomp_s_new_internal(klass, real, imag); } else if (!complex_r) { get_dat1(imag); return nucomp_s_new_internal(klass, f_sub(real, dat->imag), f_add(ZERO, dat->real)); } else if (!complex_i) { get_dat1(real); return nucomp_s_new_internal(klass, dat->real, f_add(dat->imag, imag)); } else { get_dat2(real, imag); return nucomp_s_new_internal(klass, f_sub(adat->real, bdat->imag), f_add(adat->imag, bdat->real)); } } /* * call-seq: * Complex.rect(real, imag = 0) -> complex * * Returns a new \Complex object formed from the arguments, * each of which must be an instance of Numeric, * or an instance of one of its subclasses: * \Complex, Float, Integer, Rational; * see {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]: * * Complex.rect(3) # => (3+0i) * Complex.rect(3, Math::PI) # => (3+3.141592653589793i) * Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i) * * \Complex.rectangular is an alias for \Complex.rect. */ static VALUE nucomp_s_new(int argc, VALUE *argv, VALUE klass) { VALUE real, imag; switch (rb_scan_args(argc, argv, "11", &real, &imag)) { case 1: real = nucomp_real_check(real); imag = ZERO; break; default: real = nucomp_real_check(real); imag = nucomp_real_check(imag); break; } return nucomp_s_new_internal(klass, real, imag); } inline static VALUE f_complex_new2(VALUE klass, VALUE x, VALUE y) { if (RB_TYPE_P(x, T_COMPLEX)) { get_dat1(x); x = dat->real; y = f_add(dat->imag, y); } return nucomp_s_canonicalize_internal(klass, x, y); } static VALUE nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise); static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass); /* * call-seq: * Complex(real, imag = 0, exception: true) -> complex or nil * Complex(s, exception: true) -> complex or nil * * Returns a new \Complex object if the arguments are valid; * otherwise raises an exception if +exception+ is +true+; * otherwise returns +nil+. * * With Numeric arguments +real+ and +imag+, * returns Complex.rect(real, imag) if the arguments are valid. * * With string argument +s+, returns a new \Complex object if the argument is valid; * the string may have: * * - One or two numeric substrings, * each of which specifies a Complex, Float, Integer, Numeric, or Rational value, * specifying {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]: * * - Sign-separated real and imaginary numeric substrings * (with trailing character 'i'): * * Complex('1+2i') # => (1+2i) * Complex('+1+2i') # => (1+2i) * Complex('+1-2i') # => (1-2i) * Complex('-1+2i') # => (-1+2i) * Complex('-1-2i') # => (-1-2i) * * - Real-only numeric string (without trailing character 'i'): * * Complex('1') # => (1+0i) * Complex('+1') # => (1+0i) * Complex('-1') # => (-1+0i) * * - Imaginary-only numeric string (with trailing character 'i'): * * Complex('1i') # => (0+1i) * Complex('+1i') # => (0+1i) * Complex('-1i') # => (0-1i) * * - At-sign separated real and imaginary rational substrings, * each of which specifies a Rational value, * specifying {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]: * * Complex('1/2@3/4') # => (0.36584443443691045+0.34081938001166706i) * Complex('+1/2@+3/4') # => (0.36584443443691045+0.34081938001166706i) * Complex('+1/2@-3/4') # => (0.36584443443691045-0.34081938001166706i) * Complex('-1/2@+3/4') # => (-0.36584443443691045-0.34081938001166706i) * Complex('-1/2@-3/4') # => (-0.36584443443691045+0.34081938001166706i) * */ static VALUE nucomp_f_complex(int argc, VALUE *argv, VALUE klass) { VALUE a1, a2, opts = Qnil; int raise = TRUE; if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) { a2 = Qundef; } if (!NIL_P(opts)) { raise = rb_opts_exception_p(opts, raise); } if (argc > 0 && CLASS_OF(a1) == rb_cComplex && UNDEF_P(a2)) { return a1; } return nucomp_convert(rb_cComplex, a1, a2, raise); } #define imp1(n) \ inline static VALUE \ m_##n##_bang(VALUE x)\ {\ return rb_math_##n(x);\ } imp1(cos) imp1(cosh) imp1(exp) static VALUE m_log_bang(VALUE x) { return rb_math_log(1, &x); } imp1(sin) imp1(sinh) static VALUE m_cos(VALUE x) { if (!RB_TYPE_P(x, T_COMPLEX)) return m_cos_bang(x); { get_dat1(x); return f_complex_new2(rb_cComplex, f_mul(m_cos_bang(dat->real), m_cosh_bang(dat->imag)), f_mul(f_negate(m_sin_bang(dat->real)), m_sinh_bang(dat->imag))); } } static VALUE m_sin(VALUE x) { if (!RB_TYPE_P(x, T_COMPLEX)) return m_sin_bang(x); { get_dat1(x); return f_complex_new2(rb_cComplex, f_mul(m_sin_bang(dat->real), m_cosh_bang(dat->imag)), f_mul(m_cos_bang(dat->real), m_sinh_bang(dat->imag))); } } static VALUE f_complex_polar_real(VALUE klass, VALUE x, VALUE y) { if (f_zero_p(x) || f_zero_p(y)) { return nucomp_s_new_internal(klass, x, RFLOAT_0); } if (RB_FLOAT_TYPE_P(y)) { const double arg = RFLOAT_VALUE(y); if (arg == M_PI) { x = f_negate(x); y = RFLOAT_0; } else if (arg == M_PI_2) { y = x; x = RFLOAT_0; } else if (arg == M_PI_2+M_PI) { y = f_negate(x); x = RFLOAT_0; } else if (RB_FLOAT_TYPE_P(x)) { const double abs = RFLOAT_VALUE(x); const double real = abs * cos(arg), imag = abs * sin(arg); x = DBL2NUM(real); y = DBL2NUM(imag); } else { const double ax = sin(arg), ay = cos(arg); y = f_mul(x, DBL2NUM(ax)); x = f_mul(x, DBL2NUM(ay)); } return nucomp_s_new_internal(klass, x, y); } return nucomp_s_canonicalize_internal(klass, f_mul(x, m_cos(y)), f_mul(x, m_sin(y))); } static VALUE f_complex_polar(VALUE klass, VALUE x, VALUE y) { x = nucomp_real_check(x); y = nucomp_real_check(y); return f_complex_polar_real(klass, x, y); } #ifdef HAVE___COSPI # define cospi(x) __cospi(x) #else # define cospi(x) cos((x) * M_PI) #endif #ifdef HAVE___SINPI # define sinpi(x) __sinpi(x) #else # define sinpi(x) sin((x) * M_PI) #endif /* returns a Complex or Float of ang*PI-rotated abs */ VALUE rb_dbl_complex_new_polar_pi(double abs, double ang) { double fi; const double fr = modf(ang, &fi); int pos = fr == +0.5; if (pos || fr == -0.5) { if ((modf(fi / 2.0, &fi) != fr) ^ pos) abs = -abs; return rb_complex_new(RFLOAT_0, DBL2NUM(abs)); } else if (fr == 0.0) { if (modf(fi / 2.0, &fi) != 0.0) abs = -abs; return DBL2NUM(abs); } else { const double real = abs * cospi(ang), imag = abs * sinpi(ang); return rb_complex_new(DBL2NUM(real), DBL2NUM(imag)); } } /* * call-seq: * Complex.polar(abs, arg = 0) -> complex * * Returns a new \Complex object formed from the arguments, * each of which must be an instance of Numeric, * or an instance of one of its subclasses: * \Complex, Float, Integer, Rational. * Argument +arg+ is given in radians; * see {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates]: * * Complex.polar(3) # => (3+0i) * Complex.polar(3, 2.0) # => (-1.2484405096414273+2.727892280477045i) * Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i) * */ static VALUE nucomp_s_polar(int argc, VALUE *argv, VALUE klass) { VALUE abs, arg; argc = rb_scan_args(argc, argv, "11", &abs, &arg); abs = nucomp_real_check(abs); if (argc == 2) { arg = nucomp_real_check(arg); } else { arg = ZERO; } return f_complex_polar_real(klass, abs, arg); } /* * call-seq: * real -> numeric * * Returns the real value for +self+: * * Complex.rect(7).real # => 7 * Complex.rect(9, -4).real # => 9 * * If +self+ was created with * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value * is computed, and may be inexact: * * Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2. * */ VALUE rb_complex_real(VALUE self) { get_dat1(self); return dat->real; } /* * call-seq: * imag -> numeric * * Returns the imaginary value for +self+: * * Complex.rect(7).imag # => 0 * Complex.rect(9, -4).imag # => -4 * * If +self+ was created with * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value * is computed, and may be inexact: * * Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2. * */ VALUE rb_complex_imag(VALUE self) { get_dat1(self); return dat->imag; } /* * call-seq: * -complex -> new_complex * * Returns the negation of +self+, which is the negation of each of its parts: * * -Complex.rect(1, 2) # => (-1-2i) * -Complex.rect(-1, -2) # => (1+2i) * */ VALUE rb_complex_uminus(VALUE self) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_negate(dat->real), f_negate(dat->imag)); } /* * call-seq: * complex + numeric -> new_complex * * Returns the sum of +self+ and +numeric+: * * Complex.rect(2, 3) + Complex.rect(2, 3) # => (4+6i) * Complex.rect(900) + Complex.rect(1) # => (901+0i) * Complex.rect(-2, 9) + Complex.rect(-9, 2) # => (-11+11i) * Complex.rect(9, 8) + 4 # => (13+8i) * Complex.rect(20, 9) + 9.8 # => (29.8+9i) * */ VALUE rb_complex_plus(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); real = f_add(adat->real, bdat->real); imag = f_add(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_add(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '+'); } /* * call-seq: * complex - numeric -> new_complex * * Returns the difference of +self+ and +numeric+: * * Complex.rect(2, 3) - Complex.rect(2, 3) # => (0+0i) * Complex.rect(900) - Complex.rect(1) # => (899+0i) * Complex.rect(-2, 9) - Complex.rect(-9, 2) # => (7+7i) * Complex.rect(9, 8) - 4 # => (5+8i) * Complex.rect(20, 9) - 9.8 # => (10.2+9i) * */ VALUE rb_complex_minus(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); real = f_sub(adat->real, bdat->real); imag = f_sub(adat->imag, bdat->imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_sub(dat->real, other), dat->imag); } return rb_num_coerce_bin(self, other, '-'); } static VALUE safe_mul(VALUE a, VALUE b, bool az, bool bz) { double v; if (!az && bz && RB_FLOAT_TYPE_P(a) && (v = RFLOAT_VALUE(a), !isnan(v))) { a = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0); } if (!bz && az && RB_FLOAT_TYPE_P(b) && (v = RFLOAT_VALUE(b), !isnan(v))) { b = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0); } return f_mul(a, b); } static void comp_mul(VALUE areal, VALUE aimag, VALUE breal, VALUE bimag, VALUE *real, VALUE *imag) { bool arzero = f_zero_p(areal); bool aizero = f_zero_p(aimag); bool brzero = f_zero_p(breal); bool bizero = f_zero_p(bimag); *real = f_sub(safe_mul(areal, breal, arzero, brzero), safe_mul(aimag, bimag, aizero, bizero)); *imag = f_add(safe_mul(areal, bimag, arzero, bizero), safe_mul(aimag, breal, aizero, brzero)); } /* * call-seq: * complex * numeric -> new_complex * * Returns the product of +self+ and +numeric+: * * Complex.rect(2, 3) * Complex.rect(2, 3) # => (-5+12i) * Complex.rect(900) * Complex.rect(1) # => (900+0i) * Complex.rect(-2, 9) * Complex.rect(-9, 2) # => (0-85i) * Complex.rect(9, 8) * 4 # => (36+32i) * Complex.rect(20, 9) * 9.8 # => (196.0+88.2i) * */ VALUE rb_complex_mul(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE real, imag; get_dat2(self, other); comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag); return f_complex_new2(CLASS_OF(self), real, imag); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return f_complex_new2(CLASS_OF(self), f_mul(dat->real, other), f_mul(dat->imag, other)); } return rb_num_coerce_bin(self, other, '*'); } inline static VALUE f_divide(VALUE self, VALUE other, VALUE (*func)(VALUE, VALUE), ID id) { if (RB_TYPE_P(other, T_COMPLEX)) { VALUE r, n, x, y; int flo; get_dat2(self, other); flo = (RB_FLOAT_TYPE_P(adat->real) || RB_FLOAT_TYPE_P(adat->imag) || RB_FLOAT_TYPE_P(bdat->real) || RB_FLOAT_TYPE_P(bdat->imag)); if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) { r = (*func)(bdat->imag, bdat->real); n = f_mul(bdat->real, f_add(ONE, f_mul(r, r))); x = (*func)(f_add(adat->real, f_mul(adat->imag, r)), n); y = (*func)(f_sub(adat->imag, f_mul(adat->real, r)), n); } else { r = (*func)(bdat->real, bdat->imag); n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r))); x = (*func)(f_add(f_mul(adat->real, r), adat->imag), n); y = (*func)(f_sub(f_mul(adat->imag, r), adat->real), n); } if (!flo) { x = rb_rational_canonicalize(x); y = rb_rational_canonicalize(y); } return f_complex_new2(CLASS_OF(self), x, y); } if (k_numeric_p(other) && f_real_p(other)) { VALUE x, y; get_dat1(self); x = rb_rational_canonicalize((*func)(dat->real, other)); y = rb_rational_canonicalize((*func)(dat->imag, other)); return f_complex_new2(CLASS_OF(self), x, y); } return rb_num_coerce_bin(self, other, id); } #define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0") /* * call-seq: * complex / numeric -> new_complex * * Returns the quotient of +self+ and +numeric+: * * Complex.rect(2, 3) / Complex.rect(2, 3) # => (1+0i) * Complex.rect(900) / Complex.rect(1) # => (900+0i) * Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i) * Complex.rect(9, 8) / 4 # => ((9/4)+2i) * Complex.rect(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i) * */ VALUE rb_complex_div(VALUE self, VALUE other) { return f_divide(self, other, f_quo, id_quo); } #define nucomp_quo rb_complex_div /* * call-seq: * fdiv(numeric) -> new_complex * * Returns Complex.rect(self.real/numeric, self.imag/numeric): * * Complex.rect(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i) * */ static VALUE nucomp_fdiv(VALUE self, VALUE other) { return f_divide(self, other, f_fdiv, id_fdiv); } inline static VALUE f_reciprocal(VALUE x) { return f_quo(ONE, x); } static VALUE zero_for(VALUE x) { if (RB_FLOAT_TYPE_P(x)) return DBL2NUM(0); if (RB_TYPE_P(x, T_RATIONAL)) return rb_rational_new(INT2FIX(0), INT2FIX(1)); return INT2FIX(0); } static VALUE complex_pow_for_special_angle(VALUE self, VALUE other) { if (!rb_integer_type_p(other)) { return Qundef; } get_dat1(self); VALUE x = Qundef; int dir; if (f_zero_p(dat->imag)) { x = dat->real; dir = 0; } else if (f_zero_p(dat->real)) { x = dat->imag; dir = 2; } else if (f_eqeq_p(dat->real, dat->imag)) { x = dat->real; dir = 1; } else if (f_eqeq_p(dat->real, f_negate(dat->imag))) { x = dat->imag; dir = 3; } else { dir = 0; } if (UNDEF_P(x)) return x; if (f_negative_p(x)) { x = f_negate(x); dir += 4; } VALUE zx; if (dir % 2 == 0) { zx = rb_num_pow(x, other); } else { zx = rb_num_pow( rb_funcall(rb_int_mul(TWO, x), '*', 1, x), rb_int_div(other, TWO) ); if (rb_int_odd_p(other)) { zx = rb_funcall(zx, '*', 1, x); } } static const int dirs[][2] = { {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1} }; int z_dir = FIX2INT(rb_int_modulo(rb_int_mul(INT2FIX(dir), other), INT2FIX(8))); VALUE zr = Qfalse, zi = Qfalse; switch (dirs[z_dir][0]) { case 0: zr = zero_for(zx); break; case 1: zr = zx; break; case -1: zr = f_negate(zx); break; } switch (dirs[z_dir][1]) { case 0: zi = zero_for(zx); break; case 1: zi = zx; break; case -1: zi = f_negate(zx); break; } return nucomp_s_new_internal(CLASS_OF(self), zr, zi); } /* * call-seq: * complex ** numeric -> new_complex * * Returns +self+ raised to power +numeric+: * * Complex.rect(0, 1) ** 2 # => (-1+0i) * Complex.rect(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i) * */ VALUE rb_complex_pow(VALUE self, VALUE other) { if (k_numeric_p(other) && k_exact_zero_p(other)) return f_complex_new_bang1(CLASS_OF(self), ONE); if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1)) other = RRATIONAL(other)->num; /* c14n */ if (RB_TYPE_P(other, T_COMPLEX)) { get_dat1(other); if (k_exact_zero_p(dat->imag)) other = dat->real; /* c14n */ } if (other == ONE) { get_dat1(self); return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag); } VALUE result = complex_pow_for_special_angle(self, other); if (!UNDEF_P(result)) return result; if (RB_TYPE_P(other, T_COMPLEX)) { VALUE r, theta, nr, ntheta; get_dat1(other); r = f_abs(self); theta = f_arg(self); nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)), f_mul(dat->imag, theta))); ntheta = f_add(f_mul(theta, dat->real), f_mul(dat->imag, m_log_bang(r))); return f_complex_polar(CLASS_OF(self), nr, ntheta); } if (FIXNUM_P(other)) { long n = FIX2LONG(other); if (n == 0) { return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO); } if (n < 0) { self = f_reciprocal(self); other = rb_int_uminus(other); n = -n; } { get_dat1(self); VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi; if (f_zero_p(xi)) { zr = rb_num_pow(zr, other); } else if (f_zero_p(xr)) { zi = rb_num_pow(zi, other); if (n & 2) zi = f_negate(zi); if (!(n & 1)) { VALUE tmp = zr; zr = zi; zi = tmp; } } else { while (--n) { long q, r; for (; q = n / 2, r = n % 2, r == 0; n = q) { VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi)); xi = f_mul(f_mul(TWO, xr), xi); xr = tmp; } comp_mul(zr, zi, xr, xi, &zr, &zi); } } return nucomp_s_new_internal(CLASS_OF(self), zr, zi); } } if (k_numeric_p(other) && f_real_p(other)) { VALUE r, theta; if (RB_BIGNUM_TYPE_P(other)) rb_warn("in a**b, b may be too big"); r = f_abs(self); theta = f_arg(self); return f_complex_polar(CLASS_OF(self), f_expt(r, other), f_mul(theta, other)); } return rb_num_coerce_bin(self, other, id_expt); } /* * call-seq: * complex == object -> true or false * * Returns +true+ if self.real == object.real * and self.imag == object.imag: * * Complex.rect(2, 3) == Complex.rect(2.0, 3.0) # => true * */ static VALUE nucomp_eqeq_p(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { get_dat2(self, other); return RBOOL(f_eqeq_p(adat->real, bdat->real) && f_eqeq_p(adat->imag, bdat->imag)); } if (k_numeric_p(other) && f_real_p(other)) { get_dat1(self); return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag)); } return RBOOL(f_eqeq_p(other, self)); } static bool nucomp_real_p(VALUE self) { get_dat1(self); return f_zero_p(dat->imag); } /* * call-seq: * complex <=> object -> -1, 0, 1, or nil * * Returns: * * - self.real <=> object.real if both of the following are true: * * - self.imag == 0. * - object.imag == 0. # Always true if object is numeric but not complex. * * - +nil+ otherwise. * * Examples: * * Complex.rect(2) <=> 3 # => -1 * Complex.rect(2) <=> 2 # => 0 * Complex.rect(2) <=> 1 # => 1 * Complex.rect(2, 1) <=> 1 # => nil # self.imag not zero. * Complex.rect(1) <=> Complex.rect(1, 1) # => nil # object.imag not zero. * Complex.rect(1) <=> 'Foo' # => nil # object.imag not defined. * */ static VALUE nucomp_cmp(VALUE self, VALUE other) { if (!k_numeric_p(other)) { return rb_num_coerce_cmp(self, other, idCmp); } if (!nucomp_real_p(self)) { return Qnil; } if (RB_TYPE_P(other, T_COMPLEX)) { if (nucomp_real_p(other)) { get_dat2(self, other); return rb_funcall(adat->real, idCmp, 1, bdat->real); } } else { get_dat1(self); if (f_real_p(other)) { return rb_funcall(dat->real, idCmp, 1, other); } else { return rb_num_coerce_cmp(dat->real, other, idCmp); } } return Qnil; } /* :nodoc: */ static VALUE nucomp_coerce(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) return rb_assoc_new(other, self); if (k_numeric_p(other) && f_real_p(other)) return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self); rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE, rb_obj_class(other), rb_obj_class(self)); return Qnil; } /* * call-seq: * abs -> float * * Returns the absolute value (magnitude) for +self+; * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]: * * Complex.polar(-1, 0).abs # => 1.0 * * If +self+ was created with * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value * is computed, and may be inexact: * * Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2. * */ VALUE rb_complex_abs(VALUE self) { get_dat1(self); if (f_zero_p(dat->real)) { VALUE a = f_abs(dat->imag); if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } if (f_zero_p(dat->imag)) { VALUE a = f_abs(dat->real); if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag)) a = f_to_f(a); return a; } return rb_math_hypot(dat->real, dat->imag); } /* * call-seq: * abs2 -> float * * Returns square of the absolute value (magnitude) for +self+; * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]: * * Complex.polar(2, 2).abs2 # => 4.0 * * If +self+ was created with * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value * is computed, and may be inexact: * * Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222 * */ static VALUE nucomp_abs2(VALUE self) { get_dat1(self); return f_add(f_mul(dat->real, dat->real), f_mul(dat->imag, dat->imag)); } /* * call-seq: * arg -> float * * Returns the argument (angle) for +self+ in radians; * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]: * * Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660 * * If +self+ was created with * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value * is computed, and may be inexact: * * Complex.polar(1, 1.0/3).arg # => 0.33333333333333326 * */ VALUE rb_complex_arg(VALUE self) { get_dat1(self); return rb_math_atan2(dat->imag, dat->real); } /* * call-seq: * rect -> array * * Returns the array [self.real, self.imag]: * * Complex.rect(1, 2).rect # => [1, 2] * * See {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]. * * If +self+ was created with * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value * is computed, and may be inexact: * * Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965] * * * Complex#rectangular is an alias for Complex#rect. */ static VALUE nucomp_rect(VALUE self) { get_dat1(self); return rb_assoc_new(dat->real, dat->imag); } /* * call-seq: * polar -> array * * Returns the array [self.abs, self.arg]: * * Complex.polar(1, 2).polar # => [1.0, 2.0] * * See {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates]. * * If +self+ was created with * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value * is computed, and may be inexact: * * Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483] * */ static VALUE nucomp_polar(VALUE self) { return rb_assoc_new(f_abs(self), f_arg(self)); } /* * call-seq: * conj -> complex * * Returns the conjugate of +self+, Complex.rect(self.imag, self.real): * * Complex.rect(1, 2).conj # => (1-2i) * */ VALUE rb_complex_conjugate(VALUE self) { get_dat1(self); return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag)); } /* * call-seq: * real? -> false * * Returns +false+; for compatibility with Numeric#real?. */ static VALUE nucomp_real_p_m(VALUE self) { return Qfalse; } /* * call-seq: * denominator -> integer * * Returns the denominator of +self+, which is * the {least common multiple}[https://en.wikipedia.org/wiki/Least_common_multiple] * of self.real.denominator and self.imag.denominator: * * Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6 * * Note that n.denominator of a non-rational numeric is +1+. * * Related: Complex#numerator. */ static VALUE nucomp_denominator(VALUE self) { get_dat1(self); return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag)); } /* * call-seq: * numerator -> new_complex * * Returns the \Complex object created from the numerators * of the real and imaginary parts of +self+, * after converting each part to the * {lowest common denominator}[https://en.wikipedia.org/wiki/Lowest_common_denominator] * of the two: * * c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i) * c.numerator # => (8+9i) * * In this example, the lowest common denominator of the two parts is 12; * the two converted parts may be thought of as \Rational(8, 12) and \Rational(9, 12), * whose numerators, respectively, are 8 and 9; * so the returned value of c.numerator is Complex.rect(8, 9). * * Related: Complex#denominator. */ static VALUE nucomp_numerator(VALUE self) { VALUE cd; get_dat1(self); cd = nucomp_denominator(self); return f_complex_new2(CLASS_OF(self), f_mul(f_numerator(dat->real), f_div(cd, f_denominator(dat->real))), f_mul(f_numerator(dat->imag), f_div(cd, f_denominator(dat->imag)))); } /* :nodoc: */ st_index_t rb_complex_hash(VALUE self) { st_index_t v, h[2]; VALUE n; get_dat1(self); n = rb_hash(dat->real); h[0] = NUM2LONG(n); n = rb_hash(dat->imag); h[1] = NUM2LONG(n); v = rb_memhash(h, sizeof(h)); return v; } /* * :call-seq: * hash -> integer * * Returns the integer hash value for +self+. * * Two \Complex objects created from the same values will have the same hash value * (and will compare using #eql?): * * Complex.rect(1, 2).hash == Complex.rect(1, 2).hash # => true * */ static VALUE nucomp_hash(VALUE self) { return ST2FIX(rb_complex_hash(self)); } /* :nodoc: */ static VALUE nucomp_eql_p(VALUE self, VALUE other) { if (RB_TYPE_P(other, T_COMPLEX)) { get_dat2(self, other); return RBOOL((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) && (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) && f_eqeq_p(self, other)); } return Qfalse; } inline static int f_signbit(VALUE x) { if (RB_FLOAT_TYPE_P(x)) { double f = RFLOAT_VALUE(x); return !isnan(f) && signbit(f); } return f_negative_p(x); } inline static int f_tpositive_p(VALUE x) { return !f_signbit(x); } static VALUE f_format(VALUE self, VALUE (*func)(VALUE)) { VALUE s; int impos; get_dat1(self); impos = f_tpositive_p(dat->imag); s = (*func)(dat->real); rb_str_cat2(s, !impos ? "-" : "+"); rb_str_concat(s, (*func)(f_abs(dat->imag))); if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1])) rb_str_cat2(s, "*"); rb_str_cat2(s, "i"); return s; } /* * call-seq: * to_s -> string * * Returns a string representation of +self+: * * Complex.rect(2).to_s # => "2+0i" * Complex.rect(-8, 6).to_s # => "-8+6i" * Complex.rect(0, Rational(1, 2)).to_s # => "0+1/2i" * Complex.rect(0, Float::INFINITY).to_s # => "0+Infinity*i" * Complex.rect(Float::NAN, Float::NAN).to_s # => "NaN+NaN*i" * */ static VALUE nucomp_to_s(VALUE self) { return f_format(self, rb_String); } /* * call-seq: * inspect -> string * * Returns a string representation of +self+: * * Complex.rect(2).inspect # => "(2+0i)" * Complex.rect(-8, 6).inspect # => "(-8+6i)" * Complex.rect(0, Rational(1, 2)).inspect # => "(0+(1/2)*i)" * Complex.rect(0, Float::INFINITY).inspect # => "(0+Infinity*i)" * Complex.rect(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)" * */ static VALUE nucomp_inspect(VALUE self) { VALUE s; s = rb_usascii_str_new2("("); rb_str_concat(s, f_format(self, rb_inspect)); rb_str_cat2(s, ")"); return s; } #define FINITE_TYPE_P(v) (RB_INTEGER_TYPE_P(v) || RB_TYPE_P(v, T_RATIONAL)) /* * call-seq: * finite? -> true or false * * Returns +true+ if both self.real.finite? and self.imag.finite? * are true, +false+ otherwise: * * Complex.rect(1, 1).finite? # => true * Complex.rect(Float::INFINITY, 0).finite? # => false * * Related: Numeric#finite?, Float#finite?. */ static VALUE rb_complex_finite_p(VALUE self) { get_dat1(self); return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag)); } /* * call-seq: * infinite? -> 1 or nil * * Returns +1+ if either self.real.infinite? or self.imag.infinite? * is true, +nil+ otherwise: * * Complex.rect(Float::INFINITY, 0).infinite? # => 1 * Complex.rect(1, 1).infinite? # => nil * * Related: Numeric#infinite?, Float#infinite?. */ static VALUE rb_complex_infinite_p(VALUE self) { get_dat1(self); if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) { return Qnil; } return ONE; } /* :nodoc: */ static VALUE nucomp_dumper(VALUE self) { return self; } /* :nodoc: */ static VALUE nucomp_loader(VALUE self, VALUE a) { get_dat1(self); RCOMPLEX_SET_REAL(dat, rb_ivar_get(a, id_i_real)); RCOMPLEX_SET_IMAG(dat, rb_ivar_get(a, id_i_imag)); OBJ_FREEZE(self); return self; } /* :nodoc: */ static VALUE nucomp_marshal_dump(VALUE self) { VALUE a; get_dat1(self); a = rb_assoc_new(dat->real, dat->imag); rb_copy_generic_ivar(a, self); return a; } /* :nodoc: */ static VALUE nucomp_marshal_load(VALUE self, VALUE a) { Check_Type(a, T_ARRAY); if (RARRAY_LEN(a) != 2) rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a)); rb_ivar_set(self, id_i_real, RARRAY_AREF(a, 0)); rb_ivar_set(self, id_i_imag, RARRAY_AREF(a, 1)); return self; } VALUE rb_complex_raw(VALUE x, VALUE y) { return nucomp_s_new_internal(rb_cComplex, x, y); } VALUE rb_complex_new(VALUE x, VALUE y) { return nucomp_s_canonicalize_internal(rb_cComplex, x, y); } VALUE rb_complex_new_polar(VALUE x, VALUE y) { return f_complex_polar(rb_cComplex, x, y); } VALUE rb_complex_polar(VALUE x, VALUE y) { return rb_complex_new_polar(x, y); } VALUE rb_Complex(VALUE x, VALUE y) { VALUE a[2]; a[0] = x; a[1] = y; return nucomp_s_convert(2, a, rb_cComplex); } VALUE rb_dbl_complex_new(double real, double imag) { return rb_complex_raw(DBL2NUM(real), DBL2NUM(imag)); } /* * call-seq: * to_i -> integer * * Returns the value of self.real as an Integer, if possible: * * Complex.rect(1, 0).to_i # => 1 * Complex.rect(1, Rational(0, 1)).to_i # => 1 * * Raises RangeError if self.imag is not exactly zero * (either Integer(0) or Rational(0, _n_)). */ static VALUE nucomp_to_i(VALUE self) { get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer", self); } return f_to_i(dat->real); } /* * call-seq: * to_f -> float * * Returns the value of self.real as a Float, if possible: * * Complex.rect(1, 0).to_f # => 1.0 * Complex.rect(1, Rational(0, 1)).to_f # => 1.0 * * Raises RangeError if self.imag is not exactly zero * (either Integer(0) or Rational(0, _n_)). */ static VALUE nucomp_to_f(VALUE self) { get_dat1(self); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float", self); } return f_to_f(dat->real); } /* * call-seq: * to_r -> rational * * Returns the value of self.real as a Rational, if possible: * * Complex.rect(1, 0).to_r # => (1/1) * Complex.rect(1, Rational(0, 1)).to_r # => (1/1) * Complex.rect(1, 0.0).to_r # => (1/1) * * Raises RangeError if self.imag is not exactly zero * (either Integer(0) or Rational(0, _n_)) * and self.imag.to_r is not exactly zero. * * Related: Complex#rationalize. */ static VALUE nucomp_to_r(VALUE self) { get_dat1(self); if (RB_FLOAT_TYPE_P(dat->imag) && FLOAT_ZERO_P(dat->imag)) { /* Do nothing here */ } else if (!k_exact_zero_p(dat->imag)) { VALUE imag = rb_check_convert_type_with_id(dat->imag, T_RATIONAL, "Rational", idTo_r); if (NIL_P(imag) || !k_exact_zero_p(imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", self); } } return f_to_r(dat->real); } /* * call-seq: * rationalize(epsilon = nil) -> rational * * Returns a Rational object whose value is exactly or approximately * equivalent to that of self.real. * * With no argument +epsilon+ given, returns a \Rational object * whose value is exactly equal to that of self.real.rationalize: * * Complex.rect(1, 0).rationalize # => (1/1) * Complex.rect(1, Rational(0, 1)).rationalize # => (1/1) * Complex.rect(3.14159, 0).rationalize # => (314159/100000) * * With argument +epsilon+ given, returns a \Rational object * whose value is exactly or approximately equal to that of self.real * to the given precision: * * Complex.rect(3.14159, 0).rationalize(0.1) # => (16/5) * Complex.rect(3.14159, 0).rationalize(0.01) # => (22/7) * Complex.rect(3.14159, 0).rationalize(0.001) # => (201/64) * Complex.rect(3.14159, 0).rationalize(0.0001) # => (333/106) * Complex.rect(3.14159, 0).rationalize(0.00001) # => (355/113) * Complex.rect(3.14159, 0).rationalize(0.000001) # => (7433/2366) * Complex.rect(3.14159, 0).rationalize(0.0000001) # => (9208/2931) * Complex.rect(3.14159, 0).rationalize(0.00000001) # => (47460/15107) * Complex.rect(3.14159, 0).rationalize(0.000000001) # => (76149/24239) * Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000) * Complex.rect(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624) * * Related: Complex#to_r. */ static VALUE nucomp_rationalize(int argc, VALUE *argv, VALUE self) { get_dat1(self); rb_check_arity(argc, 0, 1); if (!k_exact_zero_p(dat->imag)) { rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational", self); } return rb_funcallv(dat->real, id_rationalize, argc, argv); } /* * call-seq: * to_c -> self * * Returns +self+. */ static VALUE nucomp_to_c(VALUE self) { return self; } /* * call-seq: * to_c -> (0+0i) * * Returns zero as a Complex: * * nil.to_c # => (0+0i) * */ static VALUE nilclass_to_c(VALUE self) { return rb_complex_new1(INT2FIX(0)); } /* * call-seq: * to_c -> complex * * Returns +self+ as a Complex object. */ static VALUE numeric_to_c(VALUE self) { return rb_complex_new1(self); } inline static int issign(int c) { return (c == '-' || c == '+'); } static int read_sign(const char **s, char **b) { int sign = '?'; if (issign(**s)) { sign = **b = **s; (*s)++; (*b)++; } return sign; } inline static int isdecimal(int c) { return isdigit((unsigned char)c); } static int read_digits(const char **s, int strict, char **b) { int us = 1; if (!isdecimal(**s)) return 0; while (isdecimal(**s) || **s == '_') { if (**s == '_') { if (us) { if (strict) return 0; break; } us = 1; } else { **b = **s; (*b)++; us = 0; } (*s)++; } if (us) do { (*s)--; } while (**s == '_'); return 1; } inline static int islettere(int c) { return (c == 'e' || c == 'E'); } static int read_num(const char **s, int strict, char **b) { if (**s != '.') { if (!read_digits(s, strict, b)) return 0; } if (**s == '.') { **b = **s; (*s)++; (*b)++; if (!read_digits(s, strict, b)) { (*b)--; return 0; } } if (islettere(**s)) { **b = **s; (*s)++; (*b)++; read_sign(s, b); if (!read_digits(s, strict, b)) { (*b)--; return 0; } } return 1; } inline static int read_den(const char **s, int strict, char **b) { if (!read_digits(s, strict, b)) return 0; return 1; } static int read_rat_nos(const char **s, int strict, char **b) { if (!read_num(s, strict, b)) return 0; if (**s == '/') { **b = **s; (*s)++; (*b)++; if (!read_den(s, strict, b)) { (*b)--; return 0; } } return 1; } static int read_rat(const char **s, int strict, char **b) { read_sign(s, b); if (!read_rat_nos(s, strict, b)) return 0; return 1; } inline static int isimagunit(int c) { return (c == 'i' || c == 'I' || c == 'j' || c == 'J'); } static VALUE str2num(char *s) { if (strchr(s, '/')) return rb_cstr_to_rat(s, 0); if (strpbrk(s, ".eE")) return DBL2NUM(rb_cstr_to_dbl(s, 0)); return rb_cstr_to_inum(s, 10, 0); } static int read_comp(const char **s, int strict, VALUE *ret, char **b) { char *bb; int sign; VALUE num, num2; bb = *b; sign = read_sign(s, b); if (isimagunit(**s)) { (*s)++; num = INT2FIX((sign == '-') ? -1 : + 1); *ret = rb_complex_new2(ZERO, num); return 1; /* e.g. "i" */ } if (!read_rat_nos(s, strict, b)) { **b = '\0'; num = str2num(bb); *ret = rb_complex_new2(num, ZERO); return 0; /* e.g. "-" */ } **b = '\0'; num = str2num(bb); if (isimagunit(**s)) { (*s)++; *ret = rb_complex_new2(ZERO, num); return 1; /* e.g. "3i" */ } if (**s == '@') { int st; (*s)++; bb = *b; st = read_rat(s, strict, b); **b = '\0'; if (strlen(bb) < 1 || !isdecimal(*(bb + strlen(bb) - 1))) { *ret = rb_complex_new2(num, ZERO); return 0; /* e.g. "1@-" */ } num2 = str2num(bb); *ret = rb_complex_new_polar(num, num2); if (!st) return 0; /* e.g. "1@2." */ else return 1; /* e.g. "1@2" */ } if (issign(**s)) { bb = *b; sign = read_sign(s, b); if (isimagunit(**s)) num2 = INT2FIX((sign == '-') ? -1 : + 1); else { if (!read_rat_nos(s, strict, b)) { *ret = rb_complex_new2(num, ZERO); return 0; /* e.g. "1+xi" */ } **b = '\0'; num2 = str2num(bb); } if (!isimagunit(**s)) { *ret = rb_complex_new2(num, ZERO); return 0; /* e.g. "1+3x" */ } (*s)++; *ret = rb_complex_new2(num, num2); return 1; /* e.g. "1+2i" */ } /* !(@, - or +) */ { *ret = rb_complex_new2(num, ZERO); return 1; /* e.g. "3" */ } } inline static void skip_ws(const char **s) { while (isspace((unsigned char)**s)) (*s)++; } static int parse_comp(const char *s, int strict, VALUE *num) { char *buf, *b; VALUE tmp; int ret = 1; buf = ALLOCV_N(char, tmp, strlen(s) + 1); b = buf; skip_ws(&s); if (!read_comp(&s, strict, num, &b)) { ret = 0; } else { skip_ws(&s); if (strict) if (*s != '\0') ret = 0; } ALLOCV_END(tmp); return ret; } static VALUE string_to_c_strict(VALUE self, int raise) { char *s; VALUE num; rb_must_asciicompat(self); if (raise) { s = StringValueCStr(self); } else if (!(s = rb_str_to_cstr(self))) { return Qnil; } if (!parse_comp(s, TRUE, &num)) { if (!raise) return Qnil; rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE, self); } return num; } /* * call-seq: * to_c -> complex * * Returns +self+ interpreted as a Complex object; * leading whitespace and trailing garbage are ignored: * * '9'.to_c # => (9+0i) * '2.5'.to_c # => (2.5+0i) * '2.5/1'.to_c # => ((5/2)+0i) * '-3/2'.to_c # => ((-3/2)+0i) * '-i'.to_c # => (0-1i) * '45i'.to_c # => (0+45i) * '3-4i'.to_c # => (3-4i) * '-4e2-4e-2i'.to_c # => (-400.0-0.04i) * '-0.0-0.0i'.to_c # => (-0.0-0.0i) * '1/2+3/4i'.to_c # => ((1/2)+(3/4)*i) * '1.0@0'.to_c # => (1+0.0i) * "1.0@#{Math::PI/2}".to_c # => (0.0+1i) * "1.0@#{Math::PI}".to_c # => (-1+0.0i) * * Returns \Complex zero if the string cannot be converted: * * 'ruby'.to_c # => (0+0i) * * See Kernel#Complex. */ static VALUE string_to_c(VALUE self) { VALUE num; rb_must_asciicompat(self); (void)parse_comp(rb_str_fill_terminator(self, 1), FALSE, &num); return num; } static VALUE to_complex(VALUE val) { return rb_convert_type(val, T_COMPLEX, "Complex", "to_c"); } static VALUE nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise) { if (NIL_P(a1) || NIL_P(a2)) { if (!raise) return Qnil; rb_raise(rb_eTypeError, "can't convert nil into Complex"); } if (RB_TYPE_P(a1, T_STRING)) { a1 = string_to_c_strict(a1, raise); if (NIL_P(a1)) return Qnil; } if (RB_TYPE_P(a2, T_STRING)) { a2 = string_to_c_strict(a2, raise); if (NIL_P(a2)) return Qnil; } if (RB_TYPE_P(a1, T_COMPLEX)) { { get_dat1(a1); if (k_exact_zero_p(dat->imag)) a1 = dat->real; } } if (RB_TYPE_P(a2, T_COMPLEX)) { { get_dat1(a2); if (k_exact_zero_p(dat->imag)) a2 = dat->real; } } if (RB_TYPE_P(a1, T_COMPLEX)) { if (UNDEF_P(a2) || (k_exact_zero_p(a2))) return a1; } if (UNDEF_P(a2)) { if (k_numeric_p(a1) && !f_real_p(a1)) return a1; /* should raise exception for consistency */ if (!k_numeric_p(a1)) { if (!raise) { a1 = rb_protect(to_complex, a1, NULL); rb_set_errinfo(Qnil); return a1; } return to_complex(a1); } } else { if ((k_numeric_p(a1) && k_numeric_p(a2)) && (!f_real_p(a1) || !f_real_p(a2))) return f_add(a1, f_mul(a2, f_complex_new_bang2(rb_cComplex, ZERO, ONE))); } { int argc; VALUE argv2[2]; argv2[0] = a1; if (UNDEF_P(a2)) { argv2[1] = Qnil; argc = 1; } else { if (!raise && !RB_INTEGER_TYPE_P(a2) && !RB_FLOAT_TYPE_P(a2) && !RB_TYPE_P(a2, T_RATIONAL)) return Qnil; argv2[1] = a2; argc = 2; } return nucomp_s_new(argc, argv2, klass); } } static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass) { VALUE a1, a2; if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) { a2 = Qundef; } return nucomp_convert(klass, a1, a2, TRUE); } /* * call-seq: * abs2 -> real * * Returns the square of +self+. */ static VALUE numeric_abs2(VALUE self) { return f_mul(self, self); } /* * call-seq: * arg -> 0 or Math::PI * * Returns zero if +self+ is positive, Math::PI otherwise. */ static VALUE numeric_arg(VALUE self) { if (f_positive_p(self)) return INT2FIX(0); return DBL2NUM(M_PI); } /* * call-seq: * rect -> array * * Returns array [self, 0]. */ static VALUE numeric_rect(VALUE self) { return rb_assoc_new(self, INT2FIX(0)); } /* * call-seq: * polar -> array * * Returns array [self.abs, self.arg]. */ static VALUE numeric_polar(VALUE self) { VALUE abs, arg; if (RB_INTEGER_TYPE_P(self)) { abs = rb_int_abs(self); arg = numeric_arg(self); } else if (RB_FLOAT_TYPE_P(self)) { abs = rb_float_abs(self); arg = float_arg(self); } else if (RB_TYPE_P(self, T_RATIONAL)) { abs = rb_rational_abs(self); arg = numeric_arg(self); } else { abs = f_abs(self); arg = f_arg(self); } return rb_assoc_new(abs, arg); } /* * call-seq: * arg -> 0 or Math::PI * * Returns 0 if +self+ is positive, Math::PI otherwise. */ static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); } /* * A \Complex object houses a pair of values, * given when the object is created as either rectangular coordinates * or polar coordinates. * * == Rectangular Coordinates * * The rectangular coordinates of a complex number * are called the _real_ and _imaginary_ parts; * see {Complex number definition}[https://en.wikipedia.org/wiki/Complex_number#Definition_and_basic_operations]. * * You can create a \Complex object from rectangular coordinates with: * * - A {complex literal}[rdoc-ref:doc/syntax/literals.rdoc@Complex+Literals]. * - \Method Complex.rect. * - \Method Kernel#Complex, either with numeric arguments or with certain string arguments. * - \Method String#to_c, for certain strings. * * Note that each of the stored parts may be a an instance one of the classes * Complex, Float, Integer, or Rational; * they may be retrieved: * * - Separately, with methods Complex#real and Complex#imaginary. * - Together, with method Complex#rect. * * The corresponding (computed) polar values may be retrieved: * * - Separately, with methods Complex#abs and Complex#arg. * - Together, with method Complex#polar. * * == Polar Coordinates * * The polar coordinates of a complex number * are called the _absolute_ and _argument_ parts; * see {Complex polar plane}[https://en.wikipedia.org/wiki/Complex_number#Polar_form]. * * In this class, the argument part * in expressed {radians}[https://en.wikipedia.org/wiki/Radian] * (not {degrees}[https://en.wikipedia.org/wiki/Degree_(angle)]). * * You can create a \Complex object from polar coordinates with: * * - \Method Complex.polar. * - \Method Kernel#Complex, with certain string arguments. * - \Method String#to_c, for certain strings. * * Note that each of the stored parts may be a an instance one of the classes * Complex, Float, Integer, or Rational; * they may be retrieved: * * - Separately, with methods Complex#abs and Complex#arg. * - Together, with method Complex#polar. * * The corresponding (computed) rectangular values may be retrieved: * * - Separately, with methods Complex#real and Complex#imag. * - Together, with method Complex#rect. * * == What's Here * * First, what's elsewhere: * * - \Class \Complex inherits (directly or indirectly) * from classes {Numeric}[rdoc-ref:Numeric@What-27s+Here] * and {Object}[rdoc-ref:Object@What-27s+Here]. * - Includes (indirectly) module {Comparable}[rdoc-ref:Comparable@What-27s+Here]. * * Here, class \Complex has methods for: * * === Creating \Complex Objects * * - ::polar: Returns a new \Complex object based on given polar coordinates. * - ::rect (and its alias ::rectangular): * Returns a new \Complex object based on given rectangular coordinates. * * === Querying * * - #abs (and its alias #magnitude): Returns the absolute value for +self+. * - #arg (and its aliases #angle and #phase): * Returns the argument (angle) for +self+ in radians. * - #denominator: Returns the denominator of +self+. * - #finite?: Returns whether both +self.real+ and +self.image+ are finite. * - #hash: Returns the integer hash value for +self+. * - #imag (and its alias #imaginary): Returns the imaginary value for +self+. * - #infinite?: Returns whether +self.real+ or +self.image+ is infinite. * - #numerator: Returns the numerator of +self+. * - #polar: Returns the array [self.abs, self.arg]. * - #inspect: Returns a string representation of +self+. * - #real: Returns the real value for +self+. * - #real?: Returns +false+; for compatibility with Numeric#real?. * - #rect (and its alias #rectangular): * Returns the array [self.real, self.imag]. * * === Comparing * * - #<=>: Returns whether +self+ is less than, equal to, or greater than the given argument. * - #==: Returns whether +self+ is equal to the given argument. * * === Converting * * - #rationalize: Returns a Rational object whose value is exactly * or approximately equivalent to that of self.real. * - #to_c: Returns +self+. * - #to_d: Returns the value as a BigDecimal object. * - #to_f: Returns the value of self.real as a Float, if possible. * - #to_i: Returns the value of self.real as an Integer, if possible. * - #to_r: Returns the value of self.real as a Rational, if possible. * - #to_s: Returns a string representation of +self+. * * === Performing Complex Arithmetic * * - #*: Returns the product of +self+ and the given numeric. * - #**: Returns +self+ raised to power of the given numeric. * - #+: Returns the sum of +self+ and the given numeric. * - #-: Returns the difference of +self+ and the given numeric. * - #-@: Returns the negation of +self+. * - #/: Returns the quotient of +self+ and the given numeric. * - #abs2: Returns square of the absolute value (magnitude) for +self+. * - #conj (and its alias #conjugate): Returns the conjugate of +self+. * - #fdiv: Returns Complex.rect(self.real/numeric, self.imag/numeric). * * === Working with JSON * * - ::json_create: Returns a new \Complex object, * deserialized from the given serialized hash. * - #as_json: Returns a serialized hash constructed from +self+. * - #to_json: Returns a JSON string representing +self+. * * These methods are provided by the {JSON gem}[https://github.com/flori/json]. To make these methods available: * * require 'json/add/complex' * */ void Init_Complex(void) { VALUE compat; id_abs = rb_intern_const("abs"); id_arg = rb_intern_const("arg"); id_denominator = rb_intern_const("denominator"); id_numerator = rb_intern_const("numerator"); id_real_p = rb_intern_const("real?"); id_i_real = rb_intern_const("@real"); id_i_imag = rb_intern_const("@image"); /* @image, not @imag */ id_finite_p = rb_intern_const("finite?"); id_infinite_p = rb_intern_const("infinite?"); id_rationalize = rb_intern_const("rationalize"); id_PI = rb_intern_const("PI"); rb_cComplex = rb_define_class("Complex", rb_cNumeric); rb_define_alloc_func(rb_cComplex, nucomp_s_alloc); rb_undef_method(CLASS_OF(rb_cComplex), "allocate"); rb_undef_method(CLASS_OF(rb_cComplex), "new"); rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1); rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1); rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1); rb_define_global_function("Complex", nucomp_f_complex, -1); rb_undef_methods_from(rb_cComplex, RCLASS_ORIGIN(rb_mComparable)); rb_undef_method(rb_cComplex, "%"); rb_undef_method(rb_cComplex, "div"); rb_undef_method(rb_cComplex, "divmod"); rb_undef_method(rb_cComplex, "floor"); rb_undef_method(rb_cComplex, "ceil"); rb_undef_method(rb_cComplex, "modulo"); rb_undef_method(rb_cComplex, "remainder"); rb_undef_method(rb_cComplex, "round"); rb_undef_method(rb_cComplex, "step"); rb_undef_method(rb_cComplex, "truncate"); rb_undef_method(rb_cComplex, "i"); rb_define_method(rb_cComplex, "real", rb_complex_real, 0); rb_define_method(rb_cComplex, "imaginary", rb_complex_imag, 0); rb_define_method(rb_cComplex, "imag", rb_complex_imag, 0); rb_define_method(rb_cComplex, "-@", rb_complex_uminus, 0); rb_define_method(rb_cComplex, "+", rb_complex_plus, 1); rb_define_method(rb_cComplex, "-", rb_complex_minus, 1); rb_define_method(rb_cComplex, "*", rb_complex_mul, 1); rb_define_method(rb_cComplex, "/", rb_complex_div, 1); rb_define_method(rb_cComplex, "quo", nucomp_quo, 1); rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1); rb_define_method(rb_cComplex, "**", rb_complex_pow, 1); rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1); rb_define_method(rb_cComplex, "<=>", nucomp_cmp, 1); rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1); rb_define_method(rb_cComplex, "abs", rb_complex_abs, 0); rb_define_method(rb_cComplex, "magnitude", rb_complex_abs, 0); rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0); rb_define_method(rb_cComplex, "arg", rb_complex_arg, 0); rb_define_method(rb_cComplex, "angle", rb_complex_arg, 0); rb_define_method(rb_cComplex, "phase", rb_complex_arg, 0); rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0); rb_define_method(rb_cComplex, "rect", nucomp_rect, 0); rb_define_method(rb_cComplex, "polar", nucomp_polar, 0); rb_define_method(rb_cComplex, "conjugate", rb_complex_conjugate, 0); rb_define_method(rb_cComplex, "conj", rb_complex_conjugate, 0); rb_define_method(rb_cComplex, "real?", nucomp_real_p_m, 0); rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0); rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0); rb_define_method(rb_cComplex, "hash", nucomp_hash, 0); rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1); rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0); rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0); rb_undef_method(rb_cComplex, "positive?"); rb_undef_method(rb_cComplex, "negative?"); rb_define_method(rb_cComplex, "finite?", rb_complex_finite_p, 0); rb_define_method(rb_cComplex, "infinite?", rb_complex_infinite_p, 0); rb_define_private_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0); /* :nodoc: */ compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject); rb_define_private_method(compat, "marshal_load", nucomp_marshal_load, 1); rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader); rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0); rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0); rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0); rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1); rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0); rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0); rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0); rb_define_method(rb_cString, "to_c", string_to_c, 0); rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1); rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0); rb_define_method(rb_cNumeric, "arg", numeric_arg, 0); rb_define_method(rb_cNumeric, "angle", numeric_arg, 0); rb_define_method(rb_cNumeric, "phase", numeric_arg, 0); rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0); rb_define_method(rb_cNumeric, "rect", numeric_rect, 0); rb_define_method(rb_cNumeric, "polar", numeric_polar, 0); rb_define_method(rb_cFloat, "arg", float_arg, 0); rb_define_method(rb_cFloat, "angle", float_arg, 0); rb_define_method(rb_cFloat, "phase", float_arg, 0); /* * Equivalent * to Complex.rect(0, 1): * * Complex::I # => (0+1i) * */ rb_define_const(rb_cComplex, "I", f_complex_new_bang2(rb_cComplex, ZERO, ONE)); #if !USE_FLONUM rb_vm_register_global_object(RFLOAT_0 = DBL2NUM(0.0)); #endif rb_provide("complex.so"); /* for backward compatibility */ }