class Numeric
# call-seq:
# dup -> self
#
# Returns +self+.
#
# Related: Numeric#clone.
#
def dup
self
end
# call-seq:
# real? -> true or false
#
# Returns +true+ if +self+ is a real number (i.e. not Complex).
#
def real?
true
end
# call-seq:
# real -> self
#
# Returns +self+.
#
def real
self
end
# call-seq:
# integer? -> true or false
#
# Returns +true+ if +self+ is an Integer.
#
# 1.0.integer? # => false
# 1.integer? # => true
#
def integer?
false
end
# call-seq:
# finite? -> true or false
#
# Returns +true+ if +self+ is a finite number, +false+ otherwise.
#
def finite?
true
end
# call-seq:
# infinite? -> -1, 1, or nil
#
# Returns +nil+, -1, or 1 depending on whether +self+ is
# finite, -Infinity, or +Infinity.
#
def infinite?
nil
end
# call-seq:
# imag -> 0
#
# Returns zero.
#
def imaginary
0
end
alias imag imaginary
# call-seq:
# conj -> self
#
# Returns +self+.
#
def conjugate
self
end
alias conj conjugate
# call-seq:
# +self -> self
#
# Returns +self+.
#
def +@
self
end
end
class Integer
# call-seq:
# -int -> integer
#
# Returns +self+, negated.
def -@
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_uminus(self)'
end
# call-seq:
# ~int -> integer
#
# One's complement:
# returns the value of +self+ with each bit inverted.
#
# Because an integer value is conceptually of infinite length,
# the result acts as if it had an infinite number of
# one bits to the left.
# In hex representations, this is displayed
# as two periods to the left of the digits:
#
# sprintf("%X", ~0x1122334455) # => "..FEEDDCCBBAA"
#
def ~
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_comp(self)'
end
# call-seq:
# abs -> integer
#
# Returns the absolute value of +self+.
#
# (-12345).abs # => 12345
# -12345.abs # => 12345
# 12345.abs # => 12345
#
def abs
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_abs(self)'
end
# call-seq:
# bit_length -> integer
#
# Returns the number of bits of the value of +self+,
# which is the bit position of the highest-order bit
# that is different from the sign bit
# (where the least significant bit has bit position 1).
# If there is no such bit (zero or minus one), returns zero.
#
# This method returns ceil(log2(self < 0 ? -self : self + 1))>.
#
# (-2**1000-1).bit_length # => 1001
# (-2**1000).bit_length # => 1000
# (-2**1000+1).bit_length # => 1000
# (-2**12-1).bit_length # => 13
# (-2**12).bit_length # => 12
# (-2**12+1).bit_length # => 12
# -0x101.bit_length # => 9
# -0x100.bit_length # => 8
# -0xff.bit_length # => 8
# -2.bit_length # => 1
# -1.bit_length # => 0
# 0.bit_length # => 0
# 1.bit_length # => 1
# 0xff.bit_length # => 8
# 0x100.bit_length # => 9
# (2**12-1).bit_length # => 12
# (2**12).bit_length # => 13
# (2**12+1).bit_length # => 13
# (2**1000-1).bit_length # => 1000
# (2**1000).bit_length # => 1001
# (2**1000+1).bit_length # => 1001
#
# For \Integer _n_,
# this method can be used to detect overflow in Array#pack:
#
# if n.bit_length < 32
# [n].pack('l') # No overflow.
# else
# raise 'Overflow'
# end
#
def bit_length
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_bit_length(self)'
end
# call-seq:
# even? -> true or false
#
# Returns +true+ if +self+ is an even number, +false+ otherwise.
def even?
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_even_p(self)'
end
# call-seq:
# integer? -> true
#
# Since +self+ is already an \Integer, always returns +true+.
def integer?
true
end
alias magnitude abs
# call-seq:
# odd? -> true or false
#
# Returns +true+ if +self+ is an odd number, +false+ otherwise.
def odd?
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_odd_p(self)'
end
# call-seq:
# ord -> self
#
# Returns +self+;
# intended for compatibility to character literals in Ruby 1.9.
def ord
self
end
# call-seq:
# size -> integer
#
# Returns the number of bytes in the machine representation of +self+;
# the value is system-dependent:
#
# 1.size # => 8
# -1.size # => 8
# 2147483647.size # => 8
# (256**10 - 1).size # => 10
# (256**20 - 1).size # => 20
# (256**40 - 1).size # => 40
#
def size
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_size(self)'
end
# call-seq:
# times {|i| ... } -> self
# times -> enumerator
#
# Calls the given block +self+ times with each integer in (0..self-1):
#
# a = []
# 5.times {|i| a.push(i) } # => 5
# a # => [0, 1, 2, 3, 4]
#
# With no block given, returns an Enumerator.
def times
Primitive.attr! :inline_block
unless defined?(yield)
return Primitive.cexpr! 'SIZED_ENUMERATOR(self, 0, 0, int_dotimes_size)'
end
i = 0
while i < self
yield i
i = i.succ
end
self
end
# call-seq:
# to_i -> self
#
# Returns +self+ (which is already an \Integer).
def to_i
self
end
# call-seq:
# to_int -> self
#
# Returns +self+ (which is already an \Integer).
def to_int
self
end
# call-seq:
# zero? -> true or false
#
# Returns +true+ if +self+ has a zero value, +false+ otherwise.
def zero?
Primitive.attr! :leaf
Primitive.cexpr! 'rb_int_zero_p(self)'
end
# call-seq:
# ceildiv(numeric) -> integer
#
# Returns the result of division +self+ by +numeric+.
# rounded up to the nearest integer.
#
# 3.ceildiv(3) # => 1
# 4.ceildiv(3) # => 2
#
# 4.ceildiv(-3) # => -1
# -4.ceildiv(3) # => -1
# -4.ceildiv(-3) # => 2
#
# 3.ceildiv(1.2) # => 3
#
def ceildiv(other)
-div(0 - other)
end
#
# call-seq:
# numerator -> self
#
# Returns +self+.
#
def numerator
self
end
# call-seq:
# denominator -> 1
#
# Returns +1+.
def denominator
1
end
with_yjit do
if Primitive.rb_builtin_basic_definition_p(:downto)
undef :downto
def downto(to) # :nodoc:
Primitive.attr! :inline_block, :c_trace
# When no block is given, return an Enumerator that enumerates from `self` to `to`.
# Not using `block_given?` and `to_enum` to keep them unaffected by redefinitions.
unless defined?(yield)
return Primitive.cexpr! 'SIZED_ENUMERATOR(self, 1, &to, int_downto_size)'
end
from = self
while from >= to
yield from
from = from.pred
end
self
end
end
end
end
class Float
# call-seq:
# to_f -> self
#
# Returns +self+ (which is already a \Float).
def to_f
self
end
# call-seq:
# float.abs -> float
#
# Returns the absolute value of +self+:
#
# (-34.56).abs # => 34.56
# -34.56.abs # => 34.56
# 34.56.abs # => 34.56
#
def abs
Primitive.attr! :leaf
Primitive.cexpr! 'rb_float_abs(self)'
end
alias magnitude abs
# call-seq:
# -float -> float
#
# Returns +self+, negated.
#
def -@
Primitive.attr! :leaf
Primitive.cexpr! 'rb_float_uminus(self)'
end
# call-seq:
# zero? -> true or false
#
# Returns +true+ if +self+ is 0.0, +false+ otherwise.
def zero?
Primitive.attr! :leaf
Primitive.cexpr! 'RBOOL(FLOAT_ZERO_P(self))'
end
# call-seq:
# positive? -> true or false
#
# Returns +true+ if +self+ is greater than 0, +false+ otherwise.
def positive?
Primitive.attr! :leaf
Primitive.cexpr! 'RBOOL(RFLOAT_VALUE(self) > 0.0)'
end
# call-seq:
# negative? -> true or false
#
# Returns +true+ if +self+ is less than 0, +false+ otherwise.
def negative?
Primitive.attr! :leaf
Primitive.cexpr! 'RBOOL(RFLOAT_VALUE(self) < 0.0)'
end
end