/************************************************ enumerator.c - provides Enumerator class $Author$ Copyright (C) 2001-2003 Akinori MUSHA $Idaemons: /home/cvs/rb/enumerator/enumerator.c,v 1.1.1.1 2001/07/15 10:12:48 knu Exp $ $RoughId: enumerator.c,v 1.6 2003/07/27 11:03:24 nobu Exp $ $Id$ ************************************************/ #include "ruby/ruby.h" /* * Document-class: Enumerator * * A class which provides a method `each' to be used as an Enumerable * object. * * An enumerator can be created by following methods. * - Kernel#to_enum * - Kernel#enum_for * - Enumerator.new * * Also, most iteration methods without a block returns an enumerator. * For example, Array#map returns an enumerator if no block given. * The enumerator has with_index. * So ary.map.with_index works as follows. * * p [1,2,3].map.with_index {|o, i| o+i } #=> [1, 3, 5] * * An enumerator object can be used as an external iterator. * I.e. Enumerator#next returns the next value of the iterator. * Enumerator#next raises StopIteration at end. * * e = [1,2,3].each # enumerator object. * p e.next #=> 1 * p e.next #=> 2 * p e.next #=> 3 * p e.next #raises StopIteration * * An external iterator can be used to implement an internal iterator as follows. * * def ext_each(e) * while true * begin * vs = e.next_values * rescue StopIteration * return $!.result * end * y = yield *vs * e.feed y * end * end * * o = Object.new * def o.each * p yield * p yield 1 * p yield(1, 2) * 3 * end * * # use o.each as an internal iterator directly. * p o.each {|*x| p x; [:b, *x] } * #=> [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3 * * # convert o.each to an external external iterator for * # implementing an internal iterator. * p ext_each(o.to_enum) {|*x| p x; [:b, *x] } * #=> [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3 * */ VALUE rb_cEnumerator; static ID id_rewind, id_each; static VALUE sym_each; VALUE rb_eStopIteration; struct enumerator { VALUE obj; ID meth; VALUE args; VALUE fib; VALUE dst; VALUE lookahead; VALUE feedvalue; VALUE stop_exc; }; static VALUE rb_cGenerator, rb_cYielder; struct generator { VALUE proc; }; struct yielder { VALUE proc; }; static VALUE generator_allocate(VALUE klass); static VALUE generator_init(VALUE obj, VALUE proc); /* * Enumerator */ static void enumerator_mark(void *p) { struct enumerator *ptr = p; rb_gc_mark(ptr->obj); rb_gc_mark(ptr->args); rb_gc_mark(ptr->fib); rb_gc_mark(ptr->dst); rb_gc_mark(ptr->lookahead); rb_gc_mark(ptr->feedvalue); rb_gc_mark(ptr->stop_exc); } static struct enumerator * enumerator_ptr(VALUE obj) { struct enumerator *ptr; Data_Get_Struct(obj, struct enumerator, ptr); if (RDATA(obj)->dmark != enumerator_mark) { rb_raise(rb_eTypeError, "wrong argument type %s (expected %s)", rb_obj_classname(obj), rb_class2name(rb_cEnumerator)); } if (!ptr || ptr->obj == Qundef) { rb_raise(rb_eArgError, "uninitialized enumerator"); } return ptr; } /* * call-seq: * obj.to_enum(method = :each, *args) * obj.enum_for(method = :each, *args) * * Returns Enumerator.new(self, method, *args). * * e.g.: * * str = "xyz" * * enum = str.enum_for(:each_byte) * a = enum.map {|b| '%02x' % b } #=> ["78", "79", "7a"] * * # protects an array from being modified * a = [1, 2, 3] * some_method(a.to_enum) * */ static VALUE obj_to_enum(int argc, VALUE *argv, VALUE obj) { VALUE meth = sym_each; if (argc > 0) { --argc; meth = *argv++; } return rb_enumeratorize(obj, meth, argc, argv); } static VALUE each_slice_i(VALUE val, VALUE *memo) { VALUE ary = memo[0]; VALUE v = Qnil; long size = (long)memo[1]; rb_ary_push(ary, val); if (RARRAY_LEN(ary) == size) { v = rb_yield(ary); memo[0] = rb_ary_new2(size); } return v; } /* * call-seq: * e.each_slice(n) {...} * e.each_slice(n) * * Iterates the given block for each slice of elements. If no * block is given, returns an enumerator. * * e.g.: * (1..10).each_slice(3) {|a| p a} * # outputs below * [1, 2, 3] * [4, 5, 6] * [7, 8, 9] * [10] * */ static VALUE enum_each_slice(VALUE obj, VALUE n) { long size = NUM2LONG(n); VALUE args[2], ary; if (size <= 0) rb_raise(rb_eArgError, "invalid slice size"); RETURN_ENUMERATOR(obj, 1, &n); args[0] = rb_ary_new2(size); args[1] = (VALUE)size; rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)args); ary = args[0]; if (RARRAY_LEN(ary) > 0) rb_yield(ary); return Qnil; } static VALUE each_cons_i(VALUE val, VALUE *memo) { VALUE ary = memo[0]; VALUE v = Qnil; long size = (long)memo[1]; if (RARRAY_LEN(ary) == size) { rb_ary_shift(ary); } rb_ary_push(ary, val); if (RARRAY_LEN(ary) == size) { v = rb_yield(rb_ary_dup(ary)); } return v; } /* * call-seq: * each_cons(n) {...} * each_cons(n) * * Iterates the given block for each array of consecutive * elements. If no block is given, returns an enumerator. * * e.g.: * (1..10).each_cons(3) {|a| p a} * # outputs below * [1, 2, 3] * [2, 3, 4] * [3, 4, 5] * [4, 5, 6] * [5, 6, 7] * [6, 7, 8] * [7, 8, 9] * [8, 9, 10] * */ static VALUE enum_each_cons(VALUE obj, VALUE n) { long size = NUM2LONG(n); VALUE args[2]; if (size <= 0) rb_raise(rb_eArgError, "invalid size"); RETURN_ENUMERATOR(obj, 1, &n); args[0] = rb_ary_new2(size); args[1] = (VALUE)size; rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)args); return Qnil; } static VALUE each_with_object_i(VALUE val, VALUE memo) { return rb_yield_values(2, val, memo); } /* * call-seq: * each_with_object(obj) {|(*args), memo_obj| ... } * each_with_object(obj) * * Iterates the given block for each element with an arbitrary * object given, and returns the initially given object. * * If no block is given, returns an enumerator. * * e.g.: * evens = (1..10).each_with_object([]) {|i, a| a << i*2 } * # => [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] * */ static VALUE enum_each_with_object(VALUE obj, VALUE memo) { RETURN_ENUMERATOR(obj, 1, &memo); rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo); return memo; } static VALUE enumerator_allocate(VALUE klass) { struct enumerator *ptr; VALUE enum_obj; enum_obj = Data_Make_Struct(klass, struct enumerator, enumerator_mark, -1, ptr); ptr->obj = Qundef; return enum_obj; } static VALUE enumerator_each_i(VALUE v, VALUE enum_obj, int argc, VALUE *argv) { return rb_yield_values2(argc, argv); } static VALUE enumerator_init(VALUE enum_obj, VALUE obj, VALUE meth, int argc, VALUE *argv) { struct enumerator *ptr; Data_Get_Struct(enum_obj, struct enumerator, ptr); if (!ptr) { rb_raise(rb_eArgError, "unallocated enumerator"); } ptr->obj = obj; ptr->meth = rb_to_id(meth); if (argc) ptr->args = rb_ary_new4(argc, argv); ptr->fib = 0; ptr->dst = Qnil; ptr->lookahead = Qundef; ptr->feedvalue = Qundef; ptr->stop_exc = Qfalse; return enum_obj; } /* * call-seq: * Enumerator.new(obj, method = :each, *args) * Enumerator.new { |y| ... } * * Creates a new Enumerator object, which is to be used as an * Enumerable object iterating in a given way. * * In the first form, a generated Enumerator iterates over the given * object using the given method with the given arguments passed. * Use of this form is discouraged. Use Kernel#enum_for(), alias * to_enum, instead. * * e = Enumerator.new(ObjectSpace, :each_object) * #-> ObjectSpace.enum_for(:each_object) * * e.select { |obj| obj.is_a?(Class) } #=> array of all classes * * In the second form, iteration is defined by the given block, in * which a "yielder" object given as block parameter can be used to * yield a value by calling the +yield+ method, alias +<<+. * * fib = Enumerator.new { |y| * a = b = 1 * loop { * y << a * a, b = b, a + b * } * } * * p fib.take(10) #=> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55] */ static VALUE enumerator_initialize(int argc, VALUE *argv, VALUE obj) { VALUE recv, meth = sym_each; if (argc == 0) { if (!rb_block_given_p()) rb_raise(rb_eArgError, "wrong number of argument (0 for 1+)"); recv = generator_init(generator_allocate(rb_cGenerator), rb_block_proc()); } else { recv = *argv++; if (--argc) { meth = *argv++; --argc; } } return enumerator_init(obj, recv, meth, argc, argv); } /* :nodoc: */ static VALUE enumerator_init_copy(VALUE obj, VALUE orig) { struct enumerator *ptr0, *ptr1; ptr0 = enumerator_ptr(orig); if (ptr0->fib) { /* Fibers cannot be copied */ rb_raise(rb_eTypeError, "can't copy execution context"); } Data_Get_Struct(obj, struct enumerator, ptr1); if (!ptr1) { rb_raise(rb_eArgError, "unallocated enumerator"); } ptr1->obj = ptr0->obj; ptr1->meth = ptr0->meth; ptr1->args = ptr0->args; ptr1->fib = 0; ptr1->lookahead = Qundef; ptr1->feedvalue = Qundef; return obj; } VALUE rb_enumeratorize(VALUE obj, VALUE meth, int argc, VALUE *argv) { return enumerator_init(enumerator_allocate(rb_cEnumerator), obj, meth, argc, argv); } /* * call-seq: * enum.each {...} * * Iterates the given block using the object and the method specified * in the first place. If no block is given, returns self. * */ static VALUE enumerator_each(VALUE obj) { struct enumerator *e; int argc = 0; VALUE *argv = 0; if (!rb_block_given_p()) return obj; e = enumerator_ptr(obj); if (e->args) { argc = RARRAY_LENINT(e->args); argv = RARRAY_PTR(e->args); } return rb_block_call(e->obj, e->meth, argc, argv, enumerator_each_i, (VALUE)e); } static VALUE enumerator_with_index_i(VALUE val, VALUE *memo, int argc, VALUE *argv) { VALUE idx; idx = INT2FIX(*memo); ++*memo; if (argc <= 1) return rb_yield_values(2, val, idx); return rb_yield_values(2, rb_ary_new4(argc, argv), idx); } /* * call-seq: * e.with_index(offset = 0) {|(*args), idx| ... } * e.with_index(offset = 0) * * Iterates the given block for each element with an index, which * starts from +offset+. If no block is given, returns an enumerator. * */ static VALUE enumerator_with_index(int argc, VALUE *argv, VALUE obj) { struct enumerator *e; VALUE memo; rb_scan_args(argc, argv, "01", &memo); RETURN_ENUMERATOR(obj, argc, argv); memo = NIL_P(memo) ? 0 : (VALUE)NUM2LONG(memo); e = enumerator_ptr(obj); if (e->args) { argc = RARRAY_LENINT(e->args); argv = RARRAY_PTR(e->args); } else { argc = 0; argv = NULL; } return rb_block_call(e->obj, e->meth, argc, argv, enumerator_with_index_i, (VALUE)&memo); } /* * call-seq: * e.each_with_index {|(*args), idx| ... } * e.each_with_index * * Same as Enumeartor#with_index, except each_with_index does not * receive an offset argument. * */ static VALUE enumerator_each_with_index(VALUE obj) { return enumerator_with_index(0, NULL, obj); } static VALUE enumerator_with_object_i(VALUE val, VALUE memo, int argc, VALUE *argv) { if (argc <= 1) return rb_yield_values(2, val, memo); return rb_yield_values(2, rb_ary_new4(argc, argv), memo); } /* * call-seq: * e.with_object(obj) {|(*args), memo_obj| ... } * e.with_object(obj) * * Iterates the given block for each element with an arbitrary * object given, and returns the initially given object. * * If no block is given, returns an enumerator. * */ static VALUE enumerator_with_object(VALUE obj, VALUE memo) { struct enumerator *e; int argc = 0; VALUE *argv = 0; RETURN_ENUMERATOR(obj, 1, &memo); e = enumerator_ptr(obj); if (e->args) { argc = RARRAY_LENINT(e->args); argv = RARRAY_PTR(e->args); } rb_block_call(e->obj, e->meth, argc, argv, enumerator_with_object_i, memo); return memo; } static VALUE next_ii(VALUE i, VALUE obj, int argc, VALUE *argv) { struct enumerator *e = enumerator_ptr(obj); VALUE feedvalue = Qnil; VALUE args = rb_ary_new4(argc, argv); rb_fiber_yield(1, &args); if (e->feedvalue != Qundef) { feedvalue = e->feedvalue; e->feedvalue = Qundef; } return feedvalue; } static VALUE next_i(VALUE curr, VALUE obj) { struct enumerator *e = enumerator_ptr(obj); VALUE nil = Qnil; VALUE result; result = rb_block_call(obj, id_each, 0, 0, next_ii, obj); e->stop_exc = rb_exc_new2(rb_eStopIteration, "iteration reached at end"); rb_ivar_set(e->stop_exc, rb_intern("result"), result); return rb_fiber_yield(1, &nil); } static void next_init(VALUE obj, struct enumerator *e) { VALUE curr = rb_fiber_current(); e->dst = curr; e->fib = rb_fiber_new(next_i, obj); e->lookahead = Qundef; } static VALUE get_next_values(VALUE obj, struct enumerator *e) { VALUE curr, vs; if (e->stop_exc) rb_exc_raise(e->stop_exc); curr = rb_fiber_current(); if (!e->fib || !rb_fiber_alive_p(e->fib)) { next_init(obj, e); } vs = rb_fiber_resume(e->fib, 1, &curr); if (e->stop_exc) { e->fib = 0; e->dst = Qnil; e->lookahead = Qundef; e->feedvalue = Qundef; rb_exc_raise(e->stop_exc); } return vs; } /* * call-seq: * e.next_values => array * * Returns the next object as an array in the enumerator, * and move the internal position forward. * When the position reached at the end, StopIteration is raised. * * This method can be used to distinguish yield and yield nil. * * o = Object.new * def o.each * yield * yield 1 * yield 1, 2 * yield nil * yield [1, 2] * end * e = o.to_enum * p e.next_values * p e.next_values * p e.next_values * p e.next_values * p e.next_values * e = o.to_enum * p e.next * p e.next * p e.next * p e.next * p e.next * * ## yield args next_values next * # yield [] nil * # yield 1 [1] 1 * # yield 1, 2 [1, 2] [1, 2] * # yield nil [nil] nil * # yield [1, 2] [[1, 2]] [1, 2] * * Note that enumeration sequence by next_values method does not affect other * non-external enumeration methods, unless underlying iteration * methods itself has side-effect, e.g. IO#each_line. * */ static VALUE enumerator_next_values(VALUE obj) { struct enumerator *e = enumerator_ptr(obj); VALUE vs; if (e->lookahead != Qundef) { vs = e->lookahead; e->lookahead = Qundef; return vs; } return get_next_values(obj, e); } static VALUE ary2sv(VALUE args) { if (TYPE(args) != T_ARRAY) return args; switch (RARRAY_LEN(args)) { case 0: return Qnil; case 1: return RARRAY_PTR(args)[0]; default: return args; } } /* * call-seq: * e.next => object * * Returns the next object in the enumerator, and move the internal * position forward. When the position reached at the end, StopIteration * is raised. * * Note that enumeration sequence by next method does not affect other * non-external enumeration methods, unless underlying iteration * methods itself has side-effect, e.g. IO#each_line. * */ static VALUE enumerator_next(VALUE obj) { VALUE vs = enumerator_next_values(obj); return ary2sv(vs); } /* * call-seq: * e.peek_values => array * * Returns the next object as an array in the enumerator, * but don't move the internal position forward. * When the position reached at the end, StopIteration is raised. * * o = Object.new * def o.each * yield * yield 1 * yield 1, 2 * end * e = o.to_enum * p e.peek_values #=> [] * e.next * p e.peek_values #=> [1] * e.next * p e.peek_values #=> [1, 2] * e.next * p e.peek_values # raises StopIteration * */ static VALUE enumerator_peek_values(VALUE obj) { struct enumerator *e = enumerator_ptr(obj); if (e->lookahead == Qundef) { e->lookahead = get_next_values(obj, e); } return e->lookahead; } /* * call-seq: * e.peek => object * * Returns the next object in the enumerator, but don't move the internal * position forward. When the position reached at the end, StopIteration * is raised. * */ static VALUE enumerator_peek(VALUE obj) { VALUE vs = enumerator_peek_values(obj); return ary2sv(vs); } /* * call-seq: * e.feed obj => nil * * Set the value for the next yield in the enumerator returns. * * If the value is not set, yield returns nil. * * This value is cleared after used. * * o = Object.new * def o.each * p yield #=> 1 * p yield #=> nil * p yield * end * e = o.to_enum * e.next * e.feed 1 * e.next * e.next * */ static VALUE enumerator_feed(VALUE obj, VALUE v) { struct enumerator *e = enumerator_ptr(obj); if (e->feedvalue != Qundef) { rb_raise(rb_eTypeError, "feed value already set"); } e->feedvalue = v; return Qnil; } /* * call-seq: * e.rewind => e * * Rewinds the enumeration sequence by the next method. * * If the enclosed object responds to a "rewind" method, it is called. */ static VALUE enumerator_rewind(VALUE obj) { struct enumerator *e = enumerator_ptr(obj); if (rb_respond_to(e->obj, id_rewind)) rb_funcall(e->obj, id_rewind, 0); e->fib = 0; e->dst = Qnil; e->lookahead = Qundef; e->feedvalue = Qundef; e->stop_exc = Qfalse; return obj; } static VALUE inspect_enumerator(VALUE obj, VALUE dummy, int recur) { struct enumerator *e = enumerator_ptr(obj); const char *cname = rb_obj_classname(obj); VALUE eobj, str; int tainted, untrusted; if (recur) { str = rb_sprintf("#<%s: ...>", cname); OBJ_TAINT(str); return str; } eobj = e->obj; tainted = OBJ_TAINTED(eobj); untrusted = OBJ_UNTRUSTED(eobj); /* (1..100).each_cons(2) => "#" */ str = rb_sprintf("#<%s: ", cname); rb_str_concat(str, rb_inspect(eobj)); rb_str_buf_cat2(str, ":"); rb_str_buf_cat2(str, rb_id2name(e->meth)); if (e->args) { long argc = RARRAY_LEN(e->args); VALUE *argv = RARRAY_PTR(e->args); rb_str_buf_cat2(str, "("); while (argc--) { VALUE arg = *argv++; rb_str_concat(str, rb_inspect(arg)); rb_str_buf_cat2(str, argc > 0 ? ", " : ")"); if (OBJ_TAINTED(arg)) tainted = TRUE; if (OBJ_UNTRUSTED(arg)) untrusted = TRUE; } } rb_str_buf_cat2(str, ">"); if (tainted) OBJ_TAINT(str); if (untrusted) OBJ_UNTRUST(str); return str; } /* * call-seq: * e.inspect => string * * Create a printable version of e. */ static VALUE enumerator_inspect(VALUE obj) { return rb_exec_recursive(inspect_enumerator, obj, 0); } /* * Yielder */ static void yielder_mark(void *p) { struct yielder *ptr = p; rb_gc_mark(ptr->proc); } static struct yielder * yielder_ptr(VALUE obj) { struct yielder *ptr; Data_Get_Struct(obj, struct yielder, ptr); if (RDATA(obj)->dmark != yielder_mark) { rb_raise(rb_eTypeError, "wrong argument type %s (expected %s)", rb_obj_classname(obj), rb_class2name(rb_cYielder)); } if (!ptr || ptr->proc == Qundef) { rb_raise(rb_eArgError, "uninitialized yielder"); } return ptr; } /* :nodoc: */ static VALUE yielder_allocate(VALUE klass) { struct yielder *ptr; VALUE obj; obj = Data_Make_Struct(klass, struct yielder, yielder_mark, -1, ptr); ptr->proc = Qundef; return obj; } static VALUE yielder_init(VALUE obj, VALUE proc) { struct yielder *ptr; Data_Get_Struct(obj, struct yielder, ptr); if (!ptr) { rb_raise(rb_eArgError, "unallocated yielder"); } ptr->proc = proc; return obj; } /* :nodoc: */ static VALUE yielder_initialize(VALUE obj) { rb_need_block(); return yielder_init(obj, rb_block_proc()); } /* :nodoc: */ static VALUE yielder_yield(VALUE obj, VALUE args) { struct yielder *ptr = yielder_ptr(obj); return rb_proc_call(ptr->proc, args); } static VALUE yielder_yield_i(VALUE obj, VALUE memo, int argc, VALUE *argv) { return rb_yield_values2(argc, argv); } static VALUE yielder_new(void) { return yielder_init(yielder_allocate(rb_cYielder), rb_proc_new(yielder_yield_i, 0)); } /* * Generator */ static void generator_mark(void *p) { struct generator *ptr = p; rb_gc_mark(ptr->proc); } static struct generator * generator_ptr(VALUE obj) { struct generator *ptr; Data_Get_Struct(obj, struct generator, ptr); if (RDATA(obj)->dmark != generator_mark) { rb_raise(rb_eTypeError, "wrong argument type %s (expected %s)", rb_obj_classname(obj), rb_class2name(rb_cGenerator)); } if (!ptr || ptr->proc == Qundef) { rb_raise(rb_eArgError, "uninitialized generator"); } return ptr; } /* :nodoc: */ static VALUE generator_allocate(VALUE klass) { struct generator *ptr; VALUE obj; obj = Data_Make_Struct(klass, struct generator, generator_mark, -1, ptr); ptr->proc = Qundef; return obj; } static VALUE generator_init(VALUE obj, VALUE proc) { struct generator *ptr; Data_Get_Struct(obj, struct generator, ptr); if (!ptr) { rb_raise(rb_eArgError, "unallocated generator"); } ptr->proc = proc; return obj; } VALUE rb_obj_is_proc(VALUE proc); /* :nodoc: */ static VALUE generator_initialize(int argc, VALUE *argv, VALUE obj) { VALUE proc; if (argc == 0) { rb_need_block(); proc = rb_block_proc(); } else { rb_scan_args(argc, argv, "1", &proc); if (!rb_obj_is_proc(proc)) rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc)", rb_obj_classname(proc)); if (rb_block_given_p()) { rb_warn("given block not used"); } } return generator_init(obj, proc); } /* :nodoc: */ static VALUE generator_init_copy(VALUE obj, VALUE orig) { struct generator *ptr0, *ptr1; ptr0 = generator_ptr(orig); Data_Get_Struct(obj, struct generator, ptr1); if (!ptr1) { rb_raise(rb_eArgError, "unallocated generator"); } ptr1->proc = ptr0->proc; return obj; } /* :nodoc: */ static VALUE generator_each(VALUE obj) { struct generator *ptr = generator_ptr(obj); VALUE yielder; yielder = yielder_new(); return rb_proc_call(ptr->proc, rb_ary_new3(1, yielder)); } /* * StopIteration */ /* * call-seq: * stopiteration.result => value * * Returns the return value of the iterator. * * * o = Object.new * def o.each * yield 1 * yield 2 * yield 3 * 100 * end * e = o.to_enum * p e.next #=> 1 * p e.next #=> 2 * p e.next #=> 3 * begin * e.next * rescue StopIteration * p $!.result #=> 100 * end * */ static VALUE stop_result(VALUE self) { return rb_attr_get(self, rb_intern("result")); } void Init_Enumerator(void) { rb_define_method(rb_mKernel, "to_enum", obj_to_enum, -1); rb_define_method(rb_mKernel, "enum_for", obj_to_enum, -1); rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1); rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1); rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1); rb_cEnumerator = rb_define_class("Enumerator", rb_cObject); rb_include_module(rb_cEnumerator, rb_mEnumerable); rb_define_alloc_func(rb_cEnumerator, enumerator_allocate); rb_define_method(rb_cEnumerator, "initialize", enumerator_initialize, -1); rb_define_method(rb_cEnumerator, "initialize_copy", enumerator_init_copy, 1); rb_define_method(rb_cEnumerator, "each", enumerator_each, 0); rb_define_method(rb_cEnumerator, "each_with_index", enumerator_each_with_index, 0); rb_define_method(rb_cEnumerator, "each_with_object", enumerator_with_object, 1); rb_define_method(rb_cEnumerator, "with_index", enumerator_with_index, -1); rb_define_method(rb_cEnumerator, "with_object", enumerator_with_object, 1); rb_define_method(rb_cEnumerator, "next_values", enumerator_next_values, 0); rb_define_method(rb_cEnumerator, "peek_values", enumerator_peek_values, 0); rb_define_method(rb_cEnumerator, "next", enumerator_next, 0); rb_define_method(rb_cEnumerator, "peek", enumerator_peek, 0); rb_define_method(rb_cEnumerator, "feed", enumerator_feed, 1); rb_define_method(rb_cEnumerator, "rewind", enumerator_rewind, 0); rb_define_method(rb_cEnumerator, "inspect", enumerator_inspect, 0); rb_eStopIteration = rb_define_class("StopIteration", rb_eIndexError); rb_define_method(rb_eStopIteration, "result", stop_result, 0); /* Generator */ rb_cGenerator = rb_define_class_under(rb_cEnumerator, "Generator", rb_cObject); rb_include_module(rb_cGenerator, rb_mEnumerable); rb_define_alloc_func(rb_cGenerator, generator_allocate); rb_define_method(rb_cGenerator, "initialize", generator_initialize, -1); rb_define_method(rb_cGenerator, "initialize_copy", generator_init_copy, 1); rb_define_method(rb_cGenerator, "each", generator_each, 0); /* Yielder */ rb_cYielder = rb_define_class_under(rb_cEnumerator, "Yielder", rb_cObject); rb_define_alloc_func(rb_cYielder, yielder_allocate); rb_define_method(rb_cYielder, "initialize", yielder_initialize, 0); rb_define_method(rb_cYielder, "yield", yielder_yield, -2); rb_define_method(rb_cYielder, "<<", yielder_yield, -2); id_rewind = rb_intern("rewind"); id_each = rb_intern("each"); sym_each = ID2SYM(id_each); rb_provide("enumerator.so"); /* for backward compatibility */ }