/********************************************************************** iseq.c - $Author$ created at: 2006-07-11(Tue) 09:00:03 +0900 Copyright (C) 2006 Koichi Sasada **********************************************************************/ #define RUBY_VM_INSNS_INFO 1 /* #define RUBY_MARK_FREE_DEBUG 1 */ #include "ruby/internal/config.h" #ifdef HAVE_DLADDR # include #endif #include "eval_intern.h" #include "id_table.h" #include "internal.h" #include "internal/bits.h" #include "internal/class.h" #include "internal/compile.h" #include "internal/error.h" #include "internal/file.h" #include "internal/gc.h" #include "internal/hash.h" #include "internal/io.h" #include "internal/ruby_parser.h" #include "internal/sanitizers.h" #include "internal/symbol.h" #include "internal/thread.h" #include "internal/variable.h" #include "iseq.h" #include "rjit.h" #include "ruby/util.h" #include "vm_core.h" #include "vm_callinfo.h" #include "yjit.h" #include "ruby/ractor.h" #include "builtin.h" #include "insns.inc" #include "insns_info.inc" VALUE rb_cISeq; static VALUE iseqw_new(const rb_iseq_t *iseq); static const rb_iseq_t *iseqw_check(VALUE iseqw); #if VM_INSN_INFO_TABLE_IMPL == 2 static struct succ_index_table *succ_index_table_create(int max_pos, int *data, int size); static unsigned int *succ_index_table_invert(int max_pos, struct succ_index_table *sd, int size); static int succ_index_lookup(const struct succ_index_table *sd, int x); #endif #define hidden_obj_p(obj) (!SPECIAL_CONST_P(obj) && !RBASIC(obj)->klass) static inline VALUE obj_resurrect(VALUE obj) { if (hidden_obj_p(obj)) { switch (BUILTIN_TYPE(obj)) { case T_STRING: obj = rb_str_resurrect(obj); break; case T_ARRAY: obj = rb_ary_resurrect(obj); break; case T_HASH: obj = rb_hash_resurrect(obj); break; default: break; } } return obj; } static void free_arena(struct iseq_compile_data_storage *cur) { struct iseq_compile_data_storage *next; while (cur) { next = cur->next; ruby_xfree(cur); cur = next; } } static void compile_data_free(struct iseq_compile_data *compile_data) { if (compile_data) { free_arena(compile_data->node.storage_head); free_arena(compile_data->insn.storage_head); if (compile_data->ivar_cache_table) { rb_id_table_free(compile_data->ivar_cache_table); } ruby_xfree(compile_data); } } static void remove_from_constant_cache(ID id, IC ic) { rb_vm_t *vm = GET_VM(); VALUE lookup_result; st_data_t ic_data = (st_data_t)ic; if (rb_id_table_lookup(vm->constant_cache, id, &lookup_result)) { st_table *ics = (st_table *)lookup_result; st_delete(ics, &ic_data, NULL); if (ics->num_entries == 0) { rb_id_table_delete(vm->constant_cache, id); st_free_table(ics); } } } // When an ISEQ is being freed, all of its associated ICs are going to go away // as well. Because of this, we need to iterate over the ICs, and clear them // from the VM's constant cache. static void iseq_clear_ic_references(const rb_iseq_t *iseq) { // In some cases (when there is a compilation error), we end up with // ic_size greater than 0, but no allocated is_entries buffer. // If there's no is_entries buffer to loop through, return early. // [Bug #19173] if (!ISEQ_BODY(iseq)->is_entries) { return; } for (unsigned int ic_idx = 0; ic_idx < ISEQ_BODY(iseq)->ic_size; ic_idx++) { IC ic = &ISEQ_IS_IC_ENTRY(ISEQ_BODY(iseq), ic_idx); // Iterate over the IC's constant path's segments and clean any references to // the ICs out of the VM's constant cache table. const ID *segments = ic->segments; // It's possible that segments is NULL if we overallocated an IC but // optimizations removed the instruction using it if (segments == NULL) continue; for (int i = 0; segments[i]; i++) { ID id = segments[i]; if (id == idNULL) continue; remove_from_constant_cache(id, ic); } ruby_xfree((void *)segments); } } void rb_iseq_free(const rb_iseq_t *iseq) { RUBY_FREE_ENTER("iseq"); if (iseq && ISEQ_BODY(iseq)) { iseq_clear_ic_references(iseq); struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); rb_rjit_free_iseq(iseq); /* Notify RJIT */ #if USE_YJIT rb_yjit_iseq_free(body->yjit_payload); if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) { RUBY_ASSERT(rb_yjit_live_iseq_count > 0); rb_yjit_live_iseq_count--; } #endif ruby_xfree((void *)body->iseq_encoded); ruby_xfree((void *)body->insns_info.body); ruby_xfree((void *)body->insns_info.positions); #if VM_INSN_INFO_TABLE_IMPL == 2 ruby_xfree(body->insns_info.succ_index_table); #endif if (LIKELY(body->local_table != rb_iseq_shared_exc_local_tbl)) ruby_xfree((void *)body->local_table); ruby_xfree((void *)body->is_entries); if (body->call_data) { ruby_xfree(body->call_data); } ruby_xfree((void *)body->catch_table); ruby_xfree((void *)body->param.opt_table); if (ISEQ_MBITS_BUFLEN(body->iseq_size) > 1 && body->mark_bits.list) { ruby_xfree((void *)body->mark_bits.list); } ruby_xfree(body->variable.original_iseq); if (body->param.keyword != NULL) { if (body->param.keyword->table != &body->local_table[body->param.keyword->bits_start - body->param.keyword->num]) ruby_xfree((void *)body->param.keyword->table); ruby_xfree((void *)body->param.keyword->default_values); ruby_xfree((void *)body->param.keyword); } compile_data_free(ISEQ_COMPILE_DATA(iseq)); if (body->outer_variables) rb_id_table_free(body->outer_variables); ruby_xfree(body); } if (iseq && ISEQ_EXECUTABLE_P(iseq) && iseq->aux.exec.local_hooks) { rb_hook_list_free(iseq->aux.exec.local_hooks); } RUBY_FREE_LEAVE("iseq"); } typedef VALUE iseq_value_itr_t(void *ctx, VALUE obj); static inline void iseq_scan_bits(unsigned int page, iseq_bits_t bits, VALUE *code, VALUE *original_iseq) { unsigned int offset; unsigned int page_offset = (page * ISEQ_MBITS_BITLENGTH); while (bits) { offset = ntz_intptr(bits); VALUE op = code[page_offset + offset]; rb_gc_mark_and_move(&code[page_offset + offset]); VALUE newop = code[page_offset + offset]; if (original_iseq && newop != op) { original_iseq[page_offset + offset] = newop; } bits &= bits - 1; // Reset Lowest Set Bit (BLSR) } } static void rb_iseq_mark_and_move_each_value(const rb_iseq_t *iseq, VALUE *original_iseq) { unsigned int size; VALUE *code; const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); size = body->iseq_size; code = body->iseq_encoded; union iseq_inline_storage_entry *is_entries = body->is_entries; if (body->is_entries) { // Skip iterating over ivc caches is_entries += body->ivc_size; // ICVARC entries for (unsigned int i = 0; i < body->icvarc_size; i++, is_entries++) { ICVARC icvarc = (ICVARC)is_entries; if (icvarc->entry) { RUBY_ASSERT(!RB_TYPE_P(icvarc->entry->class_value, T_NONE)); rb_gc_mark_and_move(&icvarc->entry->class_value); } } // ISE entries for (unsigned int i = 0; i < body->ise_size; i++, is_entries++) { union iseq_inline_storage_entry *const is = (union iseq_inline_storage_entry *)is_entries; if (is->once.value) { rb_gc_mark_and_move(&is->once.value); } } // IC Entries for (unsigned int i = 0; i < body->ic_size; i++, is_entries++) { IC ic = (IC)is_entries; if (ic->entry) { rb_gc_mark_and_move_ptr(&ic->entry); } } } // Embedded VALUEs if (body->mark_bits.list) { if (ISEQ_MBITS_BUFLEN(size) == 1) { iseq_scan_bits(0, body->mark_bits.single, code, original_iseq); } else { if (body->mark_bits.list) { for (unsigned int i = 0; i < ISEQ_MBITS_BUFLEN(size); i++) { iseq_bits_t bits = body->mark_bits.list[i]; iseq_scan_bits(i, bits, code, original_iseq); } } } } } static bool cc_is_active(const struct rb_callcache *cc, bool reference_updating) { if (cc) { if (reference_updating) { cc = (const struct rb_callcache *)rb_gc_location((VALUE)cc); } if (vm_cc_markable(cc)) { if (cc->klass) { // cc is not invalidated const struct rb_callable_method_entry_struct *cme = vm_cc_cme(cc); if (reference_updating) { cme = (const struct rb_callable_method_entry_struct *)rb_gc_location((VALUE)cme); } if (!METHOD_ENTRY_INVALIDATED(cme)) { return true; } } } } return false; } void rb_iseq_mark_and_move(rb_iseq_t *iseq, bool reference_updating) { RUBY_MARK_ENTER("iseq"); rb_gc_mark_and_move(&iseq->wrapper); if (ISEQ_BODY(iseq)) { struct rb_iseq_constant_body *body = ISEQ_BODY(iseq); rb_iseq_mark_and_move_each_value(iseq, reference_updating ? ISEQ_ORIGINAL_ISEQ(iseq) : NULL); rb_gc_mark_and_move(&body->variable.coverage); rb_gc_mark_and_move(&body->variable.pc2branchindex); rb_gc_mark_and_move(&body->variable.script_lines); rb_gc_mark_and_move(&body->location.label); rb_gc_mark_and_move(&body->location.base_label); rb_gc_mark_and_move(&body->location.pathobj); if (body->local_iseq) rb_gc_mark_and_move_ptr(&body->local_iseq); if (body->parent_iseq) rb_gc_mark_and_move_ptr(&body->parent_iseq); if (body->mandatory_only_iseq) rb_gc_mark_and_move_ptr(&body->mandatory_only_iseq); if (body->call_data) { for (unsigned int i = 0; i < body->ci_size; i++) { struct rb_call_data *cds = body->call_data; if (cds[i].ci) rb_gc_mark_and_move_ptr(&cds[i].ci); if (cc_is_active(cds[i].cc, reference_updating)) { rb_gc_mark_and_move_ptr(&cds[i].cc); } else { cds[i].cc = rb_vm_empty_cc(); } } } if (body->param.flags.has_kw && ISEQ_COMPILE_DATA(iseq) == NULL) { const struct rb_iseq_param_keyword *const keyword = body->param.keyword; for (int j = 0, i = keyword->required_num; i < keyword->num; i++, j++) { rb_gc_mark_and_move(&keyword->default_values[j]); } } if (body->catch_table) { struct iseq_catch_table *table = body->catch_table; for (unsigned int i = 0; i < table->size; i++) { struct iseq_catch_table_entry *entry; entry = UNALIGNED_MEMBER_PTR(table, entries[i]); if (entry->iseq) { rb_gc_mark_and_move_ptr(&entry->iseq); } } } if (reference_updating) { #if USE_RJIT rb_rjit_iseq_update_references(body); #endif #if USE_YJIT rb_yjit_iseq_update_references(body->yjit_payload); #endif } else { #if USE_RJIT rb_rjit_iseq_mark(body->rjit_blocks); #endif #if USE_YJIT rb_yjit_iseq_mark(body->yjit_payload); #endif } } if (FL_TEST_RAW((VALUE)iseq, ISEQ_NOT_LOADED_YET)) { rb_gc_mark_and_move(&iseq->aux.loader.obj); } else if (FL_TEST_RAW((VALUE)iseq, ISEQ_USE_COMPILE_DATA)) { const struct iseq_compile_data *const compile_data = ISEQ_COMPILE_DATA(iseq); if (!reference_updating) { /* The operands in each instruction needs to be pinned because * if auto-compaction runs in iseq_set_sequence, then the objects * could exist on the generated_iseq buffer, which would not be * reference updated which can lead to T_MOVED (and subsequently * T_NONE) objects on the iseq. */ rb_iseq_mark_and_pin_insn_storage(compile_data->insn.storage_head); } rb_gc_mark_and_move((VALUE *)&compile_data->err_info); rb_gc_mark_and_move((VALUE *)&compile_data->catch_table_ary); } else { /* executable */ VM_ASSERT(ISEQ_EXECUTABLE_P(iseq)); if (iseq->aux.exec.local_hooks) { rb_hook_list_mark_and_update(iseq->aux.exec.local_hooks); } } RUBY_MARK_LEAVE("iseq"); } static size_t param_keyword_size(const struct rb_iseq_param_keyword *pkw) { size_t size = 0; if (!pkw) return size; size += sizeof(struct rb_iseq_param_keyword); size += sizeof(VALUE) * (pkw->num - pkw->required_num); return size; } size_t rb_iseq_memsize(const rb_iseq_t *iseq) { size_t size = 0; /* struct already counted as RVALUE size */ const struct rb_iseq_constant_body *body = ISEQ_BODY(iseq); const struct iseq_compile_data *compile_data; /* TODO: should we count original_iseq? */ if (ISEQ_EXECUTABLE_P(iseq) && body) { size += sizeof(struct rb_iseq_constant_body); size += body->iseq_size * sizeof(VALUE); size += body->insns_info.size * (sizeof(struct iseq_insn_info_entry) + sizeof(unsigned int)); size += body->local_table_size * sizeof(ID); size += ISEQ_MBITS_BUFLEN(body->iseq_size) * ISEQ_MBITS_SIZE; if (body->catch_table) { size += iseq_catch_table_bytes(body->catch_table->size); } size += (body->param.opt_num + 1) * sizeof(VALUE); size += param_keyword_size(body->param.keyword); /* body->is_entries */ size += ISEQ_IS_SIZE(body) * sizeof(union iseq_inline_storage_entry); if (ISEQ_BODY(iseq)->is_entries) { /* IC entries constant segments */ for (unsigned int ic_idx = 0; ic_idx < body->ic_size; ic_idx++) { IC ic = &ISEQ_IS_IC_ENTRY(body, ic_idx); const ID *ids = ic->segments; if (!ids) continue; while (*ids++) { size += sizeof(ID); } size += sizeof(ID); // null terminator } } /* body->call_data */ size += body->ci_size * sizeof(struct rb_call_data); // TODO: should we count imemo_callinfo? } compile_data = ISEQ_COMPILE_DATA(iseq); if (compile_data) { struct iseq_compile_data_storage *cur; size += sizeof(struct iseq_compile_data); cur = compile_data->node.storage_head; while (cur) { size += cur->size + offsetof(struct iseq_compile_data_storage, buff); cur = cur->next; } } return size; } struct rb_iseq_constant_body * rb_iseq_constant_body_alloc(void) { struct rb_iseq_constant_body *iseq_body; iseq_body = ZALLOC(struct rb_iseq_constant_body); return iseq_body; } static rb_iseq_t * iseq_alloc(void) { rb_iseq_t *iseq = iseq_imemo_alloc(); ISEQ_BODY(iseq) = rb_iseq_constant_body_alloc(); return iseq; } VALUE rb_iseq_pathobj_new(VALUE path, VALUE realpath) { VALUE pathobj; VM_ASSERT(RB_TYPE_P(path, T_STRING)); VM_ASSERT(NIL_P(realpath) || RB_TYPE_P(realpath, T_STRING)); if (path == realpath || (!NIL_P(realpath) && rb_str_cmp(path, realpath) == 0)) { pathobj = rb_fstring(path); } else { if (!NIL_P(realpath)) realpath = rb_fstring(realpath); pathobj = rb_ary_new_from_args(2, rb_fstring(path), realpath); rb_obj_freeze(pathobj); } return pathobj; } void rb_iseq_pathobj_set(const rb_iseq_t *iseq, VALUE path, VALUE realpath) { RB_OBJ_WRITE(iseq, &ISEQ_BODY(iseq)->location.pathobj, rb_iseq_pathobj_new(path, realpath)); } static rb_iseq_location_t * iseq_location_setup(rb_iseq_t *iseq, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_code_location_t *code_location, const int node_id) { rb_iseq_location_t *loc = &ISEQ_BODY(iseq)->location; rb_iseq_pathobj_set(iseq, path, realpath); RB_OBJ_WRITE(iseq, &loc->label, name); RB_OBJ_WRITE(iseq, &loc->base_label, name); loc->first_lineno = first_lineno; if (code_location) { loc->node_id = node_id; loc->code_location = *code_location; } else { loc->code_location.beg_pos.lineno = 0; loc->code_location.beg_pos.column = 0; loc->code_location.end_pos.lineno = -1; loc->code_location.end_pos.column = -1; } return loc; } static void set_relation(rb_iseq_t *iseq, const rb_iseq_t *piseq) { struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); const VALUE type = body->type; /* set class nest stack */ if (type == ISEQ_TYPE_TOP) { body->local_iseq = iseq; } else if (type == ISEQ_TYPE_METHOD || type == ISEQ_TYPE_CLASS) { body->local_iseq = iseq; } else if (piseq) { body->local_iseq = ISEQ_BODY(piseq)->local_iseq; } if (piseq) { body->parent_iseq = piseq; } if (type == ISEQ_TYPE_MAIN) { body->local_iseq = iseq; } } static struct iseq_compile_data_storage * new_arena(void) { struct iseq_compile_data_storage * new_arena = (struct iseq_compile_data_storage *) ALLOC_N(char, INITIAL_ISEQ_COMPILE_DATA_STORAGE_BUFF_SIZE + offsetof(struct iseq_compile_data_storage, buff)); new_arena->pos = 0; new_arena->next = 0; new_arena->size = INITIAL_ISEQ_COMPILE_DATA_STORAGE_BUFF_SIZE; return new_arena; } static VALUE prepare_iseq_build(rb_iseq_t *iseq, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_code_location_t *code_location, const int node_id, const rb_iseq_t *parent, int isolated_depth, enum rb_iseq_type type, VALUE script_lines, const rb_compile_option_t *option) { VALUE coverage = Qfalse; VALUE err_info = Qnil; struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); if (parent && (type == ISEQ_TYPE_MAIN || type == ISEQ_TYPE_TOP)) err_info = Qfalse; body->type = type; set_relation(iseq, parent); name = rb_fstring(name); iseq_location_setup(iseq, name, path, realpath, first_lineno, code_location, node_id); if (iseq != body->local_iseq) { RB_OBJ_WRITE(iseq, &body->location.base_label, ISEQ_BODY(body->local_iseq)->location.label); } ISEQ_COVERAGE_SET(iseq, Qnil); ISEQ_ORIGINAL_ISEQ_CLEAR(iseq); body->variable.flip_count = 0; if (NIL_P(script_lines)) { RB_OBJ_WRITE(iseq, &body->variable.script_lines, Qnil); } else { RB_OBJ_WRITE(iseq, &body->variable.script_lines, rb_ractor_make_shareable(script_lines)); } ISEQ_COMPILE_DATA_ALLOC(iseq); RB_OBJ_WRITE(iseq, &ISEQ_COMPILE_DATA(iseq)->err_info, err_info); RB_OBJ_WRITE(iseq, &ISEQ_COMPILE_DATA(iseq)->catch_table_ary, Qnil); ISEQ_COMPILE_DATA(iseq)->node.storage_head = ISEQ_COMPILE_DATA(iseq)->node.storage_current = new_arena(); ISEQ_COMPILE_DATA(iseq)->insn.storage_head = ISEQ_COMPILE_DATA(iseq)->insn.storage_current = new_arena(); ISEQ_COMPILE_DATA(iseq)->isolated_depth = isolated_depth; ISEQ_COMPILE_DATA(iseq)->option = option; ISEQ_COMPILE_DATA(iseq)->ivar_cache_table = NULL; ISEQ_COMPILE_DATA(iseq)->builtin_function_table = GET_VM()->builtin_function_table; if (option->coverage_enabled) { VALUE coverages = rb_get_coverages(); if (RTEST(coverages)) { coverage = rb_hash_lookup(coverages, rb_iseq_path(iseq)); if (NIL_P(coverage)) coverage = Qfalse; } } ISEQ_COVERAGE_SET(iseq, coverage); if (coverage && ISEQ_BRANCH_COVERAGE(iseq)) ISEQ_PC2BRANCHINDEX_SET(iseq, rb_ary_hidden_new(0)); return Qtrue; } #if VM_CHECK_MODE > 0 && VM_INSN_INFO_TABLE_IMPL > 0 static void validate_get_insn_info(const rb_iseq_t *iseq); #endif void rb_iseq_insns_info_encode_positions(const rb_iseq_t *iseq) { #if VM_INSN_INFO_TABLE_IMPL == 2 /* create succ_index_table */ struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); int size = body->insns_info.size; int max_pos = body->iseq_size; int *data = (int *)body->insns_info.positions; if (body->insns_info.succ_index_table) ruby_xfree(body->insns_info.succ_index_table); body->insns_info.succ_index_table = succ_index_table_create(max_pos, data, size); #if VM_CHECK_MODE == 0 ruby_xfree(body->insns_info.positions); body->insns_info.positions = NULL; #endif #endif } #if VM_INSN_INFO_TABLE_IMPL == 2 unsigned int * rb_iseq_insns_info_decode_positions(const struct rb_iseq_constant_body *body) { int size = body->insns_info.size; int max_pos = body->iseq_size; struct succ_index_table *sd = body->insns_info.succ_index_table; return succ_index_table_invert(max_pos, sd, size); } #endif void rb_iseq_init_trace(rb_iseq_t *iseq) { iseq->aux.exec.global_trace_events = 0; if (ruby_vm_event_enabled_global_flags & ISEQ_TRACE_EVENTS) { rb_iseq_trace_set(iseq, ruby_vm_event_enabled_global_flags & ISEQ_TRACE_EVENTS); } } static VALUE finish_iseq_build(rb_iseq_t *iseq) { struct iseq_compile_data *data = ISEQ_COMPILE_DATA(iseq); const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); VALUE err = data->err_info; ISEQ_COMPILE_DATA_CLEAR(iseq); compile_data_free(data); #if VM_CHECK_MODE > 0 && VM_INSN_INFO_TABLE_IMPL > 0 validate_get_insn_info(iseq); #endif if (RTEST(err)) { VALUE path = pathobj_path(body->location.pathobj); if (err == Qtrue) err = rb_exc_new_cstr(rb_eSyntaxError, "compile error"); rb_funcallv(err, rb_intern("set_backtrace"), 1, &path); rb_exc_raise(err); } RB_DEBUG_COUNTER_INC(iseq_num); RB_DEBUG_COUNTER_ADD(iseq_cd_num, ISEQ_BODY(iseq)->ci_size); rb_iseq_init_trace(iseq); return Qtrue; } static rb_compile_option_t COMPILE_OPTION_DEFAULT = { OPT_INLINE_CONST_CACHE, /* int inline_const_cache; */ OPT_PEEPHOLE_OPTIMIZATION, /* int peephole_optimization; */ OPT_TAILCALL_OPTIMIZATION, /* int tailcall_optimization */ OPT_SPECIALISED_INSTRUCTION, /* int specialized_instruction; */ OPT_OPERANDS_UNIFICATION, /* int operands_unification; */ OPT_INSTRUCTIONS_UNIFICATION, /* int instructions_unification; */ OPT_FROZEN_STRING_LITERAL, OPT_DEBUG_FROZEN_STRING_LITERAL, TRUE, /* coverage_enabled */ }; static const rb_compile_option_t COMPILE_OPTION_FALSE = {0}; static void set_compile_option_from_hash(rb_compile_option_t *option, VALUE opt) { #define SET_COMPILE_OPTION(o, h, mem) \ { VALUE flag = rb_hash_aref((h), ID2SYM(rb_intern(#mem))); \ if (flag == Qtrue) { (o)->mem = 1; } \ else if (flag == Qfalse) { (o)->mem = 0; } \ } #define SET_COMPILE_OPTION_NUM(o, h, mem) \ { VALUE num = rb_hash_aref((h), ID2SYM(rb_intern(#mem))); \ if (!NIL_P(num)) (o)->mem = NUM2INT(num); \ } SET_COMPILE_OPTION(option, opt, inline_const_cache); SET_COMPILE_OPTION(option, opt, peephole_optimization); SET_COMPILE_OPTION(option, opt, tailcall_optimization); SET_COMPILE_OPTION(option, opt, specialized_instruction); SET_COMPILE_OPTION(option, opt, operands_unification); SET_COMPILE_OPTION(option, opt, instructions_unification); SET_COMPILE_OPTION(option, opt, frozen_string_literal); SET_COMPILE_OPTION(option, opt, debug_frozen_string_literal); SET_COMPILE_OPTION(option, opt, coverage_enabled); SET_COMPILE_OPTION_NUM(option, opt, debug_level); #undef SET_COMPILE_OPTION #undef SET_COMPILE_OPTION_NUM } static rb_compile_option_t * set_compile_option_from_ast(rb_compile_option_t *option, const rb_ast_body_t *ast) { #define SET_COMPILE_OPTION(o, a, mem) \ ((a)->mem < 0 ? 0 : ((o)->mem = (a)->mem > 0)) SET_COMPILE_OPTION(option, ast, frozen_string_literal); SET_COMPILE_OPTION(option, ast, coverage_enabled); #undef SET_COMPILE_OPTION return option; } static void make_compile_option(rb_compile_option_t *option, VALUE opt) { if (NIL_P(opt)) { *option = COMPILE_OPTION_DEFAULT; } else if (opt == Qfalse) { *option = COMPILE_OPTION_FALSE; } else if (opt == Qtrue) { int i; for (i = 0; i < (int)(sizeof(rb_compile_option_t) / sizeof(int)); ++i) ((int *)option)[i] = 1; } else if (RB_TYPE_P(opt, T_HASH)) { *option = COMPILE_OPTION_DEFAULT; set_compile_option_from_hash(option, opt); } else { rb_raise(rb_eTypeError, "Compile option must be Hash/true/false/nil"); } } static VALUE make_compile_option_value(rb_compile_option_t *option) { VALUE opt = rb_hash_new_with_size(11); #define SET_COMPILE_OPTION(o, h, mem) \ rb_hash_aset((h), ID2SYM(rb_intern(#mem)), RBOOL((o)->mem)) #define SET_COMPILE_OPTION_NUM(o, h, mem) \ rb_hash_aset((h), ID2SYM(rb_intern(#mem)), INT2NUM((o)->mem)) { SET_COMPILE_OPTION(option, opt, inline_const_cache); SET_COMPILE_OPTION(option, opt, peephole_optimization); SET_COMPILE_OPTION(option, opt, tailcall_optimization); SET_COMPILE_OPTION(option, opt, specialized_instruction); SET_COMPILE_OPTION(option, opt, operands_unification); SET_COMPILE_OPTION(option, opt, instructions_unification); SET_COMPILE_OPTION(option, opt, frozen_string_literal); SET_COMPILE_OPTION(option, opt, debug_frozen_string_literal); SET_COMPILE_OPTION(option, opt, coverage_enabled); SET_COMPILE_OPTION_NUM(option, opt, debug_level); } #undef SET_COMPILE_OPTION #undef SET_COMPILE_OPTION_NUM return opt; } rb_iseq_t * rb_iseq_new(const rb_ast_body_t *ast, VALUE name, VALUE path, VALUE realpath, const rb_iseq_t *parent, enum rb_iseq_type type) { return rb_iseq_new_with_opt(ast, name, path, realpath, 0, parent, 0, type, &COMPILE_OPTION_DEFAULT); } static int ast_line_count(const rb_ast_body_t *ast) { if (ast->script_lines == Qfalse) { // this occurs when failed to parse the source code with a syntax error return 0; } if (RB_TYPE_P(ast->script_lines, T_ARRAY)){ return (int)RARRAY_LEN(ast->script_lines); } return FIX2INT(ast->script_lines); } static VALUE iseq_setup_coverage(VALUE coverages, VALUE path, const rb_ast_body_t *ast, int line_offset) { int line_count = line_offset + ast_line_count(ast); if (line_count >= 0) { int len = (rb_get_coverage_mode() & COVERAGE_TARGET_ONESHOT_LINES) ? 0 : line_count; VALUE coverage = rb_default_coverage(len); rb_hash_aset(coverages, path, coverage); return coverage; } return Qnil; } static inline void iseq_new_setup_coverage(VALUE path, const rb_ast_body_t *ast, int line_offset) { VALUE coverages = rb_get_coverages(); if (RTEST(coverages)) { iseq_setup_coverage(coverages, path, ast, line_offset); } } rb_iseq_t * rb_iseq_new_top(const rb_ast_body_t *ast, VALUE name, VALUE path, VALUE realpath, const rb_iseq_t *parent) { iseq_new_setup_coverage(path, ast, 0); return rb_iseq_new_with_opt(ast, name, path, realpath, 0, parent, 0, ISEQ_TYPE_TOP, &COMPILE_OPTION_DEFAULT); } rb_iseq_t * rb_iseq_new_main(const rb_ast_body_t *ast, VALUE path, VALUE realpath, const rb_iseq_t *parent, int opt) { iseq_new_setup_coverage(path, ast, 0); return rb_iseq_new_with_opt(ast, rb_fstring_lit("
"), path, realpath, 0, parent, 0, ISEQ_TYPE_MAIN, opt ? &COMPILE_OPTION_DEFAULT : &COMPILE_OPTION_FALSE); } rb_iseq_t * rb_iseq_new_eval(const rb_ast_body_t *ast, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, int isolated_depth) { if (rb_get_coverage_mode() & COVERAGE_TARGET_EVAL) { VALUE coverages = rb_get_coverages(); if (RTEST(coverages) && RTEST(path) && !RTEST(rb_hash_has_key(coverages, path))) { iseq_setup_coverage(coverages, path, ast, first_lineno - 1); } } return rb_iseq_new_with_opt(ast, name, path, realpath, first_lineno, parent, isolated_depth, ISEQ_TYPE_EVAL, &COMPILE_OPTION_DEFAULT); } static inline rb_iseq_t * iseq_translate(rb_iseq_t *iseq) { if (rb_respond_to(rb_cISeq, rb_intern("translate"))) { VALUE v1 = iseqw_new(iseq); VALUE v2 = rb_funcall(rb_cISeq, rb_intern("translate"), 1, v1); if (v1 != v2 && CLASS_OF(v2) == rb_cISeq) { iseq = (rb_iseq_t *)iseqw_check(v2); } } return iseq; } rb_iseq_t * rb_iseq_new_with_opt(const rb_ast_body_t *ast, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, int isolated_depth, enum rb_iseq_type type, const rb_compile_option_t *option) { const NODE *node = ast ? ast->root : 0; /* TODO: argument check */ rb_iseq_t *iseq = iseq_alloc(); rb_compile_option_t new_opt; if (!option) option = &COMPILE_OPTION_DEFAULT; if (ast) { new_opt = *option; option = set_compile_option_from_ast(&new_opt, ast); } VALUE script_lines = Qnil; if (ast && !FIXNUM_P(ast->script_lines) && ast->script_lines) { script_lines = ast->script_lines; } else if (parent) { script_lines = ISEQ_BODY(parent)->variable.script_lines; } prepare_iseq_build(iseq, name, path, realpath, first_lineno, node ? &node->nd_loc : NULL, node ? nd_node_id(node) : -1, parent, isolated_depth, type, script_lines, option); rb_iseq_compile_node(iseq, node); finish_iseq_build(iseq); return iseq_translate(iseq); } VALUE rb_iseq_compile_prism_node(rb_iseq_t * iseq, pm_scope_node_t *scope_node, pm_parser_t *parser); /** * Initialize an rb_code_location_t with a prism location. */ static void pm_code_location(rb_code_location_t *code_location, const pm_newline_list_t *newline_list, const pm_location_t *location) { pm_line_column_t start = pm_newline_list_line_column(newline_list, location->start); pm_line_column_t end = pm_newline_list_line_column(newline_list, location->end); *code_location = (rb_code_location_t) { .beg_pos = { .lineno = (int) start.line, .column = (int) start.column }, .end_pos = { .lineno = (int) end.line, .column = (int) end.column } }; } rb_iseq_t * pm_iseq_new_with_opt(pm_scope_node_t *scope_node, pm_parser_t *parser, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, int isolated_depth, enum rb_iseq_type type, const rb_compile_option_t *option) { rb_iseq_t *iseq = iseq_alloc(); VALUE script_lines = Qnil; if (!option) option = &COMPILE_OPTION_DEFAULT; rb_code_location_t code_location; pm_code_location(&code_location, &parser->newline_list, &scope_node->base.location); // TODO: node_id int node_id = -1; prepare_iseq_build(iseq, name, path, realpath, first_lineno, &code_location, node_id, parent, isolated_depth, type, script_lines, option); rb_iseq_compile_prism_node(iseq, scope_node, parser); finish_iseq_build(iseq); return iseq_translate(iseq); } rb_iseq_t * rb_iseq_new_with_callback( const struct rb_iseq_new_with_callback_callback_func * ifunc, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, enum rb_iseq_type type, const rb_compile_option_t *option) { /* TODO: argument check */ rb_iseq_t *iseq = iseq_alloc(); if (!option) option = &COMPILE_OPTION_DEFAULT; prepare_iseq_build(iseq, name, path, realpath, first_lineno, NULL, -1, parent, 0, type, Qnil, option); rb_iseq_compile_callback(iseq, ifunc); finish_iseq_build(iseq); return iseq; } const rb_iseq_t * rb_iseq_load_iseq(VALUE fname) { VALUE iseqv = rb_check_funcall(rb_cISeq, rb_intern("load_iseq"), 1, &fname); if (!SPECIAL_CONST_P(iseqv) && RBASIC_CLASS(iseqv) == rb_cISeq) { return iseqw_check(iseqv); } return NULL; } #define CHECK_ARRAY(v) rb_to_array_type(v) #define CHECK_HASH(v) rb_to_hash_type(v) #define CHECK_STRING(v) rb_str_to_str(v) #define CHECK_SYMBOL(v) rb_to_symbol_type(v) static inline VALUE CHECK_INTEGER(VALUE v) {(void)NUM2LONG(v); return v;} static enum rb_iseq_type iseq_type_from_sym(VALUE type) { const ID id_top = rb_intern("top"); const ID id_method = rb_intern("method"); const ID id_block = rb_intern("block"); const ID id_class = rb_intern("class"); const ID id_rescue = rb_intern("rescue"); const ID id_ensure = rb_intern("ensure"); const ID id_eval = rb_intern("eval"); const ID id_main = rb_intern("main"); const ID id_plain = rb_intern("plain"); /* ensure all symbols are static or pinned down before * conversion */ const ID typeid = rb_check_id(&type); if (typeid == id_top) return ISEQ_TYPE_TOP; if (typeid == id_method) return ISEQ_TYPE_METHOD; if (typeid == id_block) return ISEQ_TYPE_BLOCK; if (typeid == id_class) return ISEQ_TYPE_CLASS; if (typeid == id_rescue) return ISEQ_TYPE_RESCUE; if (typeid == id_ensure) return ISEQ_TYPE_ENSURE; if (typeid == id_eval) return ISEQ_TYPE_EVAL; if (typeid == id_main) return ISEQ_TYPE_MAIN; if (typeid == id_plain) return ISEQ_TYPE_PLAIN; return (enum rb_iseq_type)-1; } static VALUE iseq_load(VALUE data, const rb_iseq_t *parent, VALUE opt) { rb_iseq_t *iseq = iseq_alloc(); VALUE magic, version1, version2, format_type, misc; VALUE name, path, realpath, code_location, node_id; VALUE type, body, locals, params, exception; st_data_t iseq_type; rb_compile_option_t option; int i = 0; rb_code_location_t tmp_loc = { {0, 0}, {-1, -1} }; /* [magic, major_version, minor_version, format_type, misc, * label, path, first_lineno, * type, locals, args, exception_table, body] */ data = CHECK_ARRAY(data); magic = CHECK_STRING(rb_ary_entry(data, i++)); version1 = CHECK_INTEGER(rb_ary_entry(data, i++)); version2 = CHECK_INTEGER(rb_ary_entry(data, i++)); format_type = CHECK_INTEGER(rb_ary_entry(data, i++)); misc = CHECK_HASH(rb_ary_entry(data, i++)); ((void)magic, (void)version1, (void)version2, (void)format_type); name = CHECK_STRING(rb_ary_entry(data, i++)); path = CHECK_STRING(rb_ary_entry(data, i++)); realpath = rb_ary_entry(data, i++); realpath = NIL_P(realpath) ? Qnil : CHECK_STRING(realpath); int first_lineno = RB_NUM2INT(rb_ary_entry(data, i++)); type = CHECK_SYMBOL(rb_ary_entry(data, i++)); locals = CHECK_ARRAY(rb_ary_entry(data, i++)); params = CHECK_HASH(rb_ary_entry(data, i++)); exception = CHECK_ARRAY(rb_ary_entry(data, i++)); body = CHECK_ARRAY(rb_ary_entry(data, i++)); ISEQ_BODY(iseq)->local_iseq = iseq; iseq_type = iseq_type_from_sym(type); if (iseq_type == (enum rb_iseq_type)-1) { rb_raise(rb_eTypeError, "unsupported type: :%"PRIsVALUE, rb_sym2str(type)); } node_id = rb_hash_aref(misc, ID2SYM(rb_intern("node_id"))); code_location = rb_hash_aref(misc, ID2SYM(rb_intern("code_location"))); if (RB_TYPE_P(code_location, T_ARRAY) && RARRAY_LEN(code_location) == 4) { tmp_loc.beg_pos.lineno = NUM2INT(rb_ary_entry(code_location, 0)); tmp_loc.beg_pos.column = NUM2INT(rb_ary_entry(code_location, 1)); tmp_loc.end_pos.lineno = NUM2INT(rb_ary_entry(code_location, 2)); tmp_loc.end_pos.column = NUM2INT(rb_ary_entry(code_location, 3)); } make_compile_option(&option, opt); option.peephole_optimization = FALSE; /* because peephole optimization can modify original iseq */ prepare_iseq_build(iseq, name, path, realpath, first_lineno, &tmp_loc, NUM2INT(node_id), parent, 0, (enum rb_iseq_type)iseq_type, Qnil, &option); rb_iseq_build_from_ary(iseq, misc, locals, params, exception, body); finish_iseq_build(iseq); return iseqw_new(iseq); } /* * :nodoc: */ static VALUE iseq_s_load(int argc, VALUE *argv, VALUE self) { VALUE data, opt=Qnil; rb_scan_args(argc, argv, "11", &data, &opt); return iseq_load(data, NULL, opt); } VALUE rb_iseq_load(VALUE data, VALUE parent, VALUE opt) { return iseq_load(data, RTEST(parent) ? (rb_iseq_t *)parent : NULL, opt); } static rb_iseq_t * rb_iseq_compile_with_option(VALUE src, VALUE file, VALUE realpath, VALUE line, VALUE opt) { rb_iseq_t *iseq = NULL; rb_compile_option_t option; #if !defined(__GNUC__) || (__GNUC__ == 4 && __GNUC_MINOR__ == 8) # define INITIALIZED volatile /* suppress warnings by gcc 4.8 */ #else # define INITIALIZED /* volatile */ #endif rb_ast_t *(*parse)(VALUE vparser, VALUE fname, VALUE file, int start); int ln; rb_ast_t *INITIALIZED ast; VALUE name = rb_fstring_lit(""); /* safe results first */ make_compile_option(&option, opt); ln = NUM2INT(line); StringValueCStr(file); if (RB_TYPE_P(src, T_FILE)) { parse = rb_parser_compile_file_path; } else { parse = rb_parser_compile_string_path; StringValue(src); } { const VALUE parser = rb_parser_new(); const rb_iseq_t *outer_scope = rb_iseq_new(NULL, name, name, Qnil, 0, ISEQ_TYPE_TOP); VALUE outer_scope_v = (VALUE)outer_scope; rb_parser_set_context(parser, outer_scope, FALSE); rb_parser_set_script_lines(parser, RBOOL(ruby_vm_keep_script_lines)); RB_GC_GUARD(outer_scope_v); ast = (*parse)(parser, file, src, ln); } if (!ast->body.root) { rb_ast_dispose(ast); rb_exc_raise(GET_EC()->errinfo); } else { iseq = rb_iseq_new_with_opt(&ast->body, name, file, realpath, ln, NULL, 0, ISEQ_TYPE_TOP, &option); rb_ast_dispose(ast); } return iseq; } VALUE rb_iseq_path(const rb_iseq_t *iseq) { return pathobj_path(ISEQ_BODY(iseq)->location.pathobj); } VALUE rb_iseq_realpath(const rb_iseq_t *iseq) { return pathobj_realpath(ISEQ_BODY(iseq)->location.pathobj); } VALUE rb_iseq_absolute_path(const rb_iseq_t *iseq) { return rb_iseq_realpath(iseq); } int rb_iseq_from_eval_p(const rb_iseq_t *iseq) { return NIL_P(rb_iseq_realpath(iseq)); } VALUE rb_iseq_label(const rb_iseq_t *iseq) { return ISEQ_BODY(iseq)->location.label; } VALUE rb_iseq_base_label(const rb_iseq_t *iseq) { return ISEQ_BODY(iseq)->location.base_label; } VALUE rb_iseq_first_lineno(const rb_iseq_t *iseq) { return RB_INT2NUM(ISEQ_BODY(iseq)->location.first_lineno); } VALUE rb_iseq_method_name(const rb_iseq_t *iseq) { struct rb_iseq_constant_body *const body = ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq); if (body->type == ISEQ_TYPE_METHOD) { return body->location.base_label; } else { return Qnil; } } void rb_iseq_code_location(const rb_iseq_t *iseq, int *beg_pos_lineno, int *beg_pos_column, int *end_pos_lineno, int *end_pos_column) { const rb_code_location_t *loc = &ISEQ_BODY(iseq)->location.code_location; if (beg_pos_lineno) *beg_pos_lineno = loc->beg_pos.lineno; if (beg_pos_column) *beg_pos_column = loc->beg_pos.column; if (end_pos_lineno) *end_pos_lineno = loc->end_pos.lineno; if (end_pos_column) *end_pos_column = loc->end_pos.column; } static ID iseq_type_id(enum rb_iseq_type type); VALUE rb_iseq_type(const rb_iseq_t *iseq) { return ID2SYM(iseq_type_id(ISEQ_BODY(iseq)->type)); } VALUE rb_iseq_coverage(const rb_iseq_t *iseq) { return ISEQ_COVERAGE(iseq); } static int remove_coverage_i(void *vstart, void *vend, size_t stride, void *data) { VALUE v = (VALUE)vstart; for (; v != (VALUE)vend; v += stride) { void *ptr = asan_poisoned_object_p(v); asan_unpoison_object(v, false); if (rb_obj_is_iseq(v)) { rb_iseq_t *iseq = (rb_iseq_t *)v; ISEQ_COVERAGE_SET(iseq, Qnil); } asan_poison_object_if(ptr, v); } return 0; } void rb_iseq_remove_coverage_all(void) { rb_objspace_each_objects(remove_coverage_i, NULL); } /* define wrapper class methods (RubyVM::InstructionSequence) */ static void iseqw_mark(void *ptr) { rb_gc_mark((VALUE)ptr); } static size_t iseqw_memsize(const void *ptr) { return rb_iseq_memsize((const rb_iseq_t *)ptr); } static const rb_data_type_t iseqw_data_type = { "T_IMEMO/iseq", {iseqw_mark, NULL, iseqw_memsize,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY|RUBY_TYPED_WB_PROTECTED }; static VALUE iseqw_new(const rb_iseq_t *iseq) { if (iseq->wrapper) { return iseq->wrapper; } else { union { const rb_iseq_t *in; void *out; } deconst; VALUE obj; deconst.in = iseq; obj = TypedData_Wrap_Struct(rb_cISeq, &iseqw_data_type, deconst.out); RB_OBJ_WRITTEN(obj, Qundef, iseq); /* cache a wrapper object */ RB_OBJ_WRITE((VALUE)iseq, &iseq->wrapper, obj); RB_OBJ_FREEZE((VALUE)iseq); return obj; } } VALUE rb_iseqw_new(const rb_iseq_t *iseq) { return iseqw_new(iseq); } /* * call-seq: * InstructionSequence.compile(source[, file[, path[, line[, options]]]]) -> iseq * InstructionSequence.new(source[, file[, path[, line[, options]]]]) -> iseq * * Takes +source+, which can be a string of Ruby code, or an open +File+ object. * that contains Ruby source code. * * Optionally takes +file+, +path+, and +line+ which describe the file path, * real path and first line number of the ruby code in +source+ which are * metadata attached to the returned +iseq+. * * +file+ is used for `__FILE__` and exception backtrace. +path+ is used for * +require_relative+ base. It is recommended these should be the same full * path. * * +options+, which can be +true+, +false+ or a +Hash+, is used to * modify the default behavior of the Ruby iseq compiler. * * For details regarding valid compile options see ::compile_option=. * * RubyVM::InstructionSequence.compile("a = 1 + 2") * #=> @> * * path = "test.rb" * RubyVM::InstructionSequence.compile(File.read(path), path, File.expand_path(path)) * #=> @test.rb:1> * * file = File.open("test.rb") * RubyVM::InstructionSequence.compile(file) * #=> @:1> * * path = File.expand_path("test.rb") * RubyVM::InstructionSequence.compile(File.read(path), path, path) * #=> @/absolute/path/to/test.rb:1> * */ static VALUE iseqw_s_compile(int argc, VALUE *argv, VALUE self) { VALUE src, file = Qnil, path = Qnil, line = Qnil, opt = Qnil; int i; i = rb_scan_args(argc, argv, "1*:", &src, NULL, &opt); if (i > 4+NIL_P(opt)) rb_error_arity(argc, 1, 5); switch (i) { case 5: opt = argv[--i]; case 4: line = argv[--i]; case 3: path = argv[--i]; case 2: file = argv[--i]; } if (NIL_P(file)) file = rb_fstring_lit(""); if (NIL_P(path)) path = file; if (NIL_P(line)) line = INT2FIX(1); Check_Type(path, T_STRING); Check_Type(file, T_STRING); return iseqw_new(rb_iseq_compile_with_option(src, file, path, line, opt)); } static void iseqw_s_compile_prism_compile(pm_parser_t *parser, VALUE opt, rb_iseq_t *iseq, VALUE file, VALUE path, int first_lineno) { pm_node_t *node = pm_parse(parser); if (parser->error_list.size > 0) { pm_buffer_t buffer = { 0 }; pm_parser_errors_format(parser, &buffer, rb_stderr_tty_p()); pm_buffer_prepend_string(&buffer, "syntax errors found\n", 20); VALUE error = rb_exc_new(rb_eSyntaxError, pm_buffer_value(&buffer), pm_buffer_length(&buffer)); pm_buffer_free(&buffer); pm_node_destroy(parser, node); // TODO: We need to set the backtrace based on the ISEQ. // VALUE path = pathobj_path(ISEQ_BODY(iseq)->location.pathobj); // rb_funcallv(error, rb_intern("set_backtrace"), 1, &path); rb_exc_raise(error); } else { rb_code_location_t code_location; pm_code_location(&code_location, &parser->newline_list, &node->location); rb_compile_option_t option; make_compile_option(&option, opt); prepare_iseq_build(iseq, rb_fstring_lit(""), file, path, first_lineno, &code_location, -1, NULL, 0, ISEQ_TYPE_TOP, Qnil, &option); pm_scope_node_t scope_node; pm_scope_node_init(node, &scope_node, NULL, parser); ID *constants = calloc(parser->constant_pool.size, sizeof(ID)); rb_encoding *encoding = rb_enc_find(parser->encoding->name); for (uint32_t index = 0; index < parser->constant_pool.size; index++) { pm_constant_t *constant = &parser->constant_pool.constants[index]; constants[index] = rb_intern3((const char *) constant->start, constant->length, encoding); } scope_node.constants = constants; rb_iseq_compile_prism_node(iseq, &scope_node, parser); finish_iseq_build(iseq); pm_node_destroy(parser, node); free(constants); } } static VALUE iseqw_s_compile_prism(int argc, VALUE *argv, VALUE self) { VALUE src, file = Qnil, path = Qnil, line = Qnil, opt = Qnil; int i; i = rb_scan_args(argc, argv, "1*:", &src, NULL, &opt); if (i > 4+NIL_P(opt)) rb_error_arity(argc, 1, 5); switch (i) { case 5: opt = argv[--i]; case 4: line = argv[--i]; case 3: path = argv[--i]; case 2: file = argv[--i]; } if (NIL_P(file)) file = rb_fstring_lit(""); if (NIL_P(path)) path = file; if (NIL_P(line)) line = INT2FIX(1); Check_Type(path, T_STRING); Check_Type(file, T_STRING); pm_options_t options = { 0 }; pm_options_filepath_set(&options, RSTRING_PTR(file)); int start_line = NUM2INT(line); pm_options_line_set(&options, start_line); pm_parser_t parser; pm_string_t input; if (RB_TYPE_P(src, T_FILE)) { FilePathValue(src); file = rb_fstring(src); /* rb_io_t->pathv gets frozen anyways */ pm_string_mapped_init(&input, RSTRING_PTR(file)); } else { Check_Type(src, T_STRING); input.source = (const uint8_t *)RSTRING_PTR(src); input.length = RSTRING_LEN(src); input.type = PM_STRING_SHARED; } pm_parser_init(&parser, pm_string_source(&input), pm_string_length(&input), &options); rb_iseq_t *iseq = iseq_alloc(); iseqw_s_compile_prism_compile(&parser, opt, iseq, file, path, start_line); pm_parser_free(&parser); pm_options_free(&options); pm_string_free(&input); return iseqw_new(iseq); } static VALUE iseqw_s_compile_file_prism(int argc, VALUE *argv, VALUE self) { VALUE file = Qnil, opt = Qnil; int i; i = rb_scan_args(argc, argv, "1*:", &file, NULL, &opt); if (i > 1+NIL_P(opt)) rb_error_arity(argc, 1, 5); switch (i) { case 2: opt = argv[--i]; } FilePathValue(file); file = rb_fstring(file); /* rb_io_t->pathv gets frozen anyways */ pm_string_t input; pm_string_mapped_init(&input, RSTRING_PTR(file)); pm_options_t options = { 0 }; pm_options_filepath_set(&options, RSTRING_PTR(file)); pm_parser_t parser; pm_parser_init(&parser, pm_string_source(&input), pm_string_length(&input), &options); rb_iseq_t *iseq = iseq_alloc(); iseqw_s_compile_prism_compile(&parser, opt, iseq, file, rb_realpath_internal(Qnil, file, 1), 1); pm_parser_free(&parser); pm_string_free(&input); pm_options_free(&options); return iseqw_new(iseq); } rb_iseq_t * rb_iseq_new_main_prism(pm_string_t *input, pm_options_t *options, VALUE path) { pm_parser_t parser; pm_parser_init(&parser, pm_string_source(input), pm_string_length(input), options); if (NIL_P(path)) path = rb_fstring_lit(""); int start_line = 0; pm_options_line_set(options, start_line); rb_iseq_t *iseq = iseq_alloc(); iseqw_s_compile_prism_compile(&parser, Qnil, iseq, path, path, start_line); pm_parser_free(&parser); return iseq; } /* * call-seq: * InstructionSequence.compile_file(file[, options]) -> iseq * * Takes +file+, a String with the location of a Ruby source file, reads, * parses and compiles the file, and returns +iseq+, the compiled * InstructionSequence with source location metadata set. * * Optionally takes +options+, which can be +true+, +false+ or a +Hash+, to * modify the default behavior of the Ruby iseq compiler. * * For details regarding valid compile options see ::compile_option=. * * # /tmp/hello.rb * puts "Hello, world!" * * # elsewhere * RubyVM::InstructionSequence.compile_file("/tmp/hello.rb") * #=> @/tmp/hello.rb> */ static VALUE iseqw_s_compile_file(int argc, VALUE *argv, VALUE self) { VALUE file, opt = Qnil; VALUE parser, f, exc = Qnil, ret; rb_ast_t *ast; rb_compile_option_t option; int i; i = rb_scan_args(argc, argv, "1*:", &file, NULL, &opt); if (i > 1+NIL_P(opt)) rb_error_arity(argc, 1, 2); switch (i) { case 2: opt = argv[--i]; } FilePathValue(file); file = rb_fstring(file); /* rb_io_t->pathv gets frozen anyways */ f = rb_file_open_str(file, "r"); rb_execution_context_t *ec = GET_EC(); VALUE v = rb_vm_push_frame_fname(ec, file); parser = rb_parser_new(); rb_parser_set_context(parser, NULL, FALSE); ast = (rb_ast_t *)rb_parser_load_file(parser, file); if (!ast->body.root) exc = GET_EC()->errinfo; rb_io_close(f); if (!ast->body.root) { rb_ast_dispose(ast); rb_exc_raise(exc); } make_compile_option(&option, opt); ret = iseqw_new(rb_iseq_new_with_opt(&ast->body, rb_fstring_lit("
"), file, rb_realpath_internal(Qnil, file, 1), 1, NULL, 0, ISEQ_TYPE_TOP, &option)); rb_ast_dispose(ast); rb_vm_pop_frame(ec); RB_GC_GUARD(v); return ret; } /* * call-seq: * InstructionSequence.compile_option = options * * Sets the default values for various optimizations in the Ruby iseq * compiler. * * Possible values for +options+ include +true+, which enables all options, * +false+ which disables all options, and +nil+ which leaves all options * unchanged. * * You can also pass a +Hash+ of +options+ that you want to change, any * options not present in the hash will be left unchanged. * * Possible option names (which are keys in +options+) which can be set to * +true+ or +false+ include: * * * +:inline_const_cache+ * * +:instructions_unification+ * * +:operands_unification+ * * +:peephole_optimization+ * * +:specialized_instruction+ * * +:tailcall_optimization+ * * Additionally, +:debug_level+ can be set to an integer. * * These default options can be overwritten for a single run of the iseq * compiler by passing any of the above values as the +options+ parameter to * ::new, ::compile and ::compile_file. */ static VALUE iseqw_s_compile_option_set(VALUE self, VALUE opt) { rb_compile_option_t option; make_compile_option(&option, opt); COMPILE_OPTION_DEFAULT = option; return opt; } /* * call-seq: * InstructionSequence.compile_option -> options * * Returns a hash of default options used by the Ruby iseq compiler. * * For details, see InstructionSequence.compile_option=. */ static VALUE iseqw_s_compile_option_get(VALUE self) { return make_compile_option_value(&COMPILE_OPTION_DEFAULT); } static const rb_iseq_t * iseqw_check(VALUE iseqw) { rb_iseq_t *iseq = DATA_PTR(iseqw); if (!ISEQ_BODY(iseq)) { rb_ibf_load_iseq_complete(iseq); } if (!ISEQ_BODY(iseq)->location.label) { rb_raise(rb_eTypeError, "uninitialized InstructionSequence"); } return iseq; } const rb_iseq_t * rb_iseqw_to_iseq(VALUE iseqw) { return iseqw_check(iseqw); } /* * call-seq: * iseq.eval -> obj * * Evaluates the instruction sequence and returns the result. * * RubyVM::InstructionSequence.compile("1 + 2").eval #=> 3 */ static VALUE iseqw_eval(VALUE self) { return rb_iseq_eval(iseqw_check(self)); } /* * Returns a human-readable string representation of this instruction * sequence, including the #label and #path. */ static VALUE iseqw_inspect(VALUE self) { const rb_iseq_t *iseq = iseqw_check(self); const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); VALUE klass = rb_class_name(rb_obj_class(self)); if (!body->location.label) { return rb_sprintf("#<%"PRIsVALUE": uninitialized>", klass); } else { return rb_sprintf("<%"PRIsVALUE":%"PRIsVALUE"@%"PRIsVALUE":%d>", klass, body->location.label, rb_iseq_path(iseq), FIX2INT(rb_iseq_first_lineno(iseq))); } } /* * Returns the path of this instruction sequence. * * if the iseq was evaluated from a string. * * For example, using irb: * * iseq = RubyVM::InstructionSequence.compile('num = 1 + 2') * #=> @> * iseq.path * #=> "" * * Using ::compile_file: * * # /tmp/method.rb * def hello * puts "hello, world" * end * * # in irb * > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb') * > iseq.path #=> /tmp/method.rb */ static VALUE iseqw_path(VALUE self) { return rb_iseq_path(iseqw_check(self)); } /* * Returns the absolute path of this instruction sequence. * * +nil+ if the iseq was evaluated from a string. * * For example, using ::compile_file: * * # /tmp/method.rb * def hello * puts "hello, world" * end * * # in irb * > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb') * > iseq.absolute_path #=> /tmp/method.rb */ static VALUE iseqw_absolute_path(VALUE self) { return rb_iseq_realpath(iseqw_check(self)); } /* Returns the label of this instruction sequence. * *
if it's at the top level, if it * was evaluated from a string. * * For example, using irb: * * iseq = RubyVM::InstructionSequence.compile('num = 1 + 2') * #=> @> * iseq.label * #=> "" * * Using ::compile_file: * * # /tmp/method.rb * def hello * puts "hello, world" * end * * # in irb * > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb') * > iseq.label #=>
*/ static VALUE iseqw_label(VALUE self) { return rb_iseq_label(iseqw_check(self)); } /* Returns the base label of this instruction sequence. * * For example, using irb: * * iseq = RubyVM::InstructionSequence.compile('num = 1 + 2') * #=> @> * iseq.base_label * #=> "" * * Using ::compile_file: * * # /tmp/method.rb * def hello * puts "hello, world" * end * * # in irb * > iseq = RubyVM::InstructionSequence.compile_file('/tmp/method.rb') * > iseq.base_label #=>
*/ static VALUE iseqw_base_label(VALUE self) { return rb_iseq_base_label(iseqw_check(self)); } /* Returns the number of the first source line where the instruction sequence * was loaded from. * * For example, using irb: * * iseq = RubyVM::InstructionSequence.compile('num = 1 + 2') * #=> @> * iseq.first_lineno * #=> 1 */ static VALUE iseqw_first_lineno(VALUE self) { return rb_iseq_first_lineno(iseqw_check(self)); } static VALUE iseq_data_to_ary(const rb_iseq_t *iseq); /* * call-seq: * iseq.to_a -> ary * * Returns an Array with 14 elements representing the instruction sequence * with the following data: * * [magic] * A string identifying the data format. Always * +YARVInstructionSequence/SimpleDataFormat+. * * [major_version] * The major version of the instruction sequence. * * [minor_version] * The minor version of the instruction sequence. * * [format_type] * A number identifying the data format. Always 1. * * [misc] * A hash containing: * * [+:arg_size+] * the total number of arguments taken by the method or the block (0 if * _iseq_ doesn't represent a method or block) * [+:local_size+] * the number of local variables + 1 * [+:stack_max+] * used in calculating the stack depth at which a SystemStackError is * thrown. * * [#label] * The name of the context (block, method, class, module, etc.) that this * instruction sequence belongs to. * *
if it's at the top level, if * it was evaluated from a string. * * [#path] * The relative path to the Ruby file where the instruction sequence was * loaded from. * * if the iseq was evaluated from a string. * * [#absolute_path] * The absolute path to the Ruby file where the instruction sequence was * loaded from. * * +nil+ if the iseq was evaluated from a string. * * [#first_lineno] * The number of the first source line where the instruction sequence was * loaded from. * * [type] * The type of the instruction sequence. * * Valid values are +:top+, +:method+, +:block+, +:class+, +:rescue+, * +:ensure+, +:eval+, +:main+, and +plain+. * * [locals] * An array containing the names of all arguments and local variables as * symbols. * * [params] * An Hash object containing parameter information. * * More info about these values can be found in +vm_core.h+. * * [catch_table] * A list of exceptions and control flow operators (rescue, next, redo, * break, etc.). * * [bytecode] * An array of arrays containing the instruction names and operands that * make up the body of the instruction sequence. * * Note that this format is MRI specific and version dependent. * */ static VALUE iseqw_to_a(VALUE self) { const rb_iseq_t *iseq = iseqw_check(self); return iseq_data_to_ary(iseq); } #if VM_INSN_INFO_TABLE_IMPL == 1 /* binary search */ static const struct iseq_insn_info_entry * get_insn_info_binary_search(const rb_iseq_t *iseq, size_t pos) { const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); size_t size = body->insns_info.size; const struct iseq_insn_info_entry *insns_info = body->insns_info.body; const unsigned int *positions = body->insns_info.positions; const int debug = 0; if (debug) { printf("size: %"PRIuSIZE"\n", size); printf("insns_info[%"PRIuSIZE"]: position: %d, line: %d, pos: %"PRIuSIZE"\n", (size_t)0, positions[0], insns_info[0].line_no, pos); } if (size == 0) { return NULL; } else if (size == 1) { return &insns_info[0]; } else { size_t l = 1, r = size - 1; while (l <= r) { size_t m = l + (r - l) / 2; if (positions[m] == pos) { return &insns_info[m]; } if (positions[m] < pos) { l = m + 1; } else { r = m - 1; } } if (l >= size) { return &insns_info[size-1]; } if (positions[l] > pos) { return &insns_info[l-1]; } return &insns_info[l]; } } static const struct iseq_insn_info_entry * get_insn_info(const rb_iseq_t *iseq, size_t pos) { return get_insn_info_binary_search(iseq, pos); } #endif #if VM_INSN_INFO_TABLE_IMPL == 2 /* succinct bitvector */ static const struct iseq_insn_info_entry * get_insn_info_succinct_bitvector(const rb_iseq_t *iseq, size_t pos) { const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); size_t size = body->insns_info.size; const struct iseq_insn_info_entry *insns_info = body->insns_info.body; const int debug = 0; if (debug) { #if VM_CHECK_MODE > 0 const unsigned int *positions = body->insns_info.positions; printf("size: %"PRIuSIZE"\n", size); printf("insns_info[%"PRIuSIZE"]: position: %d, line: %d, pos: %"PRIuSIZE"\n", (size_t)0, positions[0], insns_info[0].line_no, pos); #else printf("size: %"PRIuSIZE"\n", size); printf("insns_info[%"PRIuSIZE"]: line: %d, pos: %"PRIuSIZE"\n", (size_t)0, insns_info[0].line_no, pos); #endif } if (size == 0) { return NULL; } else if (size == 1) { return &insns_info[0]; } else { int index; VM_ASSERT(body->insns_info.succ_index_table != NULL); index = succ_index_lookup(body->insns_info.succ_index_table, (int)pos); return &insns_info[index-1]; } } static const struct iseq_insn_info_entry * get_insn_info(const rb_iseq_t *iseq, size_t pos) { return get_insn_info_succinct_bitvector(iseq, pos); } #endif #if VM_CHECK_MODE > 0 || VM_INSN_INFO_TABLE_IMPL == 0 static const struct iseq_insn_info_entry * get_insn_info_linear_search(const rb_iseq_t *iseq, size_t pos) { const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); size_t i = 0, size = body->insns_info.size; const struct iseq_insn_info_entry *insns_info = body->insns_info.body; const unsigned int *positions = body->insns_info.positions; const int debug = 0; if (debug) { printf("size: %"PRIuSIZE"\n", size); printf("insns_info[%"PRIuSIZE"]: position: %d, line: %d, pos: %"PRIuSIZE"\n", i, positions[i], insns_info[i].line_no, pos); } if (size == 0) { return NULL; } else if (size == 1) { return &insns_info[0]; } else { for (i=1; i pos) { return &insns_info[i-1]; } } } return &insns_info[i-1]; } #endif #if VM_INSN_INFO_TABLE_IMPL == 0 /* linear search */ static const struct iseq_insn_info_entry * get_insn_info(const rb_iseq_t *iseq, size_t pos) { return get_insn_info_linear_search(iseq, pos); } #endif #if VM_CHECK_MODE > 0 && VM_INSN_INFO_TABLE_IMPL > 0 static void validate_get_insn_info(const rb_iseq_t *iseq) { const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); size_t i; for (i = 0; i < body->iseq_size; i++) { if (get_insn_info_linear_search(iseq, i) != get_insn_info(iseq, i)) { rb_bug("validate_get_insn_info: get_insn_info_linear_search(iseq, %"PRIuSIZE") != get_insn_info(iseq, %"PRIuSIZE")", i, i); } } } #endif unsigned int rb_iseq_line_no(const rb_iseq_t *iseq, size_t pos) { const struct iseq_insn_info_entry *entry = get_insn_info(iseq, pos); if (entry) { return entry->line_no; } else { return 0; } } #ifdef USE_ISEQ_NODE_ID int rb_iseq_node_id(const rb_iseq_t *iseq, size_t pos) { const struct iseq_insn_info_entry *entry = get_insn_info(iseq, pos); if (entry) { return entry->node_id; } else { return 0; } } #endif rb_event_flag_t rb_iseq_event_flags(const rb_iseq_t *iseq, size_t pos) { const struct iseq_insn_info_entry *entry = get_insn_info(iseq, pos); if (entry) { return entry->events; } else { return 0; } } void rb_iseq_clear_event_flags(const rb_iseq_t *iseq, size_t pos, rb_event_flag_t reset) { struct iseq_insn_info_entry *entry = (struct iseq_insn_info_entry *)get_insn_info(iseq, pos); if (entry) { entry->events &= ~reset; if (!(entry->events & iseq->aux.exec.global_trace_events)) { void rb_iseq_trace_flag_cleared(const rb_iseq_t *iseq, size_t pos); rb_iseq_trace_flag_cleared(iseq, pos); } } } static VALUE local_var_name(const rb_iseq_t *diseq, VALUE level, VALUE op) { VALUE i; VALUE name; ID lid; int idx; for (i = 0; i < level; i++) { diseq = ISEQ_BODY(diseq)->parent_iseq; } idx = ISEQ_BODY(diseq)->local_table_size - (int)op - 1; lid = ISEQ_BODY(diseq)->local_table[idx]; name = rb_id2str(lid); if (!name) { name = rb_str_new_cstr("?"); } else if (!rb_is_local_id(lid)) { name = rb_str_inspect(name); } else { name = rb_str_dup(name); } rb_str_catf(name, "@%d", idx); return name; } int rb_insn_unified_local_var_level(VALUE); VALUE rb_dump_literal(VALUE lit); VALUE rb_insn_operand_intern(const rb_iseq_t *iseq, VALUE insn, int op_no, VALUE op, int len, size_t pos, const VALUE *pnop, VALUE child) { const char *types = insn_op_types(insn); char type = types[op_no]; VALUE ret = Qundef; switch (type) { case TS_OFFSET: /* LONG */ ret = rb_sprintf("%"PRIdVALUE, (VALUE)(pos + len + op)); break; case TS_NUM: /* ULONG */ if (insn == BIN(defined) && op_no == 0) { enum defined_type deftype = (enum defined_type)op; switch (deftype) { case DEFINED_FUNC: ret = rb_fstring_lit("func"); break; case DEFINED_REF: ret = rb_fstring_lit("ref"); break; case DEFINED_CONST_FROM: ret = rb_fstring_lit("constant-from"); break; default: ret = rb_iseq_defined_string(deftype); break; } if (ret) break; } else if (insn == BIN(checktype) && op_no == 0) { const char *type_str = rb_type_str((enum ruby_value_type)op); if (type_str) { ret = rb_str_new_cstr(type_str); break; } } ret = rb_sprintf("%"PRIuVALUE, op); break; case TS_LINDEX:{ int level; if (types[op_no+1] == TS_NUM && pnop) { ret = local_var_name(iseq, *pnop, op - VM_ENV_DATA_SIZE); } else if ((level = rb_insn_unified_local_var_level(insn)) >= 0) { ret = local_var_name(iseq, (VALUE)level, op - VM_ENV_DATA_SIZE); } else { ret = rb_inspect(INT2FIX(op)); } break; } case TS_ID: /* ID (symbol) */ ret = rb_inspect(ID2SYM(op)); break; case TS_VALUE: /* VALUE */ op = obj_resurrect(op); if (insn == BIN(defined) && op_no == 1 && FIXNUM_P(op)) { /* should be DEFINED_REF */ int type = NUM2INT(op); if (type) { if (type & 1) { ret = rb_sprintf(":$%c", (type >> 1)); } else { ret = rb_sprintf(":$%d", (type >> 1)); } break; } } ret = rb_dump_literal(op); if (CLASS_OF(op) == rb_cISeq) { if (child) { rb_ary_push(child, op); } } break; case TS_ISEQ: /* iseq */ { if (op) { const rb_iseq_t *iseq = rb_iseq_check((rb_iseq_t *)op); ret = ISEQ_BODY(iseq)->location.label; if (child) { rb_ary_push(child, (VALUE)iseq); } } else { ret = rb_str_new2("nil"); } break; } case TS_IC: { ret = rb_sprintf("is_entries); const ID *segments = ((IC)op)->segments; rb_str_cat2(ret, rb_id2name(*segments++)); while (*segments) { rb_str_catf(ret, "::%s", rb_id2name(*segments++)); } rb_str_cat2(ret, ">"); } break; case TS_IVC: case TS_ICVARC: case TS_ISE: ret = rb_sprintf("", (union iseq_inline_storage_entry *)op - ISEQ_BODY(iseq)->is_entries); break; case TS_CALLDATA: { struct rb_call_data *cd = (struct rb_call_data *)op; const struct rb_callinfo *ci = cd->ci; VALUE ary = rb_ary_new(); ID mid = vm_ci_mid(ci); if (mid) { rb_ary_push(ary, rb_sprintf("mid:%"PRIsVALUE, rb_id2str(mid))); } rb_ary_push(ary, rb_sprintf("argc:%d", vm_ci_argc(ci))); if (vm_ci_flag(ci) & VM_CALL_KWARG) { const struct rb_callinfo_kwarg *kw_args = vm_ci_kwarg(ci); VALUE kw_ary = rb_ary_new_from_values(kw_args->keyword_len, kw_args->keywords); rb_ary_push(ary, rb_sprintf("kw:[%"PRIsVALUE"]", rb_ary_join(kw_ary, rb_str_new2(",")))); } if (vm_ci_flag(ci)) { VALUE flags = rb_ary_new(); # define CALL_FLAG(n) if (vm_ci_flag(ci) & VM_CALL_##n) rb_ary_push(flags, rb_str_new2(#n)) CALL_FLAG(ARGS_SPLAT); CALL_FLAG(ARGS_BLOCKARG); CALL_FLAG(FCALL); CALL_FLAG(VCALL); CALL_FLAG(ARGS_SIMPLE); CALL_FLAG(TAILCALL); CALL_FLAG(SUPER); CALL_FLAG(ZSUPER); CALL_FLAG(KWARG); CALL_FLAG(KW_SPLAT); CALL_FLAG(KW_SPLAT_MUT); CALL_FLAG(OPT_SEND); /* maybe not reachable */ rb_ary_push(ary, rb_ary_join(flags, rb_str_new2("|"))); } ret = rb_sprintf("", rb_ary_join(ary, rb_str_new2(", "))); } break; case TS_CDHASH: ret = rb_str_new2(""); break; case TS_FUNCPTR: { #ifdef HAVE_DLADDR Dl_info info; if (dladdr((void *)op, &info) && info.dli_sname) { ret = rb_str_new_cstr(info.dli_sname); break; } #endif ret = rb_str_new2(""); } break; case TS_BUILTIN: { const struct rb_builtin_function *bf = (const struct rb_builtin_function *)op; ret = rb_sprintf("", bf->name, bf->argc); } break; default: rb_bug("unknown operand type: %c", type); } return ret; } static VALUE right_strip(VALUE str) { const char *beg = RSTRING_PTR(str), *end = RSTRING_END(str); while (end-- > beg && *end == ' '); rb_str_set_len(str, end - beg + 1); return str; } /** * Disassemble a instruction * Iseq -> Iseq inspect object */ int rb_iseq_disasm_insn(VALUE ret, const VALUE *code, size_t pos, const rb_iseq_t *iseq, VALUE child) { VALUE insn = code[pos]; int len = insn_len(insn); int j; const char *types = insn_op_types(insn); VALUE str = rb_str_new(0, 0); const char *insn_name_buff; insn_name_buff = insn_name(insn); if (1) { extern const int rb_vm_max_insn_name_size; rb_str_catf(str, "%04"PRIuSIZE" %-*s ", pos, rb_vm_max_insn_name_size, insn_name_buff); } else { rb_str_catf(str, "%04"PRIuSIZE" %-28.*s ", pos, (int)strcspn(insn_name_buff, "_"), insn_name_buff); } for (j = 0; types[j]; j++) { VALUE opstr = rb_insn_operand_intern(iseq, insn, j, code[pos + j + 1], len, pos, &code[pos + j + 2], child); rb_str_concat(str, opstr); if (types[j + 1]) { rb_str_cat2(str, ", "); } } { unsigned int line_no = rb_iseq_line_no(iseq, pos); unsigned int prev = pos == 0 ? 0 : rb_iseq_line_no(iseq, pos - 1); if (line_no && line_no != prev) { long slen = RSTRING_LEN(str); slen = (slen > 70) ? 0 : (70 - slen); str = rb_str_catf(str, "%*s(%4d)", (int)slen, "", line_no); } } { rb_event_flag_t events = rb_iseq_event_flags(iseq, pos); if (events) { str = rb_str_catf(str, "[%s%s%s%s%s%s%s%s%s%s%s%s]", events & RUBY_EVENT_LINE ? "Li" : "", events & RUBY_EVENT_CLASS ? "Cl" : "", events & RUBY_EVENT_END ? "En" : "", events & RUBY_EVENT_CALL ? "Ca" : "", events & RUBY_EVENT_RETURN ? "Re" : "", events & RUBY_EVENT_C_CALL ? "Cc" : "", events & RUBY_EVENT_C_RETURN ? "Cr" : "", events & RUBY_EVENT_B_CALL ? "Bc" : "", events & RUBY_EVENT_B_RETURN ? "Br" : "", events & RUBY_EVENT_RESCUE ? "Rs" : "", events & RUBY_EVENT_COVERAGE_LINE ? "Cli" : "", events & RUBY_EVENT_COVERAGE_BRANCH ? "Cbr" : ""); } } right_strip(str); if (ret) { rb_str_cat2(str, "\n"); rb_str_concat(ret, str); } else { printf("%.*s\n", (int)RSTRING_LEN(str), RSTRING_PTR(str)); } return len; } static const char * catch_type(int type) { switch (type) { case CATCH_TYPE_RESCUE: return "rescue"; case CATCH_TYPE_ENSURE: return "ensure"; case CATCH_TYPE_RETRY: return "retry"; case CATCH_TYPE_BREAK: return "break"; case CATCH_TYPE_REDO: return "redo"; case CATCH_TYPE_NEXT: return "next"; default: rb_bug("unknown catch type: %d", type); return 0; } } static VALUE iseq_inspect(const rb_iseq_t *iseq) { const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); if (!body->location.label) { return rb_sprintf("#"); } else { const rb_code_location_t *loc = &body->location.code_location; return rb_sprintf("#", body->location.label, rb_iseq_path(iseq), loc->beg_pos.lineno, loc->beg_pos.lineno, loc->beg_pos.column, loc->end_pos.lineno, loc->end_pos.column); } } static const rb_data_type_t tmp_set = { "tmpset", {(void (*)(void *))rb_mark_set, (void (*)(void *))st_free_table, 0, 0,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static VALUE rb_iseq_disasm_recursive(const rb_iseq_t *iseq, VALUE indent) { const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); VALUE *code; VALUE str = rb_str_new(0, 0); VALUE child = rb_ary_hidden_new(3); unsigned int size; unsigned int i; long l; size_t n; enum {header_minlen = 72}; st_table *done_iseq = 0; VALUE done_iseq_wrapper = Qnil; const char *indent_str; long indent_len; size = body->iseq_size; indent_len = RSTRING_LEN(indent); indent_str = RSTRING_PTR(indent); rb_str_cat(str, indent_str, indent_len); rb_str_cat2(str, "== disasm: "); rb_str_append(str, iseq_inspect(iseq)); if ((l = RSTRING_LEN(str) - indent_len) < header_minlen) { rb_str_modify_expand(str, header_minlen - l); memset(RSTRING_END(str), '=', header_minlen - l); } rb_str_cat2(str, "\n"); /* show catch table information */ if (body->catch_table) { rb_str_cat(str, indent_str, indent_len); rb_str_cat2(str, "== catch table\n"); } if (body->catch_table) { rb_str_cat_cstr(indent, "| "); indent_str = RSTRING_PTR(indent); for (i = 0; i < body->catch_table->size; i++) { const struct iseq_catch_table_entry *entry = UNALIGNED_MEMBER_PTR(body->catch_table, entries[i]); rb_str_cat(str, indent_str, indent_len); rb_str_catf(str, "| catch type: %-6s st: %04d ed: %04d sp: %04d cont: %04d\n", catch_type((int)entry->type), (int)entry->start, (int)entry->end, (int)entry->sp, (int)entry->cont); if (entry->iseq && !(done_iseq && st_is_member(done_iseq, (st_data_t)entry->iseq))) { rb_str_concat(str, rb_iseq_disasm_recursive(rb_iseq_check(entry->iseq), indent)); if (!done_iseq) { done_iseq = st_init_numtable(); done_iseq_wrapper = TypedData_Wrap_Struct(0, &tmp_set, done_iseq); } st_insert(done_iseq, (st_data_t)entry->iseq, (st_data_t)0); indent_str = RSTRING_PTR(indent); } } rb_str_resize(indent, indent_len); indent_str = RSTRING_PTR(indent); } if (body->catch_table) { rb_str_cat(str, indent_str, indent_len); rb_str_cat2(str, "|-------------------------------------" "-----------------------------------\n"); } /* show local table information */ if (body->local_table) { const struct rb_iseq_param_keyword *const keyword = body->param.keyword; rb_str_cat(str, indent_str, indent_len); rb_str_catf(str, "local table (size: %d, argc: %d " "[opts: %d, rest: %d, post: %d, block: %d, kw: %d@%d, kwrest: %d])\n", body->local_table_size, body->param.lead_num, body->param.opt_num, body->param.flags.has_rest ? body->param.rest_start : -1, body->param.post_num, body->param.flags.has_block ? body->param.block_start : -1, body->param.flags.has_kw ? keyword->num : -1, body->param.flags.has_kw ? keyword->required_num : -1, body->param.flags.has_kwrest ? keyword->rest_start : -1); for (i = body->local_table_size; i > 0;) { int li = body->local_table_size - --i - 1; long width; VALUE name = local_var_name(iseq, 0, i); char argi[0x100]; char opti[0x100]; opti[0] = '\0'; if (body->param.flags.has_opt) { int argc = body->param.lead_num; int opts = body->param.opt_num; if (li >= argc && li < argc + opts) { snprintf(opti, sizeof(opti), "Opt=%"PRIdVALUE, body->param.opt_table[li - argc]); } } snprintf(argi, sizeof(argi), "%s%s%s%s%s%s", /* arg, opts, rest, post, kwrest, block */ body->param.lead_num > li ? "Arg" : "", opti, (body->param.flags.has_rest && body->param.rest_start == li) ? "Rest" : "", (body->param.flags.has_post && body->param.post_start <= li && li < body->param.post_start + body->param.post_num) ? "Post" : "", (body->param.flags.has_kwrest && keyword->rest_start == li) ? "Kwrest" : "", (body->param.flags.has_block && body->param.block_start == li) ? "Block" : ""); rb_str_cat(str, indent_str, indent_len); rb_str_catf(str, "[%2d] ", i + 1); width = RSTRING_LEN(str) + 11; rb_str_append(str, name); if (*argi) rb_str_catf(str, "<%s>", argi); if ((width -= RSTRING_LEN(str)) > 0) rb_str_catf(str, "%*s", (int)width, ""); } rb_str_cat_cstr(right_strip(str), "\n"); } /* show each line */ code = rb_iseq_original_iseq(iseq); for (n = 0; n < size;) { rb_str_cat(str, indent_str, indent_len); n += rb_iseq_disasm_insn(str, code, n, iseq, child); } for (l = 0; l < RARRAY_LEN(child); l++) { VALUE isv = rb_ary_entry(child, l); if (done_iseq && st_is_member(done_iseq, (st_data_t)isv)) continue; rb_str_cat_cstr(str, "\n"); rb_str_concat(str, rb_iseq_disasm_recursive(rb_iseq_check((rb_iseq_t *)isv), indent)); indent_str = RSTRING_PTR(indent); } RB_GC_GUARD(done_iseq_wrapper); return str; } VALUE rb_iseq_disasm(const rb_iseq_t *iseq) { VALUE str = rb_iseq_disasm_recursive(iseq, rb_str_new(0, 0)); rb_str_resize(str, RSTRING_LEN(str)); return str; } /* * Estimates the number of instance variables that will be set on * a given `class` with the initialize method defined in * `initialize_iseq` */ attr_index_t rb_estimate_iv_count(VALUE klass, const rb_iseq_t * initialize_iseq) { struct rb_id_table * iv_names = rb_id_table_create(0); for (unsigned int i = 0; i < ISEQ_BODY(initialize_iseq)->ivc_size; i++) { IVC cache = (IVC)&ISEQ_BODY(initialize_iseq)->is_entries[i]; if (cache->iv_set_name) { rb_id_table_insert(iv_names, cache->iv_set_name, Qtrue); } } attr_index_t count = (attr_index_t)rb_id_table_size(iv_names); VALUE superclass = rb_class_superclass(klass); count += RCLASS_EXT(superclass)->max_iv_count; rb_id_table_free(iv_names); return count; } /* * call-seq: * iseq.disasm -> str * iseq.disassemble -> str * * Returns the instruction sequence as a +String+ in human readable form. * * puts RubyVM::InstructionSequence.compile('1 + 2').disasm * * Produces: * * == disasm: @>========== * 0000 trace 1 ( 1) * 0002 putobject 1 * 0004 putobject 2 * 0006 opt_plus * 0008 leave */ static VALUE iseqw_disasm(VALUE self) { return rb_iseq_disasm(iseqw_check(self)); } static int iseq_iterate_children(const rb_iseq_t *iseq, void (*iter_func)(const rb_iseq_t *child_iseq, void *data), void *data) { unsigned int i; VALUE *code = rb_iseq_original_iseq(iseq); const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); const rb_iseq_t *child; VALUE all_children = rb_obj_hide(rb_ident_hash_new()); if (body->catch_table) { for (i = 0; i < body->catch_table->size; i++) { const struct iseq_catch_table_entry *entry = UNALIGNED_MEMBER_PTR(body->catch_table, entries[i]); child = entry->iseq; if (child) { if (NIL_P(rb_hash_aref(all_children, (VALUE)child))) { rb_hash_aset(all_children, (VALUE)child, Qtrue); (*iter_func)(child, data); } } } } for (i=0; iiseq_size;) { VALUE insn = code[i]; int len = insn_len(insn); const char *types = insn_op_types(insn); int j; for (j=0; types[j]; j++) { switch (types[j]) { case TS_ISEQ: child = (const rb_iseq_t *)code[i+j+1]; if (child) { if (NIL_P(rb_hash_aref(all_children, (VALUE)child))) { rb_hash_aset(all_children, (VALUE)child, Qtrue); (*iter_func)(child, data); } } break; default: break; } } i += len; } return (int)RHASH_SIZE(all_children); } static void yield_each_children(const rb_iseq_t *child_iseq, void *data) { rb_yield(iseqw_new(child_iseq)); } /* * call-seq: * iseq.each_child{|child_iseq| ...} -> iseq * * Iterate all direct child instruction sequences. * Iteration order is implementation/version defined * so that people should not rely on the order. */ static VALUE iseqw_each_child(VALUE self) { const rb_iseq_t *iseq = iseqw_check(self); iseq_iterate_children(iseq, yield_each_children, NULL); return self; } static void push_event_info(const rb_iseq_t *iseq, rb_event_flag_t events, int line, VALUE ary) { #define C(ev, cstr, l) if (events & ev) rb_ary_push(ary, rb_ary_new_from_args(2, l, ID2SYM(rb_intern(cstr)))); C(RUBY_EVENT_CLASS, "class", rb_iseq_first_lineno(iseq)); C(RUBY_EVENT_CALL, "call", rb_iseq_first_lineno(iseq)); C(RUBY_EVENT_B_CALL, "b_call", rb_iseq_first_lineno(iseq)); C(RUBY_EVENT_LINE, "line", INT2FIX(line)); C(RUBY_EVENT_END, "end", INT2FIX(line)); C(RUBY_EVENT_RETURN, "return", INT2FIX(line)); C(RUBY_EVENT_B_RETURN, "b_return", INT2FIX(line)); C(RUBY_EVENT_RESCUE, "rescue", INT2FIX(line)); #undef C } /* * call-seq: * iseq.trace_points -> ary * * Return trace points in the instruction sequence. * Return an array of [line, event_symbol] pair. */ static VALUE iseqw_trace_points(VALUE self) { const rb_iseq_t *iseq = iseqw_check(self); const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); unsigned int i; VALUE ary = rb_ary_new(); for (i=0; iinsns_info.size; i++) { const struct iseq_insn_info_entry *entry = &body->insns_info.body[i]; if (entry->events) { push_event_info(iseq, entry->events, entry->line_no, ary); } } return ary; } /* * Returns the instruction sequence containing the given proc or method. * * For example, using irb: * * # a proc * > p = proc { num = 1 + 2 } * > RubyVM::InstructionSequence.of(p) * > #=> * * # for a method * > def foo(bar); puts bar; end * > RubyVM::InstructionSequence.of(method(:foo)) * > #=> * * Using ::compile_file: * * # /tmp/iseq_of.rb * def hello * puts "hello, world" * end * * $a_global_proc = proc { str = 'a' + 'b' } * * # in irb * > require '/tmp/iseq_of.rb' * * # first the method hello * > RubyVM::InstructionSequence.of(method(:hello)) * > #=> # * * # then the global proc * > RubyVM::InstructionSequence.of($a_global_proc) * > #=> # */ static VALUE iseqw_s_of(VALUE klass, VALUE body) { const rb_iseq_t *iseq = NULL; if (rb_obj_is_proc(body)) { iseq = vm_proc_iseq(body); if (!rb_obj_is_iseq((VALUE)iseq)) { iseq = NULL; } } else if (rb_obj_is_method(body)) { iseq = rb_method_iseq(body); } else if (rb_typeddata_is_instance_of(body, &iseqw_data_type)) { return body; } return iseq ? iseqw_new(iseq) : Qnil; } /* * call-seq: * InstructionSequence.disasm(body) -> str * InstructionSequence.disassemble(body) -> str * * Takes +body+, a Method or Proc object, and returns a String with the * human readable instructions for +body+. * * For a Method object: * * # /tmp/method.rb * def hello * puts "hello, world" * end * * puts RubyVM::InstructionSequence.disasm(method(:hello)) * * Produces: * * == disasm: ============ * 0000 trace 8 ( 1) * 0002 trace 1 ( 2) * 0004 putself * 0005 putstring "hello, world" * 0007 send :puts, 1, nil, 8, * 0013 trace 16 ( 3) * 0015 leave ( 2) * * For a Proc: * * # /tmp/proc.rb * p = proc { num = 1 + 2 } * puts RubyVM::InstructionSequence.disasm(p) * * Produces: * * == disasm: @/tmp/proc.rb>=== * == catch table * | catch type: redo st: 0000 ed: 0012 sp: 0000 cont: 0000 * | catch type: next st: 0000 ed: 0012 sp: 0000 cont: 0012 * |------------------------------------------------------------------------ * local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1) * [ 2] num * 0000 trace 1 ( 1) * 0002 putobject 1 * 0004 putobject 2 * 0006 opt_plus * 0008 dup * 0009 setlocal num, 0 * 0012 leave * */ static VALUE iseqw_s_disasm(VALUE klass, VALUE body) { VALUE iseqw = iseqw_s_of(klass, body); return NIL_P(iseqw) ? Qnil : rb_iseq_disasm(iseqw_check(iseqw)); } static VALUE register_label(struct st_table *table, unsigned long idx) { VALUE sym = rb_str_intern(rb_sprintf("label_%lu", idx)); st_insert(table, idx, sym); return sym; } static VALUE exception_type2symbol(VALUE type) { ID id; switch (type) { case CATCH_TYPE_RESCUE: CONST_ID(id, "rescue"); break; case CATCH_TYPE_ENSURE: CONST_ID(id, "ensure"); break; case CATCH_TYPE_RETRY: CONST_ID(id, "retry"); break; case CATCH_TYPE_BREAK: CONST_ID(id, "break"); break; case CATCH_TYPE_REDO: CONST_ID(id, "redo"); break; case CATCH_TYPE_NEXT: CONST_ID(id, "next"); break; default: rb_bug("unknown exception type: %d", (int)type); } return ID2SYM(id); } static int cdhash_each(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, obj_resurrect(key)); rb_ary_push(ary, value); return ST_CONTINUE; } static const rb_data_type_t label_wrapper = { "label_wrapper", {(void (*)(void *))rb_mark_tbl, (void (*)(void *))st_free_table, 0, 0,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; #define DECL_ID(name) \ static ID id_##name #define INIT_ID(name) \ id_##name = rb_intern(#name) static VALUE iseq_type_id(enum rb_iseq_type type) { DECL_ID(top); DECL_ID(method); DECL_ID(block); DECL_ID(class); DECL_ID(rescue); DECL_ID(ensure); DECL_ID(eval); DECL_ID(main); DECL_ID(plain); if (id_top == 0) { INIT_ID(top); INIT_ID(method); INIT_ID(block); INIT_ID(class); INIT_ID(rescue); INIT_ID(ensure); INIT_ID(eval); INIT_ID(main); INIT_ID(plain); } switch (type) { case ISEQ_TYPE_TOP: return id_top; case ISEQ_TYPE_METHOD: return id_method; case ISEQ_TYPE_BLOCK: return id_block; case ISEQ_TYPE_CLASS: return id_class; case ISEQ_TYPE_RESCUE: return id_rescue; case ISEQ_TYPE_ENSURE: return id_ensure; case ISEQ_TYPE_EVAL: return id_eval; case ISEQ_TYPE_MAIN: return id_main; case ISEQ_TYPE_PLAIN: return id_plain; }; rb_bug("unsupported iseq type: %d", (int)type); } static VALUE iseq_data_to_ary(const rb_iseq_t *iseq) { unsigned int i; long l; const struct rb_iseq_constant_body *const iseq_body = ISEQ_BODY(iseq); const struct iseq_insn_info_entry *prev_insn_info; unsigned int pos; int last_line = 0; VALUE *seq, *iseq_original; VALUE val = rb_ary_new(); ID type; /* Symbol */ VALUE locals = rb_ary_new(); VALUE params = rb_hash_new(); VALUE body = rb_ary_new(); /* [[:insn1, ...], ...] */ VALUE nbody; VALUE exception = rb_ary_new(); /* [[....]] */ VALUE misc = rb_hash_new(); static ID insn_syms[VM_INSTRUCTION_SIZE/2]; /* w/o-trace only */ struct st_table *labels_table = st_init_numtable(); VALUE labels_wrapper = TypedData_Wrap_Struct(0, &label_wrapper, labels_table); if (insn_syms[0] == 0) { int i; for (i=0; itype); /* locals */ for (i=0; ilocal_table_size; i++) { ID lid = iseq_body->local_table[i]; if (lid) { if (rb_id2str(lid)) { rb_ary_push(locals, ID2SYM(lid)); } else { /* hidden variable from id_internal() */ rb_ary_push(locals, ULONG2NUM(iseq_body->local_table_size-i+1)); } } else { rb_ary_push(locals, ID2SYM(rb_intern("#arg_rest"))); } } /* params */ { const struct rb_iseq_param_keyword *const keyword = iseq_body->param.keyword; int j; if (iseq_body->param.flags.has_opt) { int len = iseq_body->param.opt_num + 1; VALUE arg_opt_labels = rb_ary_new2(len); for (j = 0; j < len; j++) { VALUE l = register_label(labels_table, iseq_body->param.opt_table[j]); rb_ary_push(arg_opt_labels, l); } rb_hash_aset(params, ID2SYM(rb_intern("opt")), arg_opt_labels); } /* commit */ if (iseq_body->param.flags.has_lead) rb_hash_aset(params, ID2SYM(rb_intern("lead_num")), INT2FIX(iseq_body->param.lead_num)); if (iseq_body->param.flags.has_post) rb_hash_aset(params, ID2SYM(rb_intern("post_num")), INT2FIX(iseq_body->param.post_num)); if (iseq_body->param.flags.has_post) rb_hash_aset(params, ID2SYM(rb_intern("post_start")), INT2FIX(iseq_body->param.post_start)); if (iseq_body->param.flags.has_rest) rb_hash_aset(params, ID2SYM(rb_intern("rest_start")), INT2FIX(iseq_body->param.rest_start)); if (iseq_body->param.flags.has_block) rb_hash_aset(params, ID2SYM(rb_intern("block_start")), INT2FIX(iseq_body->param.block_start)); if (iseq_body->param.flags.has_kw) { VALUE keywords = rb_ary_new(); int i, j; for (i=0; irequired_num; i++) { rb_ary_push(keywords, ID2SYM(keyword->table[i])); } for (j=0; inum; i++, j++) { VALUE key = rb_ary_new_from_args(1, ID2SYM(keyword->table[i])); if (!UNDEF_P(keyword->default_values[j])) { rb_ary_push(key, keyword->default_values[j]); } rb_ary_push(keywords, key); } rb_hash_aset(params, ID2SYM(rb_intern("kwbits")), INT2FIX(keyword->bits_start)); rb_hash_aset(params, ID2SYM(rb_intern("keyword")), keywords); } if (iseq_body->param.flags.has_kwrest) rb_hash_aset(params, ID2SYM(rb_intern("kwrest")), INT2FIX(keyword->rest_start)); if (iseq_body->param.flags.ambiguous_param0) rb_hash_aset(params, ID2SYM(rb_intern("ambiguous_param0")), Qtrue); } /* body */ iseq_original = rb_iseq_original_iseq((rb_iseq_t *)iseq); for (seq = iseq_original; seq < iseq_original + iseq_body->iseq_size; ) { VALUE insn = *seq++; int j, len = insn_len(insn); VALUE *nseq = seq + len - 1; VALUE ary = rb_ary_new2(len); rb_ary_push(ary, ID2SYM(insn_syms[insn%numberof(insn_syms)])); for (j=0; jsegments; while (*ids) { rb_ary_push(list, ID2SYM(*ids++)); } rb_ary_push(ary, list); } break; case TS_IVC: case TS_ICVARC: case TS_ISE: { union iseq_inline_storage_entry *is = (union iseq_inline_storage_entry *)*seq; rb_ary_push(ary, INT2FIX(is - ISEQ_IS_ENTRY_START(ISEQ_BODY(iseq), op_type))); } break; case TS_CALLDATA: { struct rb_call_data *cd = (struct rb_call_data *)*seq; const struct rb_callinfo *ci = cd->ci; VALUE e = rb_hash_new(); int argc = vm_ci_argc(ci); ID mid = vm_ci_mid(ci); rb_hash_aset(e, ID2SYM(rb_intern("mid")), mid ? ID2SYM(mid) : Qnil); rb_hash_aset(e, ID2SYM(rb_intern("flag")), UINT2NUM(vm_ci_flag(ci))); if (vm_ci_flag(ci) & VM_CALL_KWARG) { const struct rb_callinfo_kwarg *kwarg = vm_ci_kwarg(ci); int i; VALUE kw = rb_ary_new2((long)kwarg->keyword_len); argc -= kwarg->keyword_len; for (i = 0; i < kwarg->keyword_len; i++) { rb_ary_push(kw, kwarg->keywords[i]); } rb_hash_aset(e, ID2SYM(rb_intern("kw_arg")), kw); } rb_hash_aset(e, ID2SYM(rb_intern("orig_argc")), INT2FIX(argc)); rb_ary_push(ary, e); } break; case TS_ID: rb_ary_push(ary, ID2SYM(*seq)); break; case TS_CDHASH: { VALUE hash = *seq; VALUE val = rb_ary_new(); int i; rb_hash_foreach(hash, cdhash_each, val); for (i=0; ifunc_ptr); #else VALUE func_ptr = LL2NUM((SIGNED_VALUE)((RB_BUILTIN)*seq)->func_ptr); #endif rb_hash_aset(val, ID2SYM(rb_intern("func_ptr")), func_ptr); rb_hash_aset(val, ID2SYM(rb_intern("argc")), INT2NUM(((RB_BUILTIN)*seq)->argc)); rb_hash_aset(val, ID2SYM(rb_intern("index")), INT2NUM(((RB_BUILTIN)*seq)->index)); rb_hash_aset(val, ID2SYM(rb_intern("name")), rb_str_new_cstr(((RB_BUILTIN)*seq)->name)); rb_ary_push(ary, val); } break; default: rb_bug("unknown operand: %c", insn_op_type(insn, j)); } } rb_ary_push(body, ary); } nbody = body; /* exception */ if (iseq_body->catch_table) for (i=0; icatch_table->size; i++) { VALUE ary = rb_ary_new(); const struct iseq_catch_table_entry *entry = UNALIGNED_MEMBER_PTR(iseq_body->catch_table, entries[i]); rb_ary_push(ary, exception_type2symbol(entry->type)); if (entry->iseq) { rb_ary_push(ary, iseq_data_to_ary(rb_iseq_check(entry->iseq))); } else { rb_ary_push(ary, Qnil); } rb_ary_push(ary, register_label(labels_table, entry->start)); rb_ary_push(ary, register_label(labels_table, entry->end)); rb_ary_push(ary, register_label(labels_table, entry->cont)); rb_ary_push(ary, UINT2NUM(entry->sp)); rb_ary_push(exception, ary); } /* make body with labels and insert line number */ body = rb_ary_new(); prev_insn_info = NULL; #ifdef USE_ISEQ_NODE_ID VALUE node_ids = rb_ary_new(); #endif for (l=0, pos=0; lnode_id)); #endif if (prev_insn_info != info) { int line = info->line_no; rb_event_flag_t events = info->events; if (line > 0 && last_line != line) { rb_ary_push(body, INT2FIX(line)); last_line = line; } #define CHECK_EVENT(ev) if (events & ev) rb_ary_push(body, ID2SYM(rb_intern(#ev))); CHECK_EVENT(RUBY_EVENT_LINE); CHECK_EVENT(RUBY_EVENT_CLASS); CHECK_EVENT(RUBY_EVENT_END); CHECK_EVENT(RUBY_EVENT_CALL); CHECK_EVENT(RUBY_EVENT_RETURN); CHECK_EVENT(RUBY_EVENT_B_CALL); CHECK_EVENT(RUBY_EVENT_B_RETURN); CHECK_EVENT(RUBY_EVENT_RESCUE); #undef CHECK_EVENT prev_insn_info = info; } rb_ary_push(body, ary); pos += RARRAY_LENINT(ary); /* reject too huge data */ } RB_GC_GUARD(nbody); RB_GC_GUARD(labels_wrapper); rb_hash_aset(misc, ID2SYM(rb_intern("arg_size")), INT2FIX(iseq_body->param.size)); rb_hash_aset(misc, ID2SYM(rb_intern("local_size")), INT2FIX(iseq_body->local_table_size)); rb_hash_aset(misc, ID2SYM(rb_intern("stack_max")), INT2FIX(iseq_body->stack_max)); rb_hash_aset(misc, ID2SYM(rb_intern("node_id")), INT2FIX(iseq_body->location.node_id)); rb_hash_aset(misc, ID2SYM(rb_intern("code_location")), rb_ary_new_from_args(4, INT2FIX(iseq_body->location.code_location.beg_pos.lineno), INT2FIX(iseq_body->location.code_location.beg_pos.column), INT2FIX(iseq_body->location.code_location.end_pos.lineno), INT2FIX(iseq_body->location.code_location.end_pos.column))); #ifdef USE_ISEQ_NODE_ID rb_hash_aset(misc, ID2SYM(rb_intern("node_ids")), node_ids); #endif /* * [:magic, :major_version, :minor_version, :format_type, :misc, * :name, :path, :absolute_path, :start_lineno, :type, :locals, :args, * :catch_table, :bytecode] */ rb_ary_push(val, rb_str_new2("YARVInstructionSequence/SimpleDataFormat")); rb_ary_push(val, INT2FIX(ISEQ_MAJOR_VERSION)); /* major */ rb_ary_push(val, INT2FIX(ISEQ_MINOR_VERSION)); /* minor */ rb_ary_push(val, INT2FIX(1)); rb_ary_push(val, misc); rb_ary_push(val, iseq_body->location.label); rb_ary_push(val, rb_iseq_path(iseq)); rb_ary_push(val, rb_iseq_realpath(iseq)); rb_ary_push(val, RB_INT2NUM(iseq_body->location.first_lineno)); rb_ary_push(val, ID2SYM(type)); rb_ary_push(val, locals); rb_ary_push(val, params); rb_ary_push(val, exception); rb_ary_push(val, body); return val; } VALUE rb_iseq_parameters(const rb_iseq_t *iseq, int is_proc) { int i, r; const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); const struct rb_iseq_param_keyword *const keyword = body->param.keyword; VALUE a, args = rb_ary_new2(body->param.size); ID req, opt, rest, block, key, keyrest; #define PARAM_TYPE(type) rb_ary_push(a = rb_ary_new2(2), ID2SYM(type)) #define PARAM_ID(i) body->local_table[(i)] #define PARAM(i, type) ( \ PARAM_TYPE(type), \ rb_id2str(PARAM_ID(i)) ? \ rb_ary_push(a, ID2SYM(PARAM_ID(i))) : \ a) CONST_ID(req, "req"); CONST_ID(opt, "opt"); if (is_proc) { for (i = 0; i < body->param.lead_num; i++) { PARAM_TYPE(opt); rb_ary_push(a, rb_id2str(PARAM_ID(i)) ? ID2SYM(PARAM_ID(i)) : Qnil); rb_ary_push(args, a); } } else { for (i = 0; i < body->param.lead_num; i++) { rb_ary_push(args, PARAM(i, req)); } } r = body->param.lead_num + body->param.opt_num; for (; i < r; i++) { PARAM_TYPE(opt); if (rb_id2str(PARAM_ID(i))) { rb_ary_push(a, ID2SYM(PARAM_ID(i))); } rb_ary_push(args, a); } if (body->param.flags.has_rest) { CONST_ID(rest, "rest"); rb_ary_push(args, PARAM(body->param.rest_start, rest)); } r = body->param.post_start + body->param.post_num; if (is_proc) { for (i = body->param.post_start; i < r; i++) { PARAM_TYPE(opt); rb_ary_push(a, rb_id2str(PARAM_ID(i)) ? ID2SYM(PARAM_ID(i)) : Qnil); rb_ary_push(args, a); } } else { for (i = body->param.post_start; i < r; i++) { rb_ary_push(args, PARAM(i, req)); } } if (body->param.flags.accepts_no_kwarg) { ID nokey; CONST_ID(nokey, "nokey"); PARAM_TYPE(nokey); rb_ary_push(args, a); } if (body->param.flags.has_kw) { i = 0; if (keyword->required_num > 0) { ID keyreq; CONST_ID(keyreq, "keyreq"); for (; i < keyword->required_num; i++) { PARAM_TYPE(keyreq); if (rb_id2str(keyword->table[i])) { rb_ary_push(a, ID2SYM(keyword->table[i])); } rb_ary_push(args, a); } } CONST_ID(key, "key"); for (; i < keyword->num; i++) { PARAM_TYPE(key); if (rb_id2str(keyword->table[i])) { rb_ary_push(a, ID2SYM(keyword->table[i])); } rb_ary_push(args, a); } } if (body->param.flags.has_kwrest || body->param.flags.ruby2_keywords) { ID param; CONST_ID(keyrest, "keyrest"); PARAM_TYPE(keyrest); if (body->param.flags.has_kwrest && rb_id2str(param = PARAM_ID(keyword->rest_start))) { rb_ary_push(a, ID2SYM(param)); } else if (body->param.flags.ruby2_keywords) { rb_ary_push(a, ID2SYM(idPow)); } rb_ary_push(args, a); } if (body->param.flags.has_block) { CONST_ID(block, "block"); rb_ary_push(args, PARAM(body->param.block_start, block)); } return args; } VALUE rb_iseq_defined_string(enum defined_type type) { static const char expr_names[][18] = { "nil", "instance-variable", "local-variable", "global-variable", "class variable", "constant", "method", "yield", "super", "self", "true", "false", "assignment", "expression", }; const char *estr; if ((unsigned)(type - 1) >= (unsigned)numberof(expr_names)) rb_bug("unknown defined type %d", type); estr = expr_names[type - 1]; return rb_fstring_cstr(estr); } /* A map from encoded_insn to insn_data: decoded insn number, its len, * non-trace version of encoded insn, and trace version. */ static st_table *encoded_insn_data; typedef struct insn_data_struct { int insn; int insn_len; void *notrace_encoded_insn; void *trace_encoded_insn; } insn_data_t; static insn_data_t insn_data[VM_INSTRUCTION_SIZE/2]; void rb_free_encoded_insn_data(void) { st_free_table(encoded_insn_data); } void rb_vm_encoded_insn_data_table_init(void) { #if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE const void * const *table = rb_vm_get_insns_address_table(); #define INSN_CODE(insn) ((VALUE)table[insn]) #else #define INSN_CODE(insn) (insn) #endif st_data_t insn; encoded_insn_data = st_init_numtable_with_size(VM_INSTRUCTION_SIZE / 2); for (insn = 0; insn < VM_INSTRUCTION_SIZE/2; insn++) { st_data_t key1 = (st_data_t)INSN_CODE(insn); st_data_t key2 = (st_data_t)INSN_CODE(insn + VM_INSTRUCTION_SIZE/2); insn_data[insn].insn = (int)insn; insn_data[insn].insn_len = insn_len(insn); if (insn != BIN(opt_invokebuiltin_delegate_leave)) { insn_data[insn].notrace_encoded_insn = (void *) key1; insn_data[insn].trace_encoded_insn = (void *) key2; } else { insn_data[insn].notrace_encoded_insn = (void *) INSN_CODE(BIN(opt_invokebuiltin_delegate)); insn_data[insn].trace_encoded_insn = (void *) INSN_CODE(BIN(opt_invokebuiltin_delegate) + VM_INSTRUCTION_SIZE/2); } st_add_direct(encoded_insn_data, key1, (st_data_t)&insn_data[insn]); st_add_direct(encoded_insn_data, key2, (st_data_t)&insn_data[insn]); } } int rb_vm_insn_addr2insn(const void *addr) { st_data_t key = (st_data_t)addr; st_data_t val; if (st_lookup(encoded_insn_data, key, &val)) { insn_data_t *e = (insn_data_t *)val; return (int)e->insn; } rb_bug("rb_vm_insn_addr2insn: invalid insn address: %p", addr); } // Unlike rb_vm_insn_addr2insn, this function can return trace opcode variants. int rb_vm_insn_addr2opcode(const void *addr) { st_data_t key = (st_data_t)addr; st_data_t val; if (st_lookup(encoded_insn_data, key, &val)) { insn_data_t *e = (insn_data_t *)val; int opcode = e->insn; if (addr == e->trace_encoded_insn) { opcode += VM_INSTRUCTION_SIZE/2; } return opcode; } rb_bug("rb_vm_insn_addr2opcode: invalid insn address: %p", addr); } // Decode `ISEQ_BODY(iseq)->iseq_encoded[i]` to an insn. int rb_vm_insn_decode(const VALUE encoded) { #if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE int insn = rb_vm_insn_addr2insn((void *)encoded); #else int insn = (int)encoded; #endif return insn; } static inline int encoded_iseq_trace_instrument(VALUE *iseq_encoded_insn, rb_event_flag_t turnon, bool remain_current_trace) { st_data_t key = (st_data_t)*iseq_encoded_insn; st_data_t val; if (st_lookup(encoded_insn_data, key, &val)) { insn_data_t *e = (insn_data_t *)val; if (remain_current_trace && key == (st_data_t)e->trace_encoded_insn) { turnon = 1; } *iseq_encoded_insn = (VALUE) (turnon ? e->trace_encoded_insn : e->notrace_encoded_insn); return e->insn_len; } rb_bug("trace_instrument: invalid insn address: %p", (void *)*iseq_encoded_insn); } void rb_iseq_trace_flag_cleared(const rb_iseq_t *iseq, size_t pos) { const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); VALUE *iseq_encoded = (VALUE *)body->iseq_encoded; encoded_iseq_trace_instrument(&iseq_encoded[pos], 0, false); } // We need to fire call events on instructions with b_call events if the block // is running as a method. So, if we are listening for call events, then // instructions that have b_call events need to become trace variants. // Use this function when making decisions about recompiling to trace variants. static inline rb_event_flag_t add_bmethod_events(rb_event_flag_t events) { if (events & RUBY_EVENT_CALL) { events |= RUBY_EVENT_B_CALL; } if (events & RUBY_EVENT_RETURN) { events |= RUBY_EVENT_B_RETURN; } return events; } // Note, to support call/return events for bmethods, turnon_event can have more events than tpval. static int iseq_add_local_tracepoint(const rb_iseq_t *iseq, rb_event_flag_t turnon_events, VALUE tpval, unsigned int target_line) { unsigned int pc; int n = 0; const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); VALUE *iseq_encoded = (VALUE *)body->iseq_encoded; VM_ASSERT(ISEQ_EXECUTABLE_P(iseq)); for (pc=0; pciseq_size;) { const struct iseq_insn_info_entry *entry = get_insn_info(iseq, pc); rb_event_flag_t pc_events = entry->events; rb_event_flag_t target_events = turnon_events; unsigned int line = (int)entry->line_no; if (target_line == 0 || target_line == line) { /* ok */ } else { target_events &= ~RUBY_EVENT_LINE; } if (pc_events & target_events) { n++; } pc += encoded_iseq_trace_instrument(&iseq_encoded[pc], pc_events & (target_events | iseq->aux.exec.global_trace_events), true); } if (n > 0) { if (iseq->aux.exec.local_hooks == NULL) { ((rb_iseq_t *)iseq)->aux.exec.local_hooks = RB_ZALLOC(rb_hook_list_t); iseq->aux.exec.local_hooks->is_local = true; } rb_hook_list_connect_tracepoint((VALUE)iseq, iseq->aux.exec.local_hooks, tpval, target_line); } return n; } struct trace_set_local_events_struct { rb_event_flag_t turnon_events; VALUE tpval; unsigned int target_line; int n; }; static void iseq_add_local_tracepoint_i(const rb_iseq_t *iseq, void *p) { struct trace_set_local_events_struct *data = (struct trace_set_local_events_struct *)p; data->n += iseq_add_local_tracepoint(iseq, data->turnon_events, data->tpval, data->target_line); iseq_iterate_children(iseq, iseq_add_local_tracepoint_i, p); } int rb_iseq_add_local_tracepoint_recursively(const rb_iseq_t *iseq, rb_event_flag_t turnon_events, VALUE tpval, unsigned int target_line, bool target_bmethod) { struct trace_set_local_events_struct data; if (target_bmethod) { turnon_events = add_bmethod_events(turnon_events); } data.turnon_events = turnon_events; data.tpval = tpval; data.target_line = target_line; data.n = 0; iseq_add_local_tracepoint_i(iseq, (void *)&data); if (0) rb_funcall(Qnil, rb_intern("puts"), 1, rb_iseq_disasm(iseq)); /* for debug */ return data.n; } static int iseq_remove_local_tracepoint(const rb_iseq_t *iseq, VALUE tpval) { int n = 0; if (iseq->aux.exec.local_hooks) { unsigned int pc; const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); VALUE *iseq_encoded = (VALUE *)body->iseq_encoded; rb_event_flag_t local_events = 0; rb_hook_list_remove_tracepoint(iseq->aux.exec.local_hooks, tpval); local_events = iseq->aux.exec.local_hooks->events; if (local_events == 0) { rb_hook_list_free(iseq->aux.exec.local_hooks); ((rb_iseq_t *)iseq)->aux.exec.local_hooks = NULL; } local_events = add_bmethod_events(local_events); for (pc = 0; pciseq_size;) { rb_event_flag_t pc_events = rb_iseq_event_flags(iseq, pc); pc += encoded_iseq_trace_instrument(&iseq_encoded[pc], pc_events & (local_events | iseq->aux.exec.global_trace_events), false); } } return n; } struct trace_clear_local_events_struct { VALUE tpval; int n; }; static void iseq_remove_local_tracepoint_i(const rb_iseq_t *iseq, void *p) { struct trace_clear_local_events_struct *data = (struct trace_clear_local_events_struct *)p; data->n += iseq_remove_local_tracepoint(iseq, data->tpval); iseq_iterate_children(iseq, iseq_remove_local_tracepoint_i, p); } int rb_iseq_remove_local_tracepoint_recursively(const rb_iseq_t *iseq, VALUE tpval) { struct trace_clear_local_events_struct data; data.tpval = tpval; data.n = 0; iseq_remove_local_tracepoint_i(iseq, (void *)&data); return data.n; } void rb_iseq_trace_set(const rb_iseq_t *iseq, rb_event_flag_t turnon_events) { if (iseq->aux.exec.global_trace_events == turnon_events) { return; } if (!ISEQ_EXECUTABLE_P(iseq)) { /* this is building ISeq */ return; } else { unsigned int pc; const struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); VALUE *iseq_encoded = (VALUE *)body->iseq_encoded; rb_event_flag_t enabled_events; rb_event_flag_t local_events = iseq->aux.exec.local_hooks ? iseq->aux.exec.local_hooks->events : 0; ((rb_iseq_t *)iseq)->aux.exec.global_trace_events = turnon_events; enabled_events = add_bmethod_events(turnon_events | local_events); for (pc=0; pciseq_size;) { rb_event_flag_t pc_events = rb_iseq_event_flags(iseq, pc); pc += encoded_iseq_trace_instrument(&iseq_encoded[pc], pc_events & enabled_events, true); } } } void rb_vm_cc_general(const struct rb_callcache *cc); static bool clear_attr_cc(VALUE v) { if (imemo_type_p(v, imemo_callcache) && vm_cc_ivar_p((const struct rb_callcache *)v)) { rb_vm_cc_general((struct rb_callcache *)v); return true; } else { return false; } } static bool clear_bf_cc(VALUE v) { if (imemo_type_p(v, imemo_callcache) && vm_cc_bf_p((const struct rb_callcache *)v)) { rb_vm_cc_general((struct rb_callcache *)v); return true; } else { return false; } } static int clear_attr_ccs_i(void *vstart, void *vend, size_t stride, void *data) { VALUE v = (VALUE)vstart; for (; v != (VALUE)vend; v += stride) { void *ptr = asan_poisoned_object_p(v); asan_unpoison_object(v, false); clear_attr_cc(v); asan_poison_object_if(ptr, v); } return 0; } void rb_clear_attr_ccs(void) { rb_objspace_each_objects(clear_attr_ccs_i, NULL); } static int clear_bf_ccs_i(void *vstart, void *vend, size_t stride, void *data) { VALUE v = (VALUE)vstart; for (; v != (VALUE)vend; v += stride) { void *ptr = asan_poisoned_object_p(v); asan_unpoison_object(v, false); clear_bf_cc(v); asan_poison_object_if(ptr, v); } return 0; } void rb_clear_bf_ccs(void) { rb_objspace_each_objects(clear_bf_ccs_i, NULL); } static int trace_set_i(void *vstart, void *vend, size_t stride, void *data) { rb_event_flag_t turnon_events = *(rb_event_flag_t *)data; VALUE v = (VALUE)vstart; for (; v != (VALUE)vend; v += stride) { void *ptr = asan_poisoned_object_p(v); asan_unpoison_object(v, false); if (rb_obj_is_iseq(v)) { rb_iseq_trace_set(rb_iseq_check((rb_iseq_t *)v), turnon_events); } else if (clear_attr_cc(v)) { } else if (clear_bf_cc(v)) { } asan_poison_object_if(ptr, v); } return 0; } void rb_iseq_trace_set_all(rb_event_flag_t turnon_events) { rb_objspace_each_objects(trace_set_i, &turnon_events); } VALUE rb_iseqw_local_variables(VALUE iseqval) { return rb_iseq_local_variables(iseqw_check(iseqval)); } /* * call-seq: * iseq.to_binary(extra_data = nil) -> binary str * * Returns serialized iseq binary format data as a String object. * A corresponding iseq object is created by * RubyVM::InstructionSequence.load_from_binary() method. * * String extra_data will be saved with binary data. * You can access this data with * RubyVM::InstructionSequence.load_from_binary_extra_data(binary). * * Note that the translated binary data is not portable. * You can not move this binary data to another machine. * You can not use the binary data which is created by another * version/another architecture of Ruby. */ static VALUE iseqw_to_binary(int argc, VALUE *argv, VALUE self) { VALUE opt = !rb_check_arity(argc, 0, 1) ? Qnil : argv[0]; return rb_iseq_ibf_dump(iseqw_check(self), opt); } /* * call-seq: * RubyVM::InstructionSequence.load_from_binary(binary) -> iseq * * Load an iseq object from binary format String object * created by RubyVM::InstructionSequence.to_binary. * * This loader does not have a verifier, so that loading broken/modified * binary causes critical problem. * * You should not load binary data provided by others. * You should use binary data translated by yourself. */ static VALUE iseqw_s_load_from_binary(VALUE self, VALUE str) { return iseqw_new(rb_iseq_ibf_load(str)); } /* * call-seq: * RubyVM::InstructionSequence.load_from_binary_extra_data(binary) -> str * * Load extra data embed into binary format String object. */ static VALUE iseqw_s_load_from_binary_extra_data(VALUE self, VALUE str) { return rb_iseq_ibf_load_extra_data(str); } #if VM_INSN_INFO_TABLE_IMPL == 2 /* An implementation of succinct bit-vector for insn_info table. * * A succinct bit-vector is a small and efficient data structure that provides * a bit-vector augmented with an index for O(1) rank operation: * * rank(bv, n): the number of 1's within a range from index 0 to index n * * This can be used to lookup insn_info table from PC. * For example, consider the following iseq and insn_info_table: * * iseq insn_info_table * PC insn+operand position lineno event * 0: insn1 0: 1 [Li] * 2: insn2 2: 2 [Li] <= (A) * 5: insn3 8: 3 [Li] <= (B) * 8: insn4 * * In this case, a succinct bit-vector whose indexes 0, 2, 8 is "1" and * other indexes is "0", i.e., "101000001", is created. * To lookup the lineno of insn2, calculate rank("10100001", 2) = 2, so * the line (A) is the entry in question. * To lookup the lineno of insn4, calculate rank("10100001", 8) = 3, so * the line (B) is the entry in question. * * A naive implementation of succinct bit-vector works really well * not only for large size but also for small size. However, it has * tiny overhead for very small size. So, this implementation consist * of two parts: one part is the "immediate" table that keeps rank result * as a raw table, and the other part is a normal succinct bit-vector. */ #define IMMEDIATE_TABLE_SIZE 54 /* a multiple of 9, and < 128 */ struct succ_index_table { uint64_t imm_part[IMMEDIATE_TABLE_SIZE / 9]; struct succ_dict_block { unsigned int rank; uint64_t small_block_ranks; /* 9 bits * 7 = 63 bits */ uint64_t bits[512/64]; } succ_part[FLEX_ARY_LEN]; }; #define imm_block_rank_set(v, i, r) (v) |= (uint64_t)(r) << (7 * (i)) #define imm_block_rank_get(v, i) (((int)((v) >> ((i) * 7))) & 0x7f) #define small_block_rank_set(v, i, r) (v) |= (uint64_t)(r) << (9 * ((i) - 1)) #define small_block_rank_get(v, i) ((i) == 0 ? 0 : (((int)((v) >> (((i) - 1) * 9))) & 0x1ff)) static struct succ_index_table * succ_index_table_create(int max_pos, int *data, int size) { const int imm_size = (max_pos < IMMEDIATE_TABLE_SIZE ? max_pos + 8 : IMMEDIATE_TABLE_SIZE) / 9; const int succ_size = (max_pos < IMMEDIATE_TABLE_SIZE ? 0 : (max_pos - IMMEDIATE_TABLE_SIZE + 511)) / 512; struct succ_index_table *sd = rb_xcalloc_mul_add_mul( imm_size, sizeof(uint64_t), succ_size, sizeof(struct succ_dict_block)); int i, j, k, r; r = 0; for (j = 0; j < imm_size; j++) { for (i = 0; i < 9; i++) { if (r < size && data[r] == j * 9 + i) r++; imm_block_rank_set(sd->imm_part[j], i, r); } } for (k = 0; k < succ_size; k++) { struct succ_dict_block *sd_block = &sd->succ_part[k]; int small_rank = 0; sd_block->rank = r; for (j = 0; j < 8; j++) { uint64_t bits = 0; if (j) small_block_rank_set(sd_block->small_block_ranks, j, small_rank); for (i = 0; i < 64; i++) { if (r < size && data[r] == k * 512 + j * 64 + i + IMMEDIATE_TABLE_SIZE) { bits |= ((uint64_t)1) << i; r++; } } sd_block->bits[j] = bits; small_rank += rb_popcount64(bits); } } return sd; } static unsigned int * succ_index_table_invert(int max_pos, struct succ_index_table *sd, int size) { const int imm_size = (max_pos < IMMEDIATE_TABLE_SIZE ? max_pos + 8 : IMMEDIATE_TABLE_SIZE) / 9; const int succ_size = (max_pos < IMMEDIATE_TABLE_SIZE ? 0 : (max_pos - IMMEDIATE_TABLE_SIZE + 511)) / 512; unsigned int *positions = ALLOC_N(unsigned int, size), *p; int i, j, k, r = -1; p = positions; for (j = 0; j < imm_size; j++) { for (i = 0; i < 9; i++) { int nr = imm_block_rank_get(sd->imm_part[j], i); if (r != nr) *p++ = j * 9 + i; r = nr; } } for (k = 0; k < succ_size; k++) { for (j = 0; j < 8; j++) { for (i = 0; i < 64; i++) { if (sd->succ_part[k].bits[j] & (((uint64_t)1) << i)) { *p++ = k * 512 + j * 64 + i + IMMEDIATE_TABLE_SIZE; } } } } return positions; } static int succ_index_lookup(const struct succ_index_table *sd, int x) { if (x < IMMEDIATE_TABLE_SIZE) { const int i = x / 9; const int j = x % 9; return imm_block_rank_get(sd->imm_part[i], j); } else { const int block_index = (x - IMMEDIATE_TABLE_SIZE) / 512; const struct succ_dict_block *block = &sd->succ_part[block_index]; const int block_bit_index = (x - IMMEDIATE_TABLE_SIZE) % 512; const int small_block_index = block_bit_index / 64; const int small_block_popcount = small_block_rank_get(block->small_block_ranks, small_block_index); const int popcnt = rb_popcount64(block->bits[small_block_index] << (63 - block_bit_index % 64)); return block->rank + small_block_popcount + popcnt; } } #endif /* * call-seq: * iseq.script_lines -> array or nil * * It returns recorded script lines if it is available. * The script lines are not limited to the iseq range, but * are entire lines of the source file. * * Note that this is an API for ruby internal use, debugging, * and research. Do not use this for any other purpose. * The compatibility is not guaranteed. */ static VALUE iseqw_script_lines(VALUE self) { const rb_iseq_t *iseq = iseqw_check(self); return ISEQ_BODY(iseq)->variable.script_lines; } /* * Document-class: RubyVM::InstructionSequence * * The InstructionSequence class represents a compiled sequence of * instructions for the Virtual Machine used in MRI. Not all implementations of Ruby * may implement this class, and for the implementations that implement it, * the methods defined and behavior of the methods can change in any version. * * With it, you can get a handle to the instructions that make up a method or * a proc, compile strings of Ruby code down to VM instructions, and * disassemble instruction sequences to strings for easy inspection. It is * mostly useful if you want to learn how YARV works, but it also lets * you control various settings for the Ruby iseq compiler. * * You can find the source for the VM instructions in +insns.def+ in the Ruby * source. * * The instruction sequence results will almost certainly change as Ruby * changes, so example output in this documentation may be different from what * you see. * * Of course, this class is MRI specific. */ void Init_ISeq(void) { /* declare ::RubyVM::InstructionSequence */ rb_cISeq = rb_define_class_under(rb_cRubyVM, "InstructionSequence", rb_cObject); rb_undef_alloc_func(rb_cISeq); rb_define_method(rb_cISeq, "inspect", iseqw_inspect, 0); rb_define_method(rb_cISeq, "disasm", iseqw_disasm, 0); rb_define_method(rb_cISeq, "disassemble", iseqw_disasm, 0); rb_define_method(rb_cISeq, "to_a", iseqw_to_a, 0); rb_define_method(rb_cISeq, "eval", iseqw_eval, 0); rb_define_method(rb_cISeq, "to_binary", iseqw_to_binary, -1); rb_define_singleton_method(rb_cISeq, "load_from_binary", iseqw_s_load_from_binary, 1); rb_define_singleton_method(rb_cISeq, "load_from_binary_extra_data", iseqw_s_load_from_binary_extra_data, 1); /* location APIs */ rb_define_method(rb_cISeq, "path", iseqw_path, 0); rb_define_method(rb_cISeq, "absolute_path", iseqw_absolute_path, 0); rb_define_method(rb_cISeq, "label", iseqw_label, 0); rb_define_method(rb_cISeq, "base_label", iseqw_base_label, 0); rb_define_method(rb_cISeq, "first_lineno", iseqw_first_lineno, 0); rb_define_method(rb_cISeq, "trace_points", iseqw_trace_points, 0); rb_define_method(rb_cISeq, "each_child", iseqw_each_child, 0); #if 0 /* TBD */ rb_define_private_method(rb_cISeq, "marshal_dump", iseqw_marshal_dump, 0); rb_define_private_method(rb_cISeq, "marshal_load", iseqw_marshal_load, 1); /* disable this feature because there is no verifier. */ rb_define_singleton_method(rb_cISeq, "load", iseq_s_load, -1); #endif (void)iseq_s_load; rb_define_singleton_method(rb_cISeq, "compile", iseqw_s_compile, -1); rb_define_singleton_method(rb_cISeq, "compile_prism", iseqw_s_compile_prism, -1); rb_define_singleton_method(rb_cISeq, "compile_file_prism", iseqw_s_compile_file_prism, -1); rb_define_singleton_method(rb_cISeq, "new", iseqw_s_compile, -1); rb_define_singleton_method(rb_cISeq, "compile_file", iseqw_s_compile_file, -1); rb_define_singleton_method(rb_cISeq, "compile_option", iseqw_s_compile_option_get, 0); rb_define_singleton_method(rb_cISeq, "compile_option=", iseqw_s_compile_option_set, 1); rb_define_singleton_method(rb_cISeq, "disasm", iseqw_s_disasm, 1); rb_define_singleton_method(rb_cISeq, "disassemble", iseqw_s_disasm, 1); rb_define_singleton_method(rb_cISeq, "of", iseqw_s_of, 1); // script lines rb_define_method(rb_cISeq, "script_lines", iseqw_script_lines, 0); rb_undef_method(CLASS_OF(rb_cISeq), "translate"); rb_undef_method(CLASS_OF(rb_cISeq), "load_iseq"); }