# The MIT License # # Copyright (c) George Ogata # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. class C::Parser # shift/reduce conflict on "if (c) if (c) ; else ; else ;" expect 1 rule # A.2.4 External definitions # Returns TranslationUnit translation_unit : external_declaration {result = TranslationUnit.new_at(val[0].pos, NodeChain[val[0]])} | translation_unit external_declaration {result = val[0]; result.entities << val[1]} # Returns Declaration|FunctionDef external_declaration : function_definition {result = val[0]} | declaration {result = val[0]} # Returns FunctionDef function_definition : declaration_specifiers declarator declaration_list compound_statement {result = make_function_def(val[0][0], val[0][1], val[1], val[2], val[3])} | declaration_specifiers declarator compound_statement {result = make_function_def(val[0][0], val[0][1], val[1], nil , val[2])} # Returns [Declaration] declaration_list : declaration {result = [val[0]]} | declaration_list declaration {result = val[0] << val[1]} # A.2.3 Statements # Returns Statement statement : labeled_statement {result = val[0]} | compound_statement {result = val[0]} | expression_statement {result = val[0]} | selection_statement {result = val[0]} | iteration_statement {result = val[0]} | jump_statement {result = val[0]} # Returns Statement labeled_statement : identifier COLON statement {val[2].labels.unshift(PlainLabel.new_at(val[0].pos, val[0].val)); result = val[2]} | CASE constant_expression COLON statement {val[3].labels.unshift(Case .new_at(val[0].pos, val[1] )); result = val[3]} | DEFAULT COLON statement {val[2].labels.unshift(Default .new_at(val[0].pos )); result = val[2]} # type names can also be used as labels | typedef_name COLON statement {val[2].labels.unshift(PlainLabel.new_at(val[0].pos, val[0].name)); result = val[2]} # Returns Block compound_statement : LBRACE block_item_list RBRACE {result = Block.new_at(val[0].pos, val[1])} | LBRACE RBRACE {result = Block.new_at(val[0].pos )} # Returns NodeChain[Declaration|Statement] block_item_list : block_item {result = NodeChain[val[0]]} | block_item_list block_item {result = val[0] << val[1]} # Returns Declaration|Statement block_item : declaration {result = val[0]} | statement {result = val[0]} # Returns ExpressionStatement expression_statement : expression SEMICOLON {result = ExpressionStatement.new_at(val[0].pos, val[0])} | SEMICOLON {result = ExpressionStatement.new_at(val[0].pos )} # Returns Statement selection_statement : IF LPAREN expression RPAREN statement {result = If .new_at(val[0].pos, val[2], val[4] )} | IF LPAREN expression RPAREN statement ELSE statement {result = If .new_at(val[0].pos, val[2], val[4], val[6])} | SWITCH LPAREN expression RPAREN statement {result = Switch.new_at(val[0].pos, val[2], val[4] )} # Returns Statement iteration_statement : WHILE LPAREN expression RPAREN statement {result = While.new_at(val[0].pos, val[2], val[4] )} | DO statement WHILE LPAREN expression RPAREN SEMICOLON {result = While.new_at(val[0].pos, val[4], val[1], :do => true )} | FOR LPAREN expression SEMICOLON expression SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, val[2], val[4], val[6], val[8])} | FOR LPAREN expression SEMICOLON expression SEMICOLON RPAREN statement {result = For.new_at(val[0].pos, val[2], val[4], nil , val[7])} | FOR LPAREN expression SEMICOLON SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, val[2], nil , val[5], val[7])} | FOR LPAREN expression SEMICOLON SEMICOLON RPAREN statement {result = For.new_at(val[0].pos, val[2], nil , nil , val[6])} | FOR LPAREN SEMICOLON expression SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, nil , val[3], val[5], val[7])} | FOR LPAREN SEMICOLON expression SEMICOLON RPAREN statement {result = For.new_at(val[0].pos, nil , val[3], nil , val[6])} | FOR LPAREN SEMICOLON SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, nil , nil , val[4], val[6])} | FOR LPAREN SEMICOLON SEMICOLON RPAREN statement {result = For.new_at(val[0].pos, nil , nil , nil , val[5])} | FOR LPAREN declaration expression SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, val[2], val[3], val[5], val[7])} | FOR LPAREN declaration expression SEMICOLON RPAREN statement {result = For.new_at(val[0].pos, val[2], val[3], nil , val[6])} | FOR LPAREN declaration SEMICOLON expression RPAREN statement {result = For.new_at(val[0].pos, val[2], nil , val[4], val[6])} | FOR LPAREN declaration SEMICOLON RPAREN statement {result = For.new_at(val[0].pos, val[2], nil , nil , val[5])} # Returns Statement jump_statement : GOTO identifier SEMICOLON {result = Goto .new_at(val[0].pos, val[1].val)} | CONTINUE SEMICOLON {result = Continue.new_at(val[0].pos )} | BREAK SEMICOLON {result = Break .new_at(val[0].pos )} | RETURN expression SEMICOLON {result = Return .new_at(val[0].pos, val[1] )} | RETURN SEMICOLON {result = Return .new_at(val[0].pos )} # type names can also be used as labels | GOTO typedef_name SEMICOLON {result = Goto .new_at(val[0].pos, val[1].name)} # A.2.2 Declarations # Returns Declaration declaration : declaration_specifiers init_declarator_list SEMICOLON {result = make_declaration(val[0][0], val[0][1], val[1])} | declaration_specifiers SEMICOLON {result = make_declaration(val[0][0], val[0][1], NodeArray[])} # Returns {Pos, [Symbol]} declaration_specifiers : storage_class_specifier declaration_specifiers {val[1][1] << val[0][1]; result = val[1]} | storage_class_specifier {result = [val[0][0], [val[0][1]]]} | type_specifier declaration_specifiers {val[1][1] << val[0][1]; result = val[1]} | type_specifier {result = [val[0][0], [val[0][1]]]} | type_qualifier declaration_specifiers {val[1][1] << val[0][1]; result = val[1]} | type_qualifier {result = [val[0][0], [val[0][1]]]} | function_specifier declaration_specifiers {val[1][1] << val[0][1]; result = val[1]} | function_specifier {result = [val[0][0], [val[0][1]]]} # Returns NodeArray[Declarator] init_declarator_list : init_declarator {result = NodeArray[val[0]]} | init_declarator_list COMMA init_declarator {result = val[0] << val[2]} # Returns Declarator init_declarator : declarator {result = val[0]} | declarator EQ initializer {val[0].init = val[2]; result = val[0]} # Returns [Pos, Symbol] storage_class_specifier : TYPEDEF {result = [val[0].pos, :typedef ]} | EXTERN {result = [val[0].pos, :extern ]} | STATIC {result = [val[0].pos, :static ]} | AUTO {result = [val[0].pos, :auto ]} | REGISTER {result = [val[0].pos, :register]} # Returns [Pos, Type|Symbol] type_specifier : VOID {result = [val[0].pos, :void ]} | CHAR {result = [val[0].pos, :char ]} | SHORT {result = [val[0].pos, :short ]} | INT {result = [val[0].pos, :int ]} | LONG {result = [val[0].pos, :long ]} | FLOAT {result = [val[0].pos, :float ]} | DOUBLE {result = [val[0].pos, :double ]} | SIGNED {result = [val[0].pos, :signed ]} | UNSIGNED {result = [val[0].pos, :unsigned ]} | BOOL {result = [val[0].pos, :_Bool ]} | COMPLEX {result = [val[0].pos, :_Complex ]} | IMAGINARY {result = [val[0].pos, :_Imaginary]} | struct_or_union_specifier {result = [val[0].pos, val[0] ]} | enum_specifier {result = [val[0].pos, val[0] ]} | typedef_name {result = [val[0].pos, val[0] ]} # Returns Struct|Union struct_or_union_specifier : struct_or_union identifier LBRACE struct_declaration_list RBRACE {result = val[0][1].new_at(val[0][0], val[1].val, val[3])} | struct_or_union LBRACE struct_declaration_list RBRACE {result = val[0][1].new_at(val[0][0], nil , val[2])} | struct_or_union identifier {result = val[0][1].new_at(val[0][0], val[1].val, nil )} # type names can also be used as struct identifiers | struct_or_union typedef_name LBRACE struct_declaration_list RBRACE {result = val[0][1].new_at(val[0][0], val[1].name, val[3])} | struct_or_union typedef_name {result = val[0][1].new_at(val[0][0], val[1].name, nil )} # Returns [Pos, Class] struct_or_union : STRUCT {result = [val[0].pos, Struct]} | UNION {result = [val[0].pos, Union ]} # Returns NodeArray[Declaration] struct_declaration_list : struct_declaration {result = NodeArray[val[0]]} | struct_declaration_list struct_declaration {val[0] << val[1]; result = val[0]} # Returns Declaration struct_declaration : specifier_qualifier_list struct_declarator_list SEMICOLON {result = make_declaration(val[0][0], val[0][1], val[1])} # Returns {Pos, [Symbol]} specifier_qualifier_list : type_specifier specifier_qualifier_list {val[1][1] << val[0][1]; result = val[1]} | type_specifier {result = [val[0][0], [val[0][1]]]} | type_qualifier specifier_qualifier_list {val[1][1] << val[0][1]; result = val[1]} | type_qualifier {result = [val[0][0], [val[0][1]]]} # Returns NodeArray[Declarator] struct_declarator_list : struct_declarator {result = NodeArray[val[0]]} | struct_declarator_list COMMA struct_declarator {result = val[0] << val[2]} # Returns Declarator struct_declarator : declarator {result = val[0]} | declarator COLON constant_expression {result = val[0]; val[0].num_bits = val[2]} | COLON constant_expression {result = Declarator.new_at(val[0].pos, :num_bits => val[1])} # Returns Enum enum_specifier : ENUM identifier LBRACE enumerator_list RBRACE {result = Enum.new_at(val[0].pos, val[1].val, val[3])} | ENUM LBRACE enumerator_list RBRACE {result = Enum.new_at(val[0].pos, nil , val[2])} | ENUM identifier LBRACE enumerator_list COMMA RBRACE {result = Enum.new_at(val[0].pos, val[1].val, val[3])} | ENUM LBRACE enumerator_list COMMA RBRACE {result = Enum.new_at(val[0].pos, nil , val[2])} | ENUM identifier {result = Enum.new_at(val[0].pos, val[1].val, nil )} # type names can also be used as enum names | ENUM typedef_name LBRACE enumerator_list RBRACE {result = Enum.new_at(val[0].pos, val[1].name, val[3])} | ENUM typedef_name LBRACE enumerator_list COMMA RBRACE {result = Enum.new_at(val[0].pos, val[1].name, val[3])} | ENUM typedef_name {result = Enum.new_at(val[0].pos, val[1].name, nil )} # Returns NodeArray[Enumerator] enumerator_list : enumerator {result = NodeArray[val[0]]} | enumerator_list COMMA enumerator {result = val[0] << val[2]} # Returns Enumerator enumerator : enumeration_constant {result = Enumerator.new_at(val[0].pos, val[0].val, nil )} | enumeration_constant EQ constant_expression {result = Enumerator.new_at(val[0].pos, val[0].val, val[2])} # Returns [Pos, Symbol] type_qualifier : CONST {result = [val[0].pos, :const ]} | RESTRICT {result = [val[0].pos, :restrict]} | VOLATILE {result = [val[0].pos, :volatile]} # Returns [Pos, Symbol] function_specifier : INLINE {result = [val[0].pos, :inline]} # Returns Declarator declarator : pointer direct_declarator {result = add_decl_type(val[1], val[0])} | direct_declarator {result = val[0]} # Returns Declarator direct_declarator : identifier {result = Declarator.new_at(val[0].pos, nil, val[0].val)} | LPAREN declarator RPAREN {result = val[1]} | direct_declarator LBRACKET type_qualifier_list assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos ))} # TODO | direct_declarator LBRACKET type_qualifier_list RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos ))} # TODO | direct_declarator LBRACKET assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos, nil, val[2]))} | direct_declarator LBRACKET RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos ))} | direct_declarator LBRACKET STATIC type_qualifier_list assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos ))} # TODO | direct_declarator LBRACKET STATIC assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos ))} # TODO | direct_declarator LBRACKET type_qualifier_list STATIC assignment_expression RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos ))} # TODO | direct_declarator LBRACKET type_qualifier_list MUL RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos ))} # TODO | direct_declarator LBRACKET MUL RBRACKET {result = add_decl_type(val[0], Array.new_at(val[0].pos ))} # TODO | direct_declarator LPAREN parameter_type_list RPAREN {result = add_decl_type(val[0], Function.new_at(val[0].pos, nil, param_list(*val[2]), :var_args => val[2][1]))} | direct_declarator LPAREN identifier_list RPAREN {result = add_decl_type(val[0], Function.new_at(val[0].pos, nil, val[2]))} | direct_declarator LPAREN RPAREN {result = add_decl_type(val[0], Function.new_at(val[0].pos ))} # Returns Pointer pointer : MUL type_qualifier_list {result = add_type_quals(Pointer.new_at(val[0].pos), val[1][1]) } | MUL {result = Pointer.new_at(val[0].pos) } | MUL type_qualifier_list pointer {p = add_type_quals(Pointer.new_at(val[0].pos), val[1][1]); val[2].direct_type = p; result = val[2]} | MUL pointer {p = Pointer.new_at(val[0].pos) ; val[1].direct_type = p; result = val[1]} # Returns {Pos, [Symbol]} type_qualifier_list : type_qualifier {result = [val[0][0], [val[0][1]]]} | type_qualifier_list type_qualifier {val[0][1] << val[1][1]; result = val[0]} # Returns [NodeArray[Parameter], var_args?] parameter_type_list : parameter_list {result = [val[0], false]} | parameter_list COMMA ELLIPSIS {result = [val[0], true ]} # Returns NodeArray[Parameter] parameter_list : parameter_declaration {result = NodeArray[val[0]]} | parameter_list COMMA parameter_declaration {result = val[0] << val[2]} # Returns Parameter parameter_declaration : declaration_specifiers declarator {ind_type = val[1].indirect_type and ind_type.detach result = make_parameter(val[0][0], val[0][1], ind_type, val[1].name)} | declaration_specifiers abstract_declarator {result = make_parameter(val[0][0], val[0][1], val[1] , nil )} | declaration_specifiers {result = make_parameter(val[0][0], val[0][1], nil , nil )} # Returns NodeArray[Parameter] identifier_list : identifier {result = NodeArray[Parameter.new_at(val[0].pos, nil, val[0].val)]} | identifier_list COMMA identifier {result = val[0] << Parameter.new_at(val[2].pos, nil, val[2].val)} # Returns Type type_name : specifier_qualifier_list abstract_declarator {val[1].direct_type = make_direct_type(val[0][0], val[0][1]); result = val[1]} | specifier_qualifier_list {result = make_direct_type(val[0][0], val[0][1]) } # Returns Type abstract_declarator : pointer {result = val[0]} | pointer direct_abstract_declarator {val[1].direct_type = val[0]; result = val[1]} | direct_abstract_declarator {result = val[0]} # Returns Type direct_abstract_declarator : LPAREN abstract_declarator RPAREN {result = val[1]} | direct_abstract_declarator LBRACKET assignment_expression RBRACKET {val[0].direct_type = Array.new_at(val[0].pos, nil, val[2]); result = val[0]} | direct_abstract_declarator LBRACKET RBRACKET {val[0].direct_type = Array.new_at(val[0].pos, nil, nil ); result = val[0]} | LBRACKET assignment_expression RBRACKET {result = Array.new_at(val[0].pos, nil, val[1])} | LBRACKET RBRACKET {result = Array.new_at(val[0].pos )} | direct_abstract_declarator LBRACKET MUL RBRACKET {val[0].direct_type = Array.new_at(val[0].pos); result = val[0]} # TODO | LBRACKET MUL RBRACKET {result = Array.new_at(val[0].pos)} # TODO | direct_abstract_declarator LPAREN parameter_type_list RPAREN {val[0].direct_type = Function.new_at(val[0].pos, nil, param_list(*val[2]), val[2][1]); result = val[0]} | direct_abstract_declarator LPAREN RPAREN {val[0].direct_type = Function.new_at(val[0].pos ); result = val[0]} | LPAREN parameter_type_list RPAREN {result = Function.new_at(val[0].pos, nil, param_list(*val[1]), val[1][1])} | LPAREN RPAREN {result = Function.new_at(val[0].pos )} # Returns CustomType typedef_name #: identifier -- insufficient since we must distinguish between type # names and var names (otherwise we have a conflict) : TYPENAME {result = CustomType.new_at(val[0].pos, val[0].val)} # Returns Expression initializer : assignment_expression {result = val[0]} | LBRACE initializer_list RBRACE {result = CompoundLiteral.new_at(val[0].pos, nil, val[1])} | LBRACE initializer_list COMMA RBRACE {result = CompoundLiteral.new_at(val[0].pos, nil, val[1])} # Returns NodeArray[MemberInit] initializer_list : designation initializer {result = NodeArray[MemberInit.new_at(val[0][0] , val[0][1], val[1])]} | initializer {result = NodeArray[MemberInit.new_at(val[0].pos, nil , val[0])]} | initializer_list COMMA designation initializer {result = val[0] << MemberInit.new_at(val[2][0] , val[2][1], val[3])} | initializer_list COMMA initializer {result = val[0] << MemberInit.new_at(val[2].pos, nil , val[2])} # Returns {Pos, NodeArray[Expression|Token]} designation : designator_list EQ {result = val[0]} # Returns {Pos, NodeArray[Expression|Token]} designator_list : designator {result = val[0]; val[0][1] = NodeArray[val[0][1]]} | designator_list designator {result = val[0]; val[0][1] << val[1][1]} # Returns {Pos, Expression|Member} designator : LBRACKET constant_expression RBRACKET {result = [val[1].pos, val[1] ]} | DOT identifier {result = [val[1].pos, Member.new_at(val[1].pos, val[1].val)]} # A.2.1 Expressions # Returns Expression primary_expression : identifier {result = Variable.new_at(val[0].pos, val[0].val)} | constant {result = val[0]} | string_literal {result = val[0]} # GCC EXTENSION: allow a compound statement in parentheses as an expression | LPAREN expression RPAREN {result = val[1]} | LPAREN compound_statement RPAREN {block_expressions_enabled? or parse_error val[0].pos, "compound statement found where expression expected" result = BlockExpression.new(val[1]); result.pos = val[0].pos} # Returns Expression postfix_expression : primary_expression {result = val[0]} | postfix_expression LBRACKET expression RBRACKET {result = Index .new_at(val[0].pos, val[0], val[2])} | postfix_expression LPAREN argument_expression_list RPAREN {result = Call .new_at(val[0].pos, val[0], val[2] )} | postfix_expression LPAREN RPAREN {result = Call .new_at(val[0].pos, val[0], NodeArray[])} | postfix_expression DOT identifier {result = Dot .new_at(val[0].pos, val[0], Member.new(val[2].val))} | postfix_expression ARROW identifier {result = Arrow .new_at(val[0].pos, val[0], Member.new(val[2].val))} | postfix_expression INC {result = PostInc .new_at(val[0].pos, val[0] )} | postfix_expression DEC {result = PostDec .new_at(val[0].pos, val[0] )} | LPAREN type_name RPAREN LBRACE initializer_list RBRACE {result = CompoundLiteral.new_at(val[0].pos, val[1], val[4])} | LPAREN type_name RPAREN LBRACE initializer_list COMMA RBRACE {result = CompoundLiteral.new_at(val[0].pos, val[1], val[4])} # Returns [Expression|Type] argument_expression_list : argument_expression {result = NodeArray[val[0]]} | argument_expression_list COMMA argument_expression {result = val[0] << val[2]} # Returns Expression|Type -- EXTENSION: allow type names here too, to support some standard library macros (e.g., va_arg [7.15.1.1]) argument_expression : assignment_expression {result = val[0]} | type_name {result = val[0]} # Returns Expression unary_expression : postfix_expression {result = val[0]} | INC unary_expression {result = PreInc.new_at(val[0].pos, val[1])} | DEC unary_expression {result = PreDec.new_at(val[0].pos, val[1])} | unary_operator cast_expression {result = val[0][0].new_at(val[0][1], val[1])} | SIZEOF unary_expression {result = Sizeof.new_at(val[0].pos, val[1])} | SIZEOF LPAREN type_name RPAREN {result = Sizeof.new_at(val[0].pos, val[2])} # Returns [Class, Pos] unary_operator : AND {result = [Address , val[0].pos]} | MUL {result = [Dereference, val[0].pos]} | ADD {result = [Positive , val[0].pos]} | SUB {result = [Negative , val[0].pos]} | NOT {result = [BitNot , val[0].pos]} | BANG {result = [Not , val[0].pos]} # Returns Expression cast_expression : unary_expression {result = val[0]} | LPAREN type_name RPAREN cast_expression {result = Cast.new_at(val[0].pos, val[1], val[3])} # Returns Expression multiplicative_expression : cast_expression {result = val[0]} | multiplicative_expression MUL cast_expression {result = Multiply.new_at(val[0].pos, val[0], val[2])} | multiplicative_expression DIV cast_expression {result = Divide .new_at(val[0].pos, val[0], val[2])} | multiplicative_expression MOD cast_expression {result = Mod .new_at(val[0].pos, val[0], val[2])} # Returns Expression additive_expression : multiplicative_expression {result = val[0]} | additive_expression ADD multiplicative_expression {result = Add .new_at(val[0].pos, val[0], val[2])} | additive_expression SUB multiplicative_expression {result = Subtract.new_at(val[0].pos, val[0], val[2])} # Returns Expression shift_expression : additive_expression {result = val[0]} | shift_expression LSHIFT additive_expression {result = ShiftLeft .new_at(val[0].pos, val[0], val[2])} | shift_expression RSHIFT additive_expression {result = ShiftRight.new_at(val[0].pos, val[0], val[2])} # Returns Expression relational_expression : shift_expression {result = val[0]} | relational_expression LT shift_expression {result = Less.new_at(val[0].pos, val[0], val[2])} | relational_expression GT shift_expression {result = More.new_at(val[0].pos, val[0], val[2])} | relational_expression LEQ shift_expression {result = LessOrEqual.new_at(val[0].pos, val[0], val[2])} | relational_expression GEQ shift_expression {result = MoreOrEqual.new_at(val[0].pos, val[0], val[2])} # Returns Expression equality_expression : relational_expression {result = val[0]} | equality_expression EQEQ relational_expression {result = Equal .new_at(val[0].pos, val[0], val[2])} | equality_expression NEQ relational_expression {result = NotEqual.new_at(val[0].pos, val[0], val[2])} # Returns Expression and_expression : equality_expression {result = val[0]} | and_expression AND equality_expression {result = BitAnd.new_at(val[0].pos, val[0], val[2])} # Returns Expression exclusive_or_expression : and_expression {result = val[0]} | exclusive_or_expression XOR and_expression {result = BitXor.new_at(val[0].pos, val[0], val[2])} # Returns Expression inclusive_or_expression : exclusive_or_expression {result = val[0]} | inclusive_or_expression OR exclusive_or_expression {result = BitOr.new_at(val[0].pos, val[0], val[2])} # Returns Expression logical_and_expression : inclusive_or_expression {result = val[0]} | logical_and_expression ANDAND inclusive_or_expression {result = And.new_at(val[0].pos, val[0], val[2])} # Returns Expression logical_or_expression : logical_and_expression {result = val[0]} | logical_or_expression OROR logical_and_expression {result = Or.new_at(val[0].pos, val[0], val[2])} # Returns Expression conditional_expression : logical_or_expression {result = val[0]} | logical_or_expression QUESTION expression COLON conditional_expression {result = Conditional.new_at(val[0].pos, val[0], val[2], val[4])} # Returns Expression assignment_expression : conditional_expression {result = val[0]} | unary_expression assignment_operator assignment_expression {result = val[1].new_at(val[0].pos, val[0], val[2])} # Returns Class assignment_operator : EQ {result = Assign} | MULEQ {result = MultiplyAssign} | DIVEQ {result = DivideAssign} | MODEQ {result = ModAssign} | ADDEQ {result = AddAssign} | SUBEQ {result = SubtractAssign} | LSHIFTEQ {result = ShiftLeftAssign} | RSHIFTEQ {result = ShiftRightAssign} | ANDEQ {result = BitAndAssign} | XOREQ {result = BitXorAssign} | OREQ {result = BitOrAssign} # Returns Expression expression : assignment_expression {result = val[0]} | expression COMMA assignment_expression { if val[0].is_a? Comma if val[2].is_a? Comma val[0].exprs.push(*val[2].exprs) else val[0].exprs << val[2] end result = val[0] else if val[2].is_a? Comma val[2].exprs.unshift(val[0]) val[2].pos = val[0].pos result = val[2] else result = Comma.new_at(val[0].pos, NodeArray[val[0], val[2]]) end end } # Returns Expression constant_expression : conditional_expression {result = val[0]} # A.1.1 -- Lexical elements # # token # : keyword (raw string) # | identifier expanded below # | constant expanded below # | string_literal expanded below # | punctuator (raw string) # # preprocessing-token (skip) # Returns Token identifier : ID {result = val[0]} # Returns Literal constant : ICON {result = val[0].val; result.pos = val[0].pos} | FCON {result = val[0].val; result.pos = val[0].pos} #| enumeration_constant -- these are parsed as identifiers at all # places the `constant' nonterminal appears | CCON {result = val[0].val; result.pos = val[0].pos} # Returns Token enumeration_constant : ID {result = val[0]} # Returns StringLiteral # Also handles string literal concatenation (6.4.5.4) string_literal : string_literal SCON {val[0].val << val[1].val.val; result = val[0]} | SCON { result = val[0].val; result.pos = val[0].pos } ---- inner # A.1.9 -- Preprocessing numbers -- skip # A.1.8 -- Header names -- skip # A.1.7 -- Puncuators -- we don't bother with {##,#,%:,%:%:} since # we don't do preprocessing @@punctuators = %r'\+\+|-[->]|&&|\|\||\.\.\.|(?:<<|>>|[<>=!*/%+\-&^|])=?|[\[\](){}.~?:;,]' @@digraphs = %r'<[:%]|[:%]>' # A.1.6 -- String Literals -- simple for us because we don't decode # the string (and indeed accept some illegal strings) @@string_literal = %r'L?"(?:[^\\]|\\.)*?"'m # A.1.5 -- Constants @@decimal_floating_constant = %r'(?:(?:\d*\.\d+|\d+\.)(?:e[-+]?\d+)?|\d+e[-+]?\d+)[fl]?'i @@hexadecimal_floating_constant = %r'0x(?:(?:[0-9a-f]*\.[0-9a-f]+|[0-9a-f]+\.)|[0-9a-f]+)p[-+]?\d+[fl]?'i @@integer_constant = %r'(?:[1-9][0-9]*|0x[0-9a-f]+|0[0-7]*)(?:ul?l?|ll?u?)?'i @@floating_constant = %r'#{@@decimal_floating_constant}|#{@@hexadecimal_floating_constant}' @@enumeration_constant = %r'[a-zA-Z_\\][a-zA-Z_\\0-9]*' @@character_constant = %r"L?'(?:[^\\]|\\.)+?'" # (note that as with string-literals, we accept some illegal # character-constants) # A.1.4 -- Universal character names -- skip # A.1.3 -- Identifiers -- skip, since an identifier is lexically # identical to an enumeration constant # A.1.2 Keywords keywords = %w'auto break case char const continue default do double else enum extern float for goto if inline int long register restrict return short signed sizeof static struct switch typedef union unsigned void volatile while _Bool _Complex _Imaginary' @@keywords = %r"#{keywords.join('|')}" def initialize @type_names = ::Set.new @warning_proc = lambda{} @pos = C::Node::Pos.new(nil, 1, 0) end def initialize_copy(x) @pos = x.pos.dup @type_names = x.type_names.dup end attr_accessor :pos, :type_names def parse(str) if str.respond_to? :read str = str.read end @str = str begin prepare_lexer(str) return do_parse rescue ParseError => e e.set_backtrace(caller) raise end end # # Error handler, as used by racc. # def on_error(error_token_id, error_value, value_stack) if error_value == '$' parse_error @pos, "unexpected EOF" else parse_error(error_value.pos, "parse error on #{token_to_str(error_token_id)} (#{error_value.val})") end end def self.feature(name) attr_writer "#{name}_enabled" class_eval <<-EOS def enable_#{name} @#{name}_enabled = true end def #{name}_enabled? @#{name}_enabled end EOS end private_class_method :feature # # Allow blocks in parentheses as expressions, as per the gcc # extension. [http://rubyurl.com/iB7] # feature :block_expressions private # --------------------------------------------------------- class Token attr_accessor :pos, :val def initialize(pos, val) @pos = pos @val = val end end def eat(str) lines = str.split(/\r\n|[\r\n]/, -1) if lines.length == 1 @pos.col_num += lines[0].length else @pos.line_num += lines.length - 1 @pos.col_num = lines[-1].length end end # # Make a Declaration from the given specs and declarators. # def make_declaration(pos, specs, declarators) specs.all?{|x| x.is_a?(Symbol) || x.is_a?(Type)} or raise specs.map{|x| x.class}.inspect decl = Declaration.new_at(pos, nil, declarators) # set storage class storage_classes = specs.find_all do |x| [:typedef, :extern, :static, :auto, :register].include? x end # 6.7.1p2: at most, one storage-class specifier may be given in # the declaration specifiers in a declaration storage_classes.length <= 1 or begin if declarators.length == 0 for_name = '' else for_name = "for `#{declarators[0].name}'" end parse_error pos, "multiple or duplicate storage classes given #{for_name}'" end decl.storage = storage_classes[0] # set type (specifiers, qualifiers) decl.type = make_direct_type(pos, specs) # set function specifiers decl.inline = specs.include?(:inline) # look for new type names if decl.typedef? decl.declarators.each do |d| if d.name @type_names << d.name end end end return decl end def make_function_def(pos, specs, func_declarator, decl_list, defn) add_decl_type(func_declarator, make_direct_type(pos, specs)) # get types from decl_list if necessary function = func_declarator.indirect_type function.is_a? Function or parse_error pos, "non function type for function `#{func_declarator.name}'" params = function.params if decl_list params.all?{|p| p.type.nil?} or parse_error pos, "both prototype and declaration list given for `#{func_declarator.name}'" decl_list.each do |declaration| declaration.declarators.each do |declarator| param = params.find{|p| p.name == declarator.name} or parse_error pos, "no parameter named #{declarator.name}" if declarator.indirect_type param.type = declarator.indirect_type param.type.direct_type = declaration.type.dup else param.type = declaration.type.dup end end end params.all?{|p| p.type} or begin s = params.find_all{|p| p.type.nil?}.map{|p| "`#{p.name}'"}.join(' and ') parse_error pos, "types missing for parameters #{s}" end end fd = FunctionDef.new_at(pos, function.detach, func_declarator.name, defn, :no_prototype => !decl_list.nil?) # set storage class # 6.9.1p4: only extern or static allowed specs.each do |s| [:typedef, :auto, :register].include?(s) and "`#{s}' illegal for function" end storage_classes = specs.find_all do |s| s == :extern || s == :static end # 6.7.1p2: at most, one storage-class specifier may be given in # the declaration specifiers in a declaration storage_classes.length <= 1 or "multiple or duplicate storage classes given for `#{func_declarator.name}'" fd.storage = storage_classes[0] if storage_classes[0] # set function specifiers # 6.7.4p5 'inline' can be repeated fd.inline = specs.include?(:inline) return fd end # # Make a direct type from the list of type specifiers and type # qualifiers. # def make_direct_type(pos, specs) specs_order = [:signed, :unsigned, :short, :long, :double, :void, :char, :int, :float, :_Bool, :_Complex, :_Imaginary] type_specs = specs.find_all do |x| specs_order.include?(x) || !x.is_a?(Symbol) end type_specs.sort! do |a, b| (specs_order.index(a)||100) <=> (specs_order.index(b)||100) end # set type specifiers # 6.7.2p2: the specifier list should be one of these type = case type_specs when [:void] Void.new when [:char] Char.new when [:signed, :char] Char.new :signed => true when [:unsigned, :char] Char.new :signed => false when [:short], [:signed, :short], [:short, :int], [:signed, :short, :int] Int.new :longness => -1 when [:unsigned, :short], [:unsigned, :short, :int] Int.new :unsigned => true, :longness => -1 when [:int], [:signed], [:signed, :int] Int.new when [:unsigned], [:unsigned, :int] Int.new :unsigned => true when [:long], [:signed, :long], [:long, :int], [:signed, :long, :int] Int.new :longness => 1 when [:unsigned, :long], [:unsigned, :long, :int] Int.new :longness => 1, :unsigned => true when [:long, :long], [:signed, :long, :long], [:long, :long, :int], [:signed, :long, :long, :int] Int.new :longness => 2 when [:unsigned, :long, :long], [:unsigned, :long, :long, :int] Int.new :longness => 2, :unsigned => true when [:float] Float.new when [:double] Float.new :longness => 1 when [:long, :double] Float.new :longness => 2 when [:_Bool] Bool.new when [:float, :_Complex] Complex.new when [:double, :_Complex] Complex.new :longness => 1 when [:long, :double, :_Complex] Complex.new :longness => 2 when [:float, :_Imaginary] Imaginary.new when [:double, :_Imaginary] Imaginary.new :longness => 1 when [:long, :double, :_Imaginary] Imaginary.new :longness => 2 else if type_specs.length == 1 && [CustomType, Struct, Union, Enum].any?{|c| type_specs[0].is_a? c} type_specs[0] else if type_specs == [] parse_error pos, "no type specifiers given" else parse_error pos, "invalid type specifier combination: #{type_specs.join(' ')}" end end end type.pos ||= pos # set type qualifiers # 6.7.3p4: type qualifiers can be repeated type.const = specs.any?{|x| x.equal? :const } type.restrict = specs.any?{|x| x.equal? :restrict} type.volatile = specs.any?{|x| x.equal? :volatile} return type end def make_parameter(pos, specs, indirect_type, name) type = indirect_type if type type.direct_type = make_direct_type(pos, specs) else type = make_direct_type(pos, specs) end [:typedef, :extern, :static, :auto, :inline].each do |sym| specs.include? sym and parse_error pos, "parameter `#{declarator.name}' declared `#{sym}'" end return Parameter.new_at(pos, type, name, :register => specs.include?(:register)) end def add_type_quals(type, quals) type.const = quals.include?(:const ) type.restrict = quals.include?(:restrict) type.volatile = quals.include?(:volatile) return type end # # Add te given type as the "most direct" type to the given # declarator. Return the declarator. # def add_decl_type(declarator, type) if declarator.indirect_type declarator.indirect_type.direct_type = type else declarator.indirect_type = type end return declarator end def param_list(params, var_args) if params.length == 1 && params[0].type.is_a?(Void) && params[0].name.nil? return NodeArray[] elsif params.empty? return nil else return params end end def parse_error(pos, str) raise ParseError, "#{pos}: #{str}" end ---- header require 'set' # Error classes module C class ParseError < StandardError; end end # Local variables: # mode: ruby # end: