/********************************************************************** vm.c - $Author$ Copyright (C) 2004-2007 Koichi Sasada **********************************************************************/ #include "internal.h" #include "ruby/vm.h" #include "ruby/st.h" #include "gc.h" #include "vm_core.h" #include "vm_debug.h" #include "iseq.h" #include "eval_intern.h" #ifndef MJIT_HEADER #include "probes.h" #else #include "probes.dmyh" #endif #include "probes_helper.h" VALUE rb_str_concat_literals(size_t, const VALUE*); PUREFUNC(static inline const VALUE *VM_EP_LEP(const VALUE *)); static inline const VALUE * VM_EP_LEP(const VALUE *ep) { while (!VM_ENV_LOCAL_P(ep)) { ep = VM_ENV_PREV_EP(ep); } return ep; } static inline const rb_control_frame_t * rb_vm_search_cf_from_ep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, const VALUE * const ep) { if (!ep) { return NULL; } else { const rb_control_frame_t * const eocfp = RUBY_VM_END_CONTROL_FRAME(ec); /* end of control frame pointer */ while (cfp < eocfp) { if (cfp->ep == ep) { return cfp; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return NULL; } } const VALUE * rb_vm_ep_local_ep(const VALUE *ep) { return VM_EP_LEP(ep); } PUREFUNC(static inline const VALUE *VM_CF_LEP(const rb_control_frame_t * const cfp)); static inline const VALUE * VM_CF_LEP(const rb_control_frame_t * const cfp) { return VM_EP_LEP(cfp->ep); } static inline const VALUE * VM_CF_PREV_EP(const rb_control_frame_t * const cfp) { return VM_ENV_PREV_EP(cfp->ep); } PUREFUNC(static inline VALUE VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp)); static inline VALUE VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp) { const VALUE *ep = VM_CF_LEP(cfp); return VM_ENV_BLOCK_HANDLER(ep); } VALUE rb_vm_frame_block_handler(const rb_control_frame_t *cfp) { return VM_CF_BLOCK_HANDLER(cfp); } #if VM_CHECK_MODE > 0 static int VM_CFP_IN_HEAP_P(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { const VALUE *start = ec->vm_stack; const VALUE *end = (VALUE *)ec->vm_stack + ec->vm_stack_size; VM_ASSERT(start != NULL); if (start <= (VALUE *)cfp && (VALUE *)cfp < end) { return FALSE; } else { return TRUE; } } static int VM_EP_IN_HEAP_P(const rb_execution_context_t *ec, const VALUE *ep) { const VALUE *start = ec->vm_stack; const VALUE *end = (VALUE *)ec->cfp; VM_ASSERT(start != NULL); if (start <= ep && ep < end) { return FALSE; } else { return TRUE; } } int vm_ep_in_heap_p_(const rb_execution_context_t *ec, const VALUE *ep) { if (VM_EP_IN_HEAP_P(ec, ep)) { VALUE envval = ep[VM_ENV_DATA_INDEX_ENV]; /* VM_ENV_ENVVAL(ep); */ if (envval != Qundef) { const rb_env_t *env = (const rb_env_t *)envval; VM_ASSERT(vm_assert_env(envval)); VM_ASSERT(VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED)); VM_ASSERT(env->ep == ep); } return TRUE; } else { return FALSE; } } int rb_vm_ep_in_heap_p(const VALUE *ep) { const rb_execution_context_t *ec = GET_EC(); if (ec->vm_stack == NULL) return TRUE; return vm_ep_in_heap_p_(ec, ep); } #endif static struct rb_captured_block * VM_CFP_TO_CAPTURED_BLOCK(const rb_control_frame_t *cfp) { VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp)); return (struct rb_captured_block *)&cfp->self; } static rb_control_frame_t * VM_CAPTURED_BLOCK_TO_CFP(const struct rb_captured_block *captured) { rb_control_frame_t *cfp = ((rb_control_frame_t *)((VALUE *)(captured) - 3)); VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp)); VM_ASSERT(sizeof(rb_control_frame_t)/sizeof(VALUE) == 7 + VM_DEBUG_BP_CHECK ? 1 : 0); return cfp; } static int VM_BH_FROM_CFP_P(VALUE block_handler, const rb_control_frame_t *cfp) { const struct rb_captured_block *captured = VM_CFP_TO_CAPTURED_BLOCK(cfp); return VM_TAGGED_PTR_REF(block_handler, 0x03) == captured; } static VALUE vm_passed_block_handler(rb_execution_context_t *ec) { VALUE block_handler = ec->passed_block_handler; ec->passed_block_handler = VM_BLOCK_HANDLER_NONE; vm_block_handler_verify(block_handler); return block_handler; } static rb_cref_t * vm_cref_new0(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval, int use_prev_prev) { VALUE refinements = Qnil; int omod_shared = FALSE; rb_cref_t *cref; /* scope */ union { rb_scope_visibility_t visi; VALUE value; } scope_visi; scope_visi.visi.method_visi = visi; scope_visi.visi.module_func = module_func; /* refinements */ if (prev_cref != NULL && prev_cref != (void *)1 /* TODO: why CREF_NEXT(cref) is 1? */) { refinements = CREF_REFINEMENTS(prev_cref); if (!NIL_P(refinements)) { omod_shared = TRUE; CREF_OMOD_SHARED_SET(prev_cref); } } cref = (rb_cref_t *)rb_imemo_new(imemo_cref, klass, (VALUE)(use_prev_prev ? CREF_NEXT(prev_cref) : prev_cref), scope_visi.value, refinements); if (pushed_by_eval) CREF_PUSHED_BY_EVAL_SET(cref); if (omod_shared) CREF_OMOD_SHARED_SET(cref); return cref; } static rb_cref_t * vm_cref_new(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval) { return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, FALSE); } static rb_cref_t * vm_cref_new_use_prev(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval) { return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, TRUE); } static rb_cref_t * vm_cref_dup(const rb_cref_t *cref) { VALUE klass = CREF_CLASS(cref); const rb_scope_visibility_t *visi = CREF_SCOPE_VISI(cref); rb_cref_t *next_cref = CREF_NEXT(cref), *new_cref; int pushed_by_eval = CREF_PUSHED_BY_EVAL(cref); new_cref = vm_cref_new(klass, visi->method_visi, visi->module_func, next_cref, pushed_by_eval); if (!NIL_P(CREF_REFINEMENTS(cref))) { CREF_REFINEMENTS_SET(new_cref, rb_hash_dup(CREF_REFINEMENTS(cref))); CREF_OMOD_SHARED_UNSET(new_cref); } return new_cref; } static rb_cref_t * vm_cref_new_toplevel(rb_execution_context_t *ec) { rb_cref_t *cref = vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE /* toplevel visibility is private */, FALSE, NULL, FALSE); VALUE top_wrapper = rb_ec_thread_ptr(ec)->top_wrapper; if (top_wrapper) { cref = vm_cref_new(top_wrapper, METHOD_VISI_PRIVATE, FALSE, cref, FALSE); } return cref; } rb_cref_t * rb_vm_cref_new_toplevel(void) { return vm_cref_new_toplevel(GET_EC()); } static void vm_cref_dump(const char *mesg, const rb_cref_t *cref) { fprintf(stderr, "vm_cref_dump: %s (%p)\n", mesg, (void *)cref); while (cref) { fprintf(stderr, "= cref| klass: %s\n", RSTRING_PTR(rb_class_path(CREF_CLASS(cref)))); cref = CREF_NEXT(cref); } } void rb_vm_block_ep_update(VALUE obj, const struct rb_block *dst, const VALUE *ep) { *((const VALUE **)&dst->as.captured.ep) = ep; RB_OBJ_WRITTEN(obj, Qundef, VM_ENV_ENVVAL(ep)); } static void vm_bind_update_env(VALUE bindval, rb_binding_t *bind, VALUE envval) { const rb_env_t *env = (rb_env_t *)envval; RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq); rb_vm_block_ep_update(bindval, &bind->block, env->ep); } #if VM_COLLECT_USAGE_DETAILS static void vm_collect_usage_operand(int insn, int n, VALUE op); static void vm_collect_usage_insn(int insn); static void vm_collect_usage_register(int reg, int isset); #endif static VALUE vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp); extern VALUE vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, VALUE block_handler); static VALUE vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, VALUE block_handler); static VALUE rb_block_param_proxy; #include "mjit.h" #include "vm_insnhelper.h" #include "vm_exec.h" #include "vm_insnhelper.c" #ifndef MJIT_HEADER #include "vm_exec.c" #include "vm_method.c" #endif /* #ifndef MJIT_HEADER */ #include "vm_eval.c" #ifndef MJIT_HEADER #define PROCDEBUG 0 rb_serial_t rb_next_class_serial(void) { rb_serial_t class_serial = NEXT_CLASS_SERIAL(); mjit_add_class_serial(class_serial); return class_serial; } VALUE rb_cRubyVM; VALUE rb_cThread; VALUE rb_mRubyVMFrozenCore; #define ruby_vm_redefined_flag GET_VM()->redefined_flag VALUE ruby_vm_const_missing_count = 0; rb_vm_t *ruby_current_vm_ptr = NULL; rb_execution_context_t *ruby_current_execution_context_ptr = NULL; rb_event_flag_t ruby_vm_event_flags; rb_event_flag_t ruby_vm_event_enabled_flags; rb_serial_t ruby_vm_global_method_state = 1; rb_serial_t ruby_vm_global_constant_state = 1; rb_serial_t ruby_vm_class_serial = 1; static void thread_free(void *ptr); void rb_vm_inc_const_missing_count(void) { ruby_vm_const_missing_count +=1; } VALUE rb_class_path_no_cache(VALUE _klass); MJIT_FUNC_EXPORTED int rb_dtrace_setup(rb_execution_context_t *ec, VALUE klass, ID id, struct ruby_dtrace_method_hook_args *args) { enum ruby_value_type type; if (!klass) { if (!ec) ec = GET_EC(); if (!rb_ec_frame_method_id_and_class(ec, &id, 0, &klass) || !klass) return FALSE; } if (RB_TYPE_P(klass, T_ICLASS)) { klass = RBASIC(klass)->klass; } else if (FL_TEST(klass, FL_SINGLETON)) { klass = rb_attr_get(klass, id__attached__); if (NIL_P(klass)) return FALSE; } type = BUILTIN_TYPE(klass); if (type == T_CLASS || type == T_ICLASS || type == T_MODULE) { VALUE name = rb_class_path_no_cache(klass); const char *classname, *filename; const char *methodname = rb_id2name(id); if (methodname && (filename = rb_source_location_cstr(&args->line_no)) != 0) { if (NIL_P(name) || !(classname = StringValuePtr(name))) classname = ""; args->classname = classname; args->methodname = methodname; args->filename = filename; args->klass = klass; args->name = name; return TRUE; } } return FALSE; } /* * call-seq: * RubyVM.stat -> Hash * RubyVM.stat(hsh) -> hsh * RubyVM.stat(Symbol) -> Numeric * * Returns a Hash containing implementation-dependent counters inside the VM. * * This hash includes information about method/constant cache serials: * * { * :global_method_state=>251, * :global_constant_state=>481, * :class_serial=>9029 * } * * The contents of the hash are implementation specific and may be changed in * the future. * * This method is only expected to work on C Ruby. */ static VALUE vm_stat(int argc, VALUE *argv, VALUE self) { static VALUE sym_global_method_state, sym_global_constant_state, sym_class_serial; VALUE arg = Qnil; VALUE hash = Qnil, key = Qnil; if (rb_scan_args(argc, argv, "01", &arg) == 1) { if (SYMBOL_P(arg)) key = arg; else if (RB_TYPE_P(arg, T_HASH)) hash = arg; else rb_raise(rb_eTypeError, "non-hash or symbol given"); } else { hash = rb_hash_new(); } if (sym_global_method_state == 0) { #define S(s) sym_##s = ID2SYM(rb_intern_const(#s)) S(global_method_state); S(global_constant_state); S(class_serial); #undef S } #define SET(name, attr) \ if (key == sym_##name) \ return SERIALT2NUM(attr); \ else if (hash != Qnil) \ rb_hash_aset(hash, sym_##name, SERIALT2NUM(attr)); SET(global_method_state, ruby_vm_global_method_state); SET(global_constant_state, ruby_vm_global_constant_state); SET(class_serial, ruby_vm_class_serial); #undef SET if (!NIL_P(key)) { /* matched key should return above */ rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key)); } return hash; } /* control stack frame */ static void vm_set_top_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq) { if (iseq->body->type != ISEQ_TYPE_TOP) { rb_raise(rb_eTypeError, "Not a toplevel InstructionSequence"); } /* for return */ vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH, rb_ec_thread_ptr(ec)->top_self, VM_BLOCK_HANDLER_NONE, (VALUE)vm_cref_new_toplevel(ec), /* cref or me */ iseq->body->iseq_encoded, ec->cfp->sp, iseq->body->local_table_size, iseq->body->stack_max); } static void vm_set_eval_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq, const rb_cref_t *cref, const struct rb_block *base_block) { vm_push_frame(ec, iseq, VM_FRAME_MAGIC_EVAL | VM_FRAME_FLAG_FINISH, vm_block_self(base_block), VM_GUARDED_PREV_EP(vm_block_ep(base_block)), (VALUE)cref, /* cref or me */ iseq->body->iseq_encoded, ec->cfp->sp, iseq->body->local_table_size, iseq->body->stack_max); } static void vm_set_main_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq) { VALUE toplevel_binding = rb_const_get(rb_cObject, rb_intern("TOPLEVEL_BINDING")); rb_binding_t *bind; GetBindingPtr(toplevel_binding, bind); RUBY_ASSERT_MESG(bind, "TOPLEVEL_BINDING is not built"); vm_set_eval_stack(ec, iseq, 0, &bind->block); /* save binding */ if (iseq->body->local_table_size > 0) { vm_bind_update_env(toplevel_binding, bind, vm_make_env_object(ec, ec->cfp)); } } rb_control_frame_t * rb_vm_get_binding_creatable_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) { if (cfp->iseq) { return (rb_control_frame_t *)cfp; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return 0; } MJIT_FUNC_EXPORTED rb_control_frame_t * rb_vm_get_ruby_level_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) bp(); while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) { if (VM_FRAME_RUBYFRAME_P(cfp)) { return (rb_control_frame_t *)cfp; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return 0; } #endif /* #ifndef MJIT_HEADER */ static rb_control_frame_t * vm_get_ruby_level_caller_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { if (VM_FRAME_RUBYFRAME_P(cfp)) { return (rb_control_frame_t *)cfp; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) { if (VM_FRAME_RUBYFRAME_P(cfp)) { return (rb_control_frame_t *)cfp; } if (VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_PASSED) == FALSE) { break; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return 0; } void rb_vm_pop_cfunc_frame(void) { rb_execution_context_t *ec = GET_EC(); rb_control_frame_t *cfp = ec->cfp; const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp); EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, Qnil); RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id); vm_pop_frame(ec, cfp, cfp->ep); } #ifndef MJIT_HEADER void rb_vm_rewind_cfp(rb_execution_context_t *ec, rb_control_frame_t *cfp) { /* check skipped frame */ while (ec->cfp != cfp) { #if VMDEBUG printf("skipped frame: %s\n", vm_frametype_name(ec->cfp)); #endif if (VM_FRAME_TYPE(ec->cfp) != VM_FRAME_MAGIC_CFUNC) { rb_vm_pop_frame(ec); } else { /* unlikely path */ rb_vm_pop_cfunc_frame(); } } } /* at exit */ void ruby_vm_at_exit(void (*func)(rb_vm_t *)) { rb_vm_t *vm = GET_VM(); rb_at_exit_list *nl = ALLOC(rb_at_exit_list); nl->func = func; nl->next = vm->at_exit; vm->at_exit = nl; } static void ruby_vm_run_at_exit_hooks(rb_vm_t *vm) { rb_at_exit_list *l = vm->at_exit; while (l) { rb_at_exit_list* t = l->next; rb_vm_at_exit_func *func = l->func; ruby_xfree(l); l = t; (*func)(vm); } } /* Env */ static VALUE check_env_value(const rb_env_t *env); static int check_env(const rb_env_t *env) { fprintf(stderr, "---\n"); fprintf(stderr, "envptr: %p\n", (void *)&env->ep[0]); fprintf(stderr, "envval: %10p ", (void *)env->ep[1]); dp(env->ep[1]); fprintf(stderr, "ep: %10p\n", (void *)env->ep); if (rb_vm_env_prev_env(env)) { fprintf(stderr, ">>\n"); check_env_value(rb_vm_env_prev_env(env)); fprintf(stderr, "<<\n"); } return 1; } static VALUE check_env_value(const rb_env_t *env) { if (check_env(env)) { return (VALUE)env; } rb_bug("invalid env"); return Qnil; /* unreachable */ } static void vm_block_handler_escape(const rb_execution_context_t *ec, VALUE block_handler, VALUE *procvalptr) { switch (vm_block_handler_type(block_handler)) { case block_handler_type_ifunc: case block_handler_type_iseq: *procvalptr = rb_vm_make_proc(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc); return; case block_handler_type_symbol: case block_handler_type_proc: *procvalptr = block_handler; return; } VM_UNREACHABLE(vm_block_handler_escape); return; } static VALUE vm_make_env_each(const rb_execution_context_t * const ec, rb_control_frame_t *const cfp) { VALUE blockprocval = Qfalse; const VALUE * const ep = cfp->ep; const rb_env_t *env; const rb_iseq_t *env_iseq; VALUE *env_body, *env_ep; int local_size, env_size; if (VM_ENV_ESCAPED_P(ep)) { return VM_ENV_ENVVAL(ep); } if (!VM_ENV_LOCAL_P(ep)) { const VALUE *prev_ep = VM_ENV_PREV_EP(ep); if (!VM_ENV_ESCAPED_P(prev_ep)) { rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); while (prev_cfp->ep != prev_ep) { prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(prev_cfp); VM_ASSERT(prev_cfp->ep != NULL); } vm_make_env_each(ec, prev_cfp); VM_FORCE_WRITE_SPECIAL_CONST(&ep[VM_ENV_DATA_INDEX_SPECVAL], VM_GUARDED_PREV_EP(prev_cfp->ep)); } } else { VALUE block_handler = VM_ENV_BLOCK_HANDLER(ep); if (block_handler != VM_BLOCK_HANDLER_NONE) { vm_block_handler_escape(ec, block_handler, &blockprocval); VM_STACK_ENV_WRITE(ep, VM_ENV_DATA_INDEX_SPECVAL, blockprocval); } } if (!VM_FRAME_RUBYFRAME_P(cfp)) { local_size = VM_ENV_DATA_SIZE; } else { local_size = cfp->iseq->body->local_table_size + VM_ENV_DATA_SIZE; } /* * # local variables on a stack frame (N == local_size) * [lvar1, lvar2, ..., lvarN, SPECVAL] * ^ * ep[0] * * # moved local variables * [lvar1, lvar2, ..., lvarN, SPECVAL, Envval, BlockProcval (if needed)] * ^ ^ * env->env[0] ep[0] */ env_size = local_size + 1 /* envval */ + (blockprocval ? 1 : 0) /* blockprocval */; env_body = ALLOC_N(VALUE, env_size); MEMCPY(env_body, ep - (local_size - 1 /* specval */), VALUE, local_size); #if 0 for (i = 0; i < local_size; i++) { if (VM_FRAME_RUBYFRAME_P(cfp)) { /* clear value stack for GC */ ep[-local_size + i] = 0; } } #endif env_iseq = VM_FRAME_RUBYFRAME_P(cfp) ? cfp->iseq : NULL; env_ep = &env_body[local_size - 1 /* specval */]; env = vm_env_new(env_ep, env_body, env_size, env_iseq); if (blockprocval) RB_OBJ_WRITE(env, &env_ep[2], blockprocval); cfp->ep = env_ep; VM_ENV_FLAGS_SET(env_ep, VM_ENV_FLAG_ESCAPED | VM_ENV_FLAG_WB_REQUIRED); VM_STACK_ENV_WRITE(ep, 0, (VALUE)env); /* GC mark */ return (VALUE)env; } static VALUE vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp) { VALUE envval = vm_make_env_each(ec, cfp); if (PROCDEBUG) { check_env_value((const rb_env_t *)envval); } return envval; } void rb_vm_stack_to_heap(rb_execution_context_t *ec) { rb_control_frame_t *cfp = ec->cfp; while ((cfp = rb_vm_get_binding_creatable_next_cfp(ec, cfp)) != 0) { vm_make_env_object(ec, cfp); cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } } const rb_env_t * rb_vm_env_prev_env(const rb_env_t *env) { const VALUE *ep = env->ep; if (VM_ENV_LOCAL_P(ep)) { return NULL; } else { return VM_ENV_ENVVAL_PTR(VM_ENV_PREV_EP(ep)); } } static int collect_local_variables_in_iseq(const rb_iseq_t *iseq, const struct local_var_list *vars) { unsigned int i; if (!iseq) return 0; for (i = 0; i < iseq->body->local_table_size; i++) { local_var_list_add(vars, iseq->body->local_table[i]); } return 1; } static void collect_local_variables_in_env(const rb_env_t *env, const struct local_var_list *vars) { do { collect_local_variables_in_iseq(env->iseq, vars); } while ((env = rb_vm_env_prev_env(env)) != NULL); } static int vm_collect_local_variables_in_heap(const VALUE *ep, const struct local_var_list *vars) { if (VM_ENV_ESCAPED_P(ep)) { collect_local_variables_in_env(VM_ENV_ENVVAL_PTR(ep), vars); return 1; } else { return 0; } } VALUE rb_vm_env_local_variables(const rb_env_t *env) { struct local_var_list vars; local_var_list_init(&vars); collect_local_variables_in_env(env, &vars); return local_var_list_finish(&vars); } VALUE rb_iseq_local_variables(const rb_iseq_t *iseq) { struct local_var_list vars; local_var_list_init(&vars); while (collect_local_variables_in_iseq(iseq, &vars)) { iseq = iseq->body->parent_iseq; } return local_var_list_finish(&vars); } /* Proc */ static VALUE vm_proc_create_from_captured(VALUE klass, const struct rb_captured_block *captured, enum rb_block_type block_type, int8_t is_from_method, int8_t is_lambda) { VALUE procval = rb_proc_alloc(klass); rb_proc_t *proc = RTYPEDDATA_DATA(procval); VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), captured->ep)); /* copy block */ RB_OBJ_WRITE(procval, &proc->block.as.captured.self, captured->self); RB_OBJ_WRITE(procval, &proc->block.as.captured.code.val, captured->code.val); rb_vm_block_ep_update(procval, &proc->block, captured->ep); vm_block_type_set(&proc->block, block_type); proc->is_from_method = is_from_method; proc->is_lambda = is_lambda; return procval; } void rb_vm_block_copy(VALUE obj, const struct rb_block *dst, const struct rb_block *src) { /* copy block */ switch (vm_block_type(src)) { case block_type_iseq: case block_type_ifunc: RB_OBJ_WRITE(obj, &dst->as.captured.self, src->as.captured.self); RB_OBJ_WRITE(obj, &dst->as.captured.code.val, src->as.captured.code.val); rb_vm_block_ep_update(obj, dst, src->as.captured.ep); break; case block_type_symbol: RB_OBJ_WRITE(obj, &dst->as.symbol, src->as.symbol); break; case block_type_proc: RB_OBJ_WRITE(obj, &dst->as.proc, src->as.proc); break; } } static VALUE proc_create(VALUE klass, const struct rb_block *block, int8_t is_from_method, int8_t is_lambda) { VALUE procval = rb_proc_alloc(klass); rb_proc_t *proc = RTYPEDDATA_DATA(procval); VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), vm_block_ep(block))); rb_vm_block_copy(procval, &proc->block, block); vm_block_type_set(&proc->block, block->type); proc->is_from_method = is_from_method; proc->is_lambda = is_lambda; return procval; } VALUE rb_proc_dup(VALUE self) { VALUE procval; rb_proc_t *src; GetProcPtr(self, src); procval = proc_create(rb_cProc, &src->block, src->is_from_method, src->is_lambda); RB_GC_GUARD(self); /* for: body = rb_proc_dup(body) */ return procval; } MJIT_FUNC_EXPORTED VALUE rb_vm_make_proc_lambda(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass, int8_t is_lambda) { VALUE procval; if (!VM_ENV_ESCAPED_P(captured->ep)) { rb_control_frame_t *cfp = VM_CAPTURED_BLOCK_TO_CFP(captured); vm_make_env_object(ec, cfp); } VM_ASSERT(VM_EP_IN_HEAP_P(ec, captured->ep)); VM_ASSERT(imemo_type_p(captured->code.val, imemo_iseq) || imemo_type_p(captured->code.val, imemo_ifunc)); procval = vm_proc_create_from_captured(klass, captured, imemo_type(captured->code.val) == imemo_iseq ? block_type_iseq : block_type_ifunc, FALSE, is_lambda); return procval; } /* Binding */ VALUE rb_vm_make_binding(const rb_execution_context_t *ec, const rb_control_frame_t *src_cfp) { rb_control_frame_t *cfp = rb_vm_get_binding_creatable_next_cfp(ec, src_cfp); rb_control_frame_t *ruby_level_cfp = rb_vm_get_ruby_level_next_cfp(ec, src_cfp); VALUE bindval, envval; rb_binding_t *bind; if (cfp == 0 || ruby_level_cfp == 0) { rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber."); } while (1) { envval = vm_make_env_object(ec, cfp); if (cfp == ruby_level_cfp) { break; } cfp = rb_vm_get_binding_creatable_next_cfp(ec, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)); } bindval = rb_binding_alloc(rb_cBinding); GetBindingPtr(bindval, bind); vm_bind_update_env(bindval, bind, envval); RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, cfp->self); RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, cfp->iseq); RB_OBJ_WRITE(bindval, &bind->pathobj, ruby_level_cfp->iseq->body->location.pathobj); bind->first_lineno = rb_vm_get_sourceline(ruby_level_cfp); return bindval; } const VALUE * rb_binding_add_dynavars(VALUE bindval, rb_binding_t *bind, int dyncount, const ID *dynvars) { VALUE envval, pathobj = bind->pathobj; VALUE path = pathobj_path(pathobj); VALUE realpath = pathobj_realpath(pathobj); const struct rb_block *base_block; const rb_env_t *env; rb_execution_context_t *ec = GET_EC(); const rb_iseq_t *base_iseq, *iseq; rb_ast_body_t ast; NODE tmp_node; ID minibuf[4], *dyns = minibuf; VALUE idtmp = 0; if (dyncount < 0) return 0; base_block = &bind->block; base_iseq = vm_block_iseq(base_block); if (dyncount >= numberof(minibuf)) dyns = ALLOCV_N(ID, idtmp, dyncount + 1); dyns[0] = dyncount; MEMCPY(dyns + 1, dynvars, ID, dyncount); rb_node_init(&tmp_node, NODE_SCOPE, (VALUE)dyns, 0, 0); ast.root = &tmp_node; ast.compile_option = 0; if (base_iseq) { iseq = rb_iseq_new(&ast, base_iseq->body->location.label, path, realpath, base_iseq, ISEQ_TYPE_EVAL); } else { VALUE tempstr = rb_fstring_cstr(""); iseq = rb_iseq_new_top(&ast, tempstr, tempstr, tempstr, NULL); } tmp_node.nd_tbl = 0; /* reset table */ ALLOCV_END(idtmp); vm_set_eval_stack(ec, iseq, 0, base_block); vm_bind_update_env(bindval, bind, envval = vm_make_env_object(ec, ec->cfp)); rb_vm_pop_frame(ec); env = (const rb_env_t *)envval; return env->env; } /* C -> Ruby: block */ static inline VALUE invoke_block(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_cref_t *cref, VALUE type, int opt_pc) { int arg_size = iseq->body->param.size; vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_FINISH, self, VM_GUARDED_PREV_EP(captured->ep), (VALUE)cref, /* cref or method */ iseq->body->iseq_encoded + opt_pc, ec->cfp->sp + arg_size, iseq->body->local_table_size - arg_size, iseq->body->stack_max); return vm_exec(ec, TRUE); } static VALUE invoke_bmethod(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_callable_method_entry_t *me, VALUE type, int opt_pc) { /* bmethod */ int arg_size = iseq->body->param.size; VALUE ret; vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_BMETHOD, self, VM_GUARDED_PREV_EP(captured->ep), (VALUE)me, iseq->body->iseq_encoded + opt_pc, ec->cfp->sp + arg_size, iseq->body->local_table_size - arg_size, iseq->body->stack_max); RUBY_DTRACE_METHOD_ENTRY_HOOK(ec, me->owner, me->def->original_id); EXEC_EVENT_HOOK(ec, RUBY_EVENT_CALL, self, me->def->original_id, me->called_id, me->owner, Qnil); VM_ENV_FLAGS_SET(ec->cfp->ep, VM_FRAME_FLAG_FINISH); ret = vm_exec(ec, TRUE); EXEC_EVENT_HOOK(ec, RUBY_EVENT_RETURN, self, me->def->original_id, me->called_id, me->owner, ret); RUBY_DTRACE_METHOD_RETURN_HOOK(ec, me->owner, me->def->original_id); return ret; } static inline VALUE invoke_iseq_block_from_c(rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE self, int argc, const VALUE *argv, VALUE passed_block_handler, const rb_cref_t *cref, int is_lambda) { const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq); int i, opt_pc; VALUE type = VM_FRAME_MAGIC_BLOCK | (is_lambda ? VM_FRAME_FLAG_LAMBDA : 0); rb_control_frame_t *cfp = ec->cfp; VALUE *sp = cfp->sp; const rb_callable_method_entry_t *me = ec->passed_bmethod_me; ec->passed_bmethod_me = NULL; stack_check(ec); CHECK_VM_STACK_OVERFLOW(cfp, argc); cfp->sp = sp + argc; for (i=0; isp = sp; if (me == NULL) { return invoke_block(ec, iseq, self, captured, cref, type, opt_pc); } else { return invoke_bmethod(ec, iseq, self, captured, me, type, opt_pc); } } static inline VALUE invoke_block_from_c_bh(rb_execution_context_t *ec, VALUE block_handler, int argc, const VALUE *argv, VALUE passed_block_handler, const rb_cref_t *cref, int is_lambda, int force_blockarg) { again: switch (vm_block_handler_type(block_handler)) { case block_handler_type_iseq: { const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(block_handler); return invoke_iseq_block_from_c(ec, captured, captured->self, argc, argv, passed_block_handler, cref, is_lambda); } case block_handler_type_ifunc: return vm_yield_with_cfunc(ec, VM_BH_TO_IFUNC_BLOCK(block_handler), VM_BH_TO_IFUNC_BLOCK(block_handler)->self, argc, argv, passed_block_handler); case block_handler_type_symbol: return vm_yield_with_symbol(ec, VM_BH_TO_SYMBOL(block_handler), argc, argv, passed_block_handler); case block_handler_type_proc: if (force_blockarg == FALSE) { is_lambda = block_proc_is_lambda(VM_BH_TO_PROC(block_handler)); } block_handler = vm_proc_to_block_handler(VM_BH_TO_PROC(block_handler)); goto again; } VM_UNREACHABLE(invoke_block_from_c_splattable); return Qundef; } static inline VALUE check_block_handler(rb_execution_context_t *ec) { VALUE block_handler = VM_CF_BLOCK_HANDLER(ec->cfp); vm_block_handler_verify(block_handler); if (UNLIKELY(block_handler == VM_BLOCK_HANDLER_NONE)) { rb_vm_localjump_error("no block given", Qnil, 0); } return block_handler; } static VALUE vm_yield_with_cref(rb_execution_context_t *ec, int argc, const VALUE *argv, const rb_cref_t *cref, int is_lambda) { return invoke_block_from_c_bh(ec, check_block_handler(ec), argc, argv, VM_BLOCK_HANDLER_NONE, cref, is_lambda, FALSE); } static VALUE vm_yield(rb_execution_context_t *ec, int argc, const VALUE *argv) { return invoke_block_from_c_bh(ec, check_block_handler(ec), argc, argv, VM_BLOCK_HANDLER_NONE, NULL, FALSE, FALSE); } static VALUE vm_yield_with_block(rb_execution_context_t *ec, int argc, const VALUE *argv, VALUE block_handler) { return invoke_block_from_c_bh(ec, check_block_handler(ec), argc, argv, block_handler, NULL, FALSE, FALSE); } static VALUE vm_yield_force_blockarg(rb_execution_context_t *ec, VALUE args) { return invoke_block_from_c_bh(ec, check_block_handler(ec), 1, &args, VM_BLOCK_HANDLER_NONE, NULL, FALSE, TRUE); } static inline VALUE invoke_block_from_c_proc(rb_execution_context_t *ec, const rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, VALUE passed_block_handler, int is_lambda) { const struct rb_block *block = &proc->block; again: switch (vm_block_type(block)) { case block_type_iseq: return invoke_iseq_block_from_c(ec, &block->as.captured, self, argc, argv, passed_block_handler, NULL, is_lambda); case block_type_ifunc: return vm_yield_with_cfunc(ec, &block->as.captured, self, argc, argv, passed_block_handler); case block_type_symbol: return vm_yield_with_symbol(ec, block->as.symbol, argc, argv, passed_block_handler); case block_type_proc: is_lambda = block_proc_is_lambda(block->as.proc); block = vm_proc_block(block->as.proc); goto again; } VM_UNREACHABLE(invoke_block_from_c_proc); return Qundef; } static VALUE vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, VALUE passed_block_handler) { return invoke_block_from_c_proc(ec, proc, self, argc, argv, passed_block_handler, proc->is_lambda); } MJIT_FUNC_EXPORTED VALUE vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, VALUE block_handler) { return invoke_block_from_c_proc(ec, proc, self, argc, argv, block_handler, TRUE); } MJIT_FUNC_EXPORTED VALUE rb_vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, int argc, const VALUE *argv, VALUE passed_block_handler) { VALUE self = vm_block_self(&proc->block); vm_block_handler_verify(passed_block_handler); if (proc->is_from_method) { return vm_invoke_bmethod(ec, proc, self, argc, argv, passed_block_handler); } else { return vm_invoke_proc(ec, proc, self, argc, argv, passed_block_handler); } } /* special variable */ static rb_control_frame_t * vm_normal_frame(const rb_execution_context_t *ec, rb_control_frame_t *cfp) { while (cfp->pc == 0) { cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) { return 0; } } return cfp; } static VALUE vm_cfp_svar_get(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key) { cfp = vm_normal_frame(ec, cfp); return lep_svar_get(ec, cfp ? VM_CF_LEP(cfp) : 0, key); } static void vm_cfp_svar_set(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key, const VALUE val) { cfp = vm_normal_frame(ec, cfp); lep_svar_set(ec, cfp ? VM_CF_LEP(cfp) : 0, key, val); } static VALUE vm_svar_get(const rb_execution_context_t *ec, VALUE key) { return vm_cfp_svar_get(ec, ec->cfp, key); } static void vm_svar_set(const rb_execution_context_t *ec, VALUE key, VALUE val) { vm_cfp_svar_set(ec, ec->cfp, key, val); } VALUE rb_backref_get(void) { return vm_svar_get(GET_EC(), VM_SVAR_BACKREF); } void rb_backref_set(VALUE val) { vm_svar_set(GET_EC(), VM_SVAR_BACKREF, val); } VALUE rb_lastline_get(void) { return vm_svar_get(GET_EC(), VM_SVAR_LASTLINE); } void rb_lastline_set(VALUE val) { vm_svar_set(GET_EC(), VM_SVAR_LASTLINE, val); } /* misc */ /* in intern.h */ const char * rb_sourcefile(void) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); if (cfp) { return RSTRING_PTR(rb_iseq_path(cfp->iseq)); } else { return 0; } } /* in intern.h */ int rb_sourceline(void) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); if (cfp) { return rb_vm_get_sourceline(cfp); } else { return 0; } } VALUE rb_source_location(int *pline) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); if (cfp) { if (pline) *pline = rb_vm_get_sourceline(cfp); return rb_iseq_path(cfp->iseq); } else { if (pline) *pline = 0; return Qnil; } } MJIT_FUNC_EXPORTED const char * rb_source_location_cstr(int *pline) { VALUE path = rb_source_location(pline); if (NIL_P(path)) return NULL; return RSTRING_PTR(path); } rb_cref_t * rb_vm_cref(void) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); if (cfp == NULL) { return NULL; } return rb_vm_get_cref(cfp->ep); } rb_cref_t * rb_vm_cref_replace_with_duplicated_cref(void) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); rb_cref_t *cref = vm_cref_replace_with_duplicated_cref(cfp->ep); return cref; } const rb_cref_t * rb_vm_cref_in_context(VALUE self, VALUE cbase) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); const rb_cref_t *cref; if (cfp->self != self) return NULL; if (!vm_env_cref_by_cref(cfp->ep)) return NULL; cref = rb_vm_get_cref(cfp->ep); if (CREF_CLASS(cref) != cbase) return NULL; return cref; } #if 0 void debug_cref(rb_cref_t *cref) { while (cref) { dp(CREF_CLASS(cref)); printf("%ld\n", CREF_VISI(cref)); cref = CREF_NEXT(cref); } } #endif VALUE rb_vm_cbase(void) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); if (cfp == 0) { rb_raise(rb_eRuntimeError, "Can't call on top of Fiber or Thread"); } return vm_get_cbase(cfp->ep); } /* jump */ static VALUE make_localjump_error(const char *mesg, VALUE value, int reason) { extern VALUE rb_eLocalJumpError; VALUE exc = rb_exc_new2(rb_eLocalJumpError, mesg); ID id; switch (reason) { case TAG_BREAK: CONST_ID(id, "break"); break; case TAG_REDO: CONST_ID(id, "redo"); break; case TAG_RETRY: CONST_ID(id, "retry"); break; case TAG_NEXT: CONST_ID(id, "next"); break; case TAG_RETURN: CONST_ID(id, "return"); break; default: CONST_ID(id, "noreason"); break; } rb_iv_set(exc, "@exit_value", value); rb_iv_set(exc, "@reason", ID2SYM(id)); return exc; } MJIT_FUNC_EXPORTED void rb_vm_localjump_error(const char *mesg, VALUE value, int reason) { VALUE exc = make_localjump_error(mesg, value, reason); rb_exc_raise(exc); } VALUE rb_vm_make_jump_tag_but_local_jump(int state, VALUE val) { const char *mesg; switch (state) { case TAG_RETURN: mesg = "unexpected return"; break; case TAG_BREAK: mesg = "unexpected break"; break; case TAG_NEXT: mesg = "unexpected next"; break; case TAG_REDO: mesg = "unexpected redo"; val = Qnil; break; case TAG_RETRY: mesg = "retry outside of rescue clause"; val = Qnil; break; default: return Qnil; } if (val == Qundef) { val = GET_EC()->tag->retval; } return make_localjump_error(mesg, val, state); } #if 0 void rb_vm_jump_tag_but_local_jump(int state) { VALUE exc = rb_vm_make_jump_tag_but_local_jump(state, Qundef); if (!NIL_P(exc)) rb_exc_raise(exc); EC_JUMP_TAG(GET_EC(), state); } #endif static rb_control_frame_t * next_not_local_frame(rb_control_frame_t *cfp) { while (VM_ENV_LOCAL_P(cfp->ep)) { cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return cfp; } NORETURN(static void vm_iter_break(rb_execution_context_t *ec, VALUE val)); static void vm_iter_break(rb_execution_context_t *ec, VALUE val) { rb_control_frame_t *cfp = next_not_local_frame(ec->cfp); const VALUE *ep = VM_CF_PREV_EP(cfp); const rb_control_frame_t *target_cfp = rb_vm_search_cf_from_ep(ec, cfp, ep); #if 0 /* raise LocalJumpError */ if (!target_cfp) { rb_vm_localjump_error("unexpected break", val, TAG_BREAK); } #endif ec->errinfo = (VALUE)THROW_DATA_NEW(val, target_cfp, TAG_BREAK); EC_JUMP_TAG(ec, TAG_BREAK); } void rb_iter_break(void) { vm_iter_break(GET_EC(), Qnil); } void rb_iter_break_value(VALUE val) { vm_iter_break(GET_EC(), val); } /* optimization: redefine management */ static st_table *vm_opt_method_table = 0; static int vm_redefinition_check_flag(VALUE klass) { if (klass == rb_cInteger) return INTEGER_REDEFINED_OP_FLAG; if (klass == rb_cFloat) return FLOAT_REDEFINED_OP_FLAG; if (klass == rb_cString) return STRING_REDEFINED_OP_FLAG; if (klass == rb_cArray) return ARRAY_REDEFINED_OP_FLAG; if (klass == rb_cHash) return HASH_REDEFINED_OP_FLAG; if (klass == rb_cSymbol) return SYMBOL_REDEFINED_OP_FLAG; if (klass == rb_cTime) return TIME_REDEFINED_OP_FLAG; if (klass == rb_cRegexp) return REGEXP_REDEFINED_OP_FLAG; if (klass == rb_cNilClass) return NIL_REDEFINED_OP_FLAG; if (klass == rb_cTrueClass) return TRUE_REDEFINED_OP_FLAG; if (klass == rb_cFalseClass) return FALSE_REDEFINED_OP_FLAG; if (klass == rb_cProc) return PROC_REDEFINED_OP_FLAG; return 0; } static int vm_redefinition_check_method_type(const rb_method_definition_t *def) { switch (def->type) { case VM_METHOD_TYPE_CFUNC: case VM_METHOD_TYPE_OPTIMIZED: return TRUE; default: return FALSE; } } static void rb_vm_check_redefinition_opt_method(const rb_method_entry_t *me, VALUE klass) { st_data_t bop; if (RB_TYPE_P(klass, T_ICLASS) && FL_TEST(klass, RICLASS_IS_ORIGIN)) { klass = RBASIC_CLASS(klass); } if (vm_redefinition_check_method_type(me->def)) { if (st_lookup(vm_opt_method_table, (st_data_t)me, &bop)) { int flag = vm_redefinition_check_flag(klass); ruby_vm_redefined_flag[bop] |= flag; } } } static enum rb_id_table_iterator_result check_redefined_method(ID mid, VALUE value, void *data) { VALUE klass = (VALUE)data; const rb_method_entry_t *me = (rb_method_entry_t *)value; const rb_method_entry_t *newme = rb_method_entry(klass, mid); if (newme != me) rb_vm_check_redefinition_opt_method(me, me->owner); return ID_TABLE_CONTINUE; } void rb_vm_check_redefinition_by_prepend(VALUE klass) { if (!vm_redefinition_check_flag(klass)) return; rb_id_table_foreach(RCLASS_M_TBL(RCLASS_ORIGIN(klass)), check_redefined_method, (void *)klass); } static void add_opt_method(VALUE klass, ID mid, VALUE bop) { const rb_method_entry_t *me = rb_method_entry_at(klass, mid); if (me && vm_redefinition_check_method_type(me->def)) { st_insert(vm_opt_method_table, (st_data_t)me, (st_data_t)bop); } else { rb_bug("undefined optimized method: %s", rb_id2name(mid)); } } static void vm_init_redefined_flag(void) { ID mid; VALUE bop; vm_opt_method_table = st_init_numtable(); #define OP(mid_, bop_) (mid = id##mid_, bop = BOP_##bop_, ruby_vm_redefined_flag[bop] = 0) #define C(k) add_opt_method(rb_c##k, mid, bop) OP(PLUS, PLUS), (C(Integer), C(Float), C(String), C(Array)); OP(MINUS, MINUS), (C(Integer), C(Float)); OP(MULT, MULT), (C(Integer), C(Float)); OP(DIV, DIV), (C(Integer), C(Float)); OP(MOD, MOD), (C(Integer), C(Float)); OP(Eq, EQ), (C(Integer), C(Float), C(String), C(Symbol)); OP(Eqq, EQQ), (C(Integer), C(Float), C(Symbol), C(String), C(NilClass), C(TrueClass), C(FalseClass)); OP(LT, LT), (C(Integer), C(Float)); OP(LE, LE), (C(Integer), C(Float)); OP(GT, GT), (C(Integer), C(Float)); OP(GE, GE), (C(Integer), C(Float)); OP(LTLT, LTLT), (C(String), C(Array)); OP(AREF, AREF), (C(Array), C(Hash)); OP(ASET, ASET), (C(Array), C(Hash)); OP(Length, LENGTH), (C(Array), C(String), C(Hash)); OP(Size, SIZE), (C(Array), C(String), C(Hash)); OP(EmptyP, EMPTY_P), (C(Array), C(String), C(Hash)); OP(Succ, SUCC), (C(Integer), C(String), C(Time)); OP(EqTilde, MATCH), (C(Regexp), C(String)); OP(Freeze, FREEZE), (C(String)); OP(UMinus, UMINUS), (C(String)); OP(Max, MAX), (C(Array)); OP(Min, MIN), (C(Array)); OP(Call, CALL), (C(Proc)); #undef C #undef OP } /* for vm development */ #if VMDEBUG static const char * vm_frametype_name(const rb_control_frame_t *cfp) { switch (VM_FRAME_TYPE(cfp)) { case VM_FRAME_MAGIC_METHOD: return "method"; case VM_FRAME_MAGIC_BLOCK: return "block"; case VM_FRAME_MAGIC_CLASS: return "class"; case VM_FRAME_MAGIC_TOP: return "top"; case VM_FRAME_MAGIC_CFUNC: return "cfunc"; case VM_FRAME_MAGIC_IFUNC: return "ifunc"; case VM_FRAME_MAGIC_EVAL: return "eval"; case VM_FRAME_MAGIC_RESCUE: return "rescue"; default: rb_bug("unknown frame"); } } #endif static VALUE frame_return_value(const struct vm_throw_data *err) { if (THROW_DATA_P(err) && THROW_DATA_STATE(err) == TAG_BREAK && THROW_DATA_CONSUMED_P(err) == FALSE) { return THROW_DATA_VAL(err); } else { return Qnil; } } #if 0 /* for debug */ static const char * frame_name(const rb_control_frame_t *cfp) { unsigned long type = VM_FRAME_TYPE(cfp); #define C(t) if (type == VM_FRAME_MAGIC_##t) return #t C(METHOD); C(BLOCK); C(CLASS); C(TOP); C(CFUNC); C(PROC); C(IFUNC); C(EVAL); C(LAMBDA); C(RESCUE); C(DUMMY); #undef C return "unknown"; } #endif static void hook_before_rewind(rb_execution_context_t *ec, const rb_control_frame_t *cfp, int will_finish_vm_exec, int state, struct vm_throw_data *err) { if (state == TAG_RAISE && RBASIC_CLASS(err) == rb_eSysStackError) { return; } switch (VM_FRAME_TYPE(ec->cfp)) { case VM_FRAME_MAGIC_METHOD: RUBY_DTRACE_METHOD_RETURN_HOOK(ec, 0, 0); EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err)); THROW_DATA_CONSUMED_SET(err); break; case VM_FRAME_MAGIC_BLOCK: if (VM_FRAME_BMETHOD_P(ec->cfp)) { EXEC_EVENT_HOOK(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err)); if (!will_finish_vm_exec) { /* kick RUBY_EVENT_RETURN at invoke_block_from_c() for bmethod */ EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self, rb_vm_frame_method_entry(ec->cfp)->def->original_id, rb_vm_frame_method_entry(ec->cfp)->called_id, rb_vm_frame_method_entry(ec->cfp)->owner, frame_return_value(err)); } THROW_DATA_CONSUMED_SET(err); } else { EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err)); THROW_DATA_CONSUMED_SET(err); } break; case VM_FRAME_MAGIC_CLASS: EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_END, ec->cfp->self, 0, 0, 0, Qnil); break; } } /* evaluator body */ /* finish VMe (h1) finish VM finish F1 F2 cfunc finish F1 F2 C1 rb_funcall finish F1 F2 C1 VMe finish F1 F2 C1 VM finish F1 F2 C1 F3 F1 - F3 : pushed by VM C1 : pushed by send insn (CFUNC) struct CONTROL_FRAME { VALUE *pc; // cfp[0], program counter VALUE *sp; // cfp[1], stack pointer rb_iseq_t *iseq; // cfp[2], iseq VALUE self; // cfp[3], self const VALUE *ep; // cfp[4], env pointer const void *block_code; // cfp[5], block code }; struct rb_captured_block { VALUE self; VALUE *ep; union code; }; struct METHOD_ENV { VALUE param0; ... VALUE paramN; VALUE lvar1; ... VALUE lvarM; VALUE cref; // ep[-2] VALUE special; // ep[-1] VALUE flags; // ep[ 0] == lep[0] }; struct BLOCK_ENV { VALUE block_param0; ... VALUE block_paramN; VALUE block_lvar1; ... VALUE block_lvarM; VALUE cref; // ep[-2] VALUE special; // ep[-1] VALUE flags; // ep[ 0] }; struct CLASS_ENV { VALUE class_lvar0; ... VALUE class_lvarN; VALUE cref; VALUE prev_ep; // for frame jump VALUE flags; }; struct C_METHOD_CONTROL_FRAME { VALUE *pc; // 0 VALUE *sp; // stack pointer rb_iseq_t *iseq; // cmi VALUE self; // ? VALUE *ep; // ep == lep void *code; // }; struct C_BLOCK_CONTROL_FRAME { VALUE *pc; // point only "finish" insn VALUE *sp; // sp rb_iseq_t *iseq; // ? VALUE self; // VALUE *ep; // ep void *code; // }; If mjit_exec is already called before calling vm_exec, `mjit_enable_p` should be FALSE to avoid calling `mjit_exec` twice. */ static inline VALUE handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state, VALUE errinfo, VALUE *initial); MJIT_FUNC_EXPORTED VALUE vm_exec(rb_execution_context_t *ec, int mjit_enable_p) { enum ruby_tag_type state; VALUE result = Qundef; VALUE initial = 0; EC_PUSH_TAG(ec); _tag.retval = Qnil; if ((state = EC_EXEC_TAG()) == TAG_NONE) { if (mjit_enable_p) result = mjit_exec(ec); goto vm_loop_start; /* fallback to the VM */ } else { result = ec->errinfo; rb_ec_raised_reset(ec, RAISED_STACKOVERFLOW); while ((result = handle_exception(ec, state, result, &initial)) == Qundef) { /* caught a jump, exec the handler */ vm_loop_start: if (result == Qundef) result = vm_exec_core(ec, initial); VM_ASSERT(ec->tag == &_tag); /* when caught `throw`, `tag.state` is set. */ if ((state = _tag.state) == TAG_NONE) break; _tag.state = TAG_NONE; } } EC_POP_TAG(); return result; } static inline VALUE handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state, VALUE errinfo, VALUE *initial) { struct vm_throw_data *err = (struct vm_throw_data *)errinfo; for (;;) { unsigned int i; const struct iseq_catch_table_entry *entry; const struct iseq_catch_table *ct; unsigned long epc, cont_pc, cont_sp; const rb_iseq_t *catch_iseq; rb_control_frame_t *cfp; VALUE type; const rb_control_frame_t *escape_cfp; cont_pc = cont_sp = 0; catch_iseq = NULL; while (ec->cfp->pc == 0 || ec->cfp->iseq == 0) { if (UNLIKELY(VM_FRAME_TYPE(ec->cfp) == VM_FRAME_MAGIC_CFUNC)) { EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, ec->cfp->self, rb_vm_frame_method_entry(ec->cfp)->def->original_id, rb_vm_frame_method_entry(ec->cfp)->called_id, rb_vm_frame_method_entry(ec->cfp)->owner, Qnil); RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, rb_vm_frame_method_entry(ec->cfp)->owner, rb_vm_frame_method_entry(ec->cfp)->def->original_id); } rb_vm_pop_frame(ec); } cfp = ec->cfp; epc = cfp->pc - cfp->iseq->body->iseq_encoded; escape_cfp = NULL; if (state == TAG_BREAK || state == TAG_RETURN) { escape_cfp = THROW_DATA_CATCH_FRAME(err); if (cfp == escape_cfp) { if (state == TAG_RETURN) { if (!VM_FRAME_FINISHED_P(cfp)) { THROW_DATA_CATCH_FRAME_SET(err, cfp + 1); THROW_DATA_STATE_SET(err, state = TAG_BREAK); } else { ct = cfp->iseq->body->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = &ct->entries[i]; if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } } } if (catch_iseq == NULL) { ec->errinfo = Qnil; THROW_DATA_CATCH_FRAME_SET(err, cfp + 1); hook_before_rewind(ec, ec->cfp, TRUE, state, err); rb_vm_pop_frame(ec); return THROW_DATA_VAL(err); } } /* through */ } else { /* TAG_BREAK */ #if OPT_STACK_CACHING *initial = THROW_DATA_VAL(err); #else *ec->cfp->sp++ = THROW_DATA_VAL(err); #endif ec->errinfo = Qnil; return Qundef; } } } if (state == TAG_RAISE) { ct = cfp->iseq->body->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = &ct->entries[i]; if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_RESCUE || entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } } } } else if (state == TAG_RETRY) { ct = cfp->iseq->body->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = &ct->entries[i]; if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } else if (entry->type == CATCH_TYPE_RETRY) { const rb_control_frame_t *escape_cfp; escape_cfp = THROW_DATA_CATCH_FRAME(err); if (cfp == escape_cfp) { cfp->pc = cfp->iseq->body->iseq_encoded + entry->cont; ec->errinfo = Qnil; return Qundef; } } } } } else if (state == TAG_BREAK && !escape_cfp) { type = CATCH_TYPE_BREAK; search_restart_point: ct = cfp->iseq->body->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = &ct->entries[i]; if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } else if (entry->type == type) { cfp->pc = cfp->iseq->body->iseq_encoded + entry->cont; cfp->sp = vm_base_ptr(cfp) + entry->sp; if (state != TAG_REDO) { #if OPT_STACK_CACHING *initial = THROW_DATA_VAL(err); #else *ec->cfp->sp++ = THROW_DATA_VAL(err); #endif } ec->errinfo = Qnil; VM_ASSERT(ec->tag->state == TAG_NONE); return Qundef; } } } } else if (state == TAG_REDO) { type = CATCH_TYPE_REDO; goto search_restart_point; } else if (state == TAG_NEXT) { type = CATCH_TYPE_NEXT; goto search_restart_point; } else { ct = cfp->iseq->body->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = &ct->entries[i]; if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } } } } if (catch_iseq != NULL) { /* found catch table */ /* enter catch scope */ const int arg_size = 1; rb_iseq_check(catch_iseq); cfp->sp = vm_base_ptr(cfp) + cont_sp; cfp->pc = cfp->iseq->body->iseq_encoded + cont_pc; /* push block frame */ cfp->sp[0] = (VALUE)err; vm_push_frame(ec, catch_iseq, VM_FRAME_MAGIC_RESCUE, cfp->self, VM_GUARDED_PREV_EP(cfp->ep), 0, /* cref or me */ catch_iseq->body->iseq_encoded, cfp->sp + arg_size /* push value */, catch_iseq->body->local_table_size - arg_size, catch_iseq->body->stack_max); state = 0; ec->tag->state = TAG_NONE; ec->errinfo = Qnil; return Qundef; } else { hook_before_rewind(ec, ec->cfp, FALSE, state, err); if (VM_FRAME_FINISHED_P(ec->cfp)) { rb_vm_pop_frame(ec); ec->errinfo = (VALUE)err; ec->tag = ec->tag->prev; EC_JUMP_TAG(ec, state); } else { rb_vm_pop_frame(ec); } } } } /* misc */ VALUE rb_iseq_eval(const rb_iseq_t *iseq) { rb_execution_context_t *ec = GET_EC(); VALUE val; vm_set_top_stack(ec, iseq); val = vm_exec(ec, TRUE); return val; } VALUE rb_iseq_eval_main(const rb_iseq_t *iseq) { rb_execution_context_t *ec = GET_EC(); VALUE val; vm_set_main_stack(ec, iseq); val = vm_exec(ec, TRUE); return val; } int rb_vm_control_frame_id_and_class(const rb_control_frame_t *cfp, ID *idp, ID *called_idp, VALUE *klassp) { const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp); if (me) { if (idp) *idp = me->def->original_id; if (called_idp) *called_idp = me->called_id; if (klassp) *klassp = me->owner; return TRUE; } else { return FALSE; } } int rb_ec_frame_method_id_and_class(const rb_execution_context_t *ec, ID *idp, ID *called_idp, VALUE *klassp) { return rb_vm_control_frame_id_and_class(ec->cfp, idp, called_idp, klassp); } RUBY_FUNC_EXPORTED int rb_frame_method_id_and_class(ID *idp, VALUE *klassp) { return rb_ec_frame_method_id_and_class(GET_EC(), idp, 0, klassp); } VALUE rb_vm_call_cfunc(VALUE recv, VALUE (*func)(VALUE), VALUE arg, VALUE block_handler, VALUE filename) { rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *reg_cfp = ec->cfp; const rb_iseq_t *iseq = rb_iseq_new(0, filename, filename, Qnil, 0, ISEQ_TYPE_TOP); VALUE val; vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH, recv, block_handler, (VALUE)vm_cref_new_toplevel(ec), /* cref or me */ 0, reg_cfp->sp, 0, 0); val = (*func)(arg); rb_vm_pop_frame(ec); return val; } /* vm */ void rb_vm_trace_mark_event_hooks(rb_hook_list_t *hooks); void rb_vm_mark(void *ptr) { RUBY_MARK_ENTER("vm"); RUBY_GC_INFO("-------------------------------------------------\n"); if (ptr) { rb_vm_t *vm = ptr; rb_thread_t *th = 0; list_for_each(&vm->living_threads, th, vmlt_node) { rb_gc_mark(th->self); } rb_gc_mark(vm->thgroup_default); rb_gc_mark(vm->mark_object_ary); rb_gc_mark(vm->load_path); rb_gc_mark(vm->load_path_snapshot); RUBY_MARK_UNLESS_NULL(vm->load_path_check_cache); rb_gc_mark(vm->expanded_load_path); rb_gc_mark(vm->loaded_features); rb_gc_mark(vm->loaded_features_snapshot); rb_gc_mark(vm->top_self); RUBY_MARK_UNLESS_NULL(vm->coverages); rb_gc_mark(vm->defined_module_hash); if (vm->loading_table) { rb_mark_tbl(vm->loading_table); } rb_vm_trace_mark_event_hooks(&vm->event_hooks); rb_gc_mark_values(RUBY_NSIG, vm->trap_list.cmd); mjit_mark(); } RUBY_MARK_LEAVE("vm"); } #undef rb_vm_register_special_exception void rb_vm_register_special_exception_str(enum ruby_special_exceptions sp, VALUE cls, VALUE mesg) { rb_vm_t *vm = GET_VM(); VALUE exc = rb_exc_new3(cls, rb_obj_freeze(mesg)); OBJ_TAINT(exc); OBJ_FREEZE(exc); ((VALUE *)vm->special_exceptions)[sp] = exc; rb_gc_register_mark_object(exc); } int rb_vm_add_root_module(ID id, VALUE module) { rb_vm_t *vm = GET_VM(); rb_hash_aset(vm->defined_module_hash, ID2SYM(id), module); return TRUE; } static int free_loading_table_entry(st_data_t key, st_data_t value, st_data_t arg) { xfree((char *)key); return ST_DELETE; } int ruby_vm_destruct(rb_vm_t *vm) { RUBY_FREE_ENTER("vm"); if (vm) { rb_thread_t *th = vm->main_thread; struct rb_objspace *objspace = vm->objspace; vm->main_thread = 0; if (th) { rb_fiber_reset_root_local_storage(th->self); thread_free(th); } rb_vm_living_threads_init(vm); ruby_vm_run_at_exit_hooks(vm); if (vm->loading_table) { st_foreach(vm->loading_table, free_loading_table_entry, 0); st_free_table(vm->loading_table); vm->loading_table = 0; } if (vm->frozen_strings) { st_free_table(vm->frozen_strings); vm->frozen_strings = 0; } rb_vm_gvl_destroy(vm); if (objspace) { rb_objspace_free(objspace); } /* after freeing objspace, you *can't* use ruby_xfree() */ ruby_mimfree(vm); ruby_current_vm_ptr = NULL; } RUBY_FREE_LEAVE("vm"); return 0; } static size_t vm_memsize(const void *ptr) { const rb_vm_t *vmobj = ptr; size_t size = sizeof(rb_vm_t); size += vmobj->living_thread_num * sizeof(rb_thread_t); if (vmobj->defined_strings) { size += DEFINED_EXPR * sizeof(VALUE); } return size; } static const rb_data_type_t vm_data_type = { "VM", {NULL, NULL, vm_memsize,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static VALUE vm_default_params(void) { rb_vm_t *vm = GET_VM(); VALUE result = rb_hash_new(); #define SET(name) rb_hash_aset(result, ID2SYM(rb_intern(#name)), SIZET2NUM(vm->default_params.name)); SET(thread_vm_stack_size); SET(thread_machine_stack_size); SET(fiber_vm_stack_size); SET(fiber_machine_stack_size); #undef SET rb_obj_freeze(result); return result; } static size_t get_param(const char *name, size_t default_value, size_t min_value) { const char *envval; size_t result = default_value; if ((envval = getenv(name)) != 0) { long val = atol(envval); if (val < (long)min_value) { val = (long)min_value; } result = (size_t)(((val -1 + RUBY_VM_SIZE_ALIGN) / RUBY_VM_SIZE_ALIGN) * RUBY_VM_SIZE_ALIGN); } if (0) fprintf(stderr, "%s: %"PRIuSIZE"\n", name, result); /* debug print */ return result; } static void check_machine_stack_size(size_t *sizep) { #ifdef PTHREAD_STACK_MIN size_t size = *sizep; #endif #ifdef PTHREAD_STACK_MIN if (size < PTHREAD_STACK_MIN) { *sizep = PTHREAD_STACK_MIN * 2; } #endif } static void vm_default_params_setup(rb_vm_t *vm) { vm->default_params.thread_vm_stack_size = get_param("RUBY_THREAD_VM_STACK_SIZE", RUBY_VM_THREAD_VM_STACK_SIZE, RUBY_VM_THREAD_VM_STACK_SIZE_MIN); vm->default_params.thread_machine_stack_size = get_param("RUBY_THREAD_MACHINE_STACK_SIZE", RUBY_VM_THREAD_MACHINE_STACK_SIZE, RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN); vm->default_params.fiber_vm_stack_size = get_param("RUBY_FIBER_VM_STACK_SIZE", RUBY_VM_FIBER_VM_STACK_SIZE, RUBY_VM_FIBER_VM_STACK_SIZE_MIN); vm->default_params.fiber_machine_stack_size = get_param("RUBY_FIBER_MACHINE_STACK_SIZE", RUBY_VM_FIBER_MACHINE_STACK_SIZE, RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN); /* environment dependent check */ check_machine_stack_size(&vm->default_params.thread_machine_stack_size); check_machine_stack_size(&vm->default_params.fiber_machine_stack_size); } static void vm_init2(rb_vm_t *vm) { MEMZERO(vm, rb_vm_t, 1); rb_vm_living_threads_init(vm); vm->thread_report_on_exception = 1; vm->src_encoding_index = -1; vm_default_params_setup(vm); } /* Thread */ #define USE_THREAD_DATA_RECYCLE 1 #if USE_THREAD_DATA_RECYCLE #define RECYCLE_MAX 64 static VALUE *thread_recycle_stack_slot[RECYCLE_MAX]; static int thread_recycle_stack_count = 0; static VALUE * thread_recycle_stack(size_t size) { if (thread_recycle_stack_count > 0) { /* TODO: check stack size if stack sizes are variable */ return thread_recycle_stack_slot[--thread_recycle_stack_count]; } else { return ALLOC_N(VALUE, size); } } #else #define thread_recycle_stack(size) ALLOC_N(VALUE, (size)) #endif void rb_thread_recycle_stack_release(VALUE *stack) { VM_ASSERT(stack != NULL); #if USE_THREAD_DATA_RECYCLE if (thread_recycle_stack_count < RECYCLE_MAX) { thread_recycle_stack_slot[thread_recycle_stack_count++] = stack; return; } #endif ruby_xfree(stack); } void rb_execution_context_mark(const rb_execution_context_t *ec) { #if VM_CHECK_MODE > 0 void rb_ec_verify(const rb_execution_context_t *ec); /* cont.c */ rb_ec_verify(ec); #endif /* mark VM stack */ if (ec->vm_stack) { VALUE *p = ec->vm_stack; VALUE *sp = ec->cfp->sp; rb_control_frame_t *cfp = ec->cfp; rb_control_frame_t *limit_cfp = (void *)(ec->vm_stack + ec->vm_stack_size); rb_gc_mark_values((long)(sp - p), p); while (cfp != limit_cfp) { const VALUE *ep = cfp->ep; VM_ASSERT(!!VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED) == vm_ep_in_heap_p_(ec, ep)); rb_gc_mark(cfp->self); rb_gc_mark((VALUE)cfp->iseq); rb_gc_mark((VALUE)cfp->block_code); if (!VM_ENV_LOCAL_P(ep)) { const VALUE *prev_ep = VM_ENV_PREV_EP(ep); if (VM_ENV_FLAGS(prev_ep, VM_ENV_FLAG_ESCAPED)) { rb_gc_mark(prev_ep[VM_ENV_DATA_INDEX_ENV]); } } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } } /* mark machine stack */ if (ec->machine.stack_start && ec->machine.stack_end && ec != GET_EC() /* marked for current ec at the first stage of marking */ ) { rb_gc_mark_machine_stack(ec); rb_gc_mark_locations((VALUE *)&ec->machine.regs, (VALUE *)(&ec->machine.regs) + sizeof(ec->machine.regs) / sizeof(VALUE)); } RUBY_MARK_UNLESS_NULL(ec->errinfo); RUBY_MARK_UNLESS_NULL(ec->root_svar); rb_mark_tbl(ec->local_storage); RUBY_MARK_UNLESS_NULL(ec->local_storage_recursive_hash); RUBY_MARK_UNLESS_NULL(ec->local_storage_recursive_hash_for_trace); } void rb_fiber_mark_self(rb_fiber_t *fib); void rb_threadptr_root_fiber_setup(rb_thread_t *th); void rb_threadptr_root_fiber_release(rb_thread_t *th); static void thread_mark(void *ptr) { rb_thread_t *th = ptr; RUBY_MARK_ENTER("thread"); rb_fiber_mark_self(th->ec->fiber_ptr); /* mark ruby objects */ RUBY_MARK_UNLESS_NULL(th->first_proc); if (th->first_proc) RUBY_MARK_UNLESS_NULL(th->first_args); RUBY_MARK_UNLESS_NULL(th->thgroup); RUBY_MARK_UNLESS_NULL(th->value); RUBY_MARK_UNLESS_NULL(th->pending_interrupt_queue); RUBY_MARK_UNLESS_NULL(th->pending_interrupt_mask_stack); RUBY_MARK_UNLESS_NULL(th->top_self); RUBY_MARK_UNLESS_NULL(th->top_wrapper); if (th->root_fiber) rb_fiber_mark_self(th->root_fiber); RUBY_MARK_UNLESS_NULL(th->stat_insn_usage); RUBY_MARK_UNLESS_NULL(th->last_status); RUBY_MARK_UNLESS_NULL(th->locking_mutex); RUBY_MARK_UNLESS_NULL(th->name); RUBY_MARK_LEAVE("thread"); } static void thread_free(void *ptr) { rb_thread_t *th = ptr; RUBY_FREE_ENTER("thread"); if (th->locking_mutex != Qfalse) { rb_bug("thread_free: locking_mutex must be NULL (%p:%p)", (void *)th, (void *)th->locking_mutex); } if (th->keeping_mutexes != NULL) { rb_bug("thread_free: keeping_mutexes must be NULL (%p:%p)", (void *)th, (void *)th->keeping_mutexes); } rb_threadptr_root_fiber_release(th); if (th->vm && th->vm->main_thread == th) { RUBY_GC_INFO("main thread\n"); } else { #ifdef USE_SIGALTSTACK free(th->altstack); #endif ruby_xfree(ptr); } RUBY_FREE_LEAVE("thread"); } static size_t thread_memsize(const void *ptr) { const rb_thread_t *th = ptr; size_t size = sizeof(rb_thread_t); if (!th->root_fiber) { size += th->ec->vm_stack_size * sizeof(VALUE); } if (th->ec->local_storage) { size += st_memsize(th->ec->local_storage); } return size; } #define thread_data_type ruby_threadptr_data_type const rb_data_type_t ruby_threadptr_data_type = { "VM/thread", { thread_mark, thread_free, thread_memsize, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; VALUE rb_obj_is_thread(VALUE obj) { if (rb_typeddata_is_kind_of(obj, &thread_data_type)) { return Qtrue; } else { return Qfalse; } } static VALUE thread_alloc(VALUE klass) { VALUE obj; rb_thread_t *th; obj = TypedData_Make_Struct(klass, rb_thread_t, &thread_data_type, th); return obj; } static void th_init(rb_thread_t *th, VALUE self) { th->self = self; rb_threadptr_root_fiber_setup(th); /* allocate thread stack */ #ifdef USE_SIGALTSTACK /* altstack of main thread is reallocated in another place */ th->altstack = malloc(rb_sigaltstack_size()); #endif { /* vm_stack_size is word number. * th->vm->default_params.thread_vm_stack_size is byte size. */ size_t size = th->vm->default_params.thread_vm_stack_size / sizeof(VALUE); ec_set_vm_stack(th->ec, thread_recycle_stack(size), size); } th->ec->cfp = (void *)(th->ec->vm_stack + th->ec->vm_stack_size); vm_push_frame(th->ec, 0 /* dummy iseq */, VM_FRAME_MAGIC_DUMMY | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH | VM_FRAME_FLAG_CFRAME /* dummy frame */, Qnil /* dummy self */, VM_BLOCK_HANDLER_NONE /* dummy block ptr */, 0 /* dummy cref/me */, 0 /* dummy pc */, th->ec->vm_stack, 0, 0); th->status = THREAD_RUNNABLE; th->last_status = Qnil; th->ec->errinfo = Qnil; th->ec->root_svar = Qfalse; th->ec->local_storage_recursive_hash = Qnil; th->ec->local_storage_recursive_hash_for_trace = Qnil; #ifdef NON_SCALAR_THREAD_ID th->thread_id_string[0] = '\0'; #endif #if OPT_CALL_THREADED_CODE th->retval = Qundef; #endif th->name = Qnil; th->report_on_exception = th->vm->thread_report_on_exception; } static VALUE ruby_thread_init(VALUE self) { rb_thread_t *th = rb_thread_ptr(self); rb_vm_t *vm = GET_THREAD()->vm; th->vm = vm; th_init(th, self); rb_ivar_set(self, rb_intern("locals"), rb_hash_new()); th->top_wrapper = 0; th->top_self = rb_vm_top_self(); th->ec->root_svar = Qfalse; return self; } VALUE rb_thread_alloc(VALUE klass) { VALUE self = thread_alloc(klass); ruby_thread_init(self); return self; } static void vm_define_method(VALUE obj, ID id, VALUE iseqval, int is_singleton) { VALUE klass; rb_method_visibility_t visi; rb_cref_t *cref = rb_vm_cref(); if (!is_singleton) { klass = CREF_CLASS(cref); visi = rb_scope_visibility_get(); } else { /* singleton */ klass = rb_singleton_class(obj); /* class and frozen checked in this API */ visi = METHOD_VISI_PUBLIC; } if (NIL_P(klass)) { rb_raise(rb_eTypeError, "no class/module to add method"); } rb_add_method_iseq(klass, id, (const rb_iseq_t *)iseqval, cref, visi); if (!is_singleton && rb_scope_module_func_check()) { klass = rb_singleton_class(klass); rb_add_method_iseq(klass, id, (const rb_iseq_t *)iseqval, cref, METHOD_VISI_PUBLIC); } } #define REWIND_CFP(expr) do { \ rb_execution_context_t *ec__ = GET_EC(); \ VALUE *const curr_sp = (ec__->cfp++)->sp; \ VALUE *const saved_sp = ec__->cfp->sp; \ ec__->cfp->sp = curr_sp; \ expr; \ (ec__->cfp--)->sp = saved_sp; \ } while (0) static VALUE m_core_define_method(VALUE self, VALUE sym, VALUE iseqval) { REWIND_CFP({ vm_define_method(Qnil, SYM2ID(sym), iseqval, FALSE); }); return sym; } static VALUE m_core_define_singleton_method(VALUE self, VALUE cbase, VALUE sym, VALUE iseqval) { REWIND_CFP({ vm_define_method(cbase, SYM2ID(sym), iseqval, TRUE); }); return sym; } static VALUE m_core_set_method_alias(VALUE self, VALUE cbase, VALUE sym1, VALUE sym2) { REWIND_CFP({ rb_alias(cbase, SYM2ID(sym1), SYM2ID(sym2)); }); return Qnil; } static VALUE m_core_set_variable_alias(VALUE self, VALUE sym1, VALUE sym2) { REWIND_CFP({ rb_alias_variable(SYM2ID(sym1), SYM2ID(sym2)); }); return Qnil; } static VALUE m_core_undef_method(VALUE self, VALUE cbase, VALUE sym) { REWIND_CFP({ rb_undef(cbase, SYM2ID(sym)); rb_clear_method_cache_by_class(self); }); return Qnil; } static VALUE m_core_set_postexe(VALUE self) { rb_set_end_proc(rb_call_end_proc, rb_block_proc()); return Qnil; } static VALUE core_hash_merge_ary(VALUE hash, VALUE ary); static VALUE core_hash_from_ary(VALUE ary); static VALUE core_hash_merge_kwd(int argc, VALUE *argv); static VALUE core_hash_merge(VALUE hash, long argc, const VALUE *argv) { Check_Type(hash, T_HASH); VM_ASSERT(argc % 2 == 0); rb_hash_bulk_insert(argc, argv, hash); return hash; } static VALUE m_core_hash_from_ary(VALUE self, VALUE ary) { VALUE hash; REWIND_CFP(hash = core_hash_from_ary(ary)); return hash; } static VALUE core_hash_from_ary(VALUE ary) { VALUE hash = rb_hash_new_with_size(RARRAY_LEN(ary) / 2); RUBY_DTRACE_CREATE_HOOK(HASH, (Check_Type(ary, T_ARRAY), RARRAY_LEN(ary))); return core_hash_merge_ary(hash, ary); } #if 0 static VALUE m_core_hash_merge_ary(VALUE self, VALUE hash, VALUE ary) { REWIND_CFP(core_hash_merge_ary(hash, ary)); return hash; } #endif static VALUE core_hash_merge_ary(VALUE hash, VALUE ary) { Check_Type(ary, T_ARRAY); core_hash_merge(hash, RARRAY_LEN(ary), RARRAY_CONST_PTR(ary)); return hash; } static VALUE m_core_hash_merge_ptr(int argc, VALUE *argv, VALUE recv) { VALUE hash = argv[0]; REWIND_CFP(core_hash_merge(hash, argc-1, argv+1)); return hash; } static int kwmerge_i(VALUE key, VALUE value, VALUE hash) { Check_Type(key, T_SYMBOL); rb_hash_aset(hash, key, value); return ST_CONTINUE; } static int kwcheck_i(VALUE key, VALUE value, VALUE hash) { Check_Type(key, T_SYMBOL); return ST_CONTINUE; } static VALUE m_core_hash_merge_kwd(int argc, VALUE *argv, VALUE recv) { VALUE hash; REWIND_CFP(hash = core_hash_merge_kwd(argc, argv)); return hash; } static VALUE core_hash_merge_kwd(int argc, VALUE *argv) { VALUE hash, kw; rb_check_arity(argc, 1, 2); hash = argv[0]; kw = rb_to_hash_type(argv[argc-1]); if (argc < 2) hash = kw; rb_hash_foreach(kw, argc < 2 ? kwcheck_i : kwmerge_i, hash); return hash; } /* Returns true if JIT is enabled */ static VALUE mjit_enabled_p(void) { return mjit_init_p ? Qtrue : Qfalse; } extern VALUE *rb_gc_stack_start; extern size_t rb_gc_stack_maxsize; #ifdef __ia64 extern VALUE *rb_gc_register_stack_start; #endif /* debug functions */ /* :nodoc: */ static VALUE sdr(void) { rb_vm_bugreport(NULL); return Qnil; } /* :nodoc: */ static VALUE nsdr(void) { VALUE ary = rb_ary_new(); #if HAVE_BACKTRACE #include #define MAX_NATIVE_TRACE 1024 static void *trace[MAX_NATIVE_TRACE]; int n = (int)backtrace(trace, MAX_NATIVE_TRACE); char **syms = backtrace_symbols(trace, n); int i; if (syms == 0) { rb_memerror(); } for (i=0; iflags = T_ICLASS; klass = rb_singleton_class(fcore); rb_define_method_id(klass, id_core_set_method_alias, m_core_set_method_alias, 3); rb_define_method_id(klass, id_core_set_variable_alias, m_core_set_variable_alias, 2); rb_define_method_id(klass, id_core_undef_method, m_core_undef_method, 2); rb_define_method_id(klass, id_core_define_method, m_core_define_method, 2); rb_define_method_id(klass, id_core_define_singleton_method, m_core_define_singleton_method, 3); rb_define_method_id(klass, id_core_set_postexe, m_core_set_postexe, 0); rb_define_method_id(klass, id_core_hash_from_ary, m_core_hash_from_ary, 1); #if 0 rb_define_method_id(klass, id_core_hash_merge_ary, m_core_hash_merge_ary, 2); #endif rb_define_method_id(klass, id_core_hash_merge_ptr, m_core_hash_merge_ptr, -1); rb_define_method_id(klass, id_core_hash_merge_kwd, m_core_hash_merge_kwd, -1); rb_define_method_id(klass, idProc, rb_block_proc, 0); rb_define_method_id(klass, idLambda, rb_block_lambda, 0); rb_obj_freeze(fcore); RBASIC_CLEAR_CLASS(klass); rb_obj_freeze(klass); rb_gc_register_mark_object(fcore); rb_mRubyVMFrozenCore = fcore; /* RubyVM::MJIT */ mjit = rb_define_module_under(rb_cRubyVM, "MJIT"); rb_define_singleton_method(mjit, "enabled?", mjit_enabled_p, 0); /* * Document-class: Thread * * Threads are the Ruby implementation for a concurrent programming model. * * Programs that require multiple threads of execution are a perfect * candidate for Ruby's Thread class. * * For example, we can create a new thread separate from the main thread's * execution using ::new. * * thr = Thread.new { puts "Whats the big deal" } * * Then we are able to pause the execution of the main thread and allow * our new thread to finish, using #join: * * thr.join #=> "Whats the big deal" * * If we don't call +thr.join+ before the main thread terminates, then all * other threads including +thr+ will be killed. * * Alternatively, you can use an array for handling multiple threads at * once, like in the following example: * * threads = [] * threads << Thread.new { puts "Whats the big deal" } * threads << Thread.new { 3.times { puts "Threads are fun!" } } * * After creating a few threads we wait for them all to finish * consecutively. * * threads.each { |thr| thr.join } * * === Thread initialization * * In order to create new threads, Ruby provides ::new, ::start, and * ::fork. A block must be provided with each of these methods, otherwise * a ThreadError will be raised. * * When subclassing the Thread class, the +initialize+ method of your * subclass will be ignored by ::start and ::fork. Otherwise, be sure to * call super in your +initialize+ method. * * === Thread termination * * For terminating threads, Ruby provides a variety of ways to do this. * * The class method ::kill, is meant to exit a given thread: * * thr = Thread.new { ... } * Thread.kill(thr) # sends exit() to thr * * Alternatively, you can use the instance method #exit, or any of its * aliases #kill or #terminate. * * thr.exit * * === Thread status * * Ruby provides a few instance methods for querying the state of a given * thread. To get a string with the current thread's state use #status * * thr = Thread.new { sleep } * thr.status # => "sleep" * thr.exit * thr.status # => false * * You can also use #alive? to tell if the thread is running or sleeping, * and #stop? if the thread is dead or sleeping. * * === Thread variables and scope * * Since threads are created with blocks, the same rules apply to other * Ruby blocks for variable scope. Any local variables created within this * block are accessible to only this thread. * * ==== Fiber-local vs. Thread-local * * Each fiber has its own bucket for Thread#[] storage. When you set a * new fiber-local it is only accessible within this Fiber. To illustrate: * * Thread.new { * Thread.current[:foo] = "bar" * Fiber.new { * p Thread.current[:foo] # => nil * }.resume * }.join * * This example uses #[] for getting and #[]= for setting fiber-locals, * you can also use #keys to list the fiber-locals for a given * thread and #key? to check if a fiber-local exists. * * When it comes to thread-locals, they are accessible within the entire * scope of the thread. Given the following example: * * Thread.new{ * Thread.current.thread_variable_set(:foo, 1) * p Thread.current.thread_variable_get(:foo) # => 1 * Fiber.new{ * Thread.current.thread_variable_set(:foo, 2) * p Thread.current.thread_variable_get(:foo) # => 2 * }.resume * p Thread.current.thread_variable_get(:foo) # => 2 * }.join * * You can see that the thread-local +:foo+ carried over into the fiber * and was changed to +2+ by the end of the thread. * * This example makes use of #thread_variable_set to create new * thread-locals, and #thread_variable_get to reference them. * * There is also #thread_variables to list all thread-locals, and * #thread_variable? to check if a given thread-local exists. * * === Exception handling * * Any thread can raise an exception using the #raise instance method, * which operates similarly to Kernel#raise. * * However, it's important to note that an exception that occurs in any * thread except the main thread depends on #abort_on_exception. This * option is +false+ by default, meaning that any unhandled exception will * cause the thread to terminate silently when waited on by either #join * or #value. You can change this default by either #abort_on_exception= * +true+ or setting $DEBUG to +true+. * * With the addition of the class method ::handle_interrupt, you can now * handle exceptions asynchronously with threads. * * === Scheduling * * Ruby provides a few ways to support scheduling threads in your program. * * The first way is by using the class method ::stop, to put the current * running thread to sleep and schedule the execution of another thread. * * Once a thread is asleep, you can use the instance method #wakeup to * mark your thread as eligible for scheduling. * * You can also try ::pass, which attempts to pass execution to another * thread but is dependent on the OS whether a running thread will switch * or not. The same goes for #priority, which lets you hint to the thread * scheduler which threads you want to take precedence when passing * execution. This method is also dependent on the OS and may be ignored * on some platforms. * */ rb_cThread = rb_define_class("Thread", rb_cObject); rb_undef_alloc_func(rb_cThread); #if VM_COLLECT_USAGE_DETAILS /* ::RubyVM::USAGE_ANALYSIS_* */ #define define_usage_analysis_hash(name) /* shut up rdoc -C */ \ rb_define_const(rb_cRubyVM, "USAGE_ANALYSIS_" #name, rb_hash_new()) define_usage_analysis_hash(INSN); define_usage_analysis_hash(REGS); define_usage_analysis_hash(INSN_BIGRAM); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_STOP", usage_analysis_insn_stop, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_STOP", usage_analysis_operand_stop, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_STOP", usage_analysis_register_stop, 0); #endif /* ::RubyVM::OPTS, which shows vm build options */ rb_define_const(rb_cRubyVM, "OPTS", opts = rb_ary_new()); #if OPT_DIRECT_THREADED_CODE rb_ary_push(opts, rb_str_new2("direct threaded code")); #elif OPT_TOKEN_THREADED_CODE rb_ary_push(opts, rb_str_new2("token threaded code")); #elif OPT_CALL_THREADED_CODE rb_ary_push(opts, rb_str_new2("call threaded code")); #endif #if OPT_STACK_CACHING rb_ary_push(opts, rb_str_new2("stack caching")); #endif #if OPT_OPERANDS_UNIFICATION rb_ary_push(opts, rb_str_new2("operands unification")); #endif #if OPT_INSTRUCTIONS_UNIFICATION rb_ary_push(opts, rb_str_new2("instructions unification")); #endif #if OPT_INLINE_METHOD_CACHE rb_ary_push(opts, rb_str_new2("inline method cache")); #endif #if OPT_BLOCKINLINING rb_ary_push(opts, rb_str_new2("block inlining")); #endif /* ::RubyVM::INSTRUCTION_NAMES */ rb_define_const(rb_cRubyVM, "INSTRUCTION_NAMES", rb_insns_name_array()); /* ::RubyVM::DEFAULT_PARAMS * This constant variable shows VM's default parameters. * Note that changing these values does not affect VM execution. * Specification is not stable and you should not depend on this value. * Of course, this constant is MRI specific. */ rb_define_const(rb_cRubyVM, "DEFAULT_PARAMS", vm_default_params()); /* debug functions ::RubyVM::SDR(), ::RubyVM::NSDR() */ #if VMDEBUG rb_define_singleton_method(rb_cRubyVM, "SDR", sdr, 0); rb_define_singleton_method(rb_cRubyVM, "NSDR", nsdr, 0); #else (void)sdr; (void)nsdr; #endif /* VM bootstrap: phase 2 */ { rb_vm_t *vm = ruby_current_vm_ptr; rb_thread_t *th = GET_THREAD(); VALUE filename = rb_fstring_cstr("
"); const rb_iseq_t *iseq = rb_iseq_new(0, filename, filename, Qnil, 0, ISEQ_TYPE_TOP); volatile VALUE th_self; /* create vm object */ vm->self = TypedData_Wrap_Struct(rb_cRubyVM, &vm_data_type, vm); /* create main thread */ th_self = th->self = TypedData_Wrap_Struct(rb_cThread, &thread_data_type, th); rb_iv_set(th_self, "locals", rb_hash_new()); vm->main_thread = th; vm->running_thread = th; th->vm = vm; th->top_wrapper = 0; th->top_self = rb_vm_top_self(); rb_thread_set_current(th); rb_vm_living_threads_insert(vm, th); rb_gc_register_mark_object((VALUE)iseq); th->ec->cfp->iseq = iseq; th->ec->cfp->pc = iseq->body->iseq_encoded; th->ec->cfp->self = th->top_self; VM_ENV_FLAGS_UNSET(th->ec->cfp->ep, VM_FRAME_FLAG_CFRAME); VM_STACK_ENV_WRITE(th->ec->cfp->ep, VM_ENV_DATA_INDEX_ME_CREF, (VALUE)vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE, FALSE, NULL, FALSE)); /* * The Binding of the top level scope */ rb_define_global_const("TOPLEVEL_BINDING", rb_binding_new()); } vm_init_redefined_flag(); rb_block_param_proxy = rb_obj_alloc(rb_cObject); rb_add_method(rb_singleton_class(rb_block_param_proxy), idCall, VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_BLOCK_CALL, METHOD_VISI_PUBLIC); rb_obj_freeze(rb_block_param_proxy); rb_gc_register_mark_object(rb_block_param_proxy); /* vm_backtrace.c */ Init_vm_backtrace(); VM_PROFILE_ATEXIT(); } void rb_vm_set_progname(VALUE filename) { rb_thread_t *th = GET_VM()->main_thread; rb_control_frame_t *cfp = (void *)(th->ec->vm_stack + th->ec->vm_stack_size); --cfp; rb_iseq_pathobj_set(cfp->iseq, rb_str_dup(filename), rb_iseq_realpath(cfp->iseq)); } extern const struct st_hash_type rb_fstring_hash_type; void Init_BareVM(void) { /* VM bootstrap: phase 1 */ rb_vm_t * vm = ruby_mimmalloc(sizeof(*vm)); rb_thread_t * th = ruby_mimmalloc(sizeof(*th)); if (!vm || !th) { fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } MEMZERO(th, rb_thread_t, 1); vm_init2(vm); vm->objspace = rb_objspace_alloc(); ruby_current_vm_ptr = vm; Init_native_thread(th); th->vm = vm; th_init(th, 0); rb_thread_set_current_raw(th); ruby_thread_init_stack(th); } void Init_vm_objects(void) { rb_vm_t *vm = GET_VM(); vm->defined_module_hash = rb_hash_new(); /* initialize mark object array, hash */ vm->mark_object_ary = rb_ary_tmp_new(128); vm->loading_table = st_init_strtable(); vm->frozen_strings = st_init_table_with_size(&rb_fstring_hash_type, 1000); } /* top self */ static VALUE main_to_s(VALUE obj) { return rb_str_new2("main"); } VALUE rb_vm_top_self(void) { return GET_VM()->top_self; } void Init_top_self(void) { rb_vm_t *vm = GET_VM(); vm->top_self = rb_obj_alloc(rb_cObject); rb_define_singleton_method(rb_vm_top_self(), "to_s", main_to_s, 0); rb_define_alias(rb_singleton_class(rb_vm_top_self()), "inspect", "to_s"); } static VALUE * ruby_vm_verbose_ptr(rb_vm_t *vm) { return &vm->verbose; } static VALUE * ruby_vm_debug_ptr(rb_vm_t *vm) { return &vm->debug; } VALUE * rb_ruby_verbose_ptr(void) { return ruby_vm_verbose_ptr(GET_VM()); } VALUE * rb_ruby_debug_ptr(void) { return ruby_vm_debug_ptr(GET_VM()); } /* iseq.c */ VALUE rb_insn_operand_intern(const rb_iseq_t *iseq, VALUE insn, int op_no, VALUE op, int len, size_t pos, VALUE *pnop, VALUE child); st_table * rb_vm_fstring_table(void) { return GET_VM()->frozen_strings; } #if VM_COLLECT_USAGE_DETAILS #define HASH_ASET(h, k, v) rb_hash_aset((h), (st_data_t)(k), (st_data_t)(v)) /* uh = { * insn(Fixnum) => ihash(Hash) * } * ihash = { * -1(Fixnum) => count, # insn usage * 0(Fixnum) => ophash, # operand usage * } * ophash = { * val(interned string) => count(Fixnum) * } */ static void vm_analysis_insn(int insn) { ID usage_hash; ID bigram_hash; static int prev_insn = -1; VALUE uh; VALUE ihash; VALUE cv; CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN"); CONST_ID(bigram_hash, "USAGE_ANALYSIS_INSN_BIGRAM"); uh = rb_const_get(rb_cRubyVM, usage_hash); if ((ihash = rb_hash_aref(uh, INT2FIX(insn))) == Qnil) { ihash = rb_hash_new(); HASH_ASET(uh, INT2FIX(insn), ihash); } if ((cv = rb_hash_aref(ihash, INT2FIX(-1))) == Qnil) { cv = INT2FIX(0); } HASH_ASET(ihash, INT2FIX(-1), INT2FIX(FIX2INT(cv) + 1)); /* calc bigram */ if (prev_insn != -1) { VALUE bi; VALUE ary[2]; VALUE cv; ary[0] = INT2FIX(prev_insn); ary[1] = INT2FIX(insn); bi = rb_ary_new4(2, &ary[0]); uh = rb_const_get(rb_cRubyVM, bigram_hash); if ((cv = rb_hash_aref(uh, bi)) == Qnil) { cv = INT2FIX(0); } HASH_ASET(uh, bi, INT2FIX(FIX2INT(cv) + 1)); } prev_insn = insn; } static void vm_analysis_operand(int insn, int n, VALUE op) { ID usage_hash; VALUE uh; VALUE ihash; VALUE ophash; VALUE valstr; VALUE cv; CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN"); uh = rb_const_get(rb_cRubyVM, usage_hash); if ((ihash = rb_hash_aref(uh, INT2FIX(insn))) == Qnil) { ihash = rb_hash_new(); HASH_ASET(uh, INT2FIX(insn), ihash); } if ((ophash = rb_hash_aref(ihash, INT2FIX(n))) == Qnil) { ophash = rb_hash_new(); HASH_ASET(ihash, INT2FIX(n), ophash); } /* intern */ valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0); /* set count */ if ((cv = rb_hash_aref(ophash, valstr)) == Qnil) { cv = INT2FIX(0); } HASH_ASET(ophash, valstr, INT2FIX(FIX2INT(cv) + 1)); } static void vm_analysis_register(int reg, int isset) { ID usage_hash; VALUE uh; VALUE valstr; static const char regstrs[][5] = { "pc", /* 0 */ "sp", /* 1 */ "ep", /* 2 */ "cfp", /* 3 */ "self", /* 4 */ "iseq", /* 5 */ }; static const char getsetstr[][4] = { "get", "set", }; static VALUE syms[sizeof(regstrs) / sizeof(regstrs[0])][2]; VALUE cv; CONST_ID(usage_hash, "USAGE_ANALYSIS_REGS"); if (syms[0] == 0) { char buff[0x10]; int i; for (i = 0; i < (int)(sizeof(regstrs) / sizeof(regstrs[0])); i++) { int j; for (j = 0; j < 2; j++) { snprintf(buff, 0x10, "%d %s %-4s", i, getsetstr[j], regstrs[i]); syms[i][j] = ID2SYM(rb_intern(buff)); } } } valstr = syms[reg][isset]; uh = rb_const_get(rb_cRubyVM, usage_hash); if ((cv = rb_hash_aref(uh, valstr)) == Qnil) { cv = INT2FIX(0); } HASH_ASET(uh, valstr, INT2FIX(FIX2INT(cv) + 1)); } #undef HASH_ASET static void (*ruby_vm_collect_usage_func_insn)(int insn) = vm_analysis_insn; static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op) = vm_analysis_operand; static void (*ruby_vm_collect_usage_func_register)(int reg, int isset) = vm_analysis_register; /* :nodoc: */ static VALUE usage_analysis_insn_stop(VALUE self) { ruby_vm_collect_usage_func_insn = 0; return Qnil; } /* :nodoc: */ static VALUE usage_analysis_operand_stop(VALUE self) { ruby_vm_collect_usage_func_operand = 0; return Qnil; } /* :nodoc: */ static VALUE usage_analysis_register_stop(VALUE self) { ruby_vm_collect_usage_func_register = 0; return Qnil; } #else MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_insn)(int insn)) = NULL; MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op)) = NULL; MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_register)(int reg, int isset)) = NULL; #endif #if VM_COLLECT_USAGE_DETAILS /* @param insn instruction number */ static void vm_collect_usage_insn(int insn) { if (RUBY_DTRACE_INSN_ENABLED()) { RUBY_DTRACE_INSN(rb_insns_name(insn)); } if (ruby_vm_collect_usage_func_insn) (*ruby_vm_collect_usage_func_insn)(insn); } /* @param insn instruction number * @param n n-th operand * @param op operand value */ static void vm_collect_usage_operand(int insn, int n, VALUE op) { if (RUBY_DTRACE_INSN_OPERAND_ENABLED()) { VALUE valstr; valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0); RUBY_DTRACE_INSN_OPERAND(RSTRING_PTR(valstr), rb_insns_name(insn)); RB_GC_GUARD(valstr); } if (ruby_vm_collect_usage_func_operand) (*ruby_vm_collect_usage_func_operand)(insn, n, op); } /* @param reg register id. see code of vm_analysis_register() */ /* @param isset 0: read, 1: write */ static void vm_collect_usage_register(int reg, int isset) { if (ruby_vm_collect_usage_func_register) (*ruby_vm_collect_usage_func_register)(reg, isset); } #endif #endif /* #ifndef MJIT_HEADER */ #include "vm_call_iseq_optimized.inc" /* required from vm_insnhelper.c */