#include "prism.h" #define OLD_ISEQ NEW_ISEQ #undef NEW_ISEQ #define NEW_ISEQ(node, name, type, line_no) \ pm_new_child_iseq(iseq, (node), parser, rb_fstring(name), 0, (type), (line_no)) #define OLD_CHILD_ISEQ NEW_CHILD_ISEQ #undef NEW_CHILD_ISEQ #define NEW_CHILD_ISEQ(node, name, type, line_no) \ pm_new_child_iseq(iseq, (node), parser, rb_fstring(name), iseq, (type), (line_no)) #define PM_COMPILE(node) \ pm_compile_node(iseq, (node), ret, src, popped, scope_node) #define PM_COMPILE_INTO_ANCHOR(_ret, node) \ pm_compile_node(iseq, (node), _ret, src, popped, scope_node) #define PM_COMPILE_POPPED(node) \ pm_compile_node(iseq, (node), ret, src, true, scope_node) #define PM_COMPILE_NOT_POPPED(node) \ pm_compile_node(iseq, (node), ret, src, false, scope_node) #define PM_POP \ ADD_INSN(ret, &dummy_line_node, pop); #define PM_POP_IF_POPPED \ if (popped) PM_POP; #define PM_POP_UNLESS_POPPED \ if (!popped) PM_POP; #define PM_DUP \ ADD_INSN(ret, &dummy_line_node, dup); #define PM_DUP_UNLESS_POPPED \ if (!popped) PM_DUP; #define PM_PUTSELF \ ADD_INSN(ret, &dummy_line_node, putself); #define PM_PUTNIL \ ADD_INSN(ret, &dummy_line_node, putnil); #define PM_PUTNIL_UNLESS_POPPED \ if (!popped) PM_PUTNIL; #define PM_SWAP \ ADD_INSN(ret, &dummy_line_node, swap); #define PM_SWAP_UNLESS_POPPED \ if (!popped) PM_SWAP; #define PM_NOP \ ADD_INSN(ret, &dummy_line_node, nop); /** * We're using the top most bit of a pm_constant_id_t as a tag to represent an * anonymous local. When a child iseq is created and needs access to a value * that has yet to be defined, or is defined by the parent node's iseq. This can * be added to it's local table and then handled accordingly when compiling the * scope node associated with the child iseq. * * See the compilation process for PM_FOR_NODE: as an example, where the * variable referenced inside the StatementsNode is defined as part of the top * level ForLoop node. */ #define TEMP_CONSTANT_IDENTIFIER ((pm_constant_id_t)(1 << 31)) rb_iseq_t * pm_iseq_new_with_opt(pm_scope_node_t *scope_node, pm_parser_t *parser, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, int isolated_depth, enum rb_iseq_type type, const rb_compile_option_t *option); static VALUE parse_integer(const pm_integer_node_t *node) { char *start = (char *) node->base.location.start; char *end = (char *) node->base.location.end; size_t length = end - start; int base = -10; switch (node->base.flags & (PM_INTEGER_BASE_FLAGS_BINARY | PM_INTEGER_BASE_FLAGS_DECIMAL | PM_INTEGER_BASE_FLAGS_OCTAL | PM_INTEGER_BASE_FLAGS_HEXADECIMAL)) { case PM_INTEGER_BASE_FLAGS_BINARY: base = 2; break; case PM_INTEGER_BASE_FLAGS_DECIMAL: base = 10; break; case PM_INTEGER_BASE_FLAGS_OCTAL: base = 8; break; case PM_INTEGER_BASE_FLAGS_HEXADECIMAL: base = 16; break; default: rb_bug("Unreachable"); } return rb_int_parse_cstr(start, length, &end, NULL, base, RB_INT_PARSE_DEFAULT); } static VALUE parse_float(const pm_node_t *node) { const uint8_t *start = node->location.start; const uint8_t *end = node->location.end; size_t length = end - start; char *buffer = malloc(length + 1); memcpy(buffer, start, length); buffer[length] = '\0'; VALUE number = DBL2NUM(rb_cstr_to_dbl(buffer, 0)); free(buffer); return number; } static VALUE parse_rational(const pm_node_t *node) { const uint8_t *start = node->location.start; const uint8_t *end = node->location.end - 1; size_t length = end - start; VALUE res; if (PM_NODE_TYPE_P(((pm_rational_node_t *)node)->numeric, PM_FLOAT_NODE)) { char *buffer = malloc(length + 1); memcpy(buffer, start, length); buffer[length] = '\0'; char *decimal = memchr(buffer, '.', length); RUBY_ASSERT(decimal); size_t seen_decimal = decimal - buffer; size_t fraclen = length - seen_decimal - 1; memmove(decimal, decimal + 1, fraclen + 1); VALUE v = rb_cstr_to_inum(buffer, 10, false); res = rb_rational_new(v, rb_int_positive_pow(10, fraclen)); free(buffer); } else { RUBY_ASSERT(PM_NODE_TYPE_P(((pm_rational_node_t *)node)->numeric, PM_INTEGER_NODE)); VALUE number = rb_int_parse_cstr((const char *)start, length, NULL, NULL, -10, RB_INT_PARSE_DEFAULT); res = rb_rational_raw(number, INT2FIX(1)); } return res; } static VALUE parse_imaginary(pm_imaginary_node_t *node) { VALUE imaginary_part; switch (PM_NODE_TYPE(node->numeric)) { case PM_FLOAT_NODE: { imaginary_part = parse_float(node->numeric); break; } case PM_INTEGER_NODE: { imaginary_part = parse_integer((pm_integer_node_t *) node->numeric); break; } case PM_RATIONAL_NODE: { imaginary_part = parse_rational(node->numeric); break; } default: rb_bug("Unexpected numeric type on imaginary number %s\n", pm_node_type_to_str(PM_NODE_TYPE(node->numeric))); } return rb_complex_raw(INT2FIX(0), imaginary_part); } static inline VALUE parse_string(pm_string_t *string, const pm_parser_t *parser) { rb_encoding *enc = rb_enc_from_index(rb_enc_find_index(parser->encoding->name)); return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), enc); } /** * Certain strings can have their encoding differ from the parser's encoding due * to bytes or escape sequences that have the top bit set. This function handles * creating those strings based on the flags set on the owning node. */ static inline VALUE parse_string_encoded(const pm_node_t *node, const pm_string_t *string, const pm_parser_t *parser) { rb_encoding *encoding; if (node->flags & PM_ENCODING_FLAGS_FORCED_BINARY_ENCODING) { encoding = rb_ascii8bit_encoding(); } else if (node->flags & PM_ENCODING_FLAGS_FORCED_UTF8_ENCODING) { encoding = rb_utf8_encoding(); } else { encoding = rb_enc_from_index(rb_enc_find_index(parser->encoding->name)); } return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), encoding); } static inline ID parse_symbol(const uint8_t *start, const uint8_t *end, const pm_parser_t *parser) { rb_encoding *enc = rb_enc_from_index(rb_enc_find_index(parser->encoding->name)); return rb_intern3((const char *) start, end - start, enc); } static inline ID parse_string_symbol(const pm_string_t *string, const pm_parser_t *parser) { const uint8_t *start = pm_string_source(string); return parse_symbol(start, start + pm_string_length(string), parser); } static inline ID parse_location_symbol(const pm_location_t *location, const pm_parser_t *parser) { return parse_symbol(location->start, location->end, parser); } static int pm_optimizable_range_item_p(pm_node_t *node) { return (!node || PM_NODE_TYPE_P(node, PM_INTEGER_NODE) || PM_NODE_TYPE_P(node, PM_NIL_NODE)); } #define RE_OPTION_ENCODING_SHIFT 8 /** * Check the prism flags of a regular expression-like node and return the flags * that are expected by the CRuby VM. */ static int pm_reg_flags(const pm_node_t *node) { int flags = 0; int dummy = 0; // Check "no encoding" first so that flags don't get clobbered // We're calling `rb_char_to_option_kcode` in this case so that // we don't need to have access to `ARG_ENCODING_NONE` if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT) { rb_char_to_option_kcode('n', &flags, &dummy); } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_EUC_JP) { rb_char_to_option_kcode('e', &flags, &dummy); flags |= ('e' << RE_OPTION_ENCODING_SHIFT); } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_WINDOWS_31J) { rb_char_to_option_kcode('s', &flags, &dummy); flags |= ('s' << RE_OPTION_ENCODING_SHIFT); } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_UTF_8) { rb_char_to_option_kcode('u', &flags, &dummy); flags |= ('u' << RE_OPTION_ENCODING_SHIFT); } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_IGNORE_CASE) { flags |= ONIG_OPTION_IGNORECASE; } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_MULTI_LINE) { flags |= ONIG_OPTION_MULTILINE; } if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_EXTENDED) { flags |= ONIG_OPTION_EXTEND; } return flags; } static rb_encoding * pm_reg_enc(const pm_regular_expression_node_t *node, const pm_parser_t *parser) { if (node->base.flags & PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT) { return rb_ascii8bit_encoding(); } if (node->base.flags & PM_REGULAR_EXPRESSION_FLAGS_EUC_JP) { return rb_enc_get_from_index(ENCINDEX_EUC_JP); } if (node->base.flags & PM_REGULAR_EXPRESSION_FLAGS_WINDOWS_31J) { return rb_enc_get_from_index(ENCINDEX_Windows_31J); } if (node->base.flags & PM_REGULAR_EXPRESSION_FLAGS_UTF_8) { return rb_utf8_encoding(); } return rb_enc_from_index(rb_enc_find_index(parser->encoding->name)); } /** * Certain nodes can be compiled literally, which can lead to further * optimizations. These nodes will all have the PM_NODE_FLAG_STATIC_LITERAL flag * set. */ static inline bool pm_static_literal_p(const pm_node_t *node) { return node->flags & PM_NODE_FLAG_STATIC_LITERAL; } static VALUE pm_new_regex(pm_regular_expression_node_t * cast, const pm_parser_t * parser) { VALUE regex_str = parse_string(&cast->unescaped, parser); rb_encoding * enc = pm_reg_enc(cast, parser); return rb_enc_reg_new(RSTRING_PTR(regex_str), RSTRING_LEN(regex_str), enc, pm_reg_flags((const pm_node_t *)cast)); } /** * Certain nodes can be compiled literally. This function returns the literal * value described by the given node. For example, an array node with all static * literal values can be compiled into a literal array. */ static inline VALUE pm_static_literal_value(const pm_node_t *node, const pm_scope_node_t *scope_node, const pm_parser_t *parser) { // Every node that comes into this function should already be marked as // static literal. If it's not, then we have a bug somewhere. assert(pm_static_literal_p(node)); switch (PM_NODE_TYPE(node)) { case PM_ARRAY_NODE: { pm_array_node_t *cast = (pm_array_node_t *) node; pm_node_list_t *elements = &cast->elements; VALUE value = rb_ary_hidden_new(elements->size); for (size_t index = 0; index < elements->size; index++) { rb_ary_push(value, pm_static_literal_value(elements->nodes[index], scope_node, parser)); } OBJ_FREEZE(value); return value; } case PM_FALSE_NODE: return Qfalse; case PM_FLOAT_NODE: return parse_float(node); case PM_HASH_NODE: { pm_hash_node_t *cast = (pm_hash_node_t *) node; pm_node_list_t *elements = &cast->elements; VALUE array = rb_ary_hidden_new(elements->size * 2); for (size_t index = 0; index < elements->size; index++) { assert(PM_NODE_TYPE_P(elements->nodes[index], PM_ASSOC_NODE)); pm_assoc_node_t *cast = (pm_assoc_node_t *) elements->nodes[index]; VALUE pair[2] = { pm_static_literal_value(cast->key, scope_node, parser), pm_static_literal_value(cast->value, scope_node, parser) }; rb_ary_cat(array, pair, 2); } VALUE value = rb_hash_new_with_size(elements->size); rb_hash_bulk_insert(RARRAY_LEN(array), RARRAY_CONST_PTR(array), value); value = rb_obj_hide(value); OBJ_FREEZE(value); return value; } case PM_IMAGINARY_NODE: return parse_imaginary((pm_imaginary_node_t *) node); case PM_INTEGER_NODE: return parse_integer((pm_integer_node_t *) node); case PM_NIL_NODE: return Qnil; case PM_RATIONAL_NODE: return parse_rational(node); case PM_REGULAR_EXPRESSION_NODE: { pm_regular_expression_node_t *cast = (pm_regular_expression_node_t *) node; return pm_new_regex(cast, parser); } case PM_SOURCE_ENCODING_NODE: { const char *name = scope_node->parser->encoding->name; rb_encoding *encoding = rb_find_encoding(rb_str_new_cstr(name)); if (!encoding) rb_bug("Encoding not found %s!", name); return rb_enc_from_encoding(encoding); } case PM_SOURCE_FILE_NODE: { pm_source_file_node_t *cast = (pm_source_file_node_t *)node; return cast->filepath.length ? parse_string(&cast->filepath, parser) : rb_fstring_lit(""); } case PM_SOURCE_LINE_NODE: { int source_line = (int) pm_newline_list_line_column(&scope_node->parser->newline_list, node->location.start).line; // Ruby treats file lines as 1-indexed // TODO: Incorporate options which allow for passing a line number source_line += 1; return INT2FIX(source_line); } case PM_STRING_NODE: return parse_string(&((pm_string_node_t *) node)->unescaped, parser); case PM_SYMBOL_NODE: return ID2SYM(parse_string_symbol(&((pm_symbol_node_t *) node)->unescaped, parser)); case PM_TRUE_NODE: return Qtrue; default: rb_bug("Don't have a literal value for node type %s", pm_node_type_to_str(PM_NODE_TYPE(node))); return Qfalse; } } /** * Currently, the ADD_INSN family of macros expects a NODE as the second * parameter. It uses this node to determine the line number and the node ID for * the instruction. * * Because prism does not use the NODE struct (or have node IDs for that matter) * we need to generate a dummy node to pass to these macros. We also need to use * the line number from the node to generate labels. * * We use this struct to store the dummy node and the line number together so * that we can use it while we're compiling code. * * In the future, we'll need to eventually remove this dependency and figure out * a more permanent solution. For the line numbers, this shouldn't be too much * of a problem, we can redefine the ADD_INSN family of macros. For the node ID, * we can probably replace it directly with the column information since we have * that at the time that we're generating instructions. In theory this could * make node ID unnecessary. */ typedef struct { NODE node; int lineno; } pm_line_node_t; /** * The function generates a dummy node and stores the line number after it looks * it up for the given scope and node. (The scope in this case is just used * because it holds a reference to the parser, which holds a reference to the * newline list that we need to look up the line numbers.) */ static void pm_line_node(pm_line_node_t *line_node, const pm_scope_node_t *scope_node, const pm_node_t *node) { // First, clear out the pointer. memset(line_node, 0, sizeof(pm_line_node_t)); // Next, retrieve the line and column information from prism. pm_line_column_t line_column = pm_newline_list_line_column(&scope_node->parser->newline_list, node->location.start); // Next, use the line number for the dummy node. int lineno = (int) line_column.line; nd_set_line(&line_node->node, lineno); nd_set_node_id(&line_node->node, lineno); line_node->lineno = lineno; } static void pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond, LABEL *then_label, LABEL *else_label, const uint8_t *src, bool popped, pm_scope_node_t *scope_node); static void pm_compile_logical(rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_node_t *cond, LABEL *then_label, LABEL *else_label, const uint8_t *src, bool popped, pm_scope_node_t *scope_node) { pm_parser_t *parser = scope_node->parser; pm_newline_list_t newline_list = parser->newline_list; int lineno = (int)pm_newline_list_line_column(&newline_list, cond->location.start).line; NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); DECL_ANCHOR(seq); INIT_ANCHOR(seq); LABEL *label = NEW_LABEL(lineno); if (!then_label) then_label = label; else if (!else_label) else_label = label; pm_compile_branch_condition(iseq, seq, cond, then_label, else_label, src, popped, scope_node); if (LIST_INSN_SIZE_ONE(seq)) { INSN *insn = (INSN *)ELEM_FIRST_INSN(FIRST_ELEMENT(seq)); if (insn->insn_id == BIN(jump) && (LABEL *)(insn->operands[0]) == label) return; } if (!label->refcnt) { PM_PUTNIL; } else { ADD_LABEL(seq, label); } ADD_SEQ(ret, seq); return; } static void pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node); static void pm_compile_flip_flop(pm_flip_flop_node_t *flip_flop_node, LABEL *else_label, LABEL *then_label, rb_iseq_t *iseq, const int lineno, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(ISEQ_BODY(iseq)->location.first_lineno, -1); LABEL *lend = NEW_LABEL(lineno); int again = !(flip_flop_node->base.flags & PM_RANGE_FLAGS_EXCLUDE_END); rb_num_t count = ISEQ_FLIP_CNT_INCREMENT(ISEQ_BODY(iseq)->local_iseq) + VM_SVAR_FLIPFLOP_START; VALUE key = INT2FIX(count); ADD_INSN2(ret, &dummy_line_node, getspecial, key, INT2FIX(0)); ADD_INSNL(ret, &dummy_line_node, branchif, lend); if (flip_flop_node->left) { PM_COMPILE(flip_flop_node->left); } else { PM_PUTNIL; } ADD_INSNL(ret, &dummy_line_node, branchunless, else_label); ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, setspecial, key); if (!again) { ADD_INSNL(ret, &dummy_line_node, jump, then_label); } ADD_LABEL(ret, lend); if (flip_flop_node->right) { PM_COMPILE(flip_flop_node->right); } else { PM_PUTNIL; } ADD_INSNL(ret, &dummy_line_node, branchunless, then_label); ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); ADD_INSN1(ret, &dummy_line_node, setspecial, key); ADD_INSNL(ret, &dummy_line_node, jump, then_label); } void pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *defined_node, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node, NODE dummy_line_node, int lineno, bool in_condition); static void pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond, LABEL *then_label, LABEL *else_label, const uint8_t *src, bool popped, pm_scope_node_t *scope_node) { pm_parser_t *parser = scope_node->parser; pm_newline_list_t newline_list = parser->newline_list; int lineno = (int) pm_newline_list_line_column(&newline_list, cond->location.start).line; NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); again: switch (PM_NODE_TYPE(cond)) { case PM_AND_NODE: { pm_and_node_t *and_node = (pm_and_node_t *)cond; pm_compile_logical(iseq, ret, and_node->left, NULL, else_label, src, popped, scope_node); cond = and_node->right; goto again; } case PM_OR_NODE: { pm_or_node_t *or_node = (pm_or_node_t *)cond; pm_compile_logical(iseq, ret, or_node->left, then_label, NULL, src, popped, scope_node); cond = or_node->right; goto again; } case PM_FALSE_NODE: case PM_NIL_NODE: ADD_INSNL(ret, &dummy_line_node, jump, else_label); return; case PM_FLOAT_NODE: case PM_IMAGINARY_NODE: case PM_INTEGER_NODE: case PM_LAMBDA_NODE: case PM_RATIONAL_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_TRUE_NODE: ADD_INSNL(ret, &dummy_line_node, jump, then_label); return; case PM_FLIP_FLOP_NODE: pm_compile_flip_flop((pm_flip_flop_node_t *)cond, else_label, then_label, iseq, lineno, ret, src, popped, scope_node); return; // TODO: Several more nodes in this case statement case PM_DEFINED_NODE: { pm_defined_node_t *defined_node = (pm_defined_node_t *)cond; pm_compile_defined_expr(iseq, defined_node->value, ret, src, popped, scope_node, dummy_line_node, lineno, true); break; } default: { DECL_ANCHOR(cond_seq); INIT_ANCHOR(cond_seq); pm_compile_node(iseq, cond, cond_seq, src, false, scope_node); ADD_SEQ(ret, cond_seq); break; } } ADD_INSNL(ret, &dummy_line_node, branchunless, else_label); ADD_INSNL(ret, &dummy_line_node, jump, then_label); return; } static void pm_compile_if(rb_iseq_t *iseq, const int line, pm_statements_node_t *node_body, pm_node_t *node_else, pm_node_t *predicate, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(line, line); DECL_ANCHOR(cond_seq); LABEL *then_label, *else_label, *end_label; INIT_ANCHOR(cond_seq); then_label = NEW_LABEL(line); else_label = NEW_LABEL(line); end_label = 0; pm_compile_branch_condition(iseq, cond_seq, predicate, then_label, else_label, src, false, scope_node); ADD_SEQ(ret, cond_seq); if (then_label->refcnt) { ADD_LABEL(ret, then_label); DECL_ANCHOR(then_seq); INIT_ANCHOR(then_seq); if (node_body) { pm_compile_node(iseq, (pm_node_t *)node_body, then_seq, src, popped, scope_node); } else { PM_PUTNIL_UNLESS_POPPED; } if (else_label->refcnt) { end_label = NEW_LABEL(line); ADD_INSNL(then_seq, &dummy_line_node, jump, end_label); if (!popped) { ADD_INSN(then_seq, &dummy_line_node, pop); } } ADD_SEQ(ret, then_seq); } if (else_label->refcnt) { ADD_LABEL(ret, else_label); DECL_ANCHOR(else_seq); INIT_ANCHOR(else_seq); if (node_else) { pm_compile_node(iseq, (pm_node_t *)node_else, else_seq, src, popped, scope_node); } else { PM_PUTNIL_UNLESS_POPPED; } ADD_SEQ(ret, else_seq); } if (end_label) { ADD_LABEL(ret, end_label); } return; } static void pm_compile_while(rb_iseq_t *iseq, int lineno, pm_node_flags_t flags, enum pm_node_type type, pm_statements_node_t *statements, pm_node_t *predicate, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node) { NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); LABEL *prev_start_label = ISEQ_COMPILE_DATA(iseq)->start_label; LABEL *prev_end_label = ISEQ_COMPILE_DATA(iseq)->end_label; LABEL *prev_redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label; // TODO: Deal with ensures in here LABEL *next_label = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(lineno); /* next */ LABEL *redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label = NEW_LABEL(lineno); /* redo */ LABEL *break_label = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(lineno); /* break */ LABEL *end_label = NEW_LABEL(lineno); LABEL *adjust_label = NEW_LABEL(lineno); LABEL *next_catch_label = NEW_LABEL(lineno); LABEL *tmp_label = NULL; // begin; end while true if (flags & PM_LOOP_FLAGS_BEGIN_MODIFIER) { tmp_label = NEW_LABEL(lineno); ADD_INSNL(ret, &dummy_line_node, jump, tmp_label); } else { // while true; end ADD_INSNL(ret, &dummy_line_node, jump, next_label); } ADD_LABEL(ret, adjust_label); PM_PUTNIL; ADD_LABEL(ret, next_catch_label); PM_POP; ADD_INSNL(ret, &dummy_line_node, jump, next_label); if (tmp_label) ADD_LABEL(ret, tmp_label); ADD_LABEL(ret, redo_label); if (statements) { PM_COMPILE_POPPED((pm_node_t *)statements); } ADD_LABEL(ret, next_label); if (type == PM_WHILE_NODE) { pm_compile_branch_condition(iseq, ret, predicate, redo_label, end_label, src, popped, scope_node); } else if (type == PM_UNTIL_NODE) { pm_compile_branch_condition(iseq, ret, predicate, end_label, redo_label, src, popped, scope_node); } ADD_LABEL(ret, end_label); ADD_ADJUST_RESTORE(ret, adjust_label); PM_PUTNIL; ADD_LABEL(ret, break_label); PM_POP_IF_POPPED; ADD_CATCH_ENTRY(CATCH_TYPE_BREAK, redo_label, break_label, NULL, break_label); ADD_CATCH_ENTRY(CATCH_TYPE_NEXT, redo_label, break_label, NULL, next_catch_label); ADD_CATCH_ENTRY(CATCH_TYPE_REDO, redo_label, break_label, NULL, ISEQ_COMPILE_DATA(iseq)->redo_label); ISEQ_COMPILE_DATA(iseq)->start_label = prev_start_label; ISEQ_COMPILE_DATA(iseq)->end_label = prev_end_label; ISEQ_COMPILE_DATA(iseq)->redo_label = prev_redo_label; return; } static int pm_interpolated_node_compile(pm_node_list_t *parts, rb_iseq_t *iseq, NODE dummy_line_node, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node, pm_parser_t *parser) { int number_of_items_pushed = 0; size_t parts_size = parts->size; if (parts_size > 0) { VALUE current_string = Qnil; for (size_t index = 0; index < parts_size; index++) { pm_node_t *part = parts->nodes[index]; if (PM_NODE_TYPE_P(part, PM_STRING_NODE)) { pm_string_node_t *string_node = (pm_string_node_t *)part; VALUE string_value = parse_string(&string_node->unescaped, parser); if (RTEST(current_string)) { current_string = rb_str_concat(current_string, string_value); } else { current_string = string_value; } } else { if (RTEST(current_string)) { if (parser->frozen_string_literal) { ADD_INSN1(ret, &dummy_line_node, putobject, rb_str_freeze(current_string)); } else { ADD_INSN1(ret, &dummy_line_node, putstring, rb_str_freeze(current_string)); } current_string = Qnil; number_of_items_pushed++; } PM_COMPILE_NOT_POPPED(part); PM_DUP; ADD_INSN1(ret, &dummy_line_node, objtostring, new_callinfo(iseq, idTo_s, 0, VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE , NULL, FALSE)); ADD_INSN(ret, &dummy_line_node, anytostring); number_of_items_pushed++; } } if (RTEST(current_string)) { if (parser->frozen_string_literal) { ADD_INSN1(ret, &dummy_line_node, putobject, rb_str_freeze(current_string)); } else { ADD_INSN1(ret, &dummy_line_node, putstring, rb_str_freeze(current_string)); } current_string = Qnil; number_of_items_pushed++; } } else { PM_PUTNIL; } return number_of_items_pushed; } // This recurses through scopes and finds the local index at any scope level // It also takes a pointer to depth, and increments depth appropriately // according to the depth of the local static int pm_lookup_local_index_any_scope(rb_iseq_t *iseq, pm_scope_node_t *scope_node, pm_constant_id_t constant_id, int *found_depth) { if (!scope_node) { // We have recursed up all scope nodes // and have not found the local yet rb_bug("Local with constant_id %u does not exist", (unsigned int)constant_id); } st_data_t local_index; if (!st_lookup(scope_node->index_lookup_table, constant_id, &local_index)) { // Local does not exist at this level, continue recursing up if (found_depth) { (*found_depth)++; } return pm_lookup_local_index_any_scope(iseq, scope_node->previous, constant_id, found_depth); } return scope_node->local_table_for_iseq_size - (int)local_index; } static int pm_lookup_local_index(rb_iseq_t *iseq, pm_scope_node_t *scope_node, pm_constant_id_t constant_id) { st_data_t local_index; if (!st_lookup(scope_node->index_lookup_table, constant_id, &local_index)) { rb_bug("Local with constant_id %u does not exist", (unsigned int)constant_id); } return scope_node->local_table_for_iseq_size - (int)local_index; } static int pm_lookup_local_index_with_depth(rb_iseq_t *iseq, pm_scope_node_t *scope_node, pm_constant_id_t constant_id, uint32_t depth) { for(uint32_t i = 0; i < depth; i++) { scope_node = scope_node->previous; iseq = (rb_iseq_t *)ISEQ_BODY(iseq)->parent_iseq; } return pm_lookup_local_index_any_scope(iseq, scope_node, constant_id, NULL); } // This returns the CRuby ID which maps to the pm_constant_id_t // // Constant_ids in prism are indexes of the constants in prism's constant pool. // We add a constants mapping on the scope_node which is a mapping from // these constant_id indexes to the CRuby IDs that they represent. // This helper method allows easy access to those IDs static ID pm_constant_id_lookup(pm_scope_node_t *scope_node, pm_constant_id_t constant_id) { if (constant_id < 1 || constant_id > scope_node->parser->constant_pool.size) { rb_bug("constant_id out of range: %u", (unsigned int)constant_id); } return scope_node->constants[constant_id - 1]; } static rb_iseq_t * pm_new_child_iseq(rb_iseq_t *iseq, pm_scope_node_t node, pm_parser_t *parser, VALUE name, const rb_iseq_t *parent, enum rb_iseq_type type, int line_no) { debugs("[new_child_iseq]> ---------------------------------------\n"); int isolated_depth = ISEQ_COMPILE_DATA(iseq)->isolated_depth; rb_iseq_t * ret_iseq = pm_iseq_new_with_opt(&node, parser, name, rb_iseq_path(iseq), rb_iseq_realpath(iseq), line_no, parent, isolated_depth ? isolated_depth + 1 : 0, type, ISEQ_COMPILE_DATA(iseq)->option); debugs("[new_child_iseq]< ---------------------------------------\n"); return ret_iseq; } static int pm_compile_class_path(LINK_ANCHOR *const ret, rb_iseq_t *iseq, const pm_node_t *constant_path_node, const NODE *line_node, const uint8_t * src, bool popped, pm_scope_node_t *scope_node) { if (PM_NODE_TYPE_P(constant_path_node, PM_CONSTANT_PATH_NODE)) { pm_node_t *parent = ((pm_constant_path_node_t *)constant_path_node)->parent; if (parent) { /* Bar::Foo */ PM_COMPILE(parent); return VM_DEFINECLASS_FLAG_SCOPED; } else { /* toplevel class ::Foo */ ADD_INSN1(ret, line_node, putobject, rb_cObject); return VM_DEFINECLASS_FLAG_SCOPED; } } else { /* class at cbase Foo */ ADD_INSN1(ret, line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); return 0; } } static void pm_compile_call_and_or_write_node(bool and_node, pm_node_t *receiver, pm_node_t *value, pm_constant_id_t write_name, pm_constant_id_t read_name, bool safe_nav, LINK_ANCHOR *const ret, rb_iseq_t *iseq, int lineno, const uint8_t * src, bool popped, pm_scope_node_t *scope_node) { LABEL *call_end_label = NEW_LABEL(lineno); LABEL *else_label = NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); int flag = 0; if (PM_NODE_TYPE_P(receiver, PM_SELF_NODE)) { flag = VM_CALL_FCALL; } PM_COMPILE_NOT_POPPED(receiver); if (safe_nav) { PM_DUP; ADD_INSNL(ret, &dummy_line_node, branchnil, else_label); } ID write_name_id = pm_constant_id_lookup(scope_node, write_name); ID read_name_id = pm_constant_id_lookup(scope_node, read_name); PM_DUP; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, read_name_id, INT2FIX(0), INT2FIX(flag)); PM_DUP_UNLESS_POPPED; if (and_node) { ADD_INSNL(ret, &dummy_line_node, branchunless, call_end_label); } else { // or_node ADD_INSNL(ret, &dummy_line_node, branchif, call_end_label); } PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(value); if (!popped) { PM_SWAP; ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } ID aid = rb_id_attrset(write_name_id); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, aid, INT2FIX(1), INT2FIX(flag)); ADD_INSNL(ret, &dummy_line_node, jump, end_label); ADD_LABEL(ret, call_end_label); if (!popped) { PM_SWAP; } if (safe_nav) { ADD_LABEL(ret, else_label); } ADD_LABEL(ret, end_label); PM_POP; return; } static void pm_compile_index_write_nodes_add_send(bool popped, LINK_ANCHOR *const ret, rb_iseq_t *iseq, NODE dummy_line_node, VALUE argc, int flag, int block_offset) { if (!popped) { ADD_INSN1(ret, &dummy_line_node, setn, FIXNUM_INC(argc, 2 + block_offset)); } if (flag & VM_CALL_ARGS_SPLAT) { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(1)); if (block_offset > 0) { ADD_INSN1(ret, &dummy_line_node, dupn, INT2FIX(3)); PM_SWAP; PM_POP; } ADD_INSN(ret, &dummy_line_node, concatarray); if (block_offset > 0) { ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(3)); PM_POP; } ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idASET, argc, INT2FIX(flag)); } else { if (block_offset > 0) { PM_SWAP; } ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idASET, FIXNUM_INC(argc, 1), INT2FIX(flag)); } PM_POP; return; } static int pm_setup_args(pm_arguments_node_t *arguments_node, int *flags, struct rb_callinfo_kwarg **kw_arg, rb_iseq_t *iseq, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node, NODE dummy_line_node, pm_parser_t *parser) { int orig_argc = 0; if (arguments_node == NULL) { if (*flags & VM_CALL_FCALL) { *flags |= VM_CALL_VCALL; } } else { pm_node_list_t arguments_node_list = arguments_node->arguments; bool has_keyword_splat = (arguments_node->base.flags & PM_ARGUMENTS_NODE_FLAGS_CONTAINS_KEYWORD_SPLAT); bool has_splat = false; // We count the number of elements post the splat node that are not keyword elements to // eventually pass as an argument to newarray int post_splat_counter = 0; for (size_t index = 0; index < arguments_node_list.size; index++) { pm_node_t *argument = arguments_node_list.nodes[index]; switch (PM_NODE_TYPE(argument)) { // A keyword hash node contains all keyword arguments as AssocNodes and AssocSplatNodes case PM_KEYWORD_HASH_NODE: { pm_keyword_hash_node_t *keyword_arg = (pm_keyword_hash_node_t *)argument; size_t len = keyword_arg->elements.size; if (has_keyword_splat) { int cur_hash_size = 0; bool new_hash_emitted = false; for (size_t i = 0; i < len; i++) { pm_node_t *cur_node = keyword_arg->elements.nodes[i]; pm_node_type_t cur_type = PM_NODE_TYPE(cur_node); switch (PM_NODE_TYPE(cur_node)) { case PM_ASSOC_NODE: { orig_argc++; pm_assoc_node_t *assoc = (pm_assoc_node_t *)cur_node; PM_COMPILE_NOT_POPPED(assoc->key); PM_COMPILE_NOT_POPPED(assoc->value); cur_hash_size++; // If we're at the last keyword arg, or the last assoc node of this "set", // then we want to either construct a newhash or merge onto previous hashes if (i == (len - 1) || !PM_NODE_TYPE_P(keyword_arg->elements.nodes[i + 1], cur_type)) { if (new_hash_emitted) { ADD_SEND(ret, &dummy_line_node, id_core_hash_merge_ptr, INT2FIX(cur_hash_size * 2 + 1)); } else { ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(cur_hash_size * 2)); cur_hash_size = 0; new_hash_emitted = true; } } break; } case PM_ASSOC_SPLAT_NODE: { if (len > 1) { ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); if (i == 0) { ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(0)); new_hash_emitted = true; } else { PM_SWAP; } *flags |= VM_CALL_KW_SPLAT_MUT; } pm_assoc_splat_node_t *assoc_splat = (pm_assoc_splat_node_t *)cur_node; PM_COMPILE_NOT_POPPED(assoc_splat->value); *flags |= VM_CALL_KW_SPLAT; if (len > 1) { ADD_SEND(ret, &dummy_line_node, id_core_hash_merge_kwd, INT2FIX(2)); } if ((i < len - 1) && !PM_NODE_TYPE_P(keyword_arg->elements.nodes[i + 1], cur_type)) { ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PM_SWAP; } cur_hash_size = 0; break; } default: { rb_bug("Unknown type in keyword argument %s\n", pm_node_type_to_str(PM_NODE_TYPE(cur_node))); } } } break; } else { // We need to first figure out if all elements of the KeywordHashNode are AssocNodes // with symbol keys. if (PM_NODE_FLAG_P(keyword_arg, PM_KEYWORD_HASH_NODE_FLAGS_SYMBOL_KEYS)) { // If they are all symbol keys then we can pass them as keyword arguments. *kw_arg = rb_xmalloc_mul_add(len, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg)); *flags |= VM_CALL_KWARG; VALUE *keywords = (*kw_arg)->keywords; (*kw_arg)->references = 0; (*kw_arg)->keyword_len = (int)len; for (size_t i = 0; i < len; i++) { pm_assoc_node_t *assoc = (pm_assoc_node_t *)keyword_arg->elements.nodes[i]; pm_node_t *key = assoc->key; keywords[i] = pm_static_literal_value(key, scope_node, parser); PM_COMPILE_NOT_POPPED(assoc->value); } } else { // If they aren't all symbol keys then we need to construct a new hash // and pass that as an argument. orig_argc++; *flags |= VM_CALL_KW_SPLAT; if (len > 1) { // A new hash will be created for the keyword arguments in this case, // so mark the method as passing mutable keyword splat. *flags |= VM_CALL_KW_SPLAT_MUT; } for (size_t i = 0; i < len; i++) { pm_assoc_node_t *assoc = (pm_assoc_node_t *)keyword_arg->elements.nodes[i]; PM_COMPILE_NOT_POPPED(assoc->key); PM_COMPILE_NOT_POPPED(assoc->value); } ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(len * 2)); } } break; } case PM_SPLAT_NODE: { *flags |= VM_CALL_ARGS_SPLAT; pm_splat_node_t *splat_node = (pm_splat_node_t *)argument; if (splat_node->expression) { orig_argc++; PM_COMPILE_NOT_POPPED(splat_node->expression); } ADD_INSN1(ret, &dummy_line_node, splatarray, Qfalse); has_splat = true; post_splat_counter = 0; break; } case PM_FORWARDING_ARGUMENTS_NODE: { orig_argc++; *flags |= VM_CALL_ARGS_BLOCKARG | VM_CALL_ARGS_SPLAT; ADD_GETLOCAL(ret, &dummy_line_node, 3, 0); ADD_INSN1(ret, &dummy_line_node, splatarray, RBOOL(arguments_node_list.size > 1)); ADD_INSN2(ret, &dummy_line_node, getblockparamproxy, INT2FIX(4), INT2FIX(0)); break; } default: { orig_argc++; post_splat_counter++; PM_COMPILE_NOT_POPPED(argument); if (has_splat) { // If the next node starts the keyword section of parameters if ((index < arguments_node_list.size - 1) && PM_NODE_TYPE_P(arguments_node_list.nodes[index + 1], PM_KEYWORD_HASH_NODE)) { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(post_splat_counter)); ADD_INSN1(ret, &dummy_line_node, splatarray, Qfalse); ADD_INSN(ret, &dummy_line_node, concatarray); } // If it's the final node else if (index == arguments_node_list.size - 1) { if (post_splat_counter > 1) { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(post_splat_counter)); ADD_INSN1(ret, &dummy_line_node, splatarray, Qfalse); ADD_INSN(ret, &dummy_line_node, concatarray); } else { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(post_splat_counter)); ADD_INSN(ret, &dummy_line_node, concatarray); } orig_argc = 1; } } } } } } return orig_argc; } /** * A callinfo struct basically mirrors the information that is going to be * passed to a callinfo object that will be used on a send instruction. We use * it to communicate the information between the function that derives it and * the function that uses it. */ typedef struct { int argc; int flags; struct rb_callinfo_kwarg *kwargs; } pm_callinfo_t; /** * Derive the callinfo from the given arguments node. It assumes the pointer to * the callinfo struct is zeroed memory. */ static void pm_arguments_node_callinfo(pm_callinfo_t *callinfo, const pm_arguments_node_t *node, const pm_scope_node_t *scope_node, const pm_parser_t *parser) { if (node == NULL) { if (callinfo->flags & VM_CALL_FCALL) { callinfo->flags |= VM_CALL_VCALL; } } else { const pm_node_list_t *arguments = &node->arguments; bool has_splat = false; for (size_t argument_index = 0; argument_index < arguments->size; argument_index++) { const pm_node_t *argument = arguments->nodes[argument_index]; switch (PM_NODE_TYPE(argument)) { case PM_KEYWORD_HASH_NODE: { pm_keyword_hash_node_t *keyword_hash = (pm_keyword_hash_node_t *) argument; size_t elements_size = keyword_hash->elements.size; if (PM_NODE_FLAG_P(node, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_KEYWORD_SPLAT)) { for (size_t element_index = 0; element_index < elements_size; element_index++) { const pm_node_t *element = keyword_hash->elements.nodes[element_index]; switch (PM_NODE_TYPE(element)) { case PM_ASSOC_NODE: callinfo->argc++; break; case PM_ASSOC_SPLAT_NODE: if (elements_size > 1) callinfo->flags |= VM_CALL_KW_SPLAT_MUT; callinfo->flags |= VM_CALL_KW_SPLAT; break; default: rb_bug("Unknown type in keyword argument %s\n", pm_node_type_to_str(PM_NODE_TYPE(element))); } } break; } else if (PM_NODE_FLAG_P(keyword_hash, PM_KEYWORD_HASH_NODE_FLAGS_SYMBOL_KEYS)) { // We need to first figure out if all elements of the // KeywordHashNode are AssocNode nodes with symbol keys. If // they are all symbol keys then we can pass them as keyword // arguments. callinfo->flags |= VM_CALL_KWARG; callinfo->kwargs = rb_xmalloc_mul_add(elements_size, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg)); callinfo->kwargs->references = 0; callinfo->kwargs->keyword_len = (int) elements_size; VALUE *keywords = callinfo->kwargs->keywords; for (size_t element_index = 0; element_index < elements_size; element_index++) { pm_assoc_node_t *assoc = (pm_assoc_node_t *) keyword_hash->elements.nodes[element_index]; keywords[element_index] = pm_static_literal_value(assoc->key, scope_node, parser); } } else { // If they aren't all symbol keys then we need to construct // a new hash and pass that as an argument. callinfo->argc++; callinfo->flags |= VM_CALL_KW_SPLAT; if (elements_size > 1) { // A new hash will be created for the keyword arguments // in this case, so mark the method as passing mutable // keyword splat. callinfo->flags |= VM_CALL_KW_SPLAT_MUT; } } break; } case PM_SPLAT_NODE: { // Splat nodes add a splat flag and can change the way the // arguments are loaded by combining them into a single array. callinfo->flags |= VM_CALL_ARGS_SPLAT; if (((pm_splat_node_t *) argument)->expression != NULL) callinfo->argc++; has_splat = true; break; } case PM_FORWARDING_ARGUMENTS_NODE: { // Forwarding arguments indicate that a splat and a block are // present, and increase the argument count by one. callinfo->flags |= VM_CALL_ARGS_BLOCKARG | VM_CALL_ARGS_SPLAT; callinfo->argc++; break; } default: { // A regular argument increases the argument count by one. If // there is a splat and this is the last argument, then the // argument count becomes 1 because it gets grouped into a // single array. callinfo->argc++; if (has_splat && (argument_index == arguments->size - 1)) callinfo->argc = 1; break; } } } } } static void pm_compile_index_and_or_write_node(bool and_node, pm_node_t *receiver, pm_node_t *value, pm_arguments_node_t *arguments, pm_node_t *block, LINK_ANCHOR *const ret, rb_iseq_t *iseq, int lineno, const uint8_t * src, bool popped, pm_scope_node_t *scope_node, pm_parser_t *parser) { NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); PM_PUTNIL_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(receiver); int flag = 0; int argc_int = 0; if (arguments) { // Get any arguments, and set the appropriate values for flag argc_int = pm_setup_args(arguments, &flag, NULL, iseq, ret, src, popped, scope_node, dummy_line_node, parser); } VALUE argc = INT2FIX(argc_int); int block_offset = 0; if (block) { PM_COMPILE_NOT_POPPED(block); flag |= VM_CALL_ARGS_BLOCKARG; block_offset = 1; } ADD_INSN1(ret, &dummy_line_node, dupn, FIXNUM_INC(argc, 1 + block_offset)); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idAREF, argc, INT2FIX(flag)); LABEL *label = NEW_LABEL(lineno); LABEL *lfin = NEW_LABEL(lineno); PM_DUP; if (and_node) { ADD_INSNL(ret, &dummy_line_node, branchunless, label); } else { // ornode ADD_INSNL(ret, &dummy_line_node, branchif, label); } PM_POP; PM_COMPILE_NOT_POPPED(value); pm_compile_index_write_nodes_add_send(popped, ret, iseq, dummy_line_node, argc, flag, block_offset); ADD_INSNL(ret, &dummy_line_node, jump, lfin); ADD_LABEL(ret, label); if (!popped) { ADD_INSN1(ret, &dummy_line_node, setn, FIXNUM_INC(argc, 2 + block_offset)); } ADD_INSN1(ret, &dummy_line_node, adjuststack, FIXNUM_INC(argc, 2 + block_offset)); ADD_LABEL(ret, lfin); return; } /** * In order to properly compile multiple-assignment, some preprocessing needs to * be performed in the case of call or constant path targets. This is when they * are read, the "parent" of each of these nodes should only be read once (the * receiver in the case of a call, the parent constant in the case of a constant * path). */ static uint8_t pm_compile_multi_write_lhs(rb_iseq_t *iseq, NODE dummy_line_node, const uint8_t *src, bool popped, const pm_node_t *node, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, uint8_t pushed, bool nested) { switch (PM_NODE_TYPE(node)) { case PM_INDEX_TARGET_NODE: { pm_index_target_node_t *cast = (pm_index_target_node_t *)node; PM_COMPILE_NOT_POPPED((pm_node_t *)cast->receiver); pushed++; if (cast->arguments) { for (size_t i = 0; i < cast->arguments->arguments.size; i++) { PM_COMPILE_NOT_POPPED((pm_node_t *)cast->arguments->arguments.nodes[i]); } pushed += cast->arguments->arguments.size; } break; } case PM_CALL_TARGET_NODE: { pm_call_target_node_t *cast = (pm_call_target_node_t *)node; PM_COMPILE_NOT_POPPED((pm_node_t *)cast->receiver); pushed++; break; } case PM_MULTI_TARGET_NODE: { pm_multi_target_node_t *cast = (pm_multi_target_node_t *) node; for (size_t index = 0; index < cast->lefts.size; index++) { pushed = pm_compile_multi_write_lhs(iseq, dummy_line_node, src, popped, cast->lefts.nodes[index], ret, scope_node, pushed, false); } break; } case PM_CONSTANT_PATH_TARGET_NODE: { pm_constant_path_target_node_t *cast = (pm_constant_path_target_node_t *)node; if (cast->parent) { PM_PUTNIL; pushed = pm_compile_multi_write_lhs(iseq, dummy_line_node, src, popped, cast->parent, ret, scope_node, pushed, false); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } break; } case PM_CONSTANT_PATH_NODE: { pm_constant_path_node_t *cast = (pm_constant_path_node_t *) node; if (cast->parent) { pushed = pm_compile_multi_write_lhs(iseq, dummy_line_node, src, popped, cast->parent, ret, scope_node, pushed, false); } else { PM_POP; ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } pushed = pm_compile_multi_write_lhs(iseq, dummy_line_node, src, popped, cast->child, ret, scope_node, pushed, cast->parent); break; } case PM_CONSTANT_READ_NODE: { pm_constant_read_node_t *cast = (pm_constant_read_node_t *) node; ADD_INSN1(ret, &dummy_line_node, putobject, RBOOL(!nested)); ADD_INSN1(ret, &dummy_line_node, getconstant, ID2SYM(pm_constant_id_lookup(scope_node, cast->name))); pushed = pushed + 2; break; } default: break; } return pushed; } // When we compile a pattern matching expression, we use the stack as a scratch // space to store lots of different values (consider it like we have a pattern // matching function and we need space for a bunch of different local // variables). The "base index" refers to the index on the stack where we // started compiling the pattern matching expression. These offsets from that // base index indicate the location of the various locals we need. #define PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE 0 #define PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING 1 #define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P 2 #define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE 3 #define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY 4 // A forward declaration because this is the recursive function that handles // compiling a pattern. It can be reentered by nesting patterns, as in the case // of arrays or hashes. static int pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index); /** * This function generates the code to set up the error string and error_p * locals depending on whether or not the pattern matched. */ static int pm_compile_pattern_generic_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, message); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(2)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_succeeded_label); return COMPILE_OK; } /** * This function generates the code to set up the error string and error_p * locals depending on whether or not the pattern matched when the value needs * to match a specific deconstructed length. */ static int pm_compile_pattern_length_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, VALUE length, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, message); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, length); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(4)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_succeeded_label); return COMPILE_OK; } /** * This function generates the code to set up the error string and error_p * locals depending on whether or not the pattern matched when the value needs * to pass a specific #=== method call. */ static int pm_compile_pattern_eqq_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("%p === %p does not return true")); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(5)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(3)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_succeeded_label); ADD_INSN1(ret, &line.node, setn, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); return COMPILE_OK; } /** * This is a variation on compiling a pattern matching expression that is used * to have the pattern matching instructions fall through to immediately after * the pattern if it passes. Otherwise it jumps to the given unmatched_label * label. */ static int pm_compile_pattern_match(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index) { LABEL *matched_label = NEW_LABEL(nd_line(node)); CHECK(pm_compile_pattern(iseq, scope_node, node, ret, src, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index)); ADD_LABEL(ret, matched_label); return COMPILE_OK; } /** * This function compiles in the code necessary to call #deconstruct on the * value to match against. It raises appropriate errors if the method does not * exist or if it returns the wrong type. */ static int pm_compile_pattern_deconstruct(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, LABEL *deconstruct_label, LABEL *match_failed_label, LABEL *deconstructed_label, LABEL *type_error_label, bool in_single_pattern, bool use_deconstructed_cache, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); if (use_deconstructed_cache) { ADD_INSN1(ret, &line.node, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE)); ADD_INSNL(ret, &line.node, branchnil, deconstruct_label); ADD_INSN1(ret, &line.node, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE)); ADD_INSNL(ret, &line.node, branchunless, match_failed_label); ADD_INSN(ret, &line.node, pop); ADD_INSN1(ret, &line.node, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE - 1)); ADD_INSNL(ret, &line.node, jump, deconstructed_label); } else { ADD_INSNL(ret, &line.node, jump, deconstruct_label); } ADD_LABEL(ret, deconstruct_label); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, ID2SYM(rb_intern("deconstruct"))); ADD_SEND(ret, &line.node, idRespond_to, INT2FIX(1)); if (use_deconstructed_cache) { ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE + 1)); } if (in_single_pattern) { CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct"), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); ADD_SEND(ret, &line.node, rb_intern("deconstruct"), INT2FIX(0)); if (use_deconstructed_cache) { ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE)); } ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, checktype, INT2FIX(T_ARRAY)); ADD_INSNL(ret, &line.node, branchunless, type_error_label); ADD_LABEL(ret, deconstructed_label); return COMPILE_OK; } /** * This function compiles in the code necessary to match against the optional * constant path that is attached to an array, find, or hash pattern. */ static int pm_compile_pattern_constant(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, LABEL *match_failed_label, bool in_single_pattern, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); ADD_INSN(ret, &line.node, dup); PM_COMPILE_NOT_POPPED(node); if (in_single_pattern) { ADD_INSN1(ret, &line.node, dupn, INT2FIX(2)); } ADD_INSN1(ret, &line.node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE)); if (in_single_pattern) { CHECK(pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 3)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); return COMPILE_OK; } /** * When matching fails, an appropriate error must be raised. This function is * responsible for compiling in those error raising instructions. */ static void pm_compile_pattern_error_handler(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, LABEL *done_label, bool popped) { pm_line_node_t line; pm_line_node(&line, scope_node, node); LABEL *key_error_label = NEW_LABEL(line.lineno); LABEL *cleanup_label = NEW_LABEL(line.lineno); struct rb_callinfo_kwarg *kw_arg = rb_xmalloc_mul_add(2, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg)); kw_arg->references = 0; kw_arg->keyword_len = 2; kw_arg->keywords[0] = ID2SYM(rb_intern("matchee")); kw_arg->keywords[1] = ID2SYM(rb_intern("key")); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSNL(ret, &line.node, branchif, key_error_label); ADD_INSN1(ret, &line.node, putobject, rb_eNoMatchingPatternError); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("%p: %s")); ADD_INSN1(ret, &line.node, topn, INT2FIX(4)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(3)); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(2)); ADD_INSNL(ret, &line.node, jump, cleanup_label); ADD_LABEL(ret, key_error_label); ADD_INSN1(ret, &line.node, putobject, rb_eNoMatchingPatternKeyError); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("%p: %s")); ADD_INSN1(ret, &line.node, topn, INT2FIX(4)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4)); ADD_INSN1(ret, &line.node, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5)); ADD_SEND_R(ret, &line.node, rb_intern("new"), INT2FIX(1), NULL, INT2FIX(VM_CALL_KWARG), kw_arg); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(1)); ADD_LABEL(ret, cleanup_label); ADD_INSN1(ret, &line.node, adjuststack, INT2FIX(7)); if (!popped) ADD_INSN(ret, &line.node, putnil); ADD_INSNL(ret, &line.node, jump, done_label); ADD_INSN1(ret, &line.node, dupn, INT2FIX(5)); if (popped) ADD_INSN(ret, &line.node, putnil); } /** * Compile a pattern matching expression. */ static int pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index) { pm_line_node_t line; pm_line_node(&line, scope_node, node); switch (PM_NODE_TYPE(node)) { case PM_ARRAY_PATTERN_NODE: { // Array patterns in pattern matching are triggered by using commas in // a pattern or wrapping it in braces. They are represented by a // ArrayPatternNode. This looks like: // // foo => [1, 2, 3] // // It can optionally have a splat in the middle of it, which can // optionally have a name attached. const pm_array_pattern_node_t *cast = (const pm_array_pattern_node_t *) node; const size_t requireds_size = cast->requireds.size; const size_t posts_size = cast->posts.size; const size_t minimum_size = requireds_size + posts_size; bool use_rest_size = ( cast->rest != NULL && PM_NODE_TYPE_P(cast->rest, PM_SPLAT_NODE) && ((((const pm_splat_node_t *) cast->rest)->expression != NULL) || posts_size > 0) ); LABEL *match_failed_label = NEW_LABEL(line.lineno); LABEL *type_error_label = NEW_LABEL(line.lineno); LABEL *deconstruct_label = NEW_LABEL(line.lineno); LABEL *deconstructed_label = NEW_LABEL(line.lineno); if (use_rest_size) { ADD_INSN1(ret, &line.node, putobject, INT2FIX(0)); ADD_INSN(ret, &line.node, swap); base_index++; } if (cast->constant != NULL) { CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, src, match_failed_label, in_single_pattern, base_index)); } CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, src, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index)); ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(minimum_size)); ADD_SEND(ret, &line.node, cast->rest == NULL ? idEq : idGE, INT2FIX(1)); if (in_single_pattern) { VALUE message = cast->rest == NULL ? rb_fstring_lit("%p length mismatch (given %p, expected %p)") : rb_fstring_lit("%p length mismatch (given %p, expected %p+)"); CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, message, INT2FIX(minimum_size), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); for (size_t index = 0; index < requireds_size; index++) { const pm_node_t *required = cast->requireds.nodes[index]; ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, INT2FIX(index)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, required, ret, src, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } if (cast->rest != NULL) { if (((const pm_splat_node_t *) cast->rest)->expression != NULL) { ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, INT2FIX(requireds_size)); ADD_INSN1(ret, &line.node, topn, INT2FIX(1)); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(minimum_size)); ADD_SEND(ret, &line.node, idMINUS, INT2FIX(1)); ADD_INSN1(ret, &line.node, setn, INT2FIX(4)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(2)); CHECK(pm_compile_pattern_match(iseq, scope_node, ((const pm_splat_node_t *) cast->rest)->expression, ret, src, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } else if (posts_size > 0) { ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(minimum_size)); ADD_SEND(ret, &line.node, idMINUS, INT2FIX(1)); ADD_INSN1(ret, &line.node, setn, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); } } for (size_t index = 0; index < posts_size; index++) { const pm_node_t *post = cast->posts.nodes[index]; ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, INT2FIX(requireds_size + index)); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_SEND(ret, &line.node, idPLUS, INT2FIX(1)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, post, ret, src, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } ADD_INSN(ret, &line.node, pop); if (use_rest_size) { ADD_INSN(ret, &line.node, pop); } ADD_INSNL(ret, &line.node, jump, matched_label); ADD_INSN(ret, &line.node, putnil); if (use_rest_size) { ADD_INSN(ret, &line.node, putnil); } ADD_LABEL(ret, type_error_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_eTypeError); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("deconstruct must return Array")); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_failed_label); ADD_INSN(ret, &line.node, pop); if (use_rest_size) { ADD_INSN(ret, &line.node, pop); } ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_FIND_PATTERN_NODE: { // Find patterns in pattern matching are triggered by using commas in // a pattern or wrapping it in braces and using a splat on both the left // and right side of the pattern. This looks like: // // foo => [*, 1, 2, 3, *] // // There can be any number of requireds in the middle. The splats on // both sides can optionally have names attached. const pm_find_pattern_node_t *cast = (const pm_find_pattern_node_t *) node; const size_t size = cast->requireds.size; LABEL *match_failed_label = NEW_LABEL(line.lineno); LABEL *type_error_label = NEW_LABEL(line.lineno); LABEL *deconstruct_label = NEW_LABEL(line.lineno); LABEL *deconstructed_label = NEW_LABEL(line.lineno); if (cast->constant) { CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, src, match_failed_label, in_single_pattern, base_index)); } CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, src, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index)); ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(size)); ADD_SEND(ret, &line.node, idGE, INT2FIX(1)); if (in_single_pattern) { CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, rb_fstring_lit("%p length mismatch (given %p, expected %p+)"), INT2FIX(size), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); { LABEL *while_begin_label = NEW_LABEL(line.lineno); LABEL *next_loop_label = NEW_LABEL(line.lineno); LABEL *find_succeeded_label = NEW_LABEL(line.lineno); LABEL *find_failed_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idLength, INT2FIX(0)); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, INT2FIX(size)); ADD_SEND(ret, &line.node, idMINUS, INT2FIX(1)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(0)); ADD_LABEL(ret, while_begin_label); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, topn, INT2FIX(2)); ADD_SEND(ret, &line.node, idLE, INT2FIX(1)); ADD_INSNL(ret, &line.node, branchunless, find_failed_label); for (size_t index = 0; index < size; index++) { ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(1)); if (index != 0) { ADD_INSN1(ret, &line.node, putobject, INT2FIX(index)); ADD_SEND(ret, &line.node, idPLUS, INT2FIX(1)); } ADD_SEND(ret, &line.node, idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, cast->requireds.nodes[index], ret, src, next_loop_label, in_single_pattern, in_alternation_pattern, false, base_index + 4)); } assert(PM_NODE_TYPE_P(cast->left, PM_SPLAT_NODE)); const pm_splat_node_t *left = (const pm_splat_node_t *) cast->left; if (left->expression != NULL) { ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(0)); ADD_INSN1(ret, &line.node, topn, INT2FIX(2)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(2)); CHECK(pm_compile_pattern_match(iseq, scope_node, left->expression, ret, src, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4)); } assert(PM_NODE_TYPE_P(cast->right, PM_SPLAT_NODE)); const pm_splat_node_t *right = (const pm_splat_node_t *) cast->right; if (right->expression != NULL) { ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(1)); ADD_INSN1(ret, &line.node, putobject, INT2FIX(size)); ADD_SEND(ret, &line.node, idPLUS, INT2FIX(1)); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_SEND(ret, &line.node, idAREF, INT2FIX(2)); pm_compile_pattern_match(iseq, scope_node, right->expression, ret, src, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4); } ADD_INSNL(ret, &line.node, jump, find_succeeded_label); ADD_LABEL(ret, next_loop_label); ADD_INSN1(ret, &line.node, putobject, INT2FIX(1)); ADD_SEND(ret, &line.node, idPLUS, INT2FIX(1)); ADD_INSNL(ret, &line.node, jump, while_begin_label); ADD_LABEL(ret, find_failed_label); ADD_INSN1(ret, &line.node, adjuststack, INT2FIX(3)); if (in_single_pattern) { ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("%p does not match to find pattern")); ADD_INSN1(ret, &line.node, topn, INT2FIX(2)); ADD_SEND(ret, &line.node, id_core_sprintf, INT2FIX(2)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); } ADD_INSNL(ret, &line.node, jump, match_failed_label); ADD_INSN1(ret, &line.node, dupn, INT2FIX(3)); ADD_LABEL(ret, find_succeeded_label); ADD_INSN1(ret, &line.node, adjuststack, INT2FIX(3)); } ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, matched_label); ADD_INSN(ret, &line.node, putnil); ADD_LABEL(ret, type_error_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_eTypeError); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("deconstruct must return Array")); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_failed_label); ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_HASH_PATTERN_NODE: { // Hash patterns in pattern matching are triggered by using labels and // values in a pattern or by using the ** operator. They are represented // by the HashPatternNode. This looks like: // // foo => { a: 1, b: 2, **bar } // // It can optionally have an assoc splat in the middle of it, which can // optionally have a name. const pm_hash_pattern_node_t *cast = (const pm_hash_pattern_node_t *) node; // We don't consider it a "rest" parameter if it's a ** that is unnamed. bool has_rest = cast->rest != NULL && !(PM_NODE_TYPE_P(cast->rest, PM_ASSOC_SPLAT_NODE) && ((const pm_assoc_splat_node_t *) cast->rest)->value == NULL); bool has_keys = cast->elements.size > 0 || cast->rest != NULL; LABEL *match_failed_label = NEW_LABEL(line.lineno); LABEL *type_error_label = NEW_LABEL(line.lineno); VALUE keys = Qnil; if (has_keys && !has_rest) { keys = rb_ary_new_capa(cast->elements.size); for (size_t index = 0; index < cast->elements.size; index++) { const pm_node_t *element = cast->elements.nodes[index]; assert(PM_NODE_TYPE_P(element, PM_ASSOC_NODE)); const pm_node_t *key = ((const pm_assoc_node_t *) element)->key; assert(PM_NODE_TYPE_P(key, PM_SYMBOL_NODE)); VALUE symbol = ID2SYM(parse_string_symbol(&((const pm_symbol_node_t *) key)->unescaped, scope_node->parser)); rb_ary_push(keys, symbol); } } if (cast->constant) { CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, src, match_failed_label, in_single_pattern, base_index)); } ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, ID2SYM(rb_intern("deconstruct_keys"))); ADD_SEND(ret, &line.node, idRespond_to, INT2FIX(1)); if (in_single_pattern) { CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct_keys"), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); if (NIL_P(keys)) { ADD_INSN(ret, &line.node, putnil); } else { ADD_INSN1(ret, &line.node, duparray, keys); RB_OBJ_WRITTEN(iseq, Qundef, rb_obj_hide(keys)); } ADD_SEND(ret, &line.node, rb_intern("deconstruct_keys"), INT2FIX(1)); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, checktype, INT2FIX(T_HASH)); ADD_INSNL(ret, &line.node, branchunless, type_error_label); if (has_rest) { ADD_SEND(ret, &line.node, rb_intern("dup"), INT2FIX(0)); } if (has_keys) { DECL_ANCHOR(match_values); INIT_ANCHOR(match_values); for (size_t index = 0; index < cast->elements.size; index++) { const pm_node_t *element = cast->elements.nodes[index]; assert(PM_NODE_TYPE_P(element, PM_ASSOC_NODE)); const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element; const pm_node_t *key = assoc->key; assert(PM_NODE_TYPE_P(key, PM_SYMBOL_NODE)); VALUE symbol = ID2SYM(parse_string_symbol(&((const pm_symbol_node_t *) key)->unescaped, scope_node->parser)); ADD_INSN(ret, &line.node, dup); ADD_INSN1(ret, &line.node, putobject, symbol); ADD_SEND(ret, &line.node, rb_intern("key?"), INT2FIX(1)); if (in_single_pattern) { LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); ADD_INSN1(ret, &line.node, putobject, rb_str_freeze(rb_sprintf("key not found: %+"PRIsVALUE, symbol))); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 2)); ADD_INSN1(ret, &line.node, putobject, Qtrue); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 3)); ADD_INSN1(ret, &line.node, topn, INT2FIX(3)); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4)); ADD_INSN1(ret, &line.node, putobject, symbol); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5)); ADD_INSN1(ret, &line.node, adjuststack, INT2FIX(4)); ADD_LABEL(ret, match_succeeded_label); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); ADD_INSN(match_values, &line.node, dup); ADD_INSN1(match_values, &line.node, putobject, symbol); ADD_SEND(match_values, &line.node, has_rest ? rb_intern("delete") : idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, assoc->value, match_values, src, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } ADD_SEQ(ret, match_values); } else { ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idEmptyP, INT2FIX(0)); if (in_single_pattern) { CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p is not empty"), base_index + 1)); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); } if (has_rest) { switch (PM_NODE_TYPE(cast->rest)) { case PM_NO_KEYWORDS_PARAMETER_NODE: { ADD_INSN(ret, &line.node, dup); ADD_SEND(ret, &line.node, idEmptyP, INT2FIX(0)); if (in_single_pattern) { pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("rest of %p is not empty"), base_index + 1); } ADD_INSNL(ret, &line.node, branchunless, match_failed_label); break; } case PM_ASSOC_SPLAT_NODE: { const pm_assoc_splat_node_t *splat = (const pm_assoc_splat_node_t *) cast->rest; ADD_INSN(ret, &line.node, dup); pm_compile_pattern_match(iseq, scope_node, splat->value, ret, src, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1); break; } default: rb_bug("unreachable"); break; } } ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, matched_label); ADD_INSN(ret, &line.node, putnil); ADD_LABEL(ret, type_error_label); ADD_INSN1(ret, &line.node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &line.node, putobject, rb_eTypeError); ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("deconstruct_keys must return Hash")); ADD_SEND(ret, &line.node, id_core_raise, INT2FIX(2)); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_failed_label); ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_CAPTURE_PATTERN_NODE: { // Capture patterns allow you to pattern match against an element in a // pattern and also capture the value into a local variable. This looks // like: // // [1] => [Integer => foo] // // In this case the `Integer => foo` will be represented by a // CapturePatternNode, which has both a value (the pattern to match // against) and a target (the place to write the variable into). const pm_capture_pattern_node_t *cast = (const pm_capture_pattern_node_t *) node; LABEL *match_failed_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); CHECK(pm_compile_pattern_match(iseq, scope_node, cast->value, ret, src, match_failed_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index + 1)); CHECK(pm_compile_pattern(iseq, scope_node, cast->target, ret, src, matched_label, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index)); ADD_INSN(ret, &line.node, putnil); ADD_LABEL(ret, match_failed_label); ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_LOCAL_VARIABLE_TARGET_NODE: { // Local variables can be targetted by placing identifiers in the place // of a pattern. For example, foo in bar. This results in the value // being matched being written to that local variable. pm_local_variable_target_node_t *cast = (pm_local_variable_target_node_t *) node; int index = pm_lookup_local_index(iseq, scope_node, cast->name); // If this local variable is being written from within an alternation // pattern, then it cannot actually be added to the local table since // it's ambiguous which value should be used. So instead we indicate // this with a compile error. if (in_alternation_pattern) { ID id = pm_constant_id_lookup(scope_node, cast->name); const char *name = rb_id2name(id); if (name && strlen(name) > 0 && name[0] != '_') { COMPILE_ERROR(ERROR_ARGS "illegal variable in alternative pattern (%"PRIsVALUE")", rb_id2str(id)); return COMPILE_NG; } } ADD_SETLOCAL(ret, &line.node, index, (int) cast->depth); ADD_INSNL(ret, &line.node, jump, matched_label); break; } case PM_ALTERNATION_PATTERN_NODE: { // Alternation patterns allow you to specify multiple patterns in a // single expression using the | operator. pm_alternation_pattern_node_t *cast = (pm_alternation_pattern_node_t *) node; LABEL *matched_left_label = NEW_LABEL(line.lineno); LABEL *unmatched_left_label = NEW_LABEL(line.lineno); // First, we're going to attempt to match against the left pattern. If // that pattern matches, then we'll skip matching the right pattern. ADD_INSN(ret, &line.node, dup); CHECK(pm_compile_pattern(iseq, scope_node, cast->left, ret, src, matched_left_label, unmatched_left_label, in_single_pattern, true, true, base_index + 1)); // If we get here, then we matched on the left pattern. In this case we // should pop out the duplicate value that we preemptively added to // match against the right pattern and then jump to the match label. ADD_LABEL(ret, matched_left_label); ADD_INSN(ret, &line.node, pop); ADD_INSNL(ret, &line.node, jump, matched_label); ADD_INSN(ret, &line.node, putnil); // If we get here, then we didn't match on the left pattern. In this // case we attempt to match against the right pattern. ADD_LABEL(ret, unmatched_left_label); CHECK(pm_compile_pattern(iseq, scope_node, cast->right, ret, src, matched_label, unmatched_label, in_single_pattern, true, true, base_index)); break; } case PM_ARRAY_NODE: case PM_CLASS_VARIABLE_READ_NODE: case PM_CONSTANT_PATH_NODE: case PM_CONSTANT_READ_NODE: case PM_FALSE_NODE: case PM_FLOAT_NODE: case PM_GLOBAL_VARIABLE_READ_NODE: case PM_IMAGINARY_NODE: case PM_INSTANCE_VARIABLE_READ_NODE: case PM_INTEGER_NODE: case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: case PM_INTERPOLATED_STRING_NODE: case PM_INTERPOLATED_SYMBOL_NODE: case PM_INTERPOLATED_X_STRING_NODE: case PM_LAMBDA_NODE: case PM_LOCAL_VARIABLE_READ_NODE: case PM_NIL_NODE: case PM_RANGE_NODE: case PM_RATIONAL_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_SELF_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_TRUE_NODE: case PM_X_STRING_NODE: { // These nodes are all simple patterns, which means we'll use the // checkmatch instruction to match against them, which is effectively a // VM-level === operator. PM_COMPILE_NOT_POPPED(node); if (in_single_pattern) { ADD_INSN1(ret, &line.node, dupn, INT2FIX(2)); } ADD_INSN1(ret, &line.node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE)); if (in_single_pattern) { pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 2); } ADD_INSNL(ret, &line.node, branchif, matched_label); ADD_INSNL(ret, &line.node, jump, unmatched_label); break; } case PM_PINNED_VARIABLE_NODE: { // Pinned variables are a way to match against the value of a variable // without it looking like you're trying to write to the variable. This // looks like: foo in ^@bar. To compile these, we compile the variable // that they hold. pm_pinned_variable_node_t *cast = (pm_pinned_variable_node_t *) node; CHECK(pm_compile_pattern(iseq, scope_node, cast->variable, ret, src, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, true, base_index)); break; } case PM_PINNED_EXPRESSION_NODE: { // Pinned expressions are a way to match against the value of an // expression that should be evaluated at runtime. This looks like: // foo in ^(bar). To compile these, we compile the expression that they // hold. pm_pinned_expression_node_t *cast = (pm_pinned_expression_node_t *) node; CHECK(pm_compile_pattern(iseq, scope_node, cast->expression, ret, src, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, true, base_index)); break; } case PM_IF_NODE: case PM_UNLESS_NODE: { // If and unless nodes can show up here as guards on `in` clauses. This // looks like: // // case foo // in bar if baz? // qux // end // // Because we know they're in the modifier form and they can't have any // variation on this pattern, we compile them differently (more simply) // here than we would in the normal compilation path. const pm_node_t *predicate; const pm_node_t *statement; if (PM_NODE_TYPE_P(node, PM_IF_NODE)) { const pm_if_node_t *cast = (const pm_if_node_t *) node; predicate = cast->predicate; assert(cast->statements != NULL && cast->statements->body.size == 1); statement = cast->statements->body.nodes[0]; } else { const pm_unless_node_t *cast = (const pm_unless_node_t *) node; predicate = cast->predicate; assert(cast->statements != NULL && cast->statements->body.size == 1); statement = cast->statements->body.nodes[0]; } CHECK(pm_compile_pattern_match(iseq, scope_node, statement, ret, src, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index)); PM_COMPILE_NOT_POPPED(predicate); if (in_single_pattern) { LABEL *match_succeeded_label = NEW_LABEL(line.lineno); ADD_INSN(ret, &line.node, dup); if (PM_NODE_TYPE_P(node, PM_IF_NODE)) { ADD_INSNL(ret, &line.node, branchif, match_succeeded_label); } else { ADD_INSNL(ret, &line.node, branchunless, match_succeeded_label); } ADD_INSN1(ret, &line.node, putobject, rb_fstring_lit("guard clause does not return true")); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); ADD_INSN1(ret, &line.node, putobject, Qfalse); ADD_INSN1(ret, &line.node, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); ADD_INSN(ret, &line.node, pop); ADD_INSN(ret, &line.node, pop); ADD_LABEL(ret, match_succeeded_label); } if (PM_NODE_TYPE_P(node, PM_IF_NODE)) { ADD_INSNL(ret, &line.node, branchunless, unmatched_label); } else { ADD_INSNL(ret, &line.node, branchif, unmatched_label); } ADD_INSNL(ret, &line.node, jump, matched_label); break; } default: // If we get here, then we have a node type that should not be in this // position. This would be a bug in the parser, because a different node // type should never have been created in this position in the tree. rb_bug("Unexpected node type in pattern matching expression: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); break; } return COMPILE_OK; } #undef PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE #undef PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING #undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P #undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE #undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY // Generate a scope node from the given node. void pm_scope_node_init(const pm_node_t *node, pm_scope_node_t *scope, pm_scope_node_t *previous, pm_parser_t *parser) { scope->base.type = PM_SCOPE_NODE; scope->base.location.start = node->location.start; scope->base.location.end = node->location.end; scope->previous = previous; scope->parser = parser; scope->ast_node = (pm_node_t *)node; scope->parameters = NULL; scope->body = NULL; scope->constants = NULL; scope->local_depth_offset = 0; scope->local_table_for_iseq_size = 0; if (previous) { scope->constants = previous->constants; scope->local_depth_offset = previous->local_depth_offset; } scope->index_lookup_table = NULL; pm_constant_id_list_init(&scope->locals); switch (PM_NODE_TYPE(node)) { case PM_BLOCK_NODE: { pm_block_node_t *cast = (pm_block_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; scope->local_depth_offset = 0; scope->parameters = cast->parameters; break; } case PM_CLASS_NODE: { pm_class_node_t *cast = (pm_class_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_DEF_NODE: { pm_def_node_t *cast = (pm_def_node_t *) node; scope->parameters = (pm_node_t *)cast->parameters; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_ENSURE_NODE: { scope->body = (pm_node_t *)node; scope->local_depth_offset += 1; break; } case PM_FOR_NODE: { pm_for_node_t *cast = (pm_for_node_t *)node; scope->body = (pm_node_t *)cast->statements; scope->local_depth_offset += 1; break; } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { RUBY_ASSERT(node->flags & PM_REGULAR_EXPRESSION_FLAGS_ONCE); scope->body = (pm_node_t *)node; scope->local_depth_offset += 1; break; } case PM_LAMBDA_NODE: { pm_lambda_node_t *cast = (pm_lambda_node_t *) node; scope->parameters = cast->parameters; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_MODULE_NODE: { pm_module_node_t *cast = (pm_module_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_POST_EXECUTION_NODE: { pm_post_execution_node_t *cast = (pm_post_execution_node_t *) node; scope->body = (pm_node_t *) cast->statements; scope->local_depth_offset += 2; break; } case PM_PROGRAM_NODE: { pm_program_node_t *cast = (pm_program_node_t *) node; scope->body = (pm_node_t *) cast->statements; scope->locals = cast->locals; break; } case PM_RESCUE_NODE: { pm_rescue_node_t *cast = (pm_rescue_node_t *)node; scope->body = (pm_node_t *)cast->statements; scope->local_depth_offset += 1; break; } case PM_RESCUE_MODIFIER_NODE: { pm_rescue_modifier_node_t *cast = (pm_rescue_modifier_node_t *)node; scope->body = (pm_node_t *)cast->rescue_expression; scope->local_depth_offset += 1; break; } case PM_SINGLETON_CLASS_NODE: { pm_singleton_class_node_t *cast = (pm_singleton_class_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_STATEMENTS_NODE: { pm_statements_node_t *cast = (pm_statements_node_t *) node; scope->body = (pm_node_t *)cast; break; } default: assert(false && "unreachable"); break; } } static void pm_compile_call(rb_iseq_t *iseq, const pm_call_node_t *call_node, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node, ID method_id, LABEL *start); void pm_compile_defined_expr0(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node, NODE dummy_line_node, int lineno, bool in_condition, LABEL **lfinish, bool explicit_receiver) { // in_condition is the same as compile.c's needstr enum defined_type dtype = DEFINED_NOT_DEFINED; switch (PM_NODE_TYPE(node)) { case PM_ARGUMENTS_NODE: { const pm_arguments_node_t *cast = (pm_arguments_node_t *) node; const pm_node_list_t *arguments = &cast->arguments; for (size_t idx = 0; idx < arguments->size; idx++) { const pm_node_t *argument = arguments->nodes[idx]; pm_compile_defined_expr0(iseq, argument, ret, src, popped, scope_node, dummy_line_node, lineno, in_condition, lfinish, explicit_receiver); if (!lfinish[1]) { lfinish[1] = NEW_LABEL(lineno); } ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); } dtype = DEFINED_TRUE; break; } case PM_NIL_NODE: dtype = DEFINED_NIL; break; case PM_PARENTHESES_NODE: { pm_parentheses_node_t *parentheses_node = (pm_parentheses_node_t *) node; if (parentheses_node->body == NULL) { dtype = DEFINED_NIL; } else { dtype = DEFINED_EXPR; } break; } case PM_SELF_NODE: dtype = DEFINED_SELF; break; case PM_TRUE_NODE: dtype = DEFINED_TRUE; break; case PM_FALSE_NODE: dtype = DEFINED_FALSE; break; case PM_ARRAY_NODE: { pm_array_node_t *array_node = (pm_array_node_t *) node; if (!(array_node->base.flags & PM_ARRAY_NODE_FLAGS_CONTAINS_SPLAT)) { for (size_t index = 0; index < array_node->elements.size; index++) { pm_compile_defined_expr0(iseq, array_node->elements.nodes[index], ret, src, popped, scope_node, dummy_line_node, lineno, true, lfinish, false); if (!lfinish[1]) { lfinish[1] = NEW_LABEL(lineno); } ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); } } } case PM_AND_NODE: case PM_FLOAT_NODE: case PM_HASH_NODE: case PM_IMAGINARY_NODE: case PM_INTEGER_NODE: case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: case PM_INTERPOLATED_STRING_NODE: case PM_KEYWORD_HASH_NODE: case PM_LAMBDA_NODE: case PM_MATCH_PREDICATE_NODE: case PM_OR_NODE: case PM_RANGE_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_SOURCE_ENCODING_NODE: case PM_SOURCE_FILE_NODE: case PM_SOURCE_LINE_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_X_STRING_NODE: dtype = DEFINED_EXPR; break; case PM_LOCAL_VARIABLE_READ_NODE: dtype = DEFINED_LVAR; break; #define PUSH_VAL(type) (in_condition ? Qtrue : rb_iseq_defined_string(type)) case PM_INSTANCE_VARIABLE_READ_NODE: { pm_instance_variable_read_node_t *instance_variable_read_node = (pm_instance_variable_read_node_t *)node; ID id = pm_constant_id_lookup(scope_node, instance_variable_read_node->name); ADD_INSN3(ret, &dummy_line_node, definedivar, ID2SYM(id), get_ivar_ic_value(iseq, id), PUSH_VAL(DEFINED_IVAR)); return; } case PM_BACK_REFERENCE_READ_NODE: { char *char_ptr = (char *)(node->location.start) + 1; ID backref_val = INT2FIX(rb_intern2(char_ptr, 1)) << 1 | 1; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_REF), backref_val, PUSH_VAL(DEFINED_GVAR)); return; } case PM_NUMBERED_REFERENCE_READ_NODE: { uint32_t reference_number = ((pm_numbered_reference_read_node_t *)node)->number; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_REF), INT2FIX(reference_number << 1), PUSH_VAL(DEFINED_GVAR)); return; } case PM_GLOBAL_VARIABLE_READ_NODE: { pm_global_variable_read_node_t *glabal_variable_read_node = (pm_global_variable_read_node_t *)node; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_GVAR), ID2SYM(pm_constant_id_lookup(scope_node, glabal_variable_read_node->name)), PUSH_VAL(DEFINED_GVAR)); return; } case PM_CLASS_VARIABLE_READ_NODE: { pm_class_variable_read_node_t *class_variable_read_node = (pm_class_variable_read_node_t *)node; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CVAR), ID2SYM(pm_constant_id_lookup(scope_node, class_variable_read_node->name)), PUSH_VAL(DEFINED_CVAR)); return; } case PM_CONSTANT_READ_NODE: { pm_constant_read_node_t *constant_node = (pm_constant_read_node_t *)node; PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CONST), ID2SYM(pm_constant_id_lookup(scope_node, constant_node->name)), PUSH_VAL(DEFINED_CONST)); return; } case PM_CONSTANT_PATH_NODE: { pm_constant_path_node_t *constant_path_node = ((pm_constant_path_node_t *)node); if (constant_path_node->parent) { if (!lfinish[1]) { lfinish[1] = NEW_LABEL(lineno); } pm_compile_defined_expr0(iseq, constant_path_node->parent, ret, src, popped, scope_node, dummy_line_node, lineno, true, lfinish, false); ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); PM_COMPILE(constant_path_node->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CONST_FROM), ID2SYM(pm_constant_id_lookup(scope_node, ((pm_constant_read_node_t *)constant_path_node->child)->name)), PUSH_VAL(DEFINED_CONST)); return; } case PM_CALL_NODE: { pm_call_node_t *call_node = ((pm_call_node_t *)node); ID method_id = pm_constant_id_lookup(scope_node, call_node->name); if (call_node->receiver || call_node->arguments) { if (!lfinish[1]) { lfinish[1] = NEW_LABEL(lineno); } if (!lfinish[2]) { lfinish[2] = NEW_LABEL(lineno); } } if (call_node->arguments) { pm_compile_defined_expr0(iseq, (const pm_node_t *)call_node->arguments, ret, src, popped, scope_node, dummy_line_node, lineno, true, lfinish, false); ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); } if (call_node->receiver) { pm_compile_defined_expr0(iseq, call_node->receiver, ret, src, popped, scope_node, dummy_line_node, lineno, true, lfinish, true); if (PM_NODE_TYPE_P(call_node->receiver, PM_CALL_NODE)) { ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[2]); ID method_id = pm_constant_id_lookup(scope_node, call_node->name); pm_compile_call(iseq, (const pm_call_node_t *)call_node->receiver, ret, src, popped, scope_node, method_id, NULL); } else { ADD_INSNL(ret, &dummy_line_node, branchunless, lfinish[1]); PM_COMPILE(call_node->receiver); } if (explicit_receiver) { PM_DUP; } ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_METHOD), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD)); } else { PM_PUTSELF; if (explicit_receiver) { PM_DUP; } ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_FUNC), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD)); } return; } case PM_YIELD_NODE: PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_YIELD), 0, PUSH_VAL(DEFINED_YIELD)); return; case PM_SUPER_NODE: case PM_FORWARDING_SUPER_NODE: PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_ZSUPER), 0, PUSH_VAL(DEFINED_ZSUPER)); return; case PM_CONSTANT_WRITE_NODE: case PM_CONSTANT_OPERATOR_WRITE_NODE: case PM_CONSTANT_AND_WRITE_NODE: case PM_CONSTANT_OR_WRITE_NODE: case PM_GLOBAL_VARIABLE_WRITE_NODE: case PM_GLOBAL_VARIABLE_OPERATOR_WRITE_NODE: case PM_GLOBAL_VARIABLE_AND_WRITE_NODE: case PM_GLOBAL_VARIABLE_OR_WRITE_NODE: case PM_CLASS_VARIABLE_WRITE_NODE: case PM_CLASS_VARIABLE_OPERATOR_WRITE_NODE: case PM_CLASS_VARIABLE_AND_WRITE_NODE: case PM_CLASS_VARIABLE_OR_WRITE_NODE: case PM_INSTANCE_VARIABLE_WRITE_NODE: case PM_INSTANCE_VARIABLE_OPERATOR_WRITE_NODE: case PM_INSTANCE_VARIABLE_AND_WRITE_NODE: case PM_INSTANCE_VARIABLE_OR_WRITE_NODE: case PM_LOCAL_VARIABLE_WRITE_NODE: case PM_LOCAL_VARIABLE_OPERATOR_WRITE_NODE: case PM_LOCAL_VARIABLE_AND_WRITE_NODE: case PM_LOCAL_VARIABLE_OR_WRITE_NODE: case PM_MULTI_WRITE_NODE: dtype = DEFINED_ASGN; break; default: rb_bug("Unsupported node %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } assert(dtype != DEFINED_NOT_DEFINED); ADD_INSN1(ret, &dummy_line_node, putobject, PUSH_VAL(dtype)); #undef PUSH_VAL } static void pm_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node, NODE dummy_line_node, int lineno, bool in_condition, LABEL **lfinish, bool explicit_receiver) { LINK_ELEMENT *lcur = ret->last; pm_compile_defined_expr0(iseq, node, ret, src, popped, scope_node, dummy_line_node, lineno, in_condition, lfinish, false); if (lfinish[1]) { LABEL *lstart = NEW_LABEL(lineno); LABEL *lend = NEW_LABEL(lineno); struct rb_iseq_new_with_callback_callback_func *ifunc = rb_iseq_new_with_callback_new_callback(build_defined_rescue_iseq, NULL); const rb_iseq_t *rescue = new_child_iseq_with_callback(iseq, ifunc, rb_str_concat(rb_str_new2("defined guard in "), ISEQ_BODY(iseq)->location.label), iseq, ISEQ_TYPE_RESCUE, 0); lstart->rescued = LABEL_RESCUE_BEG; lend->rescued = LABEL_RESCUE_END; APPEND_LABEL(ret, lcur, lstart); ADD_LABEL(ret, lend); ADD_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue, lfinish[1]); } } void pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node, NODE dummy_line_node, int lineno, bool in_condition) { LABEL *lfinish[3]; LINK_ELEMENT *last = ret->last; lfinish[0] = NEW_LABEL(lineno); lfinish[1] = 0; lfinish[2] = 0; if (!popped) { pm_defined_expr(iseq, node, ret, src, popped, scope_node, dummy_line_node, lineno, in_condition, lfinish, false); } if (lfinish[1]) { ELEM_INSERT_NEXT(last, &new_insn_body(iseq, &dummy_line_node, BIN(putnil), 0)->link); PM_SWAP; if (lfinish[2]) { ADD_LABEL(ret, lfinish[2]); } PM_POP; ADD_LABEL(ret, lfinish[1]); } ADD_LABEL(ret, lfinish[0]); } static void pm_compile_call(rb_iseq_t *iseq, const pm_call_node_t *call_node, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node, ID method_id, LABEL *start) { pm_parser_t *parser = scope_node->parser; pm_newline_list_t newline_list = parser->newline_list; int lineno = (int)pm_newline_list_line_column(&newline_list, ((pm_node_t *)call_node)->location.start).line; NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); LABEL *else_label = NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); pm_node_t *pm_node = (pm_node_t *)call_node; if (call_node->base.flags & PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) { PM_DUP; ADD_INSNL(ret, &dummy_line_node, branchnil, else_label); } int flags = 0; struct rb_callinfo_kwarg *kw_arg = NULL; int orig_argc = pm_setup_args(call_node->arguments, &flags, &kw_arg, iseq, ret, src, popped, scope_node, dummy_line_node, parser); const rb_iseq_t *block_iseq = NULL; if (call_node->block != NULL && PM_NODE_TYPE_P(call_node->block, PM_BLOCK_NODE)) { // Scope associated with the block pm_scope_node_t next_scope_node; pm_scope_node_init(call_node->block, &next_scope_node, scope_node, parser); block_iseq = NEW_CHILD_ISEQ(next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); if (ISEQ_BODY(block_iseq)->catch_table) { ADD_CATCH_ENTRY(CATCH_TYPE_BREAK, start, end_label, block_iseq, end_label); } ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq; } else { if (pm_node->flags & PM_CALL_NODE_FLAGS_VARIABLE_CALL) { flags |= VM_CALL_VCALL; } if (call_node->block != NULL) { PM_COMPILE_NOT_POPPED(call_node->block); flags |= VM_CALL_ARGS_BLOCKARG; } if (!flags) { flags |= VM_CALL_ARGS_SIMPLE; } } if (call_node->receiver == NULL || PM_NODE_TYPE_P(call_node->receiver, PM_SELF_NODE)) { flags |= VM_CALL_FCALL; } if (pm_node->flags & PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE) { if (flags & VM_CALL_ARGS_SPLAT) { ADD_INSN(ret, &dummy_line_node, dup); ADD_INSN1(ret, &dummy_line_node, putobject, INT2FIX(-1)); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idAREF, INT2FIX(1), INT2FIX(0)); ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(orig_argc + 2)); ADD_INSN (ret, &dummy_line_node, pop); } else if (!popped) { ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(orig_argc + 1)); } ADD_SEND_R(ret, &dummy_line_node, method_id, INT2FIX(orig_argc), block_iseq, INT2FIX(flags), kw_arg); PM_POP_UNLESS_POPPED; } else { ADD_SEND_R(ret, &dummy_line_node, method_id, INT2FIX(orig_argc), block_iseq, INT2FIX(flags), kw_arg); } if (call_node->base.flags & PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) { ADD_INSNL(ret, &dummy_line_node, jump, end_label); ADD_LABEL(ret, else_label); } ADD_LABEL(ret, end_label); PM_POP_IF_POPPED; } // This is exactly the same as add_ensure_iseq, except it compiled // the node as a Prism node, and not a CRuby node static void pm_add_ensure_iseq(LINK_ANCHOR *const ret, rb_iseq_t *iseq, int is_return, const uint8_t *src, pm_scope_node_t *scope_node) { assert(can_add_ensure_iseq(iseq)); struct iseq_compile_data_ensure_node_stack *enlp = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack; struct iseq_compile_data_ensure_node_stack *prev_enlp = enlp; DECL_ANCHOR(ensure); INIT_ANCHOR(ensure); while (enlp) { if (enlp->erange != NULL) { DECL_ANCHOR(ensure_part); LABEL *lstart = NEW_LABEL(0); LABEL *lend = NEW_LABEL(0); INIT_ANCHOR(ensure_part); add_ensure_range(iseq, enlp->erange, lstart, lend); ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = enlp->prev; ADD_LABEL(ensure_part, lstart); bool popped = true; PM_COMPILE_INTO_ANCHOR(ensure_part, (pm_node_t *)enlp->ensure_node); ADD_LABEL(ensure_part, lend); ADD_SEQ(ensure, ensure_part); } else { if (!is_return) { break; } } enlp = enlp->prev; } ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = prev_enlp; ADD_SEQ(ret, ensure); } static void pm_insert_local_index(pm_constant_id_t constant_id, int local_index, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node) { ID local = pm_constant_id_lookup(scope_node, constant_id); local_table_for_iseq->ids[local_index] = local; st_insert(index_lookup_table, constant_id, local_index); } static int pm_compile_multi_assign_params(pm_multi_target_node_t *multi, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node, int local_index) { for (size_t m = 0; m < multi->lefts.size; m++) { pm_node_t *multi_node = multi->lefts.nodes[m]; switch (PM_NODE_TYPE(multi_node)) { case PM_REQUIRED_PARAMETER_NODE: { pm_required_parameter_node_t *req = (pm_required_parameter_node_t *)multi_node; pm_insert_local_index(req->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; break; } case PM_MULTI_TARGET_NODE: { local_index = pm_compile_multi_assign_params((pm_multi_target_node_t *)multi_node, index_lookup_table, local_table_for_iseq, scope_node, local_index); break; } default: { rb_bug("Parameter of type %s within a MultiTargetNode isn't allowed", pm_node_type_to_str(PM_NODE_TYPE(multi_node))); } } } if (multi->rest && PM_NODE_TYPE_P(multi->rest, PM_SPLAT_NODE)) { pm_splat_node_t *rest = (pm_splat_node_t *)multi->rest; if (rest->expression && PM_NODE_TYPE_P(rest->expression, PM_REQUIRED_PARAMETER_NODE)) { pm_required_parameter_node_t *req = (pm_required_parameter_node_t *)rest->expression; pm_insert_local_index(req->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; } } for (size_t m = 0; m < multi->rights.size; m++) { pm_node_t *multi_node = multi->rights.nodes[m]; switch (PM_NODE_TYPE(multi_node)) { case PM_REQUIRED_PARAMETER_NODE: { pm_required_parameter_node_t *req = (pm_required_parameter_node_t *)multi_node; pm_insert_local_index(req->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; break; } case PM_MULTI_TARGET_NODE: { local_index = pm_compile_multi_assign_params((pm_multi_target_node_t *)multi_node, index_lookup_table, local_table_for_iseq, scope_node, local_index); break; } default: { rb_bug("Parameter of type %s within a MultiTargetNode isn't allowed", pm_node_type_to_str(PM_NODE_TYPE(multi_node))); } } } return local_index; } /* * Compiles a prism node into instruction sequences * * iseq - The current instruction sequence object (used for locals) * node - The prism node to compile * ret - The linked list of instructions to append instructions onto * popped - True if compiling something with no side effects, so instructions don't * need to be added * scope_node - Stores parser and local information */ static void pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, const uint8_t *src, bool popped, pm_scope_node_t *scope_node) { pm_parser_t *parser = scope_node->parser; pm_newline_list_t newline_list = parser->newline_list; int lineno = (int)pm_newline_list_line_column(&newline_list, node->location.start).line; NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); if (node->flags & PM_NODE_FLAG_NEWLINE && ISEQ_COMPILE_DATA(iseq)->last_line != lineno) { int event = RUBY_EVENT_LINE; ISEQ_COMPILE_DATA(iseq)->last_line = lineno; if (ISEQ_COVERAGE(iseq) && ISEQ_LINE_COVERAGE(iseq)) { event |= RUBY_EVENT_COVERAGE_LINE; } ADD_TRACE(ret, event); } switch (PM_NODE_TYPE(node)) { case PM_ALIAS_GLOBAL_VARIABLE_NODE: { pm_alias_global_variable_node_t *alias_node = (pm_alias_global_variable_node_t *) node; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &dummy_line_node, putobject, ID2SYM(parse_location_symbol(&alias_node->new_name->location, parser))); ADD_INSN1(ret, &dummy_line_node, putobject, ID2SYM(parse_location_symbol(&alias_node->old_name->location, parser))); ADD_SEND(ret, &dummy_line_node, id_core_set_variable_alias, INT2FIX(2)); PM_POP_IF_POPPED; return; } case PM_ALIAS_METHOD_NODE: { pm_alias_method_node_t *alias_node = (pm_alias_method_node_t *) node; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE)); PM_COMPILE_NOT_POPPED(alias_node->new_name); PM_COMPILE_NOT_POPPED(alias_node->old_name); ADD_SEND(ret, &dummy_line_node, id_core_set_method_alias, INT2FIX(3)); PM_POP_IF_POPPED; return; } case PM_AND_NODE: { pm_and_node_t *and_node = (pm_and_node_t *) node; LABEL *end_label = NEW_LABEL(lineno); PM_COMPILE_NOT_POPPED(and_node->left); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE(and_node->right); ADD_LABEL(ret, end_label); return; } case PM_ARGUMENTS_NODE: { // These are ArgumentsNodes that are not compiled directly by their // parent call nodes, used in the cases of NextNodes, ReturnNodes // and BreakNodes pm_arguments_node_t *arguments_node = (pm_arguments_node_t *) node; pm_node_list_t node_list = arguments_node->arguments; for (size_t index = 0; index < node_list.size; index++) { PM_COMPILE(node_list.nodes[index]); } if (node_list.size > 1) { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(node_list.size)); } return; } case PM_ARRAY_NODE: { // If every node in the array is static, then we can compile the entire // array now instead of later. if (pm_static_literal_p(node)) { // We're only going to compile this node if it's not popped. If it // is popped, then we know we don't need to do anything since it's // statically known. if (!popped) { pm_array_node_t *cast = (pm_array_node_t *) node; if (cast->elements.size) { VALUE value = pm_static_literal_value(node, scope_node, parser); ADD_INSN1(ret, &dummy_line_node, duparray, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } else { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(0)); } } } else { // Here since we know there are possible side-effects inside the // array contents, we're going to build it entirely at runtime. // We'll do this by pushing all of the elements onto the stack and // then combining them with newarray. // // If this hash is popped, then this serves only to ensure we enact // all side-effects (like method calls) that are contained within // the hash contents. pm_array_node_t *cast = (pm_array_node_t *) node; pm_node_list_t *elements = &cast->elements; // In the case that there is a splat node within the array, // the array gets compiled slightly differently. if (node->flags & PM_ARRAY_NODE_FLAGS_CONTAINS_SPLAT) { if (elements->size == 1) { // If the only nodes is a SplatNode, we never // need to emit the newarray or concatarray // instructions PM_COMPILE_NOT_POPPED(elements->nodes[0]); } else { // We treat all sequences of non-splat elements as their // own arrays, followed by a newarray, and then continually // concat the arrays with the SplatNodes int new_array_size = 0; bool need_to_concat_array = false; for (size_t index = 0; index < elements->size; index++) { pm_node_t *array_element = elements->nodes[index]; if (PM_NODE_TYPE_P(array_element, PM_SPLAT_NODE)) { pm_splat_node_t *splat_element = (pm_splat_node_t *)array_element; // If we already have non-splat elements, we need to emit a newarray // instruction if (new_array_size) { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(new_array_size)); // We don't want to emit a concat array in the case where // we're seeing our first splat, and already have elements if (need_to_concat_array) { ADD_INSN(ret, &dummy_line_node, concatarray); } new_array_size = 0; } PM_COMPILE_NOT_POPPED(splat_element->expression); if (index > 0) { ADD_INSN(ret, &dummy_line_node, concatarray); } else { // If this is the first element, we need to splatarray ADD_INSN1(ret, &dummy_line_node, splatarray, Qtrue); } need_to_concat_array = true; } else { new_array_size++; PM_COMPILE_NOT_POPPED(array_element); } } if (new_array_size) { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(new_array_size)); if (need_to_concat_array) { ADD_INSN(ret, &dummy_line_node, concatarray); } } } PM_POP_IF_POPPED; } else { for (size_t index = 0; index < elements->size; index++) { PM_COMPILE(elements->nodes[index]); } if (!popped) { ADD_INSN1(ret, &dummy_line_node, newarray, INT2FIX(elements->size)); } } } return; } case PM_ASSOC_NODE: { pm_assoc_node_t *assoc_node = (pm_assoc_node_t *) node; PM_COMPILE(assoc_node->key); if (assoc_node->value) { PM_COMPILE(assoc_node->value); } return; } case PM_ASSOC_SPLAT_NODE: { pm_assoc_splat_node_t *assoc_splat_node = (pm_assoc_splat_node_t *)node; PM_COMPILE(assoc_splat_node->value); return; } case PM_BACK_REFERENCE_READ_NODE: { if (!popped) { // Since a back reference is `$`, ruby represents the ID as the // an rb_intern on the value after the `$`. char *char_ptr = (char *)(node->location.start) + 1; ID backref_val = INT2FIX(rb_intern2(char_ptr, 1)) << 1 | 1; ADD_INSN2(ret, &dummy_line_node, getspecial, INT2FIX(1), backref_val); } return; } case PM_BEGIN_NODE: { pm_begin_node_t *begin_node = (pm_begin_node_t *) node; rb_iseq_t *child_iseq; LABEL *lstart = NEW_LABEL(lineno); LABEL *lend = NEW_LABEL(lineno); LABEL *lcont = NEW_LABEL(lineno); if (begin_node->rescue_clause) { pm_scope_node_t rescue_scope_node; pm_scope_node_init((pm_node_t *)begin_node->rescue_clause, &rescue_scope_node, scope_node, parser); rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ(rescue_scope_node, rb_str_concat(rb_str_new2("rescue in"), ISEQ_BODY(iseq)->location.label), ISEQ_TYPE_RESCUE, 1); lstart->rescued = LABEL_RESCUE_BEG; lend->rescued = LABEL_RESCUE_END; ADD_LABEL(ret, lstart); bool prev_in_rescue = ISEQ_COMPILE_DATA(iseq)->in_rescue; ISEQ_COMPILE_DATA(iseq)->in_rescue = true; if (begin_node->statements) { PM_COMPILE_NOT_POPPED((pm_node_t *)begin_node->statements); } else { PM_PUTNIL; } ISEQ_COMPILE_DATA(iseq)->in_rescue = prev_in_rescue; if (begin_node->else_clause) { PM_POP_UNLESS_POPPED; PM_COMPILE((pm_node_t *)begin_node->else_clause); } ADD_LABEL(ret, lend); PM_NOP; ADD_LABEL(ret, lcont); PM_POP_IF_POPPED; ADD_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont); ADD_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart); } if (begin_node->ensure_clause) { LABEL *estart = NEW_LABEL(lineno); LABEL *eend = NEW_LABEL(lineno); LABEL *econt = NEW_LABEL(lineno); ADD_LABEL(ret, estart); if (!begin_node->rescue_clause) { if (begin_node->statements) { PM_COMPILE((pm_node_t *)begin_node->statements); } else { PM_PUTNIL_UNLESS_POPPED; } } ADD_LABEL(ret, eend); if (!popped) { PM_NOP; } pm_statements_node_t *statements = begin_node->ensure_clause->statements; if (statements) { PM_COMPILE((pm_node_t *)statements); ADD_LABEL(ret, econt); PM_POP_UNLESS_POPPED; } struct ensure_range er; struct iseq_compile_data_ensure_node_stack enl; struct ensure_range *erange; er.begin = estart; er.end = eend; er.next = 0; push_ensure_entry(iseq, &enl, &er, (void *)begin_node->ensure_clause); pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)begin_node->ensure_clause, &next_scope_node, scope_node, parser); child_iseq = NEW_CHILD_ISEQ(next_scope_node, rb_str_new2("ensure in"), ISEQ_TYPE_ENSURE, lineno); ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq; erange = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack->erange; if (estart->link.next != &eend->link) { while (erange) { ADD_CATCH_ENTRY(CATCH_TYPE_ENSURE, erange->begin, erange->end, child_iseq, econt); erange = erange->next; } } } if (!begin_node->rescue_clause && !begin_node->ensure_clause) { ADD_LABEL(ret, lstart); if (begin_node->statements) { PM_COMPILE((pm_node_t *)begin_node->statements); } else { PM_PUTNIL_UNLESS_POPPED; } ADD_LABEL(ret, lend); } return; } case PM_BLOCK_ARGUMENT_NODE: { pm_block_argument_node_t *block_argument_node = (pm_block_argument_node_t *) node; if (block_argument_node->expression) { PM_COMPILE(block_argument_node->expression); } return; } case PM_BREAK_NODE: { pm_break_node_t *break_node = (pm_break_node_t *) node; unsigned long throw_flag = 0; if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) { /* while/until */ LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->redo_label); if (break_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)break_node->arguments); } else { PM_PUTNIL; } ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->end_label); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else { const rb_iseq_t *ip = iseq; while (ip) { if (!ISEQ_COMPILE_DATA(ip)) { ip = 0; break; } if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) { throw_flag = VM_THROW_NO_ESCAPE_FLAG; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) { throw_flag = 0; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) { COMPILE_ERROR(ERROR_ARGS "Can't escape from eval with break"); rb_bug("Can't escape from eval with break"); } else { ip = ISEQ_BODY(ip)->parent_iseq; continue; } /* escape from block */ if (break_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)break_node->arguments); } else { PM_PUTNIL; } ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(throw_flag | TAG_BREAK)); PM_POP_IF_POPPED; return; } COMPILE_ERROR(ERROR_ARGS "Invalid break"); rb_bug("Invalid break"); } return; } case PM_CALL_NODE: { pm_call_node_t *call_node = (pm_call_node_t *) node; LABEL *start = NEW_LABEL(lineno); if (call_node->block) { ADD_LABEL(ret, start); } ID method_id = pm_constant_id_lookup(scope_node, call_node->name); if (node->flags & PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE) { if (!popped) { PM_PUTNIL; } } if (call_node->receiver == NULL) { PM_PUTSELF; } else { PM_COMPILE_NOT_POPPED(call_node->receiver); } pm_compile_call(iseq, call_node, ret, src, popped, scope_node, method_id, start); return; } case PM_CALL_AND_WRITE_NODE: { pm_call_and_write_node_t *call_and_write_node = (pm_call_and_write_node_t*) node; bool safe_nav = node->flags & PM_CALL_NODE_FLAGS_SAFE_NAVIGATION; pm_compile_call_and_or_write_node(true, call_and_write_node->receiver, call_and_write_node->value, call_and_write_node->write_name, call_and_write_node->read_name, safe_nav, ret, iseq, lineno, src, popped, scope_node); return; } case PM_CALL_OR_WRITE_NODE: { pm_call_or_write_node_t *call_or_write_node = (pm_call_or_write_node_t*) node; bool safe_nav = node->flags & PM_CALL_NODE_FLAGS_SAFE_NAVIGATION; pm_compile_call_and_or_write_node(false, call_or_write_node->receiver, call_or_write_node->value, call_or_write_node->write_name, call_or_write_node->read_name, safe_nav, ret, iseq, lineno, src, popped, scope_node); return; } case PM_CALL_OPERATOR_WRITE_NODE: { pm_call_operator_write_node_t *call_operator_write_node = (pm_call_operator_write_node_t*) node; NODE dummy_line_node = generate_dummy_line_node(lineno, lineno); int flag = 0; if (PM_NODE_TYPE_P(call_operator_write_node->receiver, PM_SELF_NODE)) { flag = VM_CALL_FCALL; } PM_COMPILE_NOT_POPPED(call_operator_write_node->receiver); ID write_name_id = pm_constant_id_lookup(scope_node, call_operator_write_node->write_name); ID read_name_id = pm_constant_id_lookup(scope_node, call_operator_write_node->read_name); ID operator_id = pm_constant_id_lookup(scope_node, call_operator_write_node->operator); PM_DUP; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, read_name_id, INT2FIX(0), INT2FIX(flag)); PM_COMPILE_NOT_POPPED(call_operator_write_node->value); ADD_SEND(ret, &dummy_line_node, operator_id, INT2FIX(1)); if (!popped) { PM_SWAP; ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } ADD_SEND_WITH_FLAG(ret, &dummy_line_node, write_name_id, INT2FIX(1), INT2FIX(flag)); PM_POP; return; } case PM_CALL_TARGET_NODE: { // Call targets can be used to indirectly call a method in places like // rescue references, for loops, and multiple assignment. In those // circumstances, it's necessary to first compile the receiver, then to // compile the method call itself. // // Therefore in the main switch case here where we're compiling a call // target, we're only going to compile the receiver. Then wherever // we've called into pm_compile_node when we're compiling call targets, // we'll need to make sure we compile the method call as well. pm_call_target_node_t *cast = (pm_call_target_node_t*) node; PM_COMPILE_NOT_POPPED(cast->receiver); return; } case PM_CASE_NODE: { pm_case_node_t *case_node = (pm_case_node_t *)node; bool has_predicate = case_node->predicate; if (has_predicate) { PM_COMPILE_NOT_POPPED(case_node->predicate); } LABEL *end_label = NEW_LABEL(lineno); pm_node_list_t conditions = case_node->conditions; LABEL **conditions_labels = (LABEL **)ALLOC_N(VALUE, conditions.size + 1); LABEL *label; for (size_t i = 0; i < conditions.size; i++) { label = NEW_LABEL(lineno); conditions_labels[i] = label; if (has_predicate) { pm_when_node_t *when_node = (pm_when_node_t *)conditions.nodes[i]; for (size_t i = 0; i < when_node->conditions.size; i++) { pm_node_t *condition_node = when_node->conditions.nodes[i]; if (PM_NODE_TYPE_P(condition_node, PM_SPLAT_NODE)) { ADD_INSN (ret, &dummy_line_node, dup); PM_COMPILE_NOT_POPPED(condition_node); ADD_INSN1(ret, &dummy_line_node, splatarray, Qfalse); ADD_INSN1(ret, &dummy_line_node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE | VM_CHECKMATCH_ARRAY)); } else { PM_COMPILE_NOT_POPPED(condition_node); ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idEqq, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE)); } ADD_INSNL(ret, &dummy_line_node, branchif, label); } } else { ADD_INSNL(ret, &dummy_line_node, jump, label); PM_PUTNIL; } } if (has_predicate) { PM_POP; if (case_node->consequent) { PM_COMPILE((pm_node_t *)case_node->consequent); } else { PM_PUTNIL_UNLESS_POPPED; } } ADD_INSNL(ret, &dummy_line_node, jump, end_label); for (size_t i = 0; i < conditions.size; i++) { label = conditions_labels[i]; ADD_LABEL(ret, label); if (has_predicate) { PM_POP; } pm_while_node_t *condition_node = (pm_while_node_t *)conditions.nodes[i]; if (condition_node->statements) { PM_COMPILE((pm_node_t *)condition_node->statements); } else { PM_PUTNIL_UNLESS_POPPED; } ADD_INSNL(ret, &dummy_line_node, jump, end_label); } ADD_LABEL(ret, end_label); return; } case PM_CASE_MATCH_NODE: { // If you use the `case` keyword to create a case match node, it will // match against all of the `in` clauses until it finds one that // matches. If it doesn't find one, it can optionally fall back to an // `else` clause. If none is present and a match wasn't found, it will // raise an appropriate error. const pm_case_match_node_t *cast = (const pm_case_match_node_t *) node; // This is the anchor that we will compile the bodies of the various // `in` nodes into. We'll make sure that the patterns that are compiled // jump into the correct spots within this anchor. DECL_ANCHOR(body_seq); INIT_ANCHOR(body_seq); // This is the anchor that we will compile the patterns of the various // `in` nodes into. If a match is found, they will need to jump into the // body_seq anchor to the correct spot. DECL_ANCHOR(cond_seq); INIT_ANCHOR(cond_seq); // This label is used to indicate the end of the entire node. It is // jumped to after the entire stack is cleaned up. LABEL *end_label = NEW_LABEL(lineno); // This label is used as the fallback for the case match. If no match is // found, then we jump to this label. This is either an `else` clause or // an error handler. LABEL *else_label = NEW_LABEL(lineno); // We're going to use this to uniquely identify each branch so that we // can track coverage information. int branch_id = 0; // VALUE branches = 0; // If there is only one pattern, then the behavior changes a bit. It // effectively gets treated as a match required node (this is how it is // represented in the other parser). bool in_single_pattern = cast->consequent == NULL && cast->conditions.size == 1; // First, we're going to push a bunch of stuff onto the stack that is // going to serve as our scratch space. if (in_single_pattern) { ADD_INSN(ret, &dummy_line_node, putnil); // key error key ADD_INSN(ret, &dummy_line_node, putnil); // key error matchee ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); // key error? ADD_INSN(ret, &dummy_line_node, putnil); // error string } // Now we're going to compile the value to match against. ADD_INSN(ret, &dummy_line_node, putnil); // deconstruct cache PM_COMPILE_NOT_POPPED(cast->predicate); // Next, we'll loop through every in clause and compile its body into // the body_seq anchor and its pattern into the cond_seq anchor. We'll // make sure the pattern knows how to jump correctly into the body if it // finds a match. for (size_t index = 0; index < cast->conditions.size; index++) { const pm_node_t *condition = cast->conditions.nodes[index]; assert(PM_NODE_TYPE_P(condition, PM_IN_NODE)); const pm_in_node_t *in_node = (const pm_in_node_t *) condition; pm_line_node_t in_line; pm_line_node(&in_line, scope_node, (const pm_node_t *) in_node); pm_line_node_t pattern_line; pm_line_node(&pattern_line, scope_node, (const pm_node_t *) in_node->pattern); if (branch_id) { ADD_INSN(body_seq, &in_line.node, putnil); } LABEL *body_label = NEW_LABEL(in_line.lineno); ADD_LABEL(body_seq, body_label); ADD_INSN1(body_seq, &in_line.node, adjuststack, INT2FIX(in_single_pattern ? 6 : 2)); // TODO: We need to come back to this and enable trace branch // coverage. At the moment we can't call this function because it // accepts a NODE* and not a pm_node_t*. // add_trace_branch_coverage(iseq, body_seq, in_node->statements || in, branch_id++, "in", branches); branch_id++; if (in_node->statements != NULL) { PM_COMPILE_INTO_ANCHOR(body_seq, (const pm_node_t *) in_node->statements); } else if (!popped) { ADD_INSN(body_seq, &in_line.node, putnil); } ADD_INSNL(body_seq, &in_line.node, jump, end_label); LABEL *next_pattern_label = NEW_LABEL(pattern_line.lineno); ADD_INSN(cond_seq, &pattern_line.node, dup); pm_compile_pattern(iseq, scope_node, in_node->pattern, cond_seq, src, body_label, next_pattern_label, in_single_pattern, false, true, 2); ADD_LABEL(cond_seq, next_pattern_label); LABEL_UNREMOVABLE(next_pattern_label); } if (cast->consequent != NULL) { // If we have an `else` clause, then this becomes our fallback (and // there is no need to compile in code to potentially raise an // error). const pm_else_node_t *else_node = (const pm_else_node_t *) cast->consequent; ADD_LABEL(cond_seq, else_label); ADD_INSN(cond_seq, &dummy_line_node, pop); ADD_INSN(cond_seq, &dummy_line_node, pop); // TODO: trace branch coverage // add_trace_branch_coverage(iseq, cond_seq, cast->consequent, branch_id, "else", branches); if (else_node->statements != NULL) { PM_COMPILE_INTO_ANCHOR(cond_seq, (const pm_node_t *) else_node->statements); } else if (!popped) { ADD_INSN(cond_seq, &dummy_line_node, putnil); } ADD_INSNL(cond_seq, &dummy_line_node, jump, end_label); ADD_INSN(cond_seq, &dummy_line_node, putnil); if (popped) { ADD_INSN(cond_seq, &dummy_line_node, putnil); } } else { // Otherwise, if we do not have an `else` clause, we will compile in // the code to handle raising an appropriate error. ADD_LABEL(cond_seq, else_label); // TODO: trace branch coverage // add_trace_branch_coverage(iseq, cond_seq, orig_node, branch_id, "else", branches); if (in_single_pattern) { pm_compile_pattern_error_handler(iseq, scope_node, node, cond_seq, src, end_label, popped); } else { ADD_INSN1(cond_seq, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(cond_seq, &dummy_line_node, putobject, rb_eNoMatchingPatternError); ADD_INSN1(cond_seq, &dummy_line_node, topn, INT2FIX(2)); ADD_SEND(cond_seq, &dummy_line_node, id_core_raise, INT2FIX(2)); ADD_INSN1(cond_seq, &dummy_line_node, adjuststack, INT2FIX(3)); if (!popped) ADD_INSN(cond_seq, &dummy_line_node, putnil); ADD_INSNL(cond_seq, &dummy_line_node, jump, end_label); ADD_INSN1(cond_seq, &dummy_line_node, dupn, INT2FIX(1)); if (popped) ADD_INSN(cond_seq, &dummy_line_node, putnil); } } // At the end of all of this compilation, we will add the code for the // conditions first, then the various bodies, then mark the end of the // entire sequence with the end label. ADD_SEQ(ret, cond_seq); ADD_SEQ(ret, body_seq); ADD_LABEL(ret, end_label); return; } case PM_CLASS_NODE: { pm_class_node_t *class_node = (pm_class_node_t *)node; pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)class_node, &next_scope_node, scope_node, parser); ID class_id = pm_constant_id_lookup(scope_node, class_node->name); VALUE class_name = rb_str_freeze(rb_sprintf("", rb_id2str(class_id))); const rb_iseq_t *class_iseq = NEW_CHILD_ISEQ(next_scope_node, class_name, ISEQ_TYPE_CLASS, lineno); // TODO: Once we merge constant path nodes correctly, fix this flag const int flags = VM_DEFINECLASS_TYPE_CLASS | (class_node->superclass ? VM_DEFINECLASS_FLAG_HAS_SUPERCLASS : 0) | pm_compile_class_path(ret, iseq, class_node->constant_path, &dummy_line_node, src, false, scope_node); if (class_node->superclass) { PM_COMPILE_NOT_POPPED(class_node->superclass); } else { PM_PUTNIL; } ADD_INSN3(ret, &dummy_line_node, defineclass, ID2SYM(class_id), class_iseq, INT2FIX(flags)); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)class_iseq); PM_POP_IF_POPPED; return; } case PM_CLASS_VARIABLE_AND_WRITE_NODE: { pm_class_variable_and_write_node_t *class_variable_and_write_node = (pm_class_variable_and_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); ID class_variable_name_id = pm_constant_id_lookup(scope_node, class_variable_and_write_node->name); VALUE class_variable_name_val = ID2SYM(class_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(class_variable_and_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); ADD_LABEL(ret, end_label); return; } case PM_CLASS_VARIABLE_OPERATOR_WRITE_NODE: { pm_class_variable_operator_write_node_t *class_variable_operator_write_node = (pm_class_variable_operator_write_node_t*) node; ID class_variable_name_id = pm_constant_id_lookup(scope_node, class_variable_operator_write_node->name); VALUE class_variable_name_val = ID2SYM(class_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); PM_COMPILE_NOT_POPPED(class_variable_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, class_variable_operator_write_node->operator); int flags = VM_CALL_ARGS_SIMPLE; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(flags)); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); return; } case PM_CLASS_VARIABLE_OR_WRITE_NODE: { pm_class_variable_or_write_node_t *class_variable_or_write_node = (pm_class_variable_or_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); LABEL *start_label = NEW_LABEL(lineno); ADD_INSN(ret, &dummy_line_node, putnil); ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CVAR), ID2SYM(pm_constant_id_lookup(scope_node, class_variable_or_write_node->name)), Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, start_label); ID class_variable_name_id = pm_constant_id_lookup(scope_node, class_variable_or_write_node->name); VALUE class_variable_name_val = ID2SYM(class_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, start_label); PM_COMPILE_NOT_POPPED(class_variable_or_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setclassvariable, class_variable_name_val, get_cvar_ic_value(iseq, class_variable_name_id)); ADD_LABEL(ret, end_label); return; } case PM_CLASS_VARIABLE_READ_NODE: { if (!popped) { pm_class_variable_read_node_t *class_variable_read_node = (pm_class_variable_read_node_t *) node; ID cvar_name = pm_constant_id_lookup(scope_node, class_variable_read_node->name); ADD_INSN2(ret, &dummy_line_node, getclassvariable, ID2SYM(cvar_name), get_cvar_ic_value(iseq, cvar_name)); } return; } case PM_CLASS_VARIABLE_TARGET_NODE: { pm_class_variable_target_node_t *write_node = (pm_class_variable_target_node_t *) node; ID cvar_name = pm_constant_id_lookup(scope_node, write_node->name); ADD_INSN2(ret, &dummy_line_node, setclassvariable, ID2SYM(cvar_name), get_cvar_ic_value(iseq, cvar_name)); return; } case PM_CLASS_VARIABLE_WRITE_NODE: { pm_class_variable_write_node_t *write_node = (pm_class_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(write_node->value); PM_DUP_UNLESS_POPPED; ID cvar_name = pm_constant_id_lookup(scope_node, write_node->name); ADD_INSN2(ret, &dummy_line_node, setclassvariable, ID2SYM(cvar_name), get_cvar_ic_value(iseq, cvar_name)); return; } case PM_CONSTANT_PATH_NODE: { pm_constant_path_node_t *constant_path_node = (pm_constant_path_node_t*) node; if (constant_path_node->parent) { PM_COMPILE_NOT_POPPED(constant_path_node->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); assert(PM_NODE_TYPE_P(constant_path_node->child, PM_CONSTANT_READ_NODE)); pm_constant_read_node_t *child = (pm_constant_read_node_t *) constant_path_node->child; ADD_INSN1(ret, &dummy_line_node, getconstant, ID2SYM(pm_constant_id_lookup(scope_node, child->name))); PM_POP_IF_POPPED; return; } case PM_CONSTANT_PATH_AND_WRITE_NODE: { pm_constant_path_and_write_node_t *constant_path_and_write_node = (pm_constant_path_and_write_node_t*) node; LABEL *lfin = NEW_LABEL(lineno); pm_constant_path_node_t *target = constant_path_and_write_node->target; if (target->parent) { PM_COMPILE_NOT_POPPED(target->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } pm_constant_read_node_t *child = (pm_constant_read_node_t *)target->child; VALUE child_name = ID2SYM(pm_constant_id_lookup(scope_node, child->name)); PM_DUP; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, child_name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, lfin); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(constant_path_and_write_node->value); if (popped) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } else { ADD_INSN1(ret, &dummy_line_node, dupn, INT2FIX(2)); PM_SWAP; } ADD_INSN1(ret, &dummy_line_node, setconstant, child_name); ADD_LABEL(ret, lfin); PM_SWAP_UNLESS_POPPED; PM_POP; return; } case PM_CONSTANT_PATH_OR_WRITE_NODE: { pm_constant_path_or_write_node_t *constant_path_or_write_node = (pm_constant_path_or_write_node_t*) node; LABEL *lassign = NEW_LABEL(lineno); LABEL *lfin = NEW_LABEL(lineno); pm_constant_path_node_t *target = constant_path_or_write_node->target; if (target->parent) { PM_COMPILE_NOT_POPPED(target->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } pm_constant_read_node_t *child = (pm_constant_read_node_t *)target->child; VALUE child_name = ID2SYM(pm_constant_id_lookup(scope_node, child->name)); PM_DUP; ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CONST_FROM), child_name, Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, lassign); PM_DUP; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, child_name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, lfin); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, lassign); PM_COMPILE_NOT_POPPED(constant_path_or_write_node->value); if (popped) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } else { ADD_INSN1(ret, &dummy_line_node, dupn, INT2FIX(2)); PM_SWAP; } ADD_INSN1(ret, &dummy_line_node, setconstant, child_name); ADD_LABEL(ret, lfin); PM_SWAP_UNLESS_POPPED; PM_POP; return; } case PM_CONSTANT_PATH_OPERATOR_WRITE_NODE: { pm_constant_path_operator_write_node_t *constant_path_operator_write_node = (pm_constant_path_operator_write_node_t*) node; pm_constant_path_node_t *target = constant_path_operator_write_node->target; if (target->parent) { PM_COMPILE_NOT_POPPED(target->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } PM_DUP; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); pm_constant_read_node_t *child = (pm_constant_read_node_t *)target->child; VALUE child_name = ID2SYM(pm_constant_id_lookup(scope_node, child->name)); ADD_INSN1(ret, &dummy_line_node, getconstant, child_name); PM_COMPILE_NOT_POPPED(constant_path_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, constant_path_operator_write_node->operator); ADD_CALL(ret, &dummy_line_node, method_id, INT2FIX(1)); PM_SWAP; if (!popped) { ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); PM_SWAP; } ADD_INSN1(ret, &dummy_line_node, setconstant, child_name); return; } case PM_CONSTANT_PATH_TARGET_NODE: { // Constant path targets can be used to indirectly write a constant in // places like rescue references, for loops, and multiple assignment. In // those circumstances, it's necessary to first compile the parent, then // to compile the child. // // Therefore in the main switch case here where we're compiling a // constant path target, we're only going to compile the parent. Then // wherever we've called into pm_compile_node when we're compiling // constant path targets, we'll need to make sure we compile the child // as well. pm_constant_path_target_node_t *cast = (pm_constant_path_target_node_t *) node; if (cast->parent) { PM_COMPILE_NOT_POPPED(cast->parent); } return; } case PM_CONSTANT_PATH_WRITE_NODE: { pm_constant_path_write_node_t *constant_path_write_node = (pm_constant_path_write_node_t*) node; if (constant_path_write_node->target->parent) { PM_COMPILE_NOT_POPPED((pm_node_t *)constant_path_write_node->target->parent); } else { ADD_INSN1(ret, &dummy_line_node, putobject, rb_cObject); } PM_COMPILE_NOT_POPPED(constant_path_write_node->value); if (!popped) { PM_SWAP; ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(1)); } PM_SWAP; VALUE constant_name = ID2SYM(pm_constant_id_lookup(scope_node, ((pm_constant_read_node_t *)constant_path_write_node->target->child)->name)); ADD_INSN1(ret, &dummy_line_node, setconstant, constant_name); return; } case PM_CONSTANT_READ_NODE: { pm_constant_read_node_t *constant_read_node = (pm_constant_read_node_t *) node; PM_PUTNIL; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, ID2SYM(pm_constant_id_lookup(scope_node, constant_read_node->name))); PM_POP_IF_POPPED; return; } case PM_CONSTANT_AND_WRITE_NODE: { pm_constant_and_write_node_t *constant_and_write_node = (pm_constant_and_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); VALUE constant_name = ID2SYM(pm_constant_id_lookup(scope_node, constant_and_write_node->name)); PM_PUTNIL; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, constant_name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(constant_and_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(ret, &dummy_line_node, setconstant, constant_name); ADD_LABEL(ret, end_label); return; } case PM_CONSTANT_OPERATOR_WRITE_NODE: { pm_constant_operator_write_node_t *constant_operator_write_node = (pm_constant_operator_write_node_t*) node; ID constant_name = pm_constant_id_lookup(scope_node, constant_operator_write_node->name); PM_PUTNIL; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, ID2SYM(constant_name)); PM_COMPILE_NOT_POPPED(constant_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, constant_operator_write_node->operator); int flags = VM_CALL_ARGS_SIMPLE; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(flags)); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(ret, &dummy_line_node, setconstant, ID2SYM(constant_name)); return; } case PM_CONSTANT_OR_WRITE_NODE: { pm_constant_or_write_node_t *constant_or_write_node = (pm_constant_or_write_node_t*) node; LABEL *set_label= NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); PM_PUTNIL; VALUE constant_name = ID2SYM(pm_constant_id_lookup(scope_node, constant_or_write_node->name)); ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_CONST), constant_name, Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, set_label); PM_PUTNIL; ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSN1(ret, &dummy_line_node, getconstant, constant_name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, set_label); PM_COMPILE_NOT_POPPED(constant_or_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(ret, &dummy_line_node, setconstant, constant_name); ADD_LABEL(ret, end_label); return; } case PM_CONSTANT_TARGET_NODE: { pm_constant_target_node_t *constant_write_node = (pm_constant_target_node_t *) node; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(ret, &dummy_line_node, setconstant, ID2SYM(pm_constant_id_lookup(scope_node, constant_write_node->name))); return; } case PM_CONSTANT_WRITE_NODE: { pm_constant_write_node_t *constant_write_node = (pm_constant_write_node_t *) node; PM_COMPILE_NOT_POPPED(constant_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); ADD_INSN1(ret, &dummy_line_node, setconstant, ID2SYM(pm_constant_id_lookup(scope_node, constant_write_node->name))); return; } case PM_DEF_NODE: { pm_def_node_t *def_node = (pm_def_node_t *) node; ID method_name = pm_constant_id_lookup(scope_node, def_node->name); pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)def_node, &next_scope_node, scope_node, parser); rb_iseq_t *method_iseq = NEW_ISEQ(next_scope_node, rb_id2str(method_name), ISEQ_TYPE_METHOD, lineno); if (def_node->receiver) { PM_COMPILE_NOT_POPPED(def_node->receiver); ADD_INSN2(ret, &dummy_line_node, definesmethod, ID2SYM(method_name), method_iseq); } else { ADD_INSN2(ret, &dummy_line_node, definemethod, ID2SYM(method_name), method_iseq); } RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)method_iseq); if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, ID2SYM(method_name)); } return; } case PM_DEFINED_NODE: { pm_defined_node_t *defined_node = (pm_defined_node_t *)node; pm_compile_defined_expr(iseq, defined_node->value, ret, src, popped, scope_node, dummy_line_node, lineno, false); return; } case PM_EMBEDDED_STATEMENTS_NODE: { pm_embedded_statements_node_t *embedded_statements_node = (pm_embedded_statements_node_t *)node; if (embedded_statements_node->statements) { PM_COMPILE((pm_node_t *) (embedded_statements_node->statements)); } else { PM_PUTNIL; } PM_POP_IF_POPPED; // TODO: Concatenate the strings that exist here return; } case PM_EMBEDDED_VARIABLE_NODE: { pm_embedded_variable_node_t *embedded_node = (pm_embedded_variable_node_t *)node; PM_COMPILE(embedded_node->variable); return; } case PM_FALSE_NODE: if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); } return; case PM_ENSURE_NODE: { pm_ensure_node_t *ensure_node = (pm_ensure_node_t *)node; LABEL *start = NEW_LABEL(lineno); LABEL *end = NEW_LABEL(lineno); ADD_LABEL(ret, start); if (ensure_node->statements) { ISEQ_COMPILE_DATA(iseq)->end_label = end; PM_COMPILE((pm_node_t *)ensure_node->statements); } ADD_LABEL(ret, end); } case PM_ELSE_NODE: { pm_else_node_t *cast = (pm_else_node_t *)node; if (cast->statements) { PM_COMPILE((pm_node_t *)cast->statements); } else { PM_PUTNIL_UNLESS_POPPED; } return; } case PM_FLIP_FLOP_NODE: { pm_flip_flop_node_t *flip_flop_node = (pm_flip_flop_node_t *)node; LABEL *final_label = NEW_LABEL(lineno); LABEL *then_label = NEW_LABEL(lineno); LABEL *else_label = NEW_LABEL(lineno); pm_compile_flip_flop(flip_flop_node, else_label, then_label, iseq, lineno, ret, src, popped, scope_node); ADD_LABEL(ret, then_label); ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSNL(ret, &dummy_line_node, jump, final_label); ADD_LABEL(ret, else_label); ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); ADD_LABEL(ret, final_label); return; } case PM_FLOAT_NODE: { if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, parse_float(node)); } return; } case PM_FOR_NODE: { pm_for_node_t *for_node = (pm_for_node_t *)node; ISEQ_COMPILE_DATA(iseq)->catch_except_p = true; const rb_iseq_t *child_iseq; const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block; LABEL *retry_label = NEW_LABEL(lineno); LABEL *retry_end_l = NEW_LABEL(lineno); pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)for_node, &next_scope_node, scope_node, parser); pm_constant_id_list_t locals; pm_constant_id_list_init(&locals); ADD_LABEL(ret, retry_label); PM_COMPILE_NOT_POPPED(for_node->collection); child_iseq = NEW_CHILD_ISEQ(next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq; ADD_SEND_WITH_BLOCK(ret, &dummy_line_node, idEach, INT2FIX(0), child_iseq); ADD_LABEL(ret, retry_end_l); PM_POP_IF_POPPED; ISEQ_COMPILE_DATA(iseq)->current_block = prevblock; ADD_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, child_iseq, retry_end_l); return; } case PM_FORWARDING_ARGUMENTS_NODE: { rb_bug("Cannot compile a ForwardingArgumentsNode directly\n"); return; } case PM_FORWARDING_SUPER_NODE: { pm_forwarding_super_node_t *forwarding_super_node = (pm_forwarding_super_node_t *) node; const rb_iseq_t *block = NULL; PM_PUTSELF; int flag = VM_CALL_ZSUPER | VM_CALL_SUPER | VM_CALL_FCALL; if (forwarding_super_node->block) { pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)forwarding_super_node->block, &next_scope_node, scope_node, parser); block = NEW_CHILD_ISEQ(next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)block); } DECL_ANCHOR(args); INIT_ANCHOR(args); struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); const rb_iseq_t *local_iseq = body->local_iseq; const struct rb_iseq_constant_body *const local_body = ISEQ_BODY(local_iseq); int argc = 0; int depth = get_lvar_level(iseq); if (local_body->param.flags.has_lead) { /* required arguments */ for (int i = 0; i < local_body->param.lead_num; i++) { int idx = local_body->local_table_size - i; ADD_GETLOCAL(args, &dummy_line_node, idx, depth); } argc += local_body->param.lead_num; } if (local_body->param.flags.has_opt) { /* optional arguments */ for (int j = 0; j < local_body->param.opt_num; j++) { int idx = local_body->local_table_size - (argc + j); ADD_GETLOCAL(args, &dummy_line_node, idx, depth); } argc += local_body->param.opt_num; } if (local_body->param.flags.has_rest) { /* rest argument */ int idx = local_body->local_table_size - local_body->param.rest_start; ADD_GETLOCAL(args, &dummy_line_node, idx, depth); ADD_INSN1(args, &dummy_line_node, splatarray, Qfalse); argc = local_body->param.rest_start + 1; flag |= VM_CALL_ARGS_SPLAT; } if (local_body->param.flags.has_post) { /* post arguments */ int post_len = local_body->param.post_num; int post_start = local_body->param.post_start; int j = 0; for (; j < post_len; j++) { int idx = local_body->local_table_size - (post_start + j); ADD_GETLOCAL(args, &dummy_line_node, idx, depth); } if (local_body->param.flags.has_rest) { // argc remains unchanged from rest branch ADD_INSN1(args, &dummy_line_node, newarray, INT2FIX(j)); ADD_INSN (args, &dummy_line_node, concatarray); } else { argc = post_len + post_start; } } const struct rb_iseq_param_keyword *const local_keyword = local_body->param.keyword; if (local_body->param.flags.has_kw) { int local_size = local_body->local_table_size; argc++; ADD_INSN1(args, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); if (local_body->param.flags.has_kwrest) { int idx = local_body->local_table_size - local_keyword->rest_start; ADD_GETLOCAL(args, &dummy_line_node, idx, depth); if (local_keyword->num > 0) { ADD_SEND(args, &dummy_line_node, rb_intern("dup"), INT2FIX(0)); flag |= VM_CALL_KW_SPLAT_MUT; } } else { ADD_INSN1(args, &dummy_line_node, newhash, INT2FIX(0)); flag |= VM_CALL_KW_SPLAT_MUT; } int i = 0; for (; i < local_keyword->num; ++i) { ID id = local_keyword->table[i]; int idx = local_size - get_local_var_idx(local_iseq, id); ADD_INSN1(args, &dummy_line_node, putobject, ID2SYM(id)); ADD_GETLOCAL(args, &dummy_line_node, idx, depth); } ADD_SEND(args, &dummy_line_node, id_core_hash_merge_ptr, INT2FIX(i * 2 + 1)); flag |= VM_CALL_KW_SPLAT; } else if (local_body->param.flags.has_kwrest) { int idx = local_body->local_table_size - local_keyword->rest_start; ADD_GETLOCAL(args, &dummy_line_node, idx, depth); argc++; flag |= VM_CALL_KW_SPLAT | VM_CALL_KW_SPLAT_MUT; } ADD_SEQ(ret, args); ADD_INSN2(ret, &dummy_line_node, invokesuper, new_callinfo(iseq, 0, argc, flag, NULL, block != NULL), block); PM_POP_IF_POPPED; return; } case PM_GLOBAL_VARIABLE_AND_WRITE_NODE: { pm_global_variable_and_write_node_t *global_variable_and_write_node = (pm_global_variable_and_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); VALUE global_variable_name = ID2SYM(pm_constant_id_lookup(scope_node, global_variable_and_write_node->name)); ADD_INSN1(ret, &dummy_line_node, getglobal, global_variable_name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(global_variable_and_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, setglobal, global_variable_name); ADD_LABEL(ret, end_label); return; } case PM_GLOBAL_VARIABLE_OPERATOR_WRITE_NODE: { pm_global_variable_operator_write_node_t *global_variable_operator_write_node = (pm_global_variable_operator_write_node_t*) node; VALUE global_variable_name = ID2SYM(pm_constant_id_lookup(scope_node, global_variable_operator_write_node->name)); ADD_INSN1(ret, &dummy_line_node, getglobal, global_variable_name); PM_COMPILE_NOT_POPPED(global_variable_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, global_variable_operator_write_node->operator); int flags = VM_CALL_ARGS_SIMPLE; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(flags)); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, setglobal, global_variable_name); return; } case PM_GLOBAL_VARIABLE_OR_WRITE_NODE: { pm_global_variable_or_write_node_t *global_variable_or_write_node = (pm_global_variable_or_write_node_t*) node; LABEL *set_label= NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); PM_PUTNIL; VALUE global_variable_name = ID2SYM(pm_constant_id_lookup(scope_node, global_variable_or_write_node->name)); ADD_INSN3(ret, &dummy_line_node, defined, INT2FIX(DEFINED_GVAR), global_variable_name, Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, set_label); ADD_INSN1(ret, &dummy_line_node, getglobal, global_variable_name); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, set_label); PM_COMPILE_NOT_POPPED(global_variable_or_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN1(ret, &dummy_line_node, setglobal, global_variable_name); ADD_LABEL(ret, end_label); return; } case PM_GLOBAL_VARIABLE_READ_NODE: { pm_global_variable_read_node_t *global_variable_read_node = (pm_global_variable_read_node_t *)node; VALUE global_variable_name = ID2SYM(pm_constant_id_lookup(scope_node, global_variable_read_node->name)); ADD_INSN1(ret, &dummy_line_node, getglobal, global_variable_name); PM_POP_IF_POPPED; return; } case PM_GLOBAL_VARIABLE_TARGET_NODE: { pm_global_variable_target_node_t *write_node = (pm_global_variable_target_node_t *) node; ID ivar_name = pm_constant_id_lookup(scope_node, write_node->name); ADD_INSN1(ret, &dummy_line_node, setglobal, ID2SYM(ivar_name)); return; } case PM_GLOBAL_VARIABLE_WRITE_NODE: { pm_global_variable_write_node_t *write_node = (pm_global_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(write_node->value); PM_DUP_UNLESS_POPPED; ID ivar_name = pm_constant_id_lookup(scope_node, write_node->name); ADD_INSN1(ret, &dummy_line_node, setglobal, ID2SYM(ivar_name)); return; } case PM_HASH_NODE: { // If every node in the hash is static, then we can compile the entire // hash now instead of later. if (pm_static_literal_p(node)) { // We're only going to compile this node if it's not popped. If it // is popped, then we know we don't need to do anything since it's // statically known. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node, parser); ADD_INSN1(ret, &dummy_line_node, duphash, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } } else { // Here since we know there are possible side-effects inside the // hash contents, we're going to build it entirely at runtime. We'll // do this by pushing all of the key-value pairs onto the stack and // then combining them with newhash. // // If this hash is popped, then this serves only to ensure we enact // all side-effects (like method calls) that are contained within // the hash contents. pm_hash_node_t *cast = (pm_hash_node_t *) node; // Elements must be non-empty, otherwise it would be static literal pm_node_list_t *elements = &cast->elements; pm_node_t *cur_node = elements->nodes[0]; pm_node_type_t cur_type = PM_NODE_TYPE(cur_node); int elements_of_cur_type = 0; int allocated_hashes = 0; if (!PM_NODE_TYPE_P(cur_node, PM_ASSOC_NODE) && !popped) { ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(0)); allocated_hashes++; } for (size_t index = 0; index < elements->size; index++) { pm_node_t *cur_node = elements->nodes[index]; if (!popped) { if (!PM_NODE_TYPE_P(cur_node, cur_type)) { if (!allocated_hashes) { ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(elements_of_cur_type * 2)); } else { if (cur_type == PM_ASSOC_NODE) { ADD_SEND(ret, &dummy_line_node, id_core_hash_merge_ptr, INT2FIX(3)); } else { ADD_SEND(ret, &dummy_line_node, id_core_hash_merge_kwd, INT2FIX(2)); } } ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PM_SWAP; PM_COMPILE(elements->nodes[index]); allocated_hashes++; elements_of_cur_type = 0; cur_type = PM_NODE_TYPE(cur_node); } else { elements_of_cur_type++; PM_COMPILE(elements->nodes[index]); } } else { PM_COMPILE(elements->nodes[index]); } } if (!popped) { if (!allocated_hashes) { ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(elements_of_cur_type * 2)); } else { if (cur_type == PM_ASSOC_NODE) { ADD_SEND(ret, &dummy_line_node, id_core_hash_merge_ptr, INT2FIX(3)); } else { ADD_SEND(ret, &dummy_line_node, id_core_hash_merge_kwd, INT2FIX(2)); } } } } return; } case PM_IF_NODE: { const int line = (int)pm_newline_list_line_column(&(parser->newline_list), node->location.start).line; pm_if_node_t *if_node = (pm_if_node_t *)node; pm_statements_node_t *node_body = if_node->statements; pm_node_t *node_else = if_node->consequent; pm_node_t *predicate = if_node->predicate; pm_compile_if(iseq, line, node_body, node_else, predicate, ret, src, popped, scope_node); return; } case PM_IMAGINARY_NODE: { if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, parse_imaginary((pm_imaginary_node_t *)node)); } return; } case PM_IMPLICIT_NODE: { // Implicit nodes mark places in the syntax tree where explicit syntax // was omitted, but implied. For example, // // { foo: } // // In this case a method call/local variable read is implied by virtue // of the missing value. To compile these nodes, we simply compile the // value that is implied, which is helpfully supplied by the parser. pm_implicit_node_t *cast = (pm_implicit_node_t *)node; PM_COMPILE(cast->value); return; } case PM_IN_NODE: { // In nodes are handled by the case match node directly, so we should // never end up hitting them through this path. rb_bug("Should not ever enter an in node directly"); return; } case PM_INDEX_AND_WRITE_NODE: { pm_index_and_write_node_t *index_and_write_node = (pm_index_and_write_node_t *)node; pm_compile_index_and_or_write_node(true, index_and_write_node->receiver, index_and_write_node->value, index_and_write_node->arguments, index_and_write_node->block, ret, iseq, lineno, src, popped, scope_node, parser); return; } case PM_INDEX_OR_WRITE_NODE: { pm_index_or_write_node_t *index_or_write_node = (pm_index_or_write_node_t *)node; pm_compile_index_and_or_write_node(false, index_or_write_node->receiver, index_or_write_node->value, index_or_write_node->arguments, index_or_write_node->block, ret, iseq, lineno, src, popped, scope_node, parser); return; } case PM_INDEX_OPERATOR_WRITE_NODE: { pm_index_operator_write_node_t *index_operator_write_node = (pm_index_operator_write_node_t *)node; PM_PUTNIL_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(index_operator_write_node->receiver); int flag = 0; struct rb_callinfo_kwarg *keywords = NULL; int argc_int = 0; if (index_operator_write_node->arguments) { argc_int = pm_setup_args(index_operator_write_node->arguments, &flag, &keywords, iseq, ret, src, popped, scope_node, dummy_line_node, parser); } VALUE argc = INT2FIX(argc_int); int block_offset = 0; if (index_operator_write_node->block) { PM_COMPILE_NOT_POPPED(index_operator_write_node->block); flag |= VM_CALL_ARGS_BLOCKARG; block_offset = 1; } ADD_INSN1(ret, &dummy_line_node, dupn, FIXNUM_INC(argc, 1 + block_offset)); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idAREF, argc, INT2FIX(flag)); PM_COMPILE_NOT_POPPED(index_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, index_operator_write_node->operator); ADD_SEND(ret, &dummy_line_node, method_id, INT2FIX(1)); pm_compile_index_write_nodes_add_send(popped, ret, iseq, dummy_line_node, argc, flag, block_offset); return; } case PM_INDEX_TARGET_NODE: { // Index targets can be used to indirectly call a method in places like // rescue references, for loops, and multiple assignment. In those // circumstances, it's necessary to first compile the receiver and // arguments, then to compile the method call itself. // // Therefore in the main switch case here where we're compiling a index // target, we're only going to compile the receiver and arguments. Then // wherever we've called into pm_compile_node when we're compiling index // targets, we'll need to make sure we compile the method call as well. // // Note that index target nodes can have blocks attached to them in the // form of the & operator. These blocks should almost always be compiled // _after_ the value that is being written is added to the argument // list, so we don't compile them here. Therefore at the places where // these nodes are handled, blocks also need to be handled. pm_index_target_node_t *cast = (pm_index_target_node_t*) node; PM_COMPILE_NOT_POPPED(cast->receiver); if (cast->arguments != NULL) { int flags; struct rb_callinfo_kwarg *keywords = NULL; pm_setup_args(cast->arguments, &flags, &keywords, iseq, ret, src, false, scope_node, dummy_line_node, parser); } return; } case PM_INSTANCE_VARIABLE_AND_WRITE_NODE: { pm_instance_variable_and_write_node_t *instance_variable_and_write_node = (pm_instance_variable_and_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); ID instance_variable_name_id = pm_constant_id_lookup(scope_node, instance_variable_and_write_node->name); VALUE instance_variable_name_val = ID2SYM(instance_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(instance_variable_and_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); ADD_LABEL(ret, end_label); return; } case PM_INSTANCE_VARIABLE_OPERATOR_WRITE_NODE: { pm_instance_variable_operator_write_node_t *instance_variable_operator_write_node = (pm_instance_variable_operator_write_node_t*) node; ID instance_variable_name_id = pm_constant_id_lookup(scope_node, instance_variable_operator_write_node->name); VALUE instance_variable_name_val = ID2SYM(instance_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); PM_COMPILE_NOT_POPPED(instance_variable_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, instance_variable_operator_write_node->operator); int flags = VM_CALL_ARGS_SIMPLE; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(flags)); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); return; } case PM_INSTANCE_VARIABLE_OR_WRITE_NODE: { pm_instance_variable_or_write_node_t *instance_variable_or_write_node = (pm_instance_variable_or_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); ID instance_variable_name_id = pm_constant_id_lookup(scope_node, instance_variable_or_write_node->name); VALUE instance_variable_name_val = ID2SYM(instance_variable_name_id); ADD_INSN2(ret, &dummy_line_node, getinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(instance_variable_or_write_node->value); PM_DUP_UNLESS_POPPED; ADD_INSN2(ret, &dummy_line_node, setinstancevariable, instance_variable_name_val, get_ivar_ic_value(iseq, instance_variable_name_id)); ADD_LABEL(ret, end_label); return; } case PM_INSTANCE_VARIABLE_READ_NODE: { if (!popped) { pm_instance_variable_read_node_t *instance_variable_read_node = (pm_instance_variable_read_node_t *) node; ID ivar_name = pm_constant_id_lookup(scope_node, instance_variable_read_node->name); ADD_INSN2(ret, &dummy_line_node, getinstancevariable, ID2SYM(ivar_name), get_ivar_ic_value(iseq, ivar_name)); } return; } case PM_INSTANCE_VARIABLE_TARGET_NODE: { pm_instance_variable_target_node_t *write_node = (pm_instance_variable_target_node_t *) node; ID ivar_name = pm_constant_id_lookup(scope_node, write_node->name); ADD_INSN2(ret, &dummy_line_node, setinstancevariable, ID2SYM(ivar_name), get_ivar_ic_value(iseq, ivar_name)); return; } case PM_INSTANCE_VARIABLE_WRITE_NODE: { pm_instance_variable_write_node_t *write_node = (pm_instance_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(write_node->value); PM_DUP_UNLESS_POPPED; ID ivar_name = pm_constant_id_lookup(scope_node, write_node->name); ADD_INSN2(ret, &dummy_line_node, setinstancevariable, ID2SYM(ivar_name), get_ivar_ic_value(iseq, ivar_name)); return; } case PM_INTEGER_NODE: { if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, parse_integer((pm_integer_node_t *) node)); } return; } case PM_INTERPOLATED_MATCH_LAST_LINE_NODE: { pm_interpolated_match_last_line_node_t *cast = (pm_interpolated_match_last_line_node_t *) node; int parts_size = (int)cast->parts.size; if (parts_size > 0 && !PM_NODE_TYPE_P(cast->parts.nodes[0], PM_STRING_NODE)) { ADD_INSN1(ret, &dummy_line_node, putobject, rb_str_new(0, 0)); parts_size++; } pm_interpolated_node_compile(&cast->parts, iseq, dummy_line_node, ret, src, popped, scope_node, parser); ADD_INSN2(ret, &dummy_line_node, toregexp, INT2FIX(pm_reg_flags(node)), INT2FIX(parts_size)); ADD_INSN1(ret, &dummy_line_node, getglobal, rb_id2sym(idLASTLINE)); ADD_SEND(ret, &dummy_line_node, idEqTilde, INT2NUM(1)); PM_POP_IF_POPPED; return; } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { if (node->flags & PM_REGULAR_EXPRESSION_FLAGS_ONCE) { const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block; const rb_iseq_t *block_iseq = NULL; int ic_index = ISEQ_BODY(iseq)->ise_size++; pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t*)node, &next_scope_node, scope_node, parser); block_iseq = NEW_CHILD_ISEQ(next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq; ADD_INSN2(ret, &dummy_line_node, once, block_iseq, INT2FIX(ic_index)); ISEQ_COMPILE_DATA(iseq)->current_block = prevblock; return; } pm_interpolated_regular_expression_node_t *cast = (pm_interpolated_regular_expression_node_t *) node; int parts_size = (int)cast->parts.size; if (cast->parts.size > 0 && !PM_NODE_TYPE_P(cast->parts.nodes[0], PM_STRING_NODE)) { ADD_INSN1(ret, &dummy_line_node, putobject, rb_str_new(0, 0)); parts_size++; } pm_interpolated_node_compile(&cast->parts, iseq, dummy_line_node, ret, src, popped, scope_node, parser); ADD_INSN2(ret, &dummy_line_node, toregexp, INT2FIX(pm_reg_flags(node)), INT2FIX(parts_size)); PM_POP_IF_POPPED; return; } case PM_INTERPOLATED_STRING_NODE: { pm_interpolated_string_node_t *interp_string_node = (pm_interpolated_string_node_t *) node; int number_of_items_pushed = pm_interpolated_node_compile(&interp_string_node->parts, iseq, dummy_line_node, ret, src, popped, scope_node, parser); if (number_of_items_pushed > 1) { ADD_INSN1(ret, &dummy_line_node, concatstrings, INT2FIX(number_of_items_pushed)); } PM_POP_IF_POPPED; return; } case PM_INTERPOLATED_SYMBOL_NODE: { pm_interpolated_symbol_node_t *interp_symbol_node = (pm_interpolated_symbol_node_t *) node; int number_of_items_pushed = pm_interpolated_node_compile(&interp_symbol_node->parts, iseq, dummy_line_node, ret, src, popped, scope_node, parser); if (number_of_items_pushed > 1) { ADD_INSN1(ret, &dummy_line_node, concatstrings, INT2FIX(number_of_items_pushed)); } if (!popped) { ADD_INSN(ret, &dummy_line_node, intern); } else { PM_POP; } return; } case PM_INTERPOLATED_X_STRING_NODE: { pm_interpolated_x_string_node_t *interp_x_string_node = (pm_interpolated_x_string_node_t *) node; PM_PUTSELF; int number_of_items_pushed = pm_interpolated_node_compile(&interp_x_string_node->parts, iseq, dummy_line_node, ret, src, false, scope_node, parser); if (number_of_items_pushed > 1) { ADD_INSN1(ret, &dummy_line_node, concatstrings, INT2FIX(number_of_items_pushed)); } ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE)); PM_POP_IF_POPPED; return; } case PM_KEYWORD_HASH_NODE: { pm_keyword_hash_node_t *keyword_hash_node = (pm_keyword_hash_node_t *) node; pm_node_list_t elements = keyword_hash_node->elements; for (size_t index = 0; index < elements.size; index++) { PM_COMPILE(elements.nodes[index]); } if (!popped) { ADD_INSN1(ret, &dummy_line_node, newhash, INT2FIX(elements.size * 2)); } return; } case PM_LAMBDA_NODE: { pm_scope_node_t next_scope_node; pm_scope_node_init(node, &next_scope_node, scope_node, parser); const rb_iseq_t *block = NEW_CHILD_ISEQ(next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); VALUE argc = INT2FIX(0); ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_CALL_WITH_BLOCK(ret, &dummy_line_node, idLambda, argc, block); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)block); PM_POP_IF_POPPED; return; } case PM_LOCAL_VARIABLE_AND_WRITE_NODE: { pm_local_variable_and_write_node_t *local_variable_and_write_node = (pm_local_variable_and_write_node_t*) node; LABEL *end_label = NEW_LABEL(lineno); pm_constant_id_t constant_id = local_variable_and_write_node->name; int depth = local_variable_and_write_node->depth + scope_node->local_depth_offset; int local_index = pm_lookup_local_index_with_depth(iseq, scope_node, constant_id, depth); ADD_GETLOCAL(ret, &dummy_line_node, local_index, depth); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchunless, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE_NOT_POPPED(local_variable_and_write_node->value); PM_DUP_UNLESS_POPPED; ADD_SETLOCAL(ret, &dummy_line_node, local_index, depth); ADD_LABEL(ret, end_label); return; } case PM_LOCAL_VARIABLE_OPERATOR_WRITE_NODE: { pm_local_variable_operator_write_node_t *local_variable_operator_write_node = (pm_local_variable_operator_write_node_t*) node; pm_constant_id_t constant_id = local_variable_operator_write_node->name; int depth = local_variable_operator_write_node->depth + scope_node->local_depth_offset; int local_index = pm_lookup_local_index_with_depth(iseq, scope_node, constant_id, depth); ADD_GETLOCAL(ret, &dummy_line_node, local_index, depth); PM_COMPILE_NOT_POPPED(local_variable_operator_write_node->value); ID method_id = pm_constant_id_lookup(scope_node, local_variable_operator_write_node->operator); int flags = VM_CALL_ARGS_SIMPLE | VM_CALL_FCALL | VM_CALL_VCALL; ADD_SEND_WITH_FLAG(ret, &dummy_line_node, method_id, INT2NUM(1), INT2FIX(flags)); PM_DUP_UNLESS_POPPED; ADD_SETLOCAL(ret, &dummy_line_node, local_index, depth); return; } case PM_LOCAL_VARIABLE_OR_WRITE_NODE: { pm_local_variable_or_write_node_t *local_variable_or_write_node = (pm_local_variable_or_write_node_t*) node; LABEL *set_label= NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSNL(ret, &dummy_line_node, branchunless, set_label); pm_constant_id_t constant_id = local_variable_or_write_node->name; int depth = local_variable_or_write_node->depth + scope_node->local_depth_offset; int local_index = pm_lookup_local_index_with_depth(iseq, scope_node, constant_id, depth); ADD_GETLOCAL(ret, &dummy_line_node, local_index, depth); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; ADD_LABEL(ret, set_label); PM_COMPILE_NOT_POPPED(local_variable_or_write_node->value); PM_DUP_UNLESS_POPPED; ADD_SETLOCAL(ret, &dummy_line_node, local_index, depth); ADD_LABEL(ret, end_label); return; } case PM_LOCAL_VARIABLE_READ_NODE: { pm_local_variable_read_node_t *local_read_node = (pm_local_variable_read_node_t *) node; if (!popped) { int index = pm_lookup_local_index_with_depth(iseq, scope_node, local_read_node->name, local_read_node->depth); ADD_GETLOCAL(ret, &dummy_line_node, index, local_read_node->depth + scope_node->local_depth_offset); } return; } case PM_LOCAL_VARIABLE_TARGET_NODE: { pm_local_variable_target_node_t *local_write_node = (pm_local_variable_target_node_t *) node; pm_constant_id_t constant_id = local_write_node->name; int found_depth = 0; int index = pm_lookup_local_index_any_scope(iseq, scope_node, constant_id, &found_depth); ADD_SETLOCAL(ret, &dummy_line_node, index, found_depth); return; } case PM_LOCAL_VARIABLE_WRITE_NODE: { pm_local_variable_write_node_t *local_write_node = (pm_local_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(local_write_node->value); PM_DUP_UNLESS_POPPED; pm_constant_id_t constant_id = local_write_node->name; int found_depth = 0; int index = pm_lookup_local_index_any_scope(iseq, scope_node, constant_id, &found_depth); ADD_SETLOCAL(ret, &dummy_line_node, index, found_depth); return; } case PM_MATCH_LAST_LINE_NODE: { if (!popped) { pm_match_last_line_node_t *cast = (pm_match_last_line_node_t *) node; VALUE regex_str = parse_string(&cast->unescaped, parser); VALUE regex = rb_reg_new(RSTRING_PTR(regex_str), RSTRING_LEN(regex_str), pm_reg_flags(node)); ADD_INSN1(ret, &dummy_line_node, putobject, regex); ADD_INSN2(ret, &dummy_line_node, getspecial, INT2FIX(0), INT2FIX(0)); ADD_SEND(ret, &dummy_line_node, idEqTilde, INT2NUM(1)); } return; } case PM_MATCH_PREDICATE_NODE: { pm_match_predicate_node_t *cast = (pm_match_predicate_node_t *) node; // First, allocate some stack space for the cached return value of any // calls to #deconstruct. PM_PUTNIL; // Next, compile the expression that we're going to match against. PM_COMPILE_NOT_POPPED(cast->value); PM_DUP; // Now compile the pattern that is going to be used to match against the // expression. LABEL *matched_label = NEW_LABEL(lineno); LABEL *unmatched_label = NEW_LABEL(lineno); LABEL *done_label = NEW_LABEL(lineno); pm_compile_pattern(iseq, scope_node, cast->pattern, ret, src, matched_label, unmatched_label, false, false, true, 2); // If the pattern did not match, then compile the necessary instructions // to handle pushing false onto the stack, then jump to the end. ADD_LABEL(ret, unmatched_label); PM_POP; PM_POP; if (!popped) ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); ADD_INSNL(ret, &dummy_line_node, jump, done_label); PM_PUTNIL; // If the pattern did match, then compile the necessary instructions to // handle pushing true onto the stack, then jump to the end. ADD_LABEL(ret, matched_label); ADD_INSN1(ret, &dummy_line_node, adjuststack, INT2FIX(2)); if (!popped) ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); ADD_INSNL(ret, &dummy_line_node, jump, done_label); ADD_LABEL(ret, done_label); return; } case PM_MATCH_REQUIRED_NODE: { // A match required node represents pattern matching against a single // pattern using the => operator. For example, // // foo => bar // // This is somewhat analogous to compiling a case match statement with a // single pattern. In both cases, if the pattern fails it should // immediately raise an error. const pm_match_required_node_t *cast = (const pm_match_required_node_t *) node; LABEL *matched_label = NEW_LABEL(lineno); LABEL *unmatched_label = NEW_LABEL(lineno); LABEL *done_label = NEW_LABEL(lineno); // First, we're going to push a bunch of stuff onto the stack that is // going to serve as our scratch space. ADD_INSN(ret, &dummy_line_node, putnil); // key error key ADD_INSN(ret, &dummy_line_node, putnil); // key error matchee ADD_INSN1(ret, &dummy_line_node, putobject, Qfalse); // key error? ADD_INSN(ret, &dummy_line_node, putnil); // error string ADD_INSN(ret, &dummy_line_node, putnil); // deconstruct cache // Next we're going to compile the value expression such that it's on // the stack. PM_COMPILE_NOT_POPPED(cast->value); // Here we'll dup it so that it can be used for comparison, but also be // used for error handling. ADD_INSN(ret, &dummy_line_node, dup); // Next we'll compile the pattern. We indicate to the pm_compile_pattern // function that this is the only pattern that will be matched against // through the in_single_pattern parameter. We also indicate that the // value to compare against is 2 slots from the top of the stack (the // base_index parameter). pm_compile_pattern(iseq, scope_node, cast->pattern, ret, src, matched_label, unmatched_label, true, false, true, 2); // If the pattern did not match the value, then we're going to compile // in our error handler code. This will determine which error to raise // and raise it. ADD_LABEL(ret, unmatched_label); pm_compile_pattern_error_handler(iseq, scope_node, node, ret, src, done_label, popped); // If the pattern did match, we'll clean up the values we've pushed onto // the stack and then push nil onto the stack if it's not popped. ADD_LABEL(ret, matched_label); ADD_INSN1(ret, &dummy_line_node, adjuststack, INT2FIX(6)); if (!popped) ADD_INSN(ret, &dummy_line_node, putnil); ADD_INSNL(ret, &dummy_line_node, jump, done_label); ADD_LABEL(ret, done_label); return; } case PM_MATCH_WRITE_NODE: { // Match write nodes are specialized call nodes that have a regular // expression with valid named capture groups on the left, the =~ // operator, and some value on the right. The nodes themselves simply // wrap the call with the local variable targets that will be written // when the call is executed. pm_match_write_node_t *cast = (pm_match_write_node_t *) node; LABEL *fail_label = NEW_LABEL(lineno); LABEL *end_label = NEW_LABEL(lineno); // First, we'll compile the call so that all of its instructions are // present. Then we'll compile all of the local variable targets. PM_COMPILE_NOT_POPPED((pm_node_t *) cast->call); // Now, check if the match was successful. If it was, then we'll // continue on and assign local variables. Otherwise we'll skip over the // assignment code. ADD_INSN1(ret, &dummy_line_node, getglobal, rb_id2sym(idBACKREF)); PM_DUP; ADD_INSNL(ret, &dummy_line_node, branchunless, fail_label); // If there's only a single local variable target, we can skip some of // the bookkeeping, so we'll put a special branch here. size_t targets_count = cast->targets.size; if (targets_count == 1) { pm_node_t *target = cast->targets.nodes[0]; assert(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE)); pm_local_variable_target_node_t *local_target = (pm_local_variable_target_node_t *) target; int index = pm_lookup_local_index(iseq, scope_node, local_target->name); ADD_INSN1(ret, &dummy_line_node, putobject, rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name))); ADD_SEND(ret, &dummy_line_node, idAREF, INT2FIX(1)); ADD_LABEL(ret, fail_label); ADD_SETLOCAL(ret, &dummy_line_node, index, (int) local_target->depth); PM_POP_IF_POPPED; return; } // Otherwise there is more than one local variable target, so we'll need // to do some bookkeeping. for (size_t targets_index = 0; targets_index < targets_count; targets_index++) { pm_node_t *target = cast->targets.nodes[targets_index]; assert(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE)); pm_local_variable_target_node_t *local_target = (pm_local_variable_target_node_t *) target; int index = pm_lookup_local_index(iseq, scope_node, local_target->name); if (((size_t) targets_index) < (targets_count - 1)) { PM_DUP; } ADD_INSN1(ret, &dummy_line_node, putobject, rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name))); ADD_SEND(ret, &dummy_line_node, idAREF, INT2FIX(1)); ADD_SETLOCAL(ret, &dummy_line_node, index, (int) local_target->depth); } // Since we matched successfully, now we'll jump to the end. ADD_INSNL(ret, &dummy_line_node, jump, end_label); // In the case that the match failed, we'll loop through each local // variable target and set all of them to `nil`. ADD_LABEL(ret, fail_label); PM_POP; for (size_t targets_index = 0; targets_index < targets_count; targets_index++) { pm_node_t *target = cast->targets.nodes[targets_index]; assert(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE)); pm_local_variable_target_node_t *local_target = (pm_local_variable_target_node_t *) target; int index = pm_lookup_local_index(iseq, scope_node, local_target->name); PM_PUTNIL; ADD_SETLOCAL(ret, &dummy_line_node, index, (int) local_target->depth); } // Finally, we can push the end label for either case. PM_POP_IF_POPPED; ADD_LABEL(ret, end_label); return; } case PM_MISSING_NODE: { rb_bug("A pm_missing_node_t should not exist in prism's AST."); return; } case PM_MODULE_NODE: { pm_module_node_t *module_node = (pm_module_node_t *)node; pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)module_node, &next_scope_node, scope_node, parser); ID module_id = pm_constant_id_lookup(scope_node, module_node->name); VALUE module_name = rb_str_freeze(rb_sprintf("", rb_id2str(module_id))); const rb_iseq_t *module_iseq = NEW_CHILD_ISEQ(next_scope_node, module_name, ISEQ_TYPE_CLASS, lineno); const int flags = VM_DEFINECLASS_TYPE_MODULE | pm_compile_class_path(ret, iseq, module_node->constant_path, &dummy_line_node, src, false, scope_node); PM_PUTNIL; ADD_INSN3(ret, &dummy_line_node, defineclass, ID2SYM(module_id), module_iseq, INT2FIX(flags)); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)module_iseq); PM_POP_IF_POPPED; return; } case PM_REQUIRED_PARAMETER_NODE: { pm_required_parameter_node_t *required_parameter_node = (pm_required_parameter_node_t *)node; int index = pm_lookup_local_index(iseq, scope_node, required_parameter_node->name); ADD_SETLOCAL(ret, &dummy_line_node, index, 0); return; } case PM_MULTI_TARGET_NODE: { pm_multi_target_node_t *cast = (pm_multi_target_node_t *) node; bool has_rest_expression = (cast->rest && PM_NODE_TYPE_P(cast->rest, PM_SPLAT_NODE) && (((pm_splat_node_t *)cast->rest)->expression)); int flag = (int) (bool) cast->rights.size || has_rest_expression; ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(cast->lefts.size), INT2FIX(flag)); for (size_t index = 0; index < cast->lefts.size; index++) { PM_COMPILE_NOT_POPPED(cast->lefts.nodes[index]); } if (has_rest_expression) { if (cast->rights.size) { ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(cast->rights.size), INT2FIX(3)); } pm_node_t *expression = ((pm_splat_node_t *)cast->rest)->expression; PM_COMPILE_NOT_POPPED(expression); } if (cast->rights.size) { if (!has_rest_expression) { ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(cast->rights.size), INT2FIX(2)); } for (size_t index = 0; index < cast->rights.size; index++) { PM_COMPILE_NOT_POPPED(cast->rights.nodes[index]); } } return; } case PM_MULTI_WRITE_NODE: { pm_multi_write_node_t *multi_write_node = (pm_multi_write_node_t *)node; pm_node_list_t *lefts = &multi_write_node->lefts; pm_node_list_t *rights = &multi_write_node->rights; size_t argc = 1; // pre-process the left hand side of multi-assignments. uint8_t pushed = 0; for (size_t index = 0; index < lefts->size; index++) { pushed = pm_compile_multi_write_lhs(iseq, dummy_line_node, src, popped, lefts->nodes[index], ret, scope_node, pushed, false); } PM_COMPILE_NOT_POPPED(multi_write_node->value); PM_DUP_UNLESS_POPPED; pm_node_t *rest_expression = NULL; if (multi_write_node->rest && PM_NODE_TYPE_P(multi_write_node->rest, PM_SPLAT_NODE)) { pm_splat_node_t *rest_splat = ((pm_splat_node_t *)multi_write_node->rest); rest_expression = rest_splat->expression; } size_t remainder = pushed; if (popped) remainder--; if (lefts->size) { ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(lefts->size), INT2FIX((int) (bool) (rights->size || rest_expression))); for (size_t index = 0; index < lefts->size; index++) { pm_node_t *considered_node = lefts->nodes[index]; if (PM_NODE_TYPE_P(considered_node, PM_CONSTANT_PATH_TARGET_NODE) && pushed > 0) { pm_constant_path_target_node_t *cast = (pm_constant_path_target_node_t *) considered_node; ID name = pm_constant_id_lookup(scope_node, ((pm_constant_read_node_t * ) cast->child)->name); pushed -= 2; ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(pushed)); ADD_INSN1(ret, &dummy_line_node, setconstant, ID2SYM(name)); } else if (PM_NODE_TYPE_P(considered_node, PM_INDEX_TARGET_NODE)) { pm_index_target_node_t *cast = (pm_index_target_node_t *)considered_node; if (cast->arguments) { pm_arguments_node_t *args = (pm_arguments_node_t *)cast->arguments; argc = args->arguments.size + 1; } if (argc == 1) { ADD_INSN(ret, &dummy_line_node, swap); } else { VALUE vals = INT2FIX(remainder + (lefts->size - index)); ADD_INSN1(ret, &dummy_line_node, topn, vals); for (size_t i = 1; i < argc; i++) { ADD_INSN1(ret, &dummy_line_node, topn, vals); } ADD_INSN1(ret, &dummy_line_node, topn, INT2FIX(argc)); } ADD_SEND(ret, &dummy_line_node, idASET, INT2FIX(argc)); PM_POP; PM_POP; remainder -= argc; } else if (PM_NODE_TYPE_P(considered_node, PM_CALL_TARGET_NODE)) { pm_call_target_node_t *cast = (pm_call_target_node_t *)considered_node; VALUE vals = INT2FIX(remainder + (lefts->size - index)); ADD_INSN1(ret, &dummy_line_node, topn, vals); ADD_INSN(ret, &dummy_line_node, swap); ID method_id = pm_constant_id_lookup(scope_node, cast->name); ADD_SEND(ret, &dummy_line_node, method_id, INT2FIX(argc)); PM_POP; remainder -= argc; } else { PM_COMPILE(lefts->nodes[index]); } } } if ((pushed)) { if (!popped) { ADD_INSN1(ret, &dummy_line_node, setn, INT2FIX(pushed)); } for (uint8_t index = 0; index < (pushed); index++) { PM_POP; } } if (rights->size) { if (rest_expression) { ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(rights->size), INT2FIX(3)); PM_COMPILE(rest_expression); } else { ADD_INSN2(ret, &dummy_line_node, expandarray, INT2FIX(rights->size), INT2FIX(2)); } for (size_t index = 0; index < rights->size; index++) { PM_COMPILE(rights->nodes[index]); } } else if (rest_expression) { PM_COMPILE(rest_expression); } return; } case PM_NEXT_NODE: { pm_next_node_t *next_node = (pm_next_node_t *) node; if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); if (next_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)next_node->arguments); } else { PM_PUTNIL; } pm_add_ensure_iseq(ret, iseq, 0, src, scope_node); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->redo_label); ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->start_label); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else if (ISEQ_COMPILE_DATA(iseq)->end_label && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->start_label); if (next_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)next_node->arguments); } else { PM_PUTNIL; } pm_add_ensure_iseq(ret, iseq, 0, src, scope_node); ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->end_label); ADD_ADJUST_RESTORE(ret, splabel); splabel->unremovable = FALSE; PM_PUTNIL_UNLESS_POPPED; } else { const rb_iseq_t *ip = iseq; unsigned long throw_flag = 0; while (ip) { if (!ISEQ_COMPILE_DATA(ip)) { ip = 0; break; } throw_flag = VM_THROW_NO_ESCAPE_FLAG; if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) { /* while loop */ break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) { break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) { rb_raise(rb_eSyntaxError, "Can't escape from eval with next"); return; } ip = ISEQ_BODY(ip)->parent_iseq; } if (ip != 0) { if (next_node->arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)next_node->arguments); } else { PM_PUTNIL; } ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(throw_flag | TAG_NEXT)); PM_POP_IF_POPPED; } else { rb_raise(rb_eArgError, "Invalid next"); return; } } return; } case PM_NIL_NODE: PM_PUTNIL_UNLESS_POPPED return; case PM_NO_KEYWORDS_PARAMETER_NODE: { ISEQ_BODY(iseq)->param.flags.accepts_no_kwarg = TRUE; return; } case PM_NUMBERED_REFERENCE_READ_NODE: { if (!popped) { uint32_t reference_number = ((pm_numbered_reference_read_node_t *)node)->number; ADD_INSN2(ret, &dummy_line_node, getspecial, INT2FIX(1), INT2FIX(reference_number << 1)); } return; } case PM_OR_NODE: { pm_or_node_t *or_node = (pm_or_node_t *) node; LABEL *end_label = NEW_LABEL(lineno); PM_COMPILE_NOT_POPPED(or_node->left); PM_DUP_UNLESS_POPPED; ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_POP_UNLESS_POPPED; PM_COMPILE(or_node->right); ADD_LABEL(ret, end_label); return; } case PM_OPTIONAL_PARAMETER_NODE: { pm_optional_parameter_node_t *optional_parameter_node = (pm_optional_parameter_node_t *)node; PM_COMPILE_NOT_POPPED(optional_parameter_node->value); int index = pm_lookup_local_index(iseq, scope_node, optional_parameter_node->name); ADD_SETLOCAL(ret, &dummy_line_node, index, 0); return; } case PM_PARAMETERS_NODE: { rb_bug("Cannot compile a ParametersNode directly\n"); return; } case PM_PARENTHESES_NODE: { pm_parentheses_node_t *parentheses_node = (pm_parentheses_node_t *) node; if (parentheses_node->body == NULL) { PM_PUTNIL_UNLESS_POPPED; } else { PM_COMPILE(parentheses_node->body); } return; } case PM_PRE_EXECUTION_NODE: { pm_pre_execution_node_t *pre_execution_node = (pm_pre_execution_node_t *) node; DECL_ANCHOR(pre_ex); INIT_ANCHOR(pre_ex); if (pre_execution_node->statements) { pm_node_list_t node_list = pre_execution_node->statements->body; for (size_t index = 0; index < node_list.size; index++) { pm_compile_node(iseq, node_list.nodes[index], pre_ex, src, true, scope_node); } } if (!popped) { ADD_INSN(pre_ex, &dummy_line_node, putnil); } pre_ex->last->next = ret->anchor.next; ret->anchor.next = pre_ex->anchor.next; ret->anchor.next->prev = pre_ex->anchor.next; if (ret->last == (LINK_ELEMENT *)ret) { ret->last = pre_ex->last; } return; } case PM_POST_EXECUTION_NODE: { const rb_iseq_t *child_iseq; const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block; pm_scope_node_t next_scope_node; pm_scope_node_init(node, &next_scope_node, scope_node, parser); child_iseq = NEW_CHILD_ISEQ(next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq; int is_index = ISEQ_BODY(iseq)->ise_size++; ADD_INSN2(ret, &dummy_line_node, once, child_iseq, INT2FIX(is_index)); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)child_iseq); PM_POP_IF_POPPED; ISEQ_COMPILE_DATA(iseq)->current_block = prevblock; return; } case PM_PROGRAM_NODE: { rb_bug("Cannot compile a ProgramNode directly\n"); return; } case PM_RANGE_NODE: { pm_range_node_t *range_node = (pm_range_node_t *) node; bool exclusive = (range_node->operator_loc.end - range_node->operator_loc.start) == 3; if (pm_optimizable_range_item_p(range_node->left) && pm_optimizable_range_item_p(range_node->right)) { if (!popped) { pm_node_t *left = range_node->left; pm_node_t *right = range_node->right; VALUE val = rb_range_new( left && PM_NODE_TYPE_P(left, PM_INTEGER_NODE) ? parse_integer((pm_integer_node_t *) left) : Qnil, right && PM_NODE_TYPE_P(right, PM_INTEGER_NODE) ? parse_integer((pm_integer_node_t *) right) : Qnil, exclusive ); ADD_INSN1(ret, &dummy_line_node, putobject, val); RB_OBJ_WRITTEN(iseq, Qundef, val); } } else { if (range_node->left == NULL) { PM_PUTNIL; } else { PM_COMPILE(range_node->left); } if (range_node->right == NULL) { PM_PUTNIL; } else { PM_COMPILE(range_node->right); } if (!popped) { ADD_INSN1(ret, &dummy_line_node, newrange, INT2FIX(exclusive)); } } return; } case PM_RATIONAL_NODE: { if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, parse_rational(node)); } return; } case PM_REDO_NODE: { if (ISEQ_COMPILE_DATA(iseq)->redo_label && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->redo_label); pm_add_ensure_iseq(ret, iseq, 0, src, scope_node); ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->redo_label); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else if (ISEQ_BODY(iseq)->type != ISEQ_TYPE_EVAL && ISEQ_COMPILE_DATA(iseq)->start_label && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); pm_add_ensure_iseq(ret, iseq, 0, src, scope_node); ADD_ADJUST(ret, &dummy_line_node, ISEQ_COMPILE_DATA(iseq)->start_label); ADD_INSNL(ret, &dummy_line_node, jump, ISEQ_COMPILE_DATA(iseq)->start_label); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else { const rb_iseq_t *ip = iseq; while (ip) { if (!ISEQ_COMPILE_DATA(ip)) { ip = 0; break; } if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) { break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) { break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) { rb_bug("Invalid redo\n"); } ip = ISEQ_BODY(ip)->parent_iseq; } if (ip != 0) { PM_PUTNIL; ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(VM_THROW_NO_ESCAPE_FLAG | TAG_REDO)); PM_POP_IF_POPPED; } else { rb_bug("Invalid redo\n"); } } return; } case PM_REGULAR_EXPRESSION_NODE: { if (!popped) { pm_regular_expression_node_t *cast = (pm_regular_expression_node_t *) node; VALUE regex = pm_new_regex(cast, parser); ADD_INSN1(ret, &dummy_line_node, putobject, regex); } return; } case PM_RESCUE_NODE: { pm_rescue_node_t *cast = (pm_rescue_node_t *) node; iseq_set_exception_local_table(iseq); // First, establish the labels that we need to be able to jump to within // this compilation block. LABEL *exception_match_label = NEW_LABEL(lineno); LABEL *rescue_end_label = NEW_LABEL(lineno); ISEQ_COMPILE_DATA(iseq)->end_label = rescue_end_label; // Next, compile each of the exceptions that we're going to be // handling. For each one, we'll add instructions to check if the // exception matches the raised one, and if it does then jump to the // exception_match_label label. Otherwise it will fall through to the // subsequent check. If there are no exceptions, we'll only check // StandardError. pm_node_list_t *exceptions = &cast->exceptions; if (exceptions->size > 0) { for (size_t index = 0; index < exceptions->size; index++) { ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); PM_COMPILE(exceptions->nodes[index]); ADD_INSN1(ret, &dummy_line_node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE)); ADD_INSN1(ret, &dummy_line_node, branchif, exception_match_label); } } else { ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); ADD_INSN1(ret, &dummy_line_node, putobject, rb_eStandardError); ADD_INSN1(ret, &dummy_line_node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE)); ADD_INSN1(ret, &dummy_line_node, branchif, exception_match_label); } // If none of the exceptions that we are matching against matched, then // we'll jump straight to the rescue_end_label label. ADD_INSN1(ret, &dummy_line_node, jump, rescue_end_label); // Here we have the exception_match_label, which is where the // control-flow goes in the case that one of the exceptions matched. // Here we will compile the instructions to handle the exception. ADD_LABEL(ret, exception_match_label); ADD_TRACE(ret, RUBY_EVENT_RESCUE); // If we have a reference to the exception, then we'll compile the write // into the instruction sequence. This can look quite different // depending on the kind of write being performed. if (cast->reference) { switch (PM_NODE_TYPE(cast->reference)) { case PM_CALL_TARGET_NODE: { // begin; rescue => Foo.bar; end const pm_call_target_node_t *reference = (const pm_call_target_node_t *) cast->reference; ID method_id = pm_constant_id_lookup(scope_node, reference->name); PM_COMPILE((pm_node_t *) reference); ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); ADD_SEND(ret, &dummy_line_node, method_id, INT2NUM(1)); ADD_INSN(ret, &dummy_line_node, pop); break; } case PM_CONSTANT_PATH_TARGET_NODE: { // begin; rescue => Foo::Bar; end const pm_constant_path_target_node_t *reference = (const pm_constant_path_target_node_t *) cast->reference; const pm_constant_read_node_t *constant = (const pm_constant_read_node_t *) reference->child; PM_COMPILE((pm_node_t *) reference); ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); ADD_INSN(ret, &dummy_line_node, swap); ADD_INSN1(ret, &dummy_line_node, setconstant, ID2SYM(pm_constant_id_lookup(scope_node, constant->name))); break; } case PM_INDEX_TARGET_NODE: { // begin; rescue => foo[:bar]; end const pm_index_target_node_t *reference = (const pm_index_target_node_t *) cast->reference; pm_callinfo_t callinfo = { 0 }; pm_arguments_node_callinfo(&callinfo, reference->arguments, scope_node, parser); PM_COMPILE((pm_node_t *) reference); ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); if (reference->block != NULL) { callinfo.flags |= VM_CALL_ARGS_BLOCKARG; PM_COMPILE_NOT_POPPED((pm_node_t *) reference->block); } ADD_SEND_R(ret, &dummy_line_node, idASET, INT2FIX(callinfo.argc + 1), NULL, INT2FIX(callinfo.flags), callinfo.kwargs); ADD_INSN(ret, &dummy_line_node, pop); break; } default: // Indirectly writing to a variable or constant. ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); PM_COMPILE((pm_node_t *) cast->reference); break; } } // If we have statements to execute, we'll compile them here. Otherwise // we'll push nil onto the stack. if (cast->statements) { PM_COMPILE((pm_node_t *) cast->statements); } else { PM_PUTNIL; } ADD_INSN(ret, &dummy_line_node, leave); // Here we'll insert the rescue_end_label label, which is jumped to if // none of the exceptions matched. It will cause the control-flow to // either jump to the next rescue clause or it will fall through to the // subsequent instruction returning the raised error. ADD_LABEL(ret, rescue_end_label); if (cast->consequent) { PM_COMPILE((pm_node_t *) cast->consequent); } else { ADD_GETLOCAL(ret, &dummy_line_node, 1, 0); } return; } case PM_RESCUE_MODIFIER_NODE: { pm_scope_node_t rescue_scope_node; pm_rescue_modifier_node_t *rescue_node = (pm_rescue_modifier_node_t *)node; pm_scope_node_init((pm_node_t *)rescue_node, &rescue_scope_node, scope_node, parser); rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ(rescue_scope_node, rb_str_concat(rb_str_new2("rescue in"), ISEQ_BODY(iseq)->location.label), ISEQ_TYPE_RESCUE, 1); LABEL *lstart = NEW_LABEL(lineno); LABEL *lend = NEW_LABEL(lineno); LABEL *lcont = NEW_LABEL(lineno); lstart->rescued = LABEL_RESCUE_BEG; lend->rescued = LABEL_RESCUE_END; ADD_LABEL(ret, lstart); PM_COMPILE_NOT_POPPED((pm_node_t *)rescue_node->expression); ADD_LABEL(ret, lend); PM_NOP; ADD_LABEL(ret, lcont); PM_POP_IF_POPPED; ADD_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont); ADD_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart); return; } case PM_RETURN_NODE: { pm_arguments_node_t *arguments = ((pm_return_node_t *)node)->arguments; if (iseq) { enum rb_iseq_type type = ISEQ_BODY(iseq)->type; LABEL *splabel = 0; const rb_iseq_t *parent_iseq = iseq; enum rb_iseq_type parent_type = ISEQ_BODY(parent_iseq)->type; while (parent_type == ISEQ_TYPE_RESCUE || parent_type == ISEQ_TYPE_ENSURE) { if (!(parent_iseq = ISEQ_BODY(parent_iseq)->parent_iseq)) break; parent_type = ISEQ_BODY(parent_iseq)->type; } switch (parent_type) { case ISEQ_TYPE_TOP: case ISEQ_TYPE_MAIN: if (arguments) { rb_warn("argument of top-level return is ignored"); } if (parent_iseq == iseq) { type = ISEQ_TYPE_METHOD; } break; default: break; } if (type == ISEQ_TYPE_METHOD) { splabel = NEW_LABEL(0); ADD_LABEL(ret, splabel); ADD_ADJUST(ret, &dummy_line_node, 0); } if (arguments) { PM_COMPILE_NOT_POPPED((pm_node_t *)arguments); } else { PM_PUTNIL; } if (type == ISEQ_TYPE_METHOD && can_add_ensure_iseq(iseq)) { pm_add_ensure_iseq(ret, iseq, 1, src, scope_node); ADD_TRACE(ret, RUBY_EVENT_RETURN); ADD_INSN(ret, &dummy_line_node, leave); ADD_ADJUST_RESTORE(ret, splabel); PM_PUTNIL_UNLESS_POPPED; } else { ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(TAG_RETURN)); PM_POP_IF_POPPED; } } return; } case PM_RETRY_NODE: { if (ISEQ_BODY(iseq)->type == ISEQ_TYPE_RESCUE) { PM_PUTNIL; ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(TAG_RETRY)); PM_POP_IF_POPPED; } else { COMPILE_ERROR(ERROR_ARGS "Invalid retry"); rb_bug("Invalid retry"); } return; } case PM_SCOPE_NODE: { pm_scope_node_t *scope_node = (pm_scope_node_t *)node; pm_constant_id_list_t *locals = &scope_node->locals; pm_parameters_node_t *parameters_node = NULL; pm_node_list_t *keywords_list = NULL; pm_node_list_t *optionals_list = NULL; pm_node_list_t *posts_list = NULL; pm_node_list_t *requireds_list = NULL; pm_node_list_t *block_locals = NULL; pm_node_t *block_param_keyword_rest = NULL; struct rb_iseq_constant_body *body = ISEQ_BODY(iseq); if (scope_node->parameters) { switch (PM_NODE_TYPE(scope_node->parameters)) { case PM_BLOCK_PARAMETERS_NODE: { pm_block_parameters_node_t *block_parameters_node = (pm_block_parameters_node_t *)scope_node->parameters; parameters_node = block_parameters_node->parameters; block_locals = &block_parameters_node->locals; if (parameters_node) { block_param_keyword_rest = parameters_node->keyword_rest; } break; } case PM_PARAMETERS_NODE: { parameters_node = (pm_parameters_node_t *) scope_node->parameters; break; } case PM_NUMBERED_PARAMETERS_NODE: { body->param.lead_num = ((pm_numbered_parameters_node_t *) scope_node->parameters)->maximum; break; } default: rb_bug("Unexpected node type for parameters: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } } struct rb_iseq_param_keyword *keyword = NULL; if (parameters_node) { optionals_list = ¶meters_node->optionals; requireds_list = ¶meters_node->requireds; keywords_list = ¶meters_node->keywords; posts_list = ¶meters_node->posts; } else if (scope_node->parameters && PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE)) { body->param.opt_num = 0; } else { body->param.lead_num = 0; body->param.opt_num = 0; } //********STEP 1********** // Goal: calculate the table size for the locals, accounting for // hidden variables and multi target nodes size_t locals_size = locals->size; // Index lookup table buffer size is only the number of the locals st_table *index_lookup_table = st_init_numtable(); int table_size = (int) locals_size; if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) { body->param.lead_num = 1; table_size++; } if (keywords_list && keywords_list->size) { table_size++; } if (requireds_list) { for (size_t i = 0; i < requireds_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *required = requireds_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { table_size++; } else if (PM_NODE_TYPE_P(required, PM_REQUIRED_PARAMETER_NODE)) { if (PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } } // If we have an anonymous "rest" node, we'll need to increase the local // table size to take it in to account. // def m(foo, *, bar) // ^ if (parameters_node && parameters_node->rest) { if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) { if (!((pm_rest_parameter_node_t *)parameters_node->rest)->name) { table_size++; } } } if (posts_list) { for (size_t i = 0; i < posts_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *required = posts_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { table_size++; } } } if (block_param_keyword_rest) { table_size++; } // When we have a `...` as the keyword_rest, it's a forwarding_parameter_node and // we need to leave space for 2 more locals on the locals table (`*` and `&`) if (parameters_node && parameters_node->keyword_rest && PM_NODE_TYPE_P(parameters_node->keyword_rest, PM_FORWARDING_PARAMETER_NODE)) { table_size += 2; } // We can create local_table_for_iseq with the correct size VALUE idtmp = 0; rb_ast_id_table_t *local_table_for_iseq = ALLOCV(idtmp, sizeof(rb_ast_id_table_t) + table_size * sizeof(ID)); local_table_for_iseq->size = table_size; //********END OF STEP 1********** //********STEP 2********** // Goal: populate iv index table as well as local table, keeping the // layout of the local table consistent with the layout of the // stack when calling the method // // Do a first pass on all of the parameters, setting their values in // the local_table_for_iseq, _except_ for Multis who get a hidden // variable in this step, and will get their names inserted in step 3 // local_index is a cursor that keeps track of the current // index into local_table_for_iseq. The local table is actually a list, // and the order of that list must match the order of the items pushed // on the stack. We need to take in to account things pushed on the // stack that _might not have a name_ (for example array destructuring). // This index helps us know which item we're dealing with and also give // those anonymous items temporary names (as below) int local_index = 0; // We will assign these values now, if applicable, and use them for // the ISEQs on these multis int required_multis_hidden_index = 0; int post_multis_hidden_index = 0; // Here we figure out local table indices and insert them in to the // index lookup table and local tables. // // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^^^^ if (requireds_list && requireds_list->size) { for (size_t i = 0; i < requireds_list->size; i++, local_index++) { ID local; // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *required = requireds_list->nodes[i]; switch (PM_NODE_TYPE(required)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^ case PM_MULTI_TARGET_NODE: { required_multis_hidden_index = local_index; local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^ case PM_REQUIRED_PARAMETER_NODE: { pm_required_parameter_node_t * param = (pm_required_parameter_node_t *)required; if (!PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } break; } default: { rb_bug("Unsupported node in requireds in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } } } body->param.lead_num = (int) requireds_list->size; body->param.flags.has_lead = true; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^ if (optionals_list && optionals_list->size) { body->param.opt_num = (int) optionals_list->size; body->param.flags.has_opt = true; for (size_t i = 0; i < optionals_list->size; i++, local_index++) { pm_constant_id_t name = ((pm_optional_parameter_node_t *)optionals_list->nodes[i])->name; pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (parameters_node && parameters_node->rest) { body->param.rest_start = local_index; // If there's a trailing comma, we'll have an implicit rest node, // and we don't want it to impact the rest variables on param if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) { body->param.flags.has_rest = true; assert(body->param.rest_start != -1); pm_constant_id_t name = ((pm_rest_parameter_node_t *)parameters_node->rest)->name; if (name) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } else { // def foo(a, (b, *c, d), e = 1, *, g, (h, *i, j), k:, l: 1, **m, &n) // ^ local_table_for_iseq->ids[local_index] = idMULT; } local_index++; } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^^^^ if (posts_list && posts_list->size) { body->param.post_num = (int) posts_list->size; body->param.post_start = local_index; body->param.flags.has_post = true; for (size_t i = 0; i < posts_list->size; i++, local_index++) { ID local; // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *post_node = posts_list->nodes[i]; switch (PM_NODE_TYPE(post_node)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^ case PM_MULTI_TARGET_NODE: { post_multis_hidden_index = local_index; local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^ case PM_REQUIRED_PARAMETER_NODE: { pm_required_parameter_node_t * param = (pm_required_parameter_node_t *)post_node; pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); break; } default: { rb_bug("Unsupported node in posts in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } } } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^ // Keywords create an internal variable on the parse tree if (keywords_list && keywords_list->size) { body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1); keyword->num = (int) keywords_list->size; body->param.flags.has_kw = true; const VALUE default_values = rb_ary_hidden_new(1); const VALUE complex_mark = rb_str_tmp_new(0); ID *ids = xcalloc(keywords_list->size, sizeof(ID)); for (size_t i = 0; i < keywords_list->size; i++, local_index++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; pm_constant_id_t name; switch (PM_NODE_TYPE(keyword_parameter_node)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^ case PM_OPTIONAL_KEYWORD_PARAMETER_NODE: { pm_optional_keyword_parameter_node_t *cast = ((pm_optional_keyword_parameter_node_t *)keyword_parameter_node); pm_node_t *value = cast->value; name = cast->name; if (pm_static_literal_p(value) && !(PM_NODE_TYPE_P(value, PM_ARRAY_NODE) || PM_NODE_TYPE_P(value, PM_HASH_NODE) || PM_NODE_TYPE_P(value, PM_RANGE_NODE))) { rb_ary_push(default_values, pm_static_literal_value(value, scope_node, parser)); } else { rb_ary_push(default_values, complex_mark); } break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ case PM_REQUIRED_KEYWORD_PARAMETER_NODE: { name = ((pm_required_keyword_parameter_node_t *)keyword_parameter_node)->name; keyword->required_num++; break; } default: { rb_bug("Unexpected keyword parameter node type %s", pm_node_type_to_str(PM_NODE_TYPE(keyword_parameter_node))); } } ID local = pm_constant_id_lookup(scope_node, name); pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); ids[i] = local; } keyword->bits_start = local_index; keyword->table = ids; VALUE *dvs = ALLOC_N(VALUE, RARRAY_LEN(default_values)); for (int i = 0; i < RARRAY_LEN(default_values); i++) { VALUE dv = RARRAY_AREF(default_values, i); if (dv == complex_mark) dv = Qundef; if (!SPECIAL_CONST_P(dv)) { RB_OBJ_WRITTEN(iseq, Qundef, dv); } dvs[i] = dv; } keyword->default_values = dvs; // Hidden local for keyword arguments ID local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; local_index++; } if (body->type == ISEQ_TYPE_BLOCK && local_index == 1 && requireds_list && requireds_list->size == 1) { body->param.flags.ambiguous_param0 = true; } if (parameters_node) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^ if (parameters_node->keyword_rest) { switch (PM_NODE_TYPE(parameters_node->keyword_rest)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **nil, &n) // ^^^^^ case PM_NO_KEYWORDS_PARAMETER_NODE: { body->param.flags.accepts_no_kwarg = true; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^ case PM_KEYWORD_REST_PARAMETER_NODE: { pm_keyword_rest_parameter_node_t *kw_rest_node = (pm_keyword_rest_parameter_node_t *)parameters_node->keyword_rest; if (!body->param.flags.has_kw) { body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1); } keyword->rest_start = local_index; body->param.flags.has_kwrest = true; pm_constant_id_t constant_id = kw_rest_node->name; if (constant_id) { pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); } else { local_table_for_iseq->ids[local_index] = idPow; } local_index++; break; } // def foo(...) // ^^^ case PM_FORWARDING_PARAMETER_NODE: { body->param.rest_start = local_index; body->param.flags.has_rest = true; ID local = idMULT; local_table_for_iseq->ids[local_index] = local; local_index++; body->param.block_start = local_index; body->param.flags.has_block = true; local = idAnd; local_table_for_iseq->ids[local_index] = local; local_index++; local = idDot3; local_table_for_iseq->ids[local_index] = local; local_index++; break; } default: { rb_bug("node type %s not expected as keyword_rest", pm_node_type_to_str(PM_NODE_TYPE(parameters_node->keyword_rest))); } } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (parameters_node->block) { body->param.block_start = local_index; body->param.flags.has_block = true; pm_constant_id_t name = ((pm_block_parameter_node_t *)parameters_node->block)->name; pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; } } //********END OF STEP 2********** // The local table is now consistent with expected // stack layout // If there's only one required element in the parameters // CRuby needs to recognize it as an ambiguous parameter //********STEP 3********** // Goal: fill in the names of the parameters in MultiTargetNodes // // Go through requireds again to set the multis if (requireds_list && requireds_list->size) { for (size_t i = 0; i < requireds_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *required = requireds_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { local_index = pm_compile_multi_assign_params((pm_multi_target_node_t *)required, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } } // Go through posts again to set the multis if (posts_list && posts_list->size) { for (size_t i = 0; i < posts_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *post= posts_list->nodes[i]; if (PM_NODE_TYPE_P(post, PM_MULTI_TARGET_NODE)) { local_index = pm_compile_multi_assign_params((pm_multi_target_node_t *)post, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } } // Set any anonymous locals for the for node if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) { ID local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; local_index++; } // Fill in any NumberedParameters, if they exist if (scope_node->parameters && PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE)) { int maximum = ((pm_numbered_parameters_node_t *)scope_node->parameters)->maximum; for (int i = 0; i < maximum; i++, local_index++) { pm_constant_id_t constant_id = locals->ids[i]; pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } //********END OF STEP 3********** //********STEP 4********** // Goal: fill in the method body locals // To be explicit, these are the non-parameter locals uint32_t locals_body_index = 0; switch (PM_NODE_TYPE(scope_node->ast_node)) { case PM_BLOCK_NODE: { locals_body_index = ((pm_block_node_t *)scope_node->ast_node)->locals_body_index; break; } case PM_DEF_NODE: { locals_body_index = ((pm_def_node_t *)scope_node->ast_node)->locals_body_index; break; } case PM_LAMBDA_NODE: { locals_body_index = ((pm_lambda_node_t *)scope_node->ast_node)->locals_body_index; break; } default: { } } if (scope_node->locals.size) { for (size_t i = locals_body_index; i < scope_node->locals.size; i++) { pm_constant_id_t constant_id = locals->ids[i]; if (constant_id) { pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; } } } // We fill in the block_locals, if they exist // lambda { |x; y| y } // ^ if (block_locals && block_locals->size) { for (size_t i = 0; i < block_locals->size; i++, local_index++) { pm_constant_id_t constant_id = ((pm_block_local_variable_node_t *)block_locals->nodes[i])->name; pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } //********END OF STEP 4********** // We set the index_lookup_table on the scope node so we can // refer to the parameters correctly scope_node->index_lookup_table = index_lookup_table; iseq_calc_param_size(iseq); iseq_set_local_table(iseq, local_table_for_iseq); scope_node->local_table_for_iseq_size = local_table_for_iseq->size; //********STEP 5************ // Goal: compile anything that needed to be compiled if (keywords_list && keywords_list->size) { for (size_t i = 0; i < keywords_list->size; i++, local_index++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; pm_constant_id_t name; switch (PM_NODE_TYPE(keyword_parameter_node)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^ case PM_OPTIONAL_KEYWORD_PARAMETER_NODE: { pm_optional_keyword_parameter_node_t *cast = ((pm_optional_keyword_parameter_node_t *)keyword_parameter_node); pm_node_t *value = cast->value; name = cast->name; if (!(pm_static_literal_p(value)) || PM_NODE_TYPE_P(value, PM_ARRAY_NODE) || PM_NODE_TYPE_P(value, PM_HASH_NODE) || PM_NODE_TYPE_P(value, PM_RANGE_NODE)) { LABEL *end_label = NEW_LABEL(nd_line(&dummy_line_node)); int index = pm_lookup_local_index(iseq, scope_node, name); int kw_bits_idx = table_size - body->param.keyword->bits_start; ADD_INSN2(ret, &dummy_line_node, checkkeyword, INT2FIX(kw_bits_idx + VM_ENV_DATA_SIZE - 1), INT2FIX(i)); ADD_INSNL(ret, &dummy_line_node, branchif, end_label); PM_COMPILE(value); ADD_SETLOCAL(ret, &dummy_line_node, index, 0); ADD_LABEL(ret, end_label); } break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ case PM_REQUIRED_KEYWORD_PARAMETER_NODE: { break; } default: { rb_bug("Unexpected keyword parameter node type %s", pm_node_type_to_str(PM_NODE_TYPE(keyword_parameter_node))); } } } } if (optionals_list && optionals_list->size) { LABEL **opt_table = (LABEL **)ALLOC_N(VALUE, optionals_list->size + 1); LABEL *label; // TODO: Should we make an api for NEW_LABEL where you can pass // a pointer to the label it should fill out? We already // have a list of labels allocated above so it seems wasteful // to do the copies. for (size_t i = 0; i < optionals_list->size; i++, local_index++) { label = NEW_LABEL(lineno); opt_table[i] = label; ADD_LABEL(ret, label); pm_node_t *optional_node = optionals_list->nodes[i]; PM_COMPILE_NOT_POPPED(optional_node); } // Set the last label label = NEW_LABEL(lineno); opt_table[optionals_list->size] = label; ADD_LABEL(ret, label); body->param.opt_table = (const VALUE *)opt_table; } if (requireds_list && requireds_list->size) { for (size_t i = 0; i < requireds_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *required = requireds_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { ADD_GETLOCAL(ret, &dummy_line_node, table_size - required_multis_hidden_index, 0); PM_COMPILE(required); } } } if (posts_list && posts_list->size) { for (size_t i = 0; i < posts_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *post = posts_list->nodes[i]; if (PM_NODE_TYPE_P(post, PM_MULTI_TARGET_NODE)) { ADD_GETLOCAL(ret, &dummy_line_node, table_size - post_multis_hidden_index, 0); PM_COMPILE(post); } } } switch (body->type) { case ISEQ_TYPE_BLOCK: { LABEL *start = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(0); LABEL *end = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(0); start->rescued = LABEL_RESCUE_BEG; end->rescued = LABEL_RESCUE_END; ADD_TRACE(ret, RUBY_EVENT_B_CALL); NODE dummy_line_node = generate_dummy_line_node(body->location.first_lineno, -1); if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0) { PM_NOP; } ADD_LABEL(ret, start); if (scope_node->body) { switch (PM_NODE_TYPE(scope_node->ast_node)) { case PM_POST_EXECUTION_NODE: { pm_post_execution_node_t *post_execution_node = (pm_post_execution_node_t *)scope_node->ast_node; ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); // We create another ScopeNode from the statements within the PostExecutionNode pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)post_execution_node->statements, &next_scope_node, scope_node, parser); const rb_iseq_t *block = NEW_CHILD_ISEQ(next_scope_node, make_name_for_block(body->parent_iseq), ISEQ_TYPE_BLOCK, lineno); ADD_CALL_WITH_BLOCK(ret, &dummy_line_node, id_core_set_postexe, INT2FIX(0), block); break; } case PM_FOR_NODE: { pm_for_node_t *for_node = (pm_for_node_t *)scope_node->ast_node; LABEL *target = NEW_LABEL(lineno); LABEL *old_start = ISEQ_COMPILE_DATA(iseq)->start_label; ADD_GETLOCAL(ret, &dummy_line_node, 1, 0); PM_COMPILE(for_node->index); PM_NOP; ADD_LABEL(ret, target); ISEQ_COMPILE_DATA(iseq)->start_label = target; pm_compile_node(iseq, (pm_node_t *)(scope_node->body), ret, src, popped, scope_node); ISEQ_COMPILE_DATA(iseq)->start_label = old_start; break; } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { pm_interpolated_regular_expression_node_t *cast = (pm_interpolated_regular_expression_node_t *) scope_node->ast_node; int parts_size = (int)cast->parts.size; if (parts_size > 0 && !PM_NODE_TYPE_P(cast->parts.nodes[0], PM_STRING_NODE)) { ADD_INSN1(ret, &dummy_line_node, putobject, rb_str_new(0, 0)); parts_size++; } pm_interpolated_node_compile(&cast->parts, iseq, dummy_line_node, ret, src, false, scope_node, parser); ADD_INSN2(ret, &dummy_line_node, toregexp, INT2FIX(pm_reg_flags((pm_node_t *)cast)), INT2FIX(parts_size)); break; } default: { pm_compile_node(iseq, (pm_node_t *)(scope_node->body), ret, src, popped, scope_node); } } } else { PM_PUTNIL; } ADD_LABEL(ret, end); ADD_TRACE(ret, RUBY_EVENT_B_RETURN); ISEQ_COMPILE_DATA(iseq)->last_line = body->location.code_location.end_pos.lineno; /* wide range catch handler must put at last */ ADD_CATCH_ENTRY(CATCH_TYPE_REDO, start, end, NULL, start); ADD_CATCH_ENTRY(CATCH_TYPE_NEXT, start, end, NULL, end); break; } case ISEQ_TYPE_ENSURE: { iseq_set_exception_local_table(iseq); if (scope_node->body) { PM_COMPILE_POPPED((pm_node_t *)scope_node->body); } ADD_GETLOCAL(ret, &dummy_line_node, 1, 0); ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(0)); return; } case ISEQ_TYPE_RESCUE: { iseq_set_exception_local_table(iseq); if (PM_NODE_TYPE_P(scope_node->ast_node, PM_RESCUE_MODIFIER_NODE)) { LABEL *lab = NEW_LABEL(lineno); LABEL *rescue_end = NEW_LABEL(lineno); ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); ADD_INSN1(ret, &dummy_line_node, putobject, rb_eStandardError); ADD_INSN1(ret, &dummy_line_node, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE)); ADD_INSN1(ret, &dummy_line_node, branchif, lab); ADD_INSN1(ret, &dummy_line_node, jump, rescue_end); ADD_LABEL(ret, lab); PM_COMPILE((pm_node_t *)scope_node->body); ADD_INSN(ret, &dummy_line_node, leave); ADD_LABEL(ret, rescue_end); ADD_GETLOCAL(ret, &dummy_line_node, LVAR_ERRINFO, 0); } else { PM_COMPILE((pm_node_t *)scope_node->ast_node); } ADD_INSN1(ret, &dummy_line_node, throw, INT2FIX(0)); return; } default: if (scope_node->body) { PM_COMPILE((pm_node_t *)scope_node->body); } else { PM_PUTNIL; } } st_free_table(index_lookup_table); if (!PM_NODE_TYPE_P(scope_node->ast_node, PM_ENSURE_NODE)) { ADD_INSN(ret, &dummy_line_node, leave); } return; } case PM_SELF_NODE: if (!popped) { PM_PUTSELF; } return; case PM_SINGLETON_CLASS_NODE: { pm_singleton_class_node_t *singleton_class_node = (pm_singleton_class_node_t *)node; pm_scope_node_t next_scope_node; pm_scope_node_init((pm_node_t *)singleton_class_node, &next_scope_node, scope_node, parser); const rb_iseq_t *singleton_class = NEW_ISEQ(next_scope_node, rb_fstring_lit("singleton class"), ISEQ_TYPE_CLASS, lineno); PM_COMPILE_NOT_POPPED(singleton_class_node->expression); PM_PUTNIL; ID singletonclass; CONST_ID(singletonclass, "singletonclass"); ADD_INSN3(ret, &dummy_line_node, defineclass, ID2SYM(singletonclass), singleton_class, INT2FIX(VM_DEFINECLASS_TYPE_SINGLETON_CLASS)); PM_POP_IF_POPPED; RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)singleton_class); return; } case PM_SOURCE_ENCODING_NODE: { // Source encoding nodes are generated by the __ENCODING__ syntax. They // reference the encoding object corresponding to the encoding of the // source file, and can be changed by a magic encoding comment. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node, parser); ADD_INSN1(ret, &dummy_line_node, putobject, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } return; } case PM_SOURCE_FILE_NODE: { // Source file nodes are generated by the __FILE__ syntax. They // reference the file name of the source file. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node, parser); ADD_INSN1(ret, &dummy_line_node, putstring, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } return; } case PM_SOURCE_LINE_NODE: { // Source line nodes are generated by the __LINE__ syntax. They // reference the line number where they occur in the source file. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node, parser); ADD_INSN1(ret, &dummy_line_node, putobject, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } return; } case PM_SPLAT_NODE: { pm_splat_node_t *splat_node = (pm_splat_node_t *)node; if (splat_node->expression) { PM_COMPILE(splat_node->expression); } if (!popped) { ADD_INSN1(ret, &dummy_line_node, splatarray, Qtrue); } return; } case PM_STATEMENTS_NODE: { pm_statements_node_t *statements_node = (pm_statements_node_t *) node; pm_node_list_t node_list = statements_node->body; if (node_list.size > 0) { for (size_t index = 0; index < node_list.size - 1; index++) { PM_COMPILE_POPPED(node_list.nodes[index]); } PM_COMPILE(node_list.nodes[node_list.size - 1]); } else { PM_PUTNIL; } return; } case PM_STRING_NODE: { if (!popped) { pm_string_node_t *cast = (pm_string_node_t *) node; VALUE value = parse_string_encoded(node, &cast->unescaped, parser); if (node->flags & PM_STRING_FLAGS_FROZEN) { ADD_INSN1(ret, &dummy_line_node, putobject, rb_fstring(value)); } else { ADD_INSN1(ret, &dummy_line_node, putstring, value); } } return; } case PM_SUPER_NODE: { pm_super_node_t *super_node = (pm_super_node_t *) node; DECL_ANCHOR(args); int flags = 0; struct rb_callinfo_kwarg *keywords = NULL; const rb_iseq_t *parent_block = ISEQ_COMPILE_DATA(iseq)->current_block; INIT_ANCHOR(args); ISEQ_COMPILE_DATA(iseq)->current_block = NULL; PM_PUTSELF; int argc = pm_setup_args(super_node->arguments, &flags, &keywords, iseq, ret, src, popped, scope_node, dummy_line_node, parser); flags |= VM_CALL_SUPER | VM_CALL_FCALL; if (super_node->block) { switch (PM_NODE_TYPE(super_node->block)) { case PM_BLOCK_ARGUMENT_NODE: { PM_COMPILE_NOT_POPPED(super_node->block); flags |= VM_CALL_ARGS_BLOCKARG; break; } case PM_BLOCK_NODE: { pm_scope_node_t next_scope_node; pm_scope_node_init(super_node->block, &next_scope_node, scope_node, parser); parent_block = NEW_CHILD_ISEQ(next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); break; } default: { rb_bug("Unexpected node type on a SuperNode's block: %s", pm_node_type_to_str(PM_NODE_TYPE(super_node->block))); } } } ADD_SEQ(ret, args); ADD_INSN2(ret, &dummy_line_node, invokesuper, new_callinfo(iseq, 0, argc, flags, keywords, parent_block != NULL), parent_block); PM_POP_IF_POPPED; return; } case PM_SYMBOL_NODE: { // Symbols nodes are symbol literals with no interpolation. They are // always marked as static literals. if (!popped) { VALUE value = pm_static_literal_value(node, scope_node, parser); ADD_INSN1(ret, &dummy_line_node, putobject, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } return; } case PM_TRUE_NODE: if (!popped) { ADD_INSN1(ret, &dummy_line_node, putobject, Qtrue); } return; case PM_UNDEF_NODE: { pm_undef_node_t *undef_node = (pm_undef_node_t *) node; for (size_t index = 0; index < undef_node->names.size; index++) { ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); ADD_INSN1(ret, &dummy_line_node, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE)); PM_COMPILE_NOT_POPPED(undef_node->names.nodes[index]); ADD_SEND(ret, &dummy_line_node, id_core_undef_method, INT2NUM(2)); if (index < undef_node->names.size - 1) { PM_POP; } } PM_POP_IF_POPPED; return; } case PM_UNLESS_NODE: { const int line = (int)pm_newline_list_line_column(&(parser->newline_list), node->location.start).line; pm_unless_node_t *unless_node = (pm_unless_node_t *)node; pm_node_t *node_body = (pm_node_t *)(unless_node->statements); pm_statements_node_t *node_else = NULL; if (unless_node->consequent != NULL) { node_else = ((pm_else_node_t *)unless_node->consequent)->statements; } pm_node_t *predicate = unless_node->predicate; pm_compile_if(iseq, line, node_else, node_body, predicate, ret, src, popped, scope_node); return; } case PM_UNTIL_NODE: { pm_until_node_t *until_node = (pm_until_node_t *)node; pm_statements_node_t *statements = until_node->statements; pm_node_t *predicate = until_node->predicate; pm_node_flags_t flags = node->flags; pm_compile_while(iseq, lineno, flags, node->type, statements, predicate, ret, src, popped, scope_node); return; } case PM_WHEN_NODE: { rb_bug("Cannot compile a WhenNode directly\n"); return; } case PM_WHILE_NODE: { pm_while_node_t *while_node = (pm_while_node_t *)node; pm_statements_node_t *statements = while_node->statements; pm_node_t *predicate = while_node->predicate; pm_node_flags_t flags = node->flags; pm_compile_while(iseq, lineno, flags, node->type, statements, predicate, ret, src, popped, scope_node); return; } case PM_X_STRING_NODE: { pm_x_string_node_t *cast = (pm_x_string_node_t *) node; VALUE value = parse_string_encoded(node, &cast->unescaped, parser); PM_PUTSELF; ADD_INSN1(ret, &dummy_line_node, putobject, value); ADD_SEND_WITH_FLAG(ret, &dummy_line_node, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE)); PM_POP_IF_POPPED; return; } case PM_YIELD_NODE: { pm_yield_node_t *yield_node = (pm_yield_node_t *)node; int flags = 0; struct rb_callinfo_kwarg *keywords = NULL; int argc = 0; if (yield_node->arguments) { argc = pm_setup_args(yield_node->arguments, &flags, &keywords, iseq, ret, src, popped, scope_node, dummy_line_node, parser); } ADD_INSN1(ret, &dummy_line_node, invokeblock, new_callinfo(iseq, 0, argc, flags, keywords, FALSE)); PM_POP_IF_POPPED; int level = 0; const rb_iseq_t *tmp_iseq = iseq; for (; tmp_iseq != ISEQ_BODY(iseq)->local_iseq; level++ ) { tmp_iseq = ISEQ_BODY(tmp_iseq)->parent_iseq; } if (level > 0) access_outer_variables(iseq, level, rb_intern("yield"), true); return; } default: rb_raise(rb_eNotImpError, "node type %s not implemented", pm_node_type_to_str(PM_NODE_TYPE(node))); return; } } static VALUE rb_translate_prism(pm_parser_t *parser, rb_iseq_t *iseq, pm_scope_node_t *scope_node, LINK_ANCHOR *const ret) { RUBY_ASSERT(ISEQ_COMPILE_DATA(iseq)); st_table *index_lookup_table = st_init_numtable(); pm_constant_id_list_t *locals = &scope_node->locals; for (size_t i = 0; i < locals->size; i++) { st_insert(index_lookup_table, locals->ids[i], i); } scope_node->index_lookup_table = index_lookup_table; pm_compile_node(iseq, (pm_node_t *)scope_node, ret, scope_node->base.location.start, false, (pm_scope_node_t *)scope_node); iseq_set_sequence(iseq, ret); return Qnil; } #undef NEW_ISEQ #define NEW_ISEQ OLD_ISEQ #undef NEW_CHILD_ISEQ #define NEW_CHILD_ISEQ OLD_CHILD_ISEQ