/********************************************************************** thread.c - $Author$ Copyright (C) 2004-2007 Koichi Sasada **********************************************************************/ /* YARV Thread Design model 1: Userlevel Thread Same as traditional ruby thread. model 2: Native Thread with Global VM lock Using pthread (or Windows thread) and Ruby threads run concurrent. model 3: Native Thread with fine grain lock Using pthread and Ruby threads run concurrent or parallel. ------------------------------------------------------------------------ model 2: A thread has mutex (GVL: Global VM Lock or Giant VM Lock) can run. When thread scheduling, running thread release GVL. If running thread try blocking operation, this thread must release GVL and another thread can continue this flow. After blocking operation, thread must check interrupt (RUBY_VM_CHECK_INTS). Every VM can run parallel. Ruby threads are scheduled by OS thread scheduler. ------------------------------------------------------------------------ model 3: Every threads run concurrent or parallel and to access shared object exclusive access control is needed. For example, to access String object or Array object, fine grain lock must be locked every time. */ /* for model 2 */ #include "eval_intern.h" #include "gc.h" #ifndef USE_NATIVE_THREAD_PRIORITY #define USE_NATIVE_THREAD_PRIORITY 0 #define RUBY_THREAD_PRIORITY_MAX 3 #define RUBY_THREAD_PRIORITY_MIN -3 #endif #ifndef THREAD_DEBUG #define THREAD_DEBUG 0 #endif VALUE rb_cMutex; VALUE rb_cBarrier; static void sleep_timeval(rb_thread_t *th, struct timeval time); static void sleep_wait_for_interrupt(rb_thread_t *th, double sleepsec); static void sleep_forever(rb_thread_t *th, int nodeadlock); static double timeofday(void); struct timeval rb_time_interval(VALUE); static int rb_threadptr_dead(rb_thread_t *th); static void rb_check_deadlock(rb_vm_t *vm); int rb_signal_buff_size(void); void rb_signal_exec(rb_thread_t *th, int sig); void rb_disable_interrupt(void); void rb_thread_stop_timer_thread(void); static const VALUE eKillSignal = INT2FIX(0); static const VALUE eTerminateSignal = INT2FIX(1); static volatile int system_working = 1; inline static void st_delete_wrap(st_table *table, st_data_t key) { st_delete(table, &key, 0); } /********************************************************************************/ #define THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION struct rb_blocking_region_buffer { enum rb_thread_status prev_status; struct rb_unblock_callback oldubf; }; static void set_unblock_function(rb_thread_t *th, rb_unblock_function_t *func, void *arg, struct rb_unblock_callback *old); static void reset_unblock_function(rb_thread_t *th, const struct rb_unblock_callback *old); static inline void blocking_region_end(rb_thread_t *th, struct rb_blocking_region_buffer *region); #define RB_GC_SAVE_MACHINE_CONTEXT(th) \ do { \ rb_gc_save_machine_context(th); \ SET_MACHINE_STACK_END(&(th)->machine_stack_end); \ } while (0) #define GVL_UNLOCK_BEGIN() do { \ rb_thread_t *_th_stored = GET_THREAD(); \ RB_GC_SAVE_MACHINE_CONTEXT(_th_stored); \ native_mutex_unlock(&_th_stored->vm->global_vm_lock) #define GVL_UNLOCK_END() \ native_mutex_lock(&_th_stored->vm->global_vm_lock); \ rb_thread_set_current(_th_stored); \ } while(0) #define BLOCKING_REGION_CORE(exec) do { \ GVL_UNLOCK_BEGIN(); {\ exec; \ } \ GVL_UNLOCK_END(); \ } while(0); #define blocking_region_begin(th, region, func, arg) \ do { \ (region)->prev_status = (th)->status; \ set_unblock_function((th), (func), (arg), &(region)->oldubf); \ (th)->blocking_region_buffer = (region); \ (th)->status = THREAD_STOPPED; \ thread_debug("enter blocking region (%p)\n", (void *)(th)); \ RB_GC_SAVE_MACHINE_CONTEXT(th); \ native_mutex_unlock(&(th)->vm->global_vm_lock); \ } while (0) #define BLOCKING_REGION(exec, ubf, ubfarg) do { \ rb_thread_t *__th = GET_THREAD(); \ struct rb_blocking_region_buffer __region; \ blocking_region_begin(__th, &__region, ubf, ubfarg); \ exec; \ blocking_region_end(__th, &__region); \ RUBY_VM_CHECK_INTS(); \ } while(0) #if THREAD_DEBUG #ifdef HAVE_VA_ARGS_MACRO void rb_thread_debug(const char *file, int line, const char *fmt, ...); #define thread_debug(fmt, ...) rb_thread_debug(__FILE__, __LINE__, fmt, ##__VA_ARGS__) #define POSITION_FORMAT "%s:%d:" #define POSITION_ARGS ,file, line #else void rb_thread_debug(const char *fmt, ...); #define thread_debug rb_thread_debug #define POSITION_FORMAT #define POSITION_ARGS #endif # if THREAD_DEBUG < 0 static int rb_thread_debug_enabled; /* * call-seq: * Thread.DEBUG -> num * * Returns the thread debug level. Available only if compiled with * THREAD_DEBUG=-1. */ static VALUE rb_thread_s_debug(void) { return INT2NUM(rb_thread_debug_enabled); } /* * call-seq: * Thread.DEBUG = num * * Sets the thread debug level. Available only if compiled with * THREAD_DEBUG=-1. */ static VALUE rb_thread_s_debug_set(VALUE self, VALUE val) { rb_thread_debug_enabled = RTEST(val) ? NUM2INT(val) : 0; return val; } # else # define rb_thread_debug_enabled THREAD_DEBUG # endif #else #define thread_debug if(0)printf #endif #ifndef __ia64 #define thread_start_func_2(th, st, rst) thread_start_func_2(th, st) #endif NOINLINE(static int thread_start_func_2(rb_thread_t *th, VALUE *stack_start, VALUE *register_stack_start)); static void timer_thread_function(void *); #if defined(_WIN32) #include "thread_win32.c" #define DEBUG_OUT() \ WaitForSingleObject(&debug_mutex, INFINITE); \ printf(POSITION_FORMAT"%p - %s" POSITION_ARGS, GetCurrentThreadId(), buf); \ fflush(stdout); \ ReleaseMutex(&debug_mutex); #elif defined(HAVE_PTHREAD_H) #include "thread_pthread.c" #define DEBUG_OUT() \ pthread_mutex_lock(&debug_mutex); \ printf(POSITION_FORMAT"%#"PRIxVALUE" - %s" POSITION_ARGS, (VALUE)pthread_self(), buf); \ fflush(stdout); \ pthread_mutex_unlock(&debug_mutex); #else #error "unsupported thread type" #endif #if THREAD_DEBUG static int debug_mutex_initialized = 1; static rb_thread_lock_t debug_mutex; void rb_thread_debug( #ifdef HAVE_VA_ARGS_MACRO const char *file, int line, #endif const char *fmt, ...) { va_list args; char buf[BUFSIZ]; if (!rb_thread_debug_enabled) return; if (debug_mutex_initialized == 1) { debug_mutex_initialized = 0; native_mutex_initialize(&debug_mutex); } va_start(args, fmt); vsnprintf(buf, BUFSIZ, fmt, args); va_end(args); DEBUG_OUT(); } #endif void rb_thread_lock_unlock(rb_thread_lock_t *lock) { native_mutex_unlock(lock); } void rb_thread_lock_destroy(rb_thread_lock_t *lock) { native_mutex_destroy(lock); } static void set_unblock_function(rb_thread_t *th, rb_unblock_function_t *func, void *arg, struct rb_unblock_callback *old) { check_ints: RUBY_VM_CHECK_INTS(); /* check signal or so */ native_mutex_lock(&th->interrupt_lock); if (th->interrupt_flag) { native_mutex_unlock(&th->interrupt_lock); goto check_ints; } else { if (old) *old = th->unblock; th->unblock.func = func; th->unblock.arg = arg; } native_mutex_unlock(&th->interrupt_lock); } static void reset_unblock_function(rb_thread_t *th, const struct rb_unblock_callback *old) { native_mutex_lock(&th->interrupt_lock); th->unblock = *old; native_mutex_unlock(&th->interrupt_lock); } void rb_threadptr_interrupt(rb_thread_t *th) { native_mutex_lock(&th->interrupt_lock); RUBY_VM_SET_INTERRUPT(th); if (th->unblock.func) { (th->unblock.func)(th->unblock.arg); } else { /* none */ } native_mutex_unlock(&th->interrupt_lock); } static int terminate_i(st_data_t key, st_data_t val, rb_thread_t *main_thread) { VALUE thval = key; rb_thread_t *th; GetThreadPtr(thval, th); if (th != main_thread) { thread_debug("terminate_i: %p\n", (void *)th); rb_threadptr_interrupt(th); th->thrown_errinfo = eTerminateSignal; th->status = THREAD_TO_KILL; } else { thread_debug("terminate_i: main thread (%p)\n", (void *)th); } return ST_CONTINUE; } typedef struct rb_mutex_struct { rb_thread_lock_t lock; rb_thread_cond_t cond; struct rb_thread_struct volatile *th; volatile int cond_waiting, cond_notified; struct rb_mutex_struct *next_mutex; } mutex_t; static void rb_mutex_unlock_all(mutex_t *mutex, rb_thread_t *th); static void rb_mutex_abandon_all(mutex_t *mutexes); void rb_thread_terminate_all(void) { rb_thread_t *th = GET_THREAD(); /* main thread */ rb_vm_t *vm = th->vm; if (vm->main_thread != th) { rb_bug("rb_thread_terminate_all: called by child thread (%p, %p)", (void *)vm->main_thread, (void *)th); } /* unlock all locking mutexes */ if (th->keeping_mutexes) { rb_mutex_unlock_all(th->keeping_mutexes, GET_THREAD()); } thread_debug("rb_thread_terminate_all (main thread: %p)\n", (void *)th); st_foreach(vm->living_threads, terminate_i, (st_data_t)th); while (!rb_thread_alone()) { PUSH_TAG(); if (EXEC_TAG() == 0) { rb_thread_schedule(); } else { /* ignore exception */ } POP_TAG(); } rb_thread_stop_timer_thread(); } static void thread_unlock_all_locking_mutexes(rb_thread_t *th) { if (th->keeping_mutexes) { rb_mutex_unlock_all(th->keeping_mutexes, th); th->keeping_mutexes = NULL; } } static void thread_cleanup_func_before_exec(void *th_ptr) { rb_thread_t *th = th_ptr; th->status = THREAD_KILLED; th->machine_stack_start = th->machine_stack_end = 0; #ifdef __ia64 th->machine_register_stack_start = th->machine_register_stack_end = 0; #endif } static void thread_cleanup_func(void *th_ptr) { rb_thread_t *th = th_ptr; th->locking_mutex = Qfalse; thread_cleanup_func_before_exec(th_ptr); native_thread_destroy(th); } extern void ruby_error_print(void); static VALUE rb_threadptr_raise(rb_thread_t *, int, VALUE *); void rb_thread_recycle_stack_release(VALUE *); void ruby_thread_init_stack(rb_thread_t *th) { native_thread_init_stack(th); } static int thread_start_func_2(rb_thread_t *th, VALUE *stack_start, VALUE *register_stack_start) { int state; VALUE args = th->first_args; rb_proc_t *proc; rb_thread_t *join_th; rb_thread_t *main_th; VALUE errinfo = Qnil; # ifdef USE_SIGALTSTACK void rb_register_sigaltstack(rb_thread_t *th); rb_register_sigaltstack(th); # endif ruby_thread_set_native(th); th->machine_stack_start = stack_start; #ifdef __ia64 th->machine_register_stack_start = register_stack_start; #endif thread_debug("thread start: %p\n", (void *)th); native_mutex_lock(&th->vm->global_vm_lock); { thread_debug("thread start (get lock): %p\n", (void *)th); rb_thread_set_current(th); TH_PUSH_TAG(th); if ((state = EXEC_TAG()) == 0) { SAVE_ROOT_JMPBUF(th, { if (!th->first_func) { GetProcPtr(th->first_proc, proc); th->errinfo = Qnil; th->local_lfp = proc->block.lfp; th->local_svar = Qnil; th->value = rb_vm_invoke_proc(th, proc, proc->block.self, (int)RARRAY_LEN(args), RARRAY_PTR(args), 0); } else { th->value = (*th->first_func)((void *)args); } }); } else { errinfo = th->errinfo; if (NIL_P(errinfo)) errinfo = rb_errinfo(); if (state == TAG_FATAL) { /* fatal error within this thread, need to stop whole script */ } else if (rb_obj_is_kind_of(errinfo, rb_eSystemExit)) { if (th->safe_level >= 4) { th->errinfo = rb_exc_new3(rb_eSecurityError, rb_sprintf("Insecure exit at level %d", th->safe_level)); errinfo = Qnil; } } else if (th->safe_level < 4 && (th->vm->thread_abort_on_exception || th->abort_on_exception || RTEST(ruby_debug))) { /* exit on main_thread */ } else { errinfo = Qnil; } th->value = Qnil; } th->status = THREAD_KILLED; thread_debug("thread end: %p\n", (void *)th); main_th = th->vm->main_thread; if (th != main_th) { if (TYPE(errinfo) == T_OBJECT) { /* treat with normal error object */ rb_threadptr_raise(main_th, 1, &errinfo); } } TH_POP_TAG(); /* locking_mutex must be Qfalse */ if (th->locking_mutex != Qfalse) { rb_bug("thread_start_func_2: locking_mutex must not be set (%p:%"PRIxVALUE")", (void *)th, th->locking_mutex); } /* delete self other than main thread from living_threads */ if (th != main_th) { st_delete_wrap(th->vm->living_threads, th->self); } /* wake up joining threads */ join_th = th->join_list_head; while (join_th) { if (join_th == main_th) errinfo = Qnil; rb_threadptr_interrupt(join_th); switch (join_th->status) { case THREAD_STOPPED: case THREAD_STOPPED_FOREVER: join_th->status = THREAD_RUNNABLE; default: break; } join_th = join_th->join_list_next; } if (!th->root_fiber) { rb_thread_recycle_stack_release(th->stack); th->stack = 0; } } thread_unlock_all_locking_mutexes(th); if (th != main_th) rb_check_deadlock(th->vm); if (th->vm->main_thread == th) { ruby_cleanup(state); } else { thread_cleanup_func(th); native_mutex_unlock(&th->vm->global_vm_lock); } return 0; } static VALUE thread_create_core(VALUE thval, VALUE args, VALUE (*fn)(ANYARGS)) { rb_thread_t *th; int err; if (OBJ_FROZEN(GET_THREAD()->thgroup)) { rb_raise(rb_eThreadError, "can't start a new thread (frozen ThreadGroup)"); } GetThreadPtr(thval, th); /* setup thread environment */ th->first_func = fn; th->first_proc = fn ? Qfalse : rb_block_proc(); th->first_args = args; /* GC: shouldn't put before above line */ th->priority = GET_THREAD()->priority; th->thgroup = GET_THREAD()->thgroup; native_mutex_initialize(&th->interrupt_lock); if (GET_VM()->event_hooks != NULL) th->event_flags |= RUBY_EVENT_VM; /* kick thread */ st_insert(th->vm->living_threads, thval, (st_data_t) th->thread_id); err = native_thread_create(th); if (err) { st_delete_wrap(th->vm->living_threads, th->self); th->status = THREAD_KILLED; rb_raise(rb_eThreadError, "can't create Thread (%d)", err); } return thval; } /* :nodoc: */ static VALUE thread_s_new(int argc, VALUE *argv, VALUE klass) { rb_thread_t *th; VALUE thread = rb_thread_alloc(klass); rb_obj_call_init(thread, argc, argv); GetThreadPtr(thread, th); if (!th->first_args) { rb_raise(rb_eThreadError, "uninitialized thread - check `%s#initialize'", rb_class2name(klass)); } return thread; } /* * call-seq: * Thread.start([args]*) {|args| block } -> thread * Thread.fork([args]*) {|args| block } -> thread * * Basically the same as Thread::new. However, if class * Thread is subclassed, then calling start in that * subclass will not invoke the subclass's initialize method. */ static VALUE thread_start(VALUE klass, VALUE args) { return thread_create_core(rb_thread_alloc(klass), args, 0); } /* :nodoc: */ static VALUE thread_initialize(VALUE thread, VALUE args) { rb_thread_t *th; if (!rb_block_given_p()) { rb_raise(rb_eThreadError, "must be called with a block"); } GetThreadPtr(thread, th); if (th->first_args) { VALUE rb_proc_location(VALUE self); VALUE proc = th->first_proc, line, loc; const char *file; if (!proc || !RTEST(loc = rb_proc_location(proc))) { rb_raise(rb_eThreadError, "already initialized thread"); } file = RSTRING_PTR(RARRAY_PTR(loc)[0]); if (NIL_P(line = RARRAY_PTR(loc)[1])) { rb_raise(rb_eThreadError, "already initialized thread - %s", file); } rb_raise(rb_eThreadError, "already initialized thread - %s:%d", file, NUM2INT(line)); } return thread_create_core(thread, args, 0); } VALUE rb_thread_create(VALUE (*fn)(ANYARGS), void *arg) { return thread_create_core(rb_thread_alloc(rb_cThread), (VALUE)arg, fn); } /* +infty, for this purpose */ #define DELAY_INFTY 1E30 struct join_arg { rb_thread_t *target, *waiting; double limit; int forever; }; static VALUE remove_from_join_list(VALUE arg) { struct join_arg *p = (struct join_arg *)arg; rb_thread_t *target_th = p->target, *th = p->waiting; if (target_th->status != THREAD_KILLED) { rb_thread_t **pth = &target_th->join_list_head; while (*pth) { if (*pth == th) { *pth = th->join_list_next; break; } pth = &(*pth)->join_list_next; } } return Qnil; } static VALUE thread_join_sleep(VALUE arg) { struct join_arg *p = (struct join_arg *)arg; rb_thread_t *target_th = p->target, *th = p->waiting; double now, limit = p->limit; while (target_th->status != THREAD_KILLED) { if (p->forever) { sleep_forever(th, 1); } else { now = timeofday(); if (now > limit) { thread_debug("thread_join: timeout (thid: %p)\n", (void *)target_th->thread_id); return Qfalse; } sleep_wait_for_interrupt(th, limit - now); } thread_debug("thread_join: interrupted (thid: %p)\n", (void *)target_th->thread_id); } return Qtrue; } static VALUE thread_join(rb_thread_t *target_th, double delay) { rb_thread_t *th = GET_THREAD(); struct join_arg arg; arg.target = target_th; arg.waiting = th; arg.limit = timeofday() + delay; arg.forever = delay == DELAY_INFTY; thread_debug("thread_join (thid: %p)\n", (void *)target_th->thread_id); if (target_th->status != THREAD_KILLED) { th->join_list_next = target_th->join_list_head; target_th->join_list_head = th; if (!rb_ensure(thread_join_sleep, (VALUE)&arg, remove_from_join_list, (VALUE)&arg)) { return Qnil; } } thread_debug("thread_join: success (thid: %p)\n", (void *)target_th->thread_id); if (target_th->errinfo != Qnil) { VALUE err = target_th->errinfo; if (FIXNUM_P(err)) { /* */ } else if (TYPE(target_th->errinfo) == T_NODE) { rb_exc_raise(rb_vm_make_jump_tag_but_local_jump( GET_THROWOBJ_STATE(err), GET_THROWOBJ_VAL(err))); } else { /* normal exception */ rb_exc_raise(err); } } return target_th->self; } /* * call-seq: * thr.join -> thr * thr.join(limit) -> thr * * The calling thread will suspend execution and run thr. Does not * return until thr exits or until limit seconds have passed. If * the time limit expires, nil will be returned, otherwise * thr is returned. * * Any threads not joined will be killed when the main program exits. If * thr had previously raised an exception and the * abort_on_exception and $DEBUG flags are not set * (so the exception has not yet been processed) it will be processed at this * time. * * a = Thread.new { print "a"; sleep(10); print "b"; print "c" } * x = Thread.new { print "x"; Thread.pass; print "y"; print "z" } * x.join # Let x thread finish, a will be killed on exit. * * produces: * * axyz * * The following example illustrates the limit parameter. * * y = Thread.new { 4.times { sleep 0.1; puts 'tick... ' }} * puts "Waiting" until y.join(0.15) * * produces: * * tick... * Waiting * tick... * Waitingtick... * * * tick... */ static VALUE thread_join_m(int argc, VALUE *argv, VALUE self) { rb_thread_t *target_th; double delay = DELAY_INFTY; VALUE limit; GetThreadPtr(self, target_th); rb_scan_args(argc, argv, "01", &limit); if (!NIL_P(limit)) { delay = rb_num2dbl(limit); } return thread_join(target_th, delay); } /* * call-seq: * thr.value -> obj * * Waits for thr to complete (via Thread#join) and returns * its value. * * a = Thread.new { 2 + 2 } * a.value #=> 4 */ static VALUE thread_value(VALUE self) { rb_thread_t *th; GetThreadPtr(self, th); thread_join(th, DELAY_INFTY); return th->value; } /* * Thread Scheduling */ static struct timeval double2timeval(double d) { struct timeval time; time.tv_sec = (int)d; time.tv_usec = (int)((d - (int)d) * 1e6); if (time.tv_usec < 0) { time.tv_usec += (int)1e6; time.tv_sec -= 1; } return time; } static void sleep_forever(rb_thread_t *th, int deadlockable) { enum rb_thread_status prev_status = th->status; th->status = deadlockable ? THREAD_STOPPED_FOREVER : THREAD_STOPPED; do { if (deadlockable) { th->vm->sleeper++; rb_check_deadlock(th->vm); } native_sleep(th, 0); if (deadlockable) { th->vm->sleeper--; } RUBY_VM_CHECK_INTS(); } while (th->status == THREAD_STOPPED_FOREVER); th->status = prev_status; } static void getclockofday(struct timeval *tp) { #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) { tp->tv_sec = ts.tv_sec; tp->tv_usec = ts.tv_nsec / 1000; } else #endif { gettimeofday(tp, NULL); } } static void sleep_timeval(rb_thread_t *th, struct timeval tv) { struct timeval to, tvn; enum rb_thread_status prev_status = th->status; getclockofday(&to); to.tv_sec += tv.tv_sec; if ((to.tv_usec += tv.tv_usec) >= 1000000) { to.tv_sec++; to.tv_usec -= 1000000; } th->status = THREAD_STOPPED; do { native_sleep(th, &tv); RUBY_VM_CHECK_INTS(); getclockofday(&tvn); if (to.tv_sec < tvn.tv_sec) break; if (to.tv_sec == tvn.tv_sec && to.tv_usec <= tvn.tv_usec) break; thread_debug("sleep_timeval: %ld.%.6ld > %ld.%.6ld\n", (long)to.tv_sec, (long)to.tv_usec, (long)tvn.tv_sec, (long)tvn.tv_usec); tv.tv_sec = to.tv_sec - tvn.tv_sec; if ((tv.tv_usec = to.tv_usec - tvn.tv_usec) < 0) { --tv.tv_sec; tv.tv_usec += 1000000; } } while (th->status == THREAD_STOPPED); th->status = prev_status; } void rb_thread_sleep_forever(void) { thread_debug("rb_thread_sleep_forever\n"); sleep_forever(GET_THREAD(), 0); } static void rb_thread_sleep_deadly(void) { thread_debug("rb_thread_sleep_deadly\n"); sleep_forever(GET_THREAD(), 1); } static double timeofday(void) { #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) struct timespec tp; if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) { return (double)tp.tv_sec + (double)tp.tv_nsec * 1e-9; } else #endif { struct timeval tv; gettimeofday(&tv, NULL); return (double)tv.tv_sec + (double)tv.tv_usec * 1e-6; } } static void sleep_wait_for_interrupt(rb_thread_t *th, double sleepsec) { sleep_timeval(th, double2timeval(sleepsec)); } static void sleep_for_polling(rb_thread_t *th) { struct timeval time; time.tv_sec = 0; time.tv_usec = 100 * 1000; /* 0.1 sec */ sleep_timeval(th, time); } void rb_thread_wait_for(struct timeval time) { rb_thread_t *th = GET_THREAD(); sleep_timeval(th, time); } void rb_thread_polling(void) { RUBY_VM_CHECK_INTS(); if (!rb_thread_alone()) { rb_thread_t *th = GET_THREAD(); sleep_for_polling(th); } } /* * CAUTION: This function causes thread switching. * rb_thread_check_ints() check ruby's interrupts. * some interrupt needs thread switching/invoke handlers, * and so on. */ void rb_thread_check_ints(void) { RUBY_VM_CHECK_INTS(); } /* * Hidden API for tcl/tk wrapper. * There is no guarantee to perpetuate it. */ int rb_thread_check_trap_pending(void) { return GET_THREAD()->exec_signal != 0; } /* This function can be called in blocking region. */ int rb_thread_interrupted(VALUE thval) { rb_thread_t *th; GetThreadPtr(thval, th); return RUBY_VM_INTERRUPTED(th); } struct timeval rb_time_timeval(VALUE); void rb_thread_sleep(int sec) { rb_thread_wait_for(rb_time_timeval(INT2FIX(sec))); } static void rb_threadptr_execute_interrupts_rec(rb_thread_t *, int); static void rb_thread_schedule_rec(int sched_depth) { thread_debug("rb_thread_schedule\n"); if (!rb_thread_alone()) { rb_thread_t *th = GET_THREAD(); thread_debug("rb_thread_schedule/switch start\n"); RB_GC_SAVE_MACHINE_CONTEXT(th); native_mutex_unlock(&th->vm->global_vm_lock); { native_thread_yield(); } native_mutex_lock(&th->vm->global_vm_lock); rb_thread_set_current(th); thread_debug("rb_thread_schedule/switch done\n"); if (!sched_depth && UNLIKELY(GET_THREAD()->interrupt_flag)) { rb_threadptr_execute_interrupts_rec(GET_THREAD(), sched_depth+1); } } } void rb_thread_schedule(void) { rb_thread_schedule_rec(0); } /* blocking region */ static inline void blocking_region_end(rb_thread_t *th, struct rb_blocking_region_buffer *region) { native_mutex_lock(&th->vm->global_vm_lock); rb_thread_set_current(th); thread_debug("leave blocking region (%p)\n", (void *)th); remove_signal_thread_list(th); th->blocking_region_buffer = 0; reset_unblock_function(th, ®ion->oldubf); if (th->status == THREAD_STOPPED) { th->status = region->prev_status; } } struct rb_blocking_region_buffer * rb_thread_blocking_region_begin(void) { rb_thread_t *th = GET_THREAD(); struct rb_blocking_region_buffer *region = ALLOC(struct rb_blocking_region_buffer); blocking_region_begin(th, region, ubf_select, th); return region; } void rb_thread_blocking_region_end(struct rb_blocking_region_buffer *region) { int saved_errno = errno; rb_thread_t *th = GET_THREAD(); blocking_region_end(th, region); xfree(region); RUBY_VM_CHECK_INTS(); errno = saved_errno; } /* * rb_thread_blocking_region - permit concurrent/parallel execution. * * This function does: * (1) release GVL. * Other Ruby threads may run in parallel. * (2) call func with data1. * (3) acquire GVL. * Other Ruby threads can not run in parallel any more. * * If another thread interrupts this thread (Thread#kill, signal delivery, * VM-shutdown request, and so on), `ubf()' is called (`ubf()' means * "un-blocking function"). `ubf()' should interrupt `func()' execution. * * There are built-in ubfs and you can specify these ubfs. * However, we can not guarantee our built-in ubfs interrupt * your `func()' correctly. Be careful to use rb_thread_blocking_region(). * * * RUBY_UBF_IO: ubf for IO operation * * RUBY_UBF_PROCESS: ubf for process operation * * NOTE: You can not execute most of Ruby C API and touch Ruby * objects in `func()' and `ubf()', including raising an * exception, because current thread doesn't acquire GVL * (cause synchronization problem). If you need to do it, * read source code of C APIs and confirm by yourself. * * NOTE: In short, this API is difficult to use safely. I recommend you * use other ways if you have. We lack experiences to use this API. * Please report your problem related on it. * * Safe C API: * * rb_thread_interrupted() - check interrupt flag * * ruby_xalloc(), ruby_xrealloc(), ruby_xfree() - * if they called without GVL, acquire GVL automatically. */ VALUE rb_thread_blocking_region( rb_blocking_function_t *func, void *data1, rb_unblock_function_t *ubf, void *data2) { VALUE val; rb_thread_t *th = GET_THREAD(); int saved_errno = 0; if (ubf == RUBY_UBF_IO || ubf == RUBY_UBF_PROCESS) { ubf = ubf_select; data2 = th; } BLOCKING_REGION({ val = func(data1); saved_errno = errno; }, ubf, data2); errno = saved_errno; return val; } /* alias of rb_thread_blocking_region() */ VALUE rb_thread_call_without_gvl( rb_blocking_function_t *func, void *data1, rb_unblock_function_t *ubf, void *data2) { return rb_thread_blocking_region(func, data1, ubf, data2); } /* * rb_thread_call_with_gvl - re-enter into Ruby world while releasing GVL. * *** *** This API is EXPERIMENTAL! *** We do not guarantee that this API remains in ruby 1.9.2 or later. *** * * While releasing GVL using rb_thread_blocking_region() or * rb_thread_call_without_gvl(), you can not access Ruby values or invoke methods. * If you need to access it, you must use this function rb_thread_call_with_gvl(). * * This function rb_thread_call_with_gvl() does: * (1) acquire GVL. * (2) call passed function `func'. * (3) release GVL. * (4) return a value which is returned at (2). * * NOTE: You should not return Ruby object at (2) because such Object * will not marked. * * NOTE: If an exception is raised in `func', this function "DOES NOT" * protect (catch) the exception. If you have any resources * which should free before throwing exception, you need use * rb_protect() in `func' and return a value which represents * exception is raised. * * NOTE: This functions should not be called by a thread which * is not created as Ruby thread (created by Thread.new or so). * In other words, this function *DOES NOT* associate * NON-Ruby thread to Ruby thread. */ void * rb_thread_call_with_gvl(void *(*func)(void *), void *data1) { rb_thread_t *th = ruby_thread_from_native(); struct rb_blocking_region_buffer *brb; struct rb_unblock_callback prev_unblock; void *r; if (th == 0) { /* Error is occurred, but we can't use rb_bug() * because this thread is not Ruby's thread. * What should we do? */ fprintf(stderr, "[BUG] rb_thread_call_with_gvl() is called by non-ruby thread\n"); exit(1); } brb = (struct rb_blocking_region_buffer *)th->blocking_region_buffer; prev_unblock = th->unblock; if (brb == 0) { rb_bug("rb_thread_call_with_gvl: called by a thread which has GVL."); } blocking_region_end(th, brb); /* enter to Ruby world: You can access Ruby values, methods and so on. */ r = (*func)(data1); /* leave from Ruby world: You can not access Ruby values, etc. */ blocking_region_begin(th, brb, prev_unblock.func, prev_unblock.arg); return r; } /* * ruby_thread_has_gvl_p - check if current native thread has GVL. * *** *** This API is EXPERIMENTAL! *** We do not guarantee that this API remains in ruby 1.9.2 or later. *** */ int ruby_thread_has_gvl_p(void) { rb_thread_t *th = ruby_thread_from_native(); if (th && th->blocking_region_buffer == 0) { return 1; } else { return 0; } } /* * call-seq: * Thread.pass -> nil * * Invokes the thread scheduler to pass execution to another thread. * * a = Thread.new { print "a"; Thread.pass; * print "b"; Thread.pass; * print "c" } * b = Thread.new { print "x"; Thread.pass; * print "y"; Thread.pass; * print "z" } * a.join * b.join * * produces: * * axbycz */ static VALUE thread_s_pass(VALUE klass) { rb_thread_schedule(); return Qnil; } /* * */ static void rb_threadptr_execute_interrupts_rec(rb_thread_t *th, int sched_depth) { if (GET_VM()->main_thread == th) { while (rb_signal_buff_size() && !th->exec_signal) native_thread_yield(); } if (th->raised_flag) return; while (th->interrupt_flag) { enum rb_thread_status status = th->status; int timer_interrupt = th->interrupt_flag & 0x01; int finalizer_interrupt = th->interrupt_flag & 0x04; th->status = THREAD_RUNNABLE; th->interrupt_flag = 0; /* signal handling */ if (th->exec_signal) { int sig = th->exec_signal; th->exec_signal = 0; rb_signal_exec(th, sig); } /* exception from another thread */ if (th->thrown_errinfo) { VALUE err = th->thrown_errinfo; th->thrown_errinfo = 0; thread_debug("rb_thread_execute_interrupts: %ld\n", err); if (err == eKillSignal || err == eTerminateSignal) { th->errinfo = INT2FIX(TAG_FATAL); TH_JUMP_TAG(th, TAG_FATAL); } else { rb_exc_raise(err); } } th->status = status; if (finalizer_interrupt) { rb_gc_finalize_deferred(); } if (!sched_depth && timer_interrupt) { sched_depth++; EXEC_EVENT_HOOK(th, RUBY_EVENT_SWITCH, th->cfp->self, 0, 0); if (th->slice > 0) { th->slice--; } else { reschedule: rb_thread_schedule_rec(sched_depth+1); if (th->slice < 0) { th->slice++; goto reschedule; } else { th->slice = th->priority; } } } } } void rb_threadptr_execute_interrupts(rb_thread_t *th) { rb_threadptr_execute_interrupts_rec(th, 0); } void rb_gc_mark_threads(void) { rb_bug("deprecated function rb_gc_mark_threads is called"); } /*****************************************************/ static void rb_threadptr_ready(rb_thread_t *th) { rb_threadptr_interrupt(th); } static VALUE rb_threadptr_raise(rb_thread_t *th, int argc, VALUE *argv) { VALUE exc; again: if (rb_threadptr_dead(th)) { return Qnil; } if (th->thrown_errinfo != 0 || th->raised_flag) { rb_thread_schedule(); goto again; } exc = rb_make_exception(argc, argv); th->thrown_errinfo = exc; rb_threadptr_ready(th); return Qnil; } void rb_threadptr_signal_raise(rb_thread_t *th, int sig) { VALUE argv[2]; argv[0] = rb_eSignal; argv[1] = INT2FIX(sig); rb_threadptr_raise(th->vm->main_thread, 2, argv); } void rb_threadptr_signal_exit(rb_thread_t *th) { VALUE argv[2]; argv[0] = rb_eSystemExit; argv[1] = rb_str_new2("exit"); rb_threadptr_raise(th->vm->main_thread, 2, argv); } #if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK) #define USE_SIGALTSTACK #endif void ruby_thread_stack_overflow(rb_thread_t *th) { th->raised_flag = 0; #ifdef USE_SIGALTSTACK rb_exc_raise(sysstack_error); #else th->errinfo = sysstack_error; TH_JUMP_TAG(th, TAG_RAISE); #endif } int rb_threadptr_set_raised(rb_thread_t *th) { if (th->raised_flag & RAISED_EXCEPTION) { return 1; } th->raised_flag |= RAISED_EXCEPTION; return 0; } int rb_threadptr_reset_raised(rb_thread_t *th) { if (!(th->raised_flag & RAISED_EXCEPTION)) { return 0; } th->raised_flag &= ~RAISED_EXCEPTION; return 1; } void rb_thread_fd_close(int fd) { /* TODO: fix me */ } /* * call-seq: * thr.raise * thr.raise(string) * thr.raise(exception [, string [, array]]) * * Raises an exception (see Kernel::raise) from thr. The * caller does not have to be thr. * * Thread.abort_on_exception = true * a = Thread.new { sleep(200) } * a.raise("Gotcha") * * produces: * * prog.rb:3: Gotcha (RuntimeError) * from prog.rb:2:in `initialize' * from prog.rb:2:in `new' * from prog.rb:2 */ static VALUE thread_raise_m(int argc, VALUE *argv, VALUE self) { rb_thread_t *th; GetThreadPtr(self, th); rb_threadptr_raise(th, argc, argv); return Qnil; } /* * call-seq: * thr.exit -> thr or nil * thr.kill -> thr or nil * thr.terminate -> thr or nil * * Terminates thr and schedules another thread to be run. If this thread * is already marked to be killed, exit returns the * Thread. If this is the main thread, or the last thread, exits * the process. */ VALUE rb_thread_kill(VALUE thread) { rb_thread_t *th; GetThreadPtr(thread, th); if (th != GET_THREAD() && th->safe_level < 4) { rb_secure(4); } if (th->status == THREAD_TO_KILL || th->status == THREAD_KILLED) { return thread; } if (th == th->vm->main_thread) { rb_exit(EXIT_SUCCESS); } thread_debug("rb_thread_kill: %p (%p)\n", (void *)th, (void *)th->thread_id); rb_threadptr_interrupt(th); th->thrown_errinfo = eKillSignal; th->status = THREAD_TO_KILL; return thread; } /* * call-seq: * Thread.kill(thread) -> thread * * Causes the given thread to exit (see Thread::exit). * * count = 0 * a = Thread.new { loop { count += 1 } } * sleep(0.1) #=> 0 * Thread.kill(a) #=> # * count #=> 93947 * a.alive? #=> false */ static VALUE rb_thread_s_kill(VALUE obj, VALUE th) { return rb_thread_kill(th); } /* * call-seq: * Thread.exit -> thread * * Terminates the currently running thread and schedules another thread to be * run. If this thread is already marked to be killed, exit * returns the Thread. If this is the main thread, or the last * thread, exit the process. */ static VALUE rb_thread_exit(void) { return rb_thread_kill(GET_THREAD()->self); } /* * call-seq: * thr.wakeup -> thr * * Marks thr as eligible for scheduling (it may still remain blocked on * I/O, however). Does not invoke the scheduler (see Thread#run). * * c = Thread.new { Thread.stop; puts "hey!" } * c.wakeup * * produces: * * hey! */ VALUE rb_thread_wakeup(VALUE thread) { if (!RTEST(rb_thread_wakeup_alive(thread))) { rb_raise(rb_eThreadError, "killed thread"); } return thread; } VALUE rb_thread_wakeup_alive(VALUE thread) { rb_thread_t *th; GetThreadPtr(thread, th); if (th->status == THREAD_KILLED) { return Qnil; } rb_threadptr_ready(th); if (th->status != THREAD_TO_KILL) { th->status = THREAD_RUNNABLE; } return thread; } /* * call-seq: * thr.run -> thr * * Wakes up thr, making it eligible for scheduling. * * a = Thread.new { puts "a"; Thread.stop; puts "c" } * Thread.pass * puts "Got here" * a.run * a.join * * produces: * * a * Got here * c */ VALUE rb_thread_run(VALUE thread) { rb_thread_wakeup(thread); rb_thread_schedule(); return thread; } /* * call-seq: * Thread.stop -> nil * * Stops execution of the current thread, putting it into a ``sleep'' state, * and schedules execution of another thread. * * a = Thread.new { print "a"; Thread.stop; print "c" } * Thread.pass * print "b" * a.run * a.join * * produces: * * abc */ VALUE rb_thread_stop(void) { if (rb_thread_alone()) { rb_raise(rb_eThreadError, "stopping only thread\n\tnote: use sleep to stop forever"); } rb_thread_sleep_deadly(); return Qnil; } static int thread_list_i(st_data_t key, st_data_t val, void *data) { VALUE ary = (VALUE)data; rb_thread_t *th; GetThreadPtr((VALUE)key, th); switch (th->status) { case THREAD_RUNNABLE: case THREAD_STOPPED: case THREAD_STOPPED_FOREVER: case THREAD_TO_KILL: rb_ary_push(ary, th->self); default: break; } return ST_CONTINUE; } /********************************************************************/ /* * call-seq: * Thread.list -> array * * Returns an array of Thread objects for all threads that are * either runnable or stopped. * * Thread.new { sleep(200) } * Thread.new { 1000000.times {|i| i*i } } * Thread.new { Thread.stop } * Thread.list.each {|t| p t} * * produces: * * # * # * # * # */ VALUE rb_thread_list(void) { VALUE ary = rb_ary_new(); st_foreach(GET_THREAD()->vm->living_threads, thread_list_i, ary); return ary; } VALUE rb_thread_current(void) { return GET_THREAD()->self; } /* * call-seq: * Thread.current -> thread * * Returns the currently executing thread. * * Thread.current #=> # */ static VALUE thread_s_current(VALUE klass) { return rb_thread_current(); } VALUE rb_thread_main(void) { return GET_THREAD()->vm->main_thread->self; } /* * call-seq: * Thread.main -> thread * * Returns the main thread. */ static VALUE rb_thread_s_main(VALUE klass) { return rb_thread_main(); } /* * call-seq: * Thread.abort_on_exception -> true or false * * Returns the status of the global ``abort on exception'' condition. The * default is false. When set to true, or if the * global $DEBUG flag is true (perhaps because the * command line option -d was specified) all threads will abort * (the process will exit(0)) if an exception is raised in any * thread. See also Thread::abort_on_exception=. */ static VALUE rb_thread_s_abort_exc(void) { return GET_THREAD()->vm->thread_abort_on_exception ? Qtrue : Qfalse; } /* * call-seq: * Thread.abort_on_exception= boolean -> true or false * * When set to true, all threads will abort if an exception is * raised. Returns the new state. * * Thread.abort_on_exception = true * t1 = Thread.new do * puts "In new thread" * raise "Exception from thread" * end * sleep(1) * puts "not reached" * * produces: * * In new thread * prog.rb:4: Exception from thread (RuntimeError) * from prog.rb:2:in `initialize' * from prog.rb:2:in `new' * from prog.rb:2 */ static VALUE rb_thread_s_abort_exc_set(VALUE self, VALUE val) { rb_secure(4); GET_THREAD()->vm->thread_abort_on_exception = RTEST(val); return val; } /* * call-seq: * thr.abort_on_exception -> true or false * * Returns the status of the thread-local ``abort on exception'' condition for * thr. The default is false. See also * Thread::abort_on_exception=. */ static VALUE rb_thread_abort_exc(VALUE thread) { rb_thread_t *th; GetThreadPtr(thread, th); return th->abort_on_exception ? Qtrue : Qfalse; } /* * call-seq: * thr.abort_on_exception= boolean -> true or false * * When set to true, causes all threads (including the main * program) to abort if an exception is raised in thr. The process will * effectively exit(0). */ static VALUE rb_thread_abort_exc_set(VALUE thread, VALUE val) { rb_thread_t *th; rb_secure(4); GetThreadPtr(thread, th); th->abort_on_exception = RTEST(val); return val; } /* * call-seq: * thr.group -> thgrp or nil * * Returns the ThreadGroup which contains thr, or nil if * the thread is not a member of any group. * * Thread.main.group #=> # */ VALUE rb_thread_group(VALUE thread) { rb_thread_t *th; VALUE group; GetThreadPtr(thread, th); group = th->thgroup; if (!group) { group = Qnil; } return group; } static const char * thread_status_name(enum rb_thread_status status) { switch (status) { case THREAD_RUNNABLE: return "run"; case THREAD_STOPPED: case THREAD_STOPPED_FOREVER: return "sleep"; case THREAD_TO_KILL: return "aborting"; case THREAD_KILLED: return "dead"; default: return "unknown"; } } static int rb_threadptr_dead(rb_thread_t *th) { return th->status == THREAD_KILLED; } /* * call-seq: * thr.status -> string, false or nil * * Returns the status of thr: ``sleep'' if thr is * sleeping or waiting on I/O, ``run'' if thr is executing, * ``aborting'' if thr is aborting, false if * thr terminated normally, and nil if thr * terminated with an exception. * * a = Thread.new { raise("die now") } * b = Thread.new { Thread.stop } * c = Thread.new { Thread.exit } * d = Thread.new { sleep } * d.kill #=> # * a.status #=> nil * b.status #=> "sleep" * c.status #=> false * d.status #=> "aborting" * Thread.current.status #=> "run" */ static VALUE rb_thread_status(VALUE thread) { rb_thread_t *th; GetThreadPtr(thread, th); if (rb_threadptr_dead(th)) { if (!NIL_P(th->errinfo) && !FIXNUM_P(th->errinfo) /* TODO */ ) { return Qnil; } return Qfalse; } return rb_str_new2(thread_status_name(th->status)); } /* * call-seq: * thr.alive? -> true or false * * Returns true if thr is running or sleeping. * * thr = Thread.new { } * thr.join #=> # * Thread.current.alive? #=> true * thr.alive? #=> false */ static VALUE rb_thread_alive_p(VALUE thread) { rb_thread_t *th; GetThreadPtr(thread, th); if (rb_threadptr_dead(th)) return Qfalse; return Qtrue; } /* * call-seq: * thr.stop? -> true or false * * Returns true if thr is dead or sleeping. * * a = Thread.new { Thread.stop } * b = Thread.current * a.stop? #=> true * b.stop? #=> false */ static VALUE rb_thread_stop_p(VALUE thread) { rb_thread_t *th; GetThreadPtr(thread, th); if (rb_threadptr_dead(th)) return Qtrue; if (th->status == THREAD_STOPPED || th->status == THREAD_STOPPED_FOREVER) return Qtrue; return Qfalse; } /* * call-seq: * thr.safe_level -> integer * * Returns the safe level in effect for thr. Setting thread-local safe * levels can help when implementing sandboxes which run insecure code. * * thr = Thread.new { $SAFE = 3; sleep } * Thread.current.safe_level #=> 0 * thr.safe_level #=> 3 */ static VALUE rb_thread_safe_level(VALUE thread) { rb_thread_t *th; GetThreadPtr(thread, th); return INT2NUM(th->safe_level); } /* * call-seq: * thr.inspect -> string * * Dump the name, id, and status of _thr_ to a string. */ static VALUE rb_thread_inspect(VALUE thread) { const char *cname = rb_obj_classname(thread); rb_thread_t *th; const char *status; VALUE str; GetThreadPtr(thread, th); status = thread_status_name(th->status); str = rb_sprintf("#<%s:%p %s>", cname, (void *)thread, status); OBJ_INFECT(str, thread); return str; } VALUE rb_thread_local_aref(VALUE thread, ID id) { rb_thread_t *th; VALUE val; GetThreadPtr(thread, th); if (rb_safe_level() >= 4 && th != GET_THREAD()) { rb_raise(rb_eSecurityError, "Insecure: thread locals"); } if (!th->local_storage) { return Qnil; } if (st_lookup(th->local_storage, id, &val)) { return val; } return Qnil; } /* * call-seq: * thr[sym] -> obj or nil * * Attribute Reference---Returns the value of a thread-local variable, using * either a symbol or a string name. If the specified variable does not exist, * returns nil. * * a = Thread.new { Thread.current["name"] = "A"; Thread.stop } * b = Thread.new { Thread.current[:name] = "B"; Thread.stop } * c = Thread.new { Thread.current["name"] = "C"; Thread.stop } * Thread.list.each {|x| puts "#{x.inspect}: #{x[:name]}" } * * produces: * * #: C * #: B * #: A * #: */ static VALUE rb_thread_aref(VALUE thread, VALUE id) { return rb_thread_local_aref(thread, rb_to_id(id)); } VALUE rb_thread_local_aset(VALUE thread, ID id, VALUE val) { rb_thread_t *th; GetThreadPtr(thread, th); if (rb_safe_level() >= 4 && th != GET_THREAD()) { rb_raise(rb_eSecurityError, "Insecure: can't modify thread locals"); } if (OBJ_FROZEN(thread)) { rb_error_frozen("thread locals"); } if (!th->local_storage) { th->local_storage = st_init_numtable(); } if (NIL_P(val)) { st_delete_wrap(th->local_storage, id); return Qnil; } st_insert(th->local_storage, id, val); return val; } /* * call-seq: * thr[sym] = obj -> obj * * Attribute Assignment---Sets or creates the value of a thread-local variable, * using either a symbol or a string. See also Thread#[]. */ static VALUE rb_thread_aset(VALUE self, VALUE id, VALUE val) { return rb_thread_local_aset(self, rb_to_id(id), val); } /* * call-seq: * thr.key?(sym) -> true or false * * Returns true if the given string (or symbol) exists as a * thread-local variable. * * me = Thread.current * me[:oliver] = "a" * me.key?(:oliver) #=> true * me.key?(:stanley) #=> false */ static VALUE rb_thread_key_p(VALUE self, VALUE key) { rb_thread_t *th; ID id = rb_to_id(key); GetThreadPtr(self, th); if (!th->local_storage) { return Qfalse; } if (st_lookup(th->local_storage, id, 0)) { return Qtrue; } return Qfalse; } static int thread_keys_i(ID key, VALUE value, VALUE ary) { rb_ary_push(ary, ID2SYM(key)); return ST_CONTINUE; } static int vm_living_thread_num(rb_vm_t *vm) { return vm->living_threads->num_entries; } int rb_thread_alone(void) { int num = 1; if (GET_THREAD()->vm->living_threads) { num = vm_living_thread_num(GET_THREAD()->vm); thread_debug("rb_thread_alone: %d\n", num); } return num == 1; } /* * call-seq: * thr.keys -> array * * Returns an an array of the names of the thread-local variables (as Symbols). * * thr = Thread.new do * Thread.current[:cat] = 'meow' * Thread.current["dog"] = 'woof' * end * thr.join #=> # * thr.keys #=> [:dog, :cat] */ static VALUE rb_thread_keys(VALUE self) { rb_thread_t *th; VALUE ary = rb_ary_new(); GetThreadPtr(self, th); if (th->local_storage) { st_foreach(th->local_storage, thread_keys_i, ary); } return ary; } /* * call-seq: * thr.priority -> integer * * Returns the priority of thr. Default is inherited from the * current thread which creating the new thread, or zero for the * initial main thread; higher-priority thread will run more frequently * than lower-priority threads (but lower-priority threads can also run). * * This is just hint for Ruby thread scheduler. It may be ignored on some * platform. * * Thread.current.priority #=> 0 */ static VALUE rb_thread_priority(VALUE thread) { rb_thread_t *th; GetThreadPtr(thread, th); return INT2NUM(th->priority); } /* * call-seq: * thr.priority= integer -> thr * * Sets the priority of thr to integer. Higher-priority threads * will run more frequently than lower-priority threads (but lower-priority * threads can also run). * * This is just hint for Ruby thread scheduler. It may be ignored on some * platform. * * count1 = count2 = 0 * a = Thread.new do * loop { count1 += 1 } * end * a.priority = -1 * * b = Thread.new do * loop { count2 += 1 } * end * b.priority = -2 * sleep 1 #=> 1 * count1 #=> 622504 * count2 #=> 5832 */ static VALUE rb_thread_priority_set(VALUE thread, VALUE prio) { rb_thread_t *th; int priority; GetThreadPtr(thread, th); rb_secure(4); #if USE_NATIVE_THREAD_PRIORITY th->priority = NUM2INT(prio); native_thread_apply_priority(th); #else priority = NUM2INT(prio); if (priority > RUBY_THREAD_PRIORITY_MAX) { priority = RUBY_THREAD_PRIORITY_MAX; } else if (priority < RUBY_THREAD_PRIORITY_MIN) { priority = RUBY_THREAD_PRIORITY_MIN; } th->priority = priority; th->slice = priority; #endif return INT2NUM(th->priority); } /* for IO */ #if defined(NFDBITS) && defined(HAVE_RB_FD_INIT) /* * several Unix platforms support file descriptors bigger than FD_SETSIZE * in select(2) system call. * * - Linux 2.2.12 (?) * - NetBSD 1.2 (src/sys/kern/sys_generic.c:1.25) * select(2) documents how to allocate fd_set dynamically. * http://netbsd.gw.com/cgi-bin/man-cgi?select++NetBSD-4.0 * - FreeBSD 2.2 (src/sys/kern/sys_generic.c:1.19) * - OpenBSD 2.0 (src/sys/kern/sys_generic.c:1.4) * select(2) documents how to allocate fd_set dynamically. * http://www.openbsd.org/cgi-bin/man.cgi?query=select&manpath=OpenBSD+4.4 * - HP-UX documents how to allocate fd_set dynamically. * http://docs.hp.com/en/B2355-60105/select.2.html * - Solaris 8 has select_large_fdset * * When fd_set is not big enough to hold big file descriptors, * it should be allocated dynamically. * Note that this assumes fd_set is structured as bitmap. * * rb_fd_init allocates the memory. * rb_fd_term free the memory. * rb_fd_set may re-allocates bitmap. * * So rb_fd_set doesn't reject file descriptors bigger than FD_SETSIZE. */ void rb_fd_init(volatile rb_fdset_t *fds) { fds->maxfd = 0; fds->fdset = ALLOC(fd_set); FD_ZERO(fds->fdset); } void rb_fd_term(rb_fdset_t *fds) { if (fds->fdset) xfree(fds->fdset); fds->maxfd = 0; fds->fdset = 0; } void rb_fd_zero(rb_fdset_t *fds) { if (fds->fdset) { MEMZERO(fds->fdset, fd_mask, howmany(fds->maxfd, NFDBITS)); FD_ZERO(fds->fdset); } } static void rb_fd_resize(int n, rb_fdset_t *fds) { size_t m = howmany(n + 1, NFDBITS) * sizeof(fd_mask); size_t o = howmany(fds->maxfd, NFDBITS) * sizeof(fd_mask); if (m < sizeof(fd_set)) m = sizeof(fd_set); if (o < sizeof(fd_set)) o = sizeof(fd_set); if (m > o) { fds->fdset = xrealloc(fds->fdset, m); memset((char *)fds->fdset + o, 0, m - o); } if (n >= fds->maxfd) fds->maxfd = n + 1; } void rb_fd_set(int n, rb_fdset_t *fds) { rb_fd_resize(n, fds); FD_SET(n, fds->fdset); } void rb_fd_clr(int n, rb_fdset_t *fds) { if (n >= fds->maxfd) return; FD_CLR(n, fds->fdset); } int rb_fd_isset(int n, const rb_fdset_t *fds) { if (n >= fds->maxfd) return 0; return FD_ISSET(n, fds->fdset) != 0; /* "!= 0" avoids FreeBSD PR 91421 */ } void rb_fd_copy(rb_fdset_t *dst, const fd_set *src, int max) { size_t size = howmany(max, NFDBITS) * sizeof(fd_mask); if (size < sizeof(fd_set)) size = sizeof(fd_set); dst->maxfd = max; dst->fdset = xrealloc(dst->fdset, size); memcpy(dst->fdset, src, size); } int rb_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout) { fd_set *r = NULL, *w = NULL, *e = NULL; if (readfds) { rb_fd_resize(n - 1, readfds); r = rb_fd_ptr(readfds); } if (writefds) { rb_fd_resize(n - 1, writefds); w = rb_fd_ptr(writefds); } if (exceptfds) { rb_fd_resize(n - 1, exceptfds); e = rb_fd_ptr(exceptfds); } return select(n, r, w, e, timeout); } #undef FD_ZERO #undef FD_SET #undef FD_CLR #undef FD_ISSET #define FD_ZERO(f) rb_fd_zero(f) #define FD_SET(i, f) rb_fd_set(i, f) #define FD_CLR(i, f) rb_fd_clr(i, f) #define FD_ISSET(i, f) rb_fd_isset(i, f) #elif defined(_WIN32) void rb_fd_init(volatile rb_fdset_t *set) { set->capa = FD_SETSIZE; set->fdset = ALLOC(fd_set); FD_ZERO(set->fdset); } void rb_fd_term(rb_fdset_t *set) { xfree(set->fdset); set->fdset = NULL; set->capa = 0; } void rb_fd_set(int fd, rb_fdset_t *set) { unsigned int i; SOCKET s = rb_w32_get_osfhandle(fd); for (i = 0; i < set->fdset->fd_count; i++) { if (set->fdset->fd_array[i] == s) { return; } } if (set->fdset->fd_count >= (unsigned)set->capa) { set->capa = (set->fdset->fd_count / FD_SETSIZE + 1) * FD_SETSIZE; set->fdset = xrealloc(set->fdset, sizeof(unsigned int) + sizeof(SOCKET) * set->capa); } set->fdset->fd_array[set->fdset->fd_count++] = s; } #undef FD_ZERO #undef FD_SET #undef FD_CLR #undef FD_ISSET #define FD_ZERO(f) rb_fd_zero(f) #define FD_SET(i, f) rb_fd_set(i, f) #define FD_CLR(i, f) rb_fd_clr(i, f) #define FD_ISSET(i, f) rb_fd_isset(i, f) #endif #if defined(__CYGWIN__) || defined(_WIN32) static long cmp_tv(const struct timeval *a, const struct timeval *b) { long d = (a->tv_sec - b->tv_sec); return (d != 0) ? d : (a->tv_usec - b->tv_usec); } static int subtract_tv(struct timeval *rest, const struct timeval *wait) { if (rest->tv_sec < wait->tv_sec) { return 0; } while (rest->tv_usec < wait->tv_usec) { if (rest->tv_sec <= wait->tv_sec) { return 0; } rest->tv_sec -= 1; rest->tv_usec += 1000 * 1000; } rest->tv_sec -= wait->tv_sec; rest->tv_usec -= wait->tv_usec; return rest->tv_sec != 0 || rest->tv_usec != 0; } #endif static int do_select(int n, fd_set *read, fd_set *write, fd_set *except, struct timeval *timeout) { int result, lerrno; fd_set UNINITIALIZED_VAR(orig_read); fd_set UNINITIALIZED_VAR(orig_write); fd_set UNINITIALIZED_VAR(orig_except); #ifndef linux double limit = 0; struct timeval wait_rest; # if defined(__CYGWIN__) || defined(_WIN32) struct timeval start_time; # endif if (timeout) { # if defined(__CYGWIN__) || defined(_WIN32) gettimeofday(&start_time, NULL); limit = (double)start_time.tv_sec + (double)start_time.tv_usec*1e-6; # else limit = timeofday(); # endif limit += (double)timeout->tv_sec+(double)timeout->tv_usec*1e-6; wait_rest = *timeout; timeout = &wait_rest; } #endif if (read) orig_read = *read; if (write) orig_write = *write; if (except) orig_except = *except; retry: lerrno = 0; #if defined(__CYGWIN__) || defined(_WIN32) { int finish = 0; /* polling duration: 100ms */ struct timeval wait_100ms, *wait; wait_100ms.tv_sec = 0; wait_100ms.tv_usec = 100 * 1000; /* 100 ms */ do { wait = (timeout == 0 || cmp_tv(&wait_100ms, timeout) < 0) ? &wait_100ms : timeout; BLOCKING_REGION({ do { result = select(n, read, write, except, wait); if (result < 0) lerrno = errno; if (result != 0) break; if (read) *read = orig_read; if (write) *write = orig_write; if (except) *except = orig_except; if (timeout) { struct timeval elapsed; gettimeofday(&elapsed, NULL); subtract_tv(&elapsed, &start_time); gettimeofday(&start_time, NULL); if (!subtract_tv(timeout, &elapsed)) { finish = 1; break; } if (cmp_tv(&wait_100ms, timeout) > 0) wait = timeout; } } while (__th->interrupt_flag == 0); }, 0, 0); } while (result == 0 && !finish); } #else BLOCKING_REGION({ result = select(n, read, write, except, timeout); if (result < 0) lerrno = errno; }, ubf_select, GET_THREAD()); #endif errno = lerrno; if (result < 0) { switch (errno) { case EINTR: #ifdef ERESTART case ERESTART: #endif if (read) *read = orig_read; if (write) *write = orig_write; if (except) *except = orig_except; #ifndef linux if (timeout) { double d = limit - timeofday(); wait_rest.tv_sec = (unsigned int)d; wait_rest.tv_usec = (int)((d-(double)wait_rest.tv_sec)*1e6); if (wait_rest.tv_sec < 0) wait_rest.tv_sec = 0; if (wait_rest.tv_usec < 0) wait_rest.tv_usec = 0; } #endif goto retry; default: break; } } return result; } static void rb_thread_wait_fd_rw(int fd, int read) { int result = 0; thread_debug("rb_thread_wait_fd_rw(%d, %s)\n", fd, read ? "read" : "write"); if (fd < 0) { rb_raise(rb_eIOError, "closed stream"); } if (rb_thread_alone()) return; while (result <= 0) { rb_fdset_t set; rb_fd_init(&set); FD_SET(fd, &set); if (read) { result = do_select(fd + 1, rb_fd_ptr(&set), 0, 0, 0); } else { result = do_select(fd + 1, 0, rb_fd_ptr(&set), 0, 0); } rb_fd_term(&set); if (result < 0) { rb_sys_fail(0); } } thread_debug("rb_thread_wait_fd_rw(%d, %s): done\n", fd, read ? "read" : "write"); } void rb_thread_wait_fd(int fd) { rb_thread_wait_fd_rw(fd, 1); } int rb_thread_fd_writable(int fd) { rb_thread_wait_fd_rw(fd, 0); return TRUE; } int rb_thread_select(int max, fd_set * read, fd_set * write, fd_set * except, struct timeval *timeout) { if (!read && !write && !except) { if (!timeout) { rb_thread_sleep_forever(); return 0; } rb_thread_wait_for(*timeout); return 0; } else { return do_select(max, read, write, except, timeout); } } int rb_thread_fd_select(int max, rb_fdset_t * read, rb_fdset_t * write, rb_fdset_t * except, struct timeval *timeout) { fd_set *r = NULL, *w = NULL, *e = NULL; if (!read && !write && !except) { if (!timeout) { rb_thread_sleep_forever(); return 0; } rb_thread_wait_for(*timeout); return 0; } if (read) { rb_fd_resize(max - 1, read); r = rb_fd_ptr(read); } if (write) { rb_fd_resize(max - 1, write); w = rb_fd_ptr(write); } if (except) { rb_fd_resize(max - 1, except); e = rb_fd_ptr(except); } return do_select(max, r, w, e, timeout); } /* * for GC */ #ifdef USE_CONSERVATIVE_STACK_END void rb_gc_set_stack_end(VALUE **stack_end_p) { VALUE stack_end; *stack_end_p = &stack_end; } #endif void rb_gc_save_machine_context(rb_thread_t *th) { FLUSH_REGISTER_WINDOWS; #ifdef __ia64 th->machine_register_stack_end = rb_ia64_bsp(); #endif setjmp(th->machine_regs); } /* * */ int rb_get_next_signal(void); void rb_threadptr_check_signal(rb_thread_t *mth) { int sig; /* mth must be main_thread */ if (!mth->exec_signal && (sig = rb_get_next_signal()) > 0) { enum rb_thread_status prev_status = mth->status; thread_debug("main_thread: %s, sig: %d\n", thread_status_name(prev_status), sig); mth->exec_signal = sig; if (mth->status != THREAD_KILLED) mth->status = THREAD_RUNNABLE; rb_threadptr_interrupt(mth); mth->status = prev_status; } } static void timer_thread_function(void *arg) { rb_vm_t *vm = GET_VM(); /* TODO: fix me for Multi-VM */ /* for time slice */ RUBY_VM_SET_TIMER_INTERRUPT(vm->running_thread); /* check signal */ rb_threadptr_check_signal(vm->main_thread); #if 0 /* prove profiler */ if (vm->prove_profile.enable) { rb_thread_t *th = vm->running_thread; if (vm->during_gc) { /* GC prove profiling */ } } #endif } void rb_thread_stop_timer_thread(void) { if (timer_thread_id && native_stop_timer_thread()) { native_reset_timer_thread(); } } void rb_thread_reset_timer_thread(void) { native_reset_timer_thread(); } void rb_thread_start_timer_thread(void) { system_working = 1; rb_thread_create_timer_thread(); } static int clear_coverage_i(st_data_t key, st_data_t val, st_data_t dummy) { int i; VALUE lines = (VALUE)val; for (i = 0; i < RARRAY_LEN(lines); i++) { if (RARRAY_PTR(lines)[i] != Qnil) { RARRAY_PTR(lines)[i] = INT2FIX(0); } } return ST_CONTINUE; } static void clear_coverage(void) { extern VALUE rb_get_coverages(void); VALUE coverages = rb_get_coverages(); if (RTEST(coverages)) { st_foreach(RHASH_TBL(coverages), clear_coverage_i, 0); } } static void rb_thread_atfork_internal(int (*atfork)(st_data_t, st_data_t, st_data_t)) { rb_thread_t *th = GET_THREAD(); rb_vm_t *vm = th->vm; VALUE thval = th->self; vm->main_thread = th; native_mutex_reinitialize_atfork(&th->vm->global_vm_lock); st_foreach(vm->living_threads, atfork, (st_data_t)th); st_clear(vm->living_threads); st_insert(vm->living_threads, thval, (st_data_t)th->thread_id); vm->sleeper = 0; clear_coverage(); } static int terminate_atfork_i(st_data_t key, st_data_t val, st_data_t current_th) { VALUE thval = key; rb_thread_t *th; GetThreadPtr(thval, th); if (th != (rb_thread_t *)current_th) { if (th->keeping_mutexes) { rb_mutex_abandon_all(th->keeping_mutexes); } th->keeping_mutexes = NULL; thread_cleanup_func(th); } return ST_CONTINUE; } void rb_thread_atfork(void) { rb_thread_atfork_internal(terminate_atfork_i); GET_THREAD()->join_list_head = 0; rb_reset_random_seed(); } static int terminate_atfork_before_exec_i(st_data_t key, st_data_t val, st_data_t current_th) { VALUE thval = key; rb_thread_t *th; GetThreadPtr(thval, th); if (th != (rb_thread_t *)current_th) { thread_cleanup_func_before_exec(th); } return ST_CONTINUE; } void rb_thread_atfork_before_exec(void) { rb_thread_atfork_internal(terminate_atfork_before_exec_i); } struct thgroup { int enclosed; VALUE group; }; static size_t thgroup_memsize(const void *ptr) { return ptr ? sizeof(struct thgroup) : 0; } static const rb_data_type_t thgroup_data_type = { "thgroup", {NULL, RUBY_TYPED_DEFAULT_FREE, thgroup_memsize,}, }; /* * Document-class: ThreadGroup * * ThreadGroup provides a means of keeping track of a number of * threads as a group. A Thread can belong to only one * ThreadGroup at a time; adding a thread to a new group will * remove it from any previous group. * * Newly created threads belong to the same group as the thread from which they * were created. */ static VALUE thgroup_s_alloc(VALUE klass) { VALUE group; struct thgroup *data; group = TypedData_Make_Struct(klass, struct thgroup, &thgroup_data_type, data); data->enclosed = 0; data->group = group; return group; } struct thgroup_list_params { VALUE ary; VALUE group; }; static int thgroup_list_i(st_data_t key, st_data_t val, st_data_t data) { VALUE thread = (VALUE)key; VALUE ary = ((struct thgroup_list_params *)data)->ary; VALUE group = ((struct thgroup_list_params *)data)->group; rb_thread_t *th; GetThreadPtr(thread, th); if (th->thgroup == group) { rb_ary_push(ary, thread); } return ST_CONTINUE; } /* * call-seq: * thgrp.list -> array * * Returns an array of all existing Thread objects that belong to * this group. * * ThreadGroup::Default.list #=> [#] */ static VALUE thgroup_list(VALUE group) { VALUE ary = rb_ary_new(); struct thgroup_list_params param; param.ary = ary; param.group = group; st_foreach(GET_THREAD()->vm->living_threads, thgroup_list_i, (st_data_t) & param); return ary; } /* * call-seq: * thgrp.enclose -> thgrp * * Prevents threads from being added to or removed from the receiving * ThreadGroup. New threads can still be started in an enclosed * ThreadGroup. * * ThreadGroup::Default.enclose #=> # * thr = Thread::new { Thread.stop } #=> # * tg = ThreadGroup::new #=> # * tg.add thr * * produces: * * ThreadError: can't move from the enclosed thread group */ static VALUE thgroup_enclose(VALUE group) { struct thgroup *data; TypedData_Get_Struct(group, struct thgroup, &thgroup_data_type, data); data->enclosed = 1; return group; } /* * call-seq: * thgrp.enclosed? -> true or false * * Returns true if thgrp is enclosed. See also * ThreadGroup#enclose. */ static VALUE thgroup_enclosed_p(VALUE group) { struct thgroup *data; TypedData_Get_Struct(group, struct thgroup, &thgroup_data_type, data); if (data->enclosed) return Qtrue; return Qfalse; } /* * call-seq: * thgrp.add(thread) -> thgrp * * Adds the given thread to this group, removing it from any other * group to which it may have previously belonged. * * puts "Initial group is #{ThreadGroup::Default.list}" * tg = ThreadGroup.new * t1 = Thread.new { sleep } * t2 = Thread.new { sleep } * puts "t1 is #{t1}" * puts "t2 is #{t2}" * tg.add(t1) * puts "Initial group now #{ThreadGroup::Default.list}" * puts "tg group now #{tg.list}" * * produces: * * Initial group is # * t1 is # * t2 is # * Initial group now ## * tg group now # */ static VALUE thgroup_add(VALUE group, VALUE thread) { rb_thread_t *th; struct thgroup *data; rb_secure(4); GetThreadPtr(thread, th); if (OBJ_FROZEN(group)) { rb_raise(rb_eThreadError, "can't move to the frozen thread group"); } TypedData_Get_Struct(group, struct thgroup, &thgroup_data_type, data); if (data->enclosed) { rb_raise(rb_eThreadError, "can't move to the enclosed thread group"); } if (!th->thgroup) { return Qnil; } if (OBJ_FROZEN(th->thgroup)) { rb_raise(rb_eThreadError, "can't move from the frozen thread group"); } TypedData_Get_Struct(th->thgroup, struct thgroup, &thgroup_data_type, data); if (data->enclosed) { rb_raise(rb_eThreadError, "can't move from the enclosed thread group"); } th->thgroup = group; return group; } /* * Document-class: Mutex * * Mutex implements a simple semaphore that can be used to coordinate access to * shared data from multiple concurrent threads. * * Example: * * require 'thread' * semaphore = Mutex.new * * a = Thread.new { * semaphore.synchronize { * # access shared resource * } * } * * b = Thread.new { * semaphore.synchronize { * # access shared resource * } * } * */ #define GetMutexPtr(obj, tobj) \ TypedData_Get_Struct(obj, mutex_t, &mutex_data_type, tobj) static const char *mutex_unlock(mutex_t *mutex, rb_thread_t volatile *th); #define mutex_mark NULL static void mutex_free(void *ptr) { if (ptr) { mutex_t *mutex = ptr; if (mutex->th) { /* rb_warn("free locked mutex"); */ const char *err = mutex_unlock(mutex, mutex->th); if (err) rb_bug("%s", err); } native_mutex_destroy(&mutex->lock); native_cond_destroy(&mutex->cond); } ruby_xfree(ptr); } static size_t mutex_memsize(const void *ptr) { return ptr ? sizeof(mutex_t) : 0; } static const rb_data_type_t mutex_data_type = { "mutex", {mutex_mark, mutex_free, mutex_memsize,}, }; static VALUE mutex_alloc(VALUE klass) { VALUE volatile obj; mutex_t *mutex; obj = TypedData_Make_Struct(klass, mutex_t, &mutex_data_type, mutex); native_mutex_initialize(&mutex->lock); native_cond_initialize(&mutex->cond); return obj; } /* * call-seq: * Mutex.new -> mutex * * Creates a new Mutex */ static VALUE mutex_initialize(VALUE self) { return self; } VALUE rb_mutex_new(void) { return mutex_alloc(rb_cMutex); } /* * call-seq: * mutex.locked? -> true or false * * Returns +true+ if this lock is currently held by some thread. */ VALUE rb_mutex_locked_p(VALUE self) { mutex_t *mutex; GetMutexPtr(self, mutex); return mutex->th ? Qtrue : Qfalse; } static void mutex_locked(rb_thread_t *th, VALUE self) { mutex_t *mutex; GetMutexPtr(self, mutex); if (th->keeping_mutexes) { mutex->next_mutex = th->keeping_mutexes; } th->keeping_mutexes = mutex; } /* * call-seq: * mutex.try_lock -> true or false * * Attempts to obtain the lock and returns immediately. Returns +true+ if the * lock was granted. */ VALUE rb_mutex_trylock(VALUE self) { mutex_t *mutex; VALUE locked = Qfalse; GetMutexPtr(self, mutex); native_mutex_lock(&mutex->lock); if (mutex->th == 0) { mutex->th = GET_THREAD(); locked = Qtrue; mutex_locked(GET_THREAD(), self); } native_mutex_unlock(&mutex->lock); return locked; } static int lock_func(rb_thread_t *th, mutex_t *mutex, int last_thread) { int interrupted = 0; #if 0 /* for debug */ native_thread_yield(); #endif native_mutex_lock(&mutex->lock); th->transition_for_lock = 0; while (mutex->th || (mutex->th = th, 0)) { if (last_thread) { interrupted = 2; break; } mutex->cond_waiting++; native_cond_wait(&mutex->cond, &mutex->lock); mutex->cond_notified--; if (RUBY_VM_INTERRUPTED(th)) { interrupted = 1; break; } } th->transition_for_lock = 1; native_mutex_unlock(&mutex->lock); if (interrupted == 2) native_thread_yield(); #if 0 /* for debug */ native_thread_yield(); #endif return interrupted; } static void lock_interrupt(void *ptr) { mutex_t *mutex = (mutex_t *)ptr; native_mutex_lock(&mutex->lock); if (mutex->cond_waiting > 0) { native_cond_broadcast(&mutex->cond); mutex->cond_notified = mutex->cond_waiting; mutex->cond_waiting = 0; } native_mutex_unlock(&mutex->lock); } /* * call-seq: * mutex.lock -> self * * Attempts to grab the lock and waits if it isn't available. * Raises +ThreadError+ if +mutex+ was locked by the current thread. */ VALUE rb_mutex_lock(VALUE self) { if (rb_mutex_trylock(self) == Qfalse) { mutex_t *mutex; rb_thread_t *th = GET_THREAD(); GetMutexPtr(self, mutex); if (mutex->th == GET_THREAD()) { rb_raise(rb_eThreadError, "deadlock; recursive locking"); } while (mutex->th != th) { int interrupted; enum rb_thread_status prev_status = th->status; int last_thread = 0; struct rb_unblock_callback oldubf; set_unblock_function(th, lock_interrupt, mutex, &oldubf); th->status = THREAD_STOPPED_FOREVER; th->vm->sleeper++; th->locking_mutex = self; if (vm_living_thread_num(th->vm) == th->vm->sleeper) { last_thread = 1; } th->transition_for_lock = 1; BLOCKING_REGION_CORE({ interrupted = lock_func(th, mutex, last_thread); }); th->transition_for_lock = 0; remove_signal_thread_list(th); reset_unblock_function(th, &oldubf); th->locking_mutex = Qfalse; if (mutex->th && interrupted == 2) { rb_check_deadlock(th->vm); } if (th->status == THREAD_STOPPED_FOREVER) { th->status = prev_status; } th->vm->sleeper--; if (mutex->th == th) mutex_locked(th, self); if (interrupted) { RUBY_VM_CHECK_INTS(); } } } return self; } static const char * mutex_unlock(mutex_t *mutex, rb_thread_t volatile *th) { const char *err = NULL; mutex_t *th_mutex; native_mutex_lock(&mutex->lock); if (mutex->th == 0) { err = "Attempt to unlock a mutex which is not locked"; } else if (mutex->th != th) { err = "Attempt to unlock a mutex which is locked by another thread"; } else { mutex->th = 0; if (mutex->cond_waiting > 0) { /* waiting thread */ native_cond_signal(&mutex->cond); mutex->cond_waiting--; mutex->cond_notified++; } } native_mutex_unlock(&mutex->lock); if (!err) { th_mutex = th->keeping_mutexes; if (th_mutex == mutex) { th->keeping_mutexes = mutex->next_mutex; } else { while (1) { mutex_t *tmp_mutex; tmp_mutex = th_mutex->next_mutex; if (tmp_mutex == mutex) { th_mutex->next_mutex = tmp_mutex->next_mutex; break; } th_mutex = tmp_mutex; } } mutex->next_mutex = NULL; } return err; } /* * call-seq: * mutex.unlock -> self * * Releases the lock. * Raises +ThreadError+ if +mutex+ wasn't locked by the current thread. */ VALUE rb_mutex_unlock(VALUE self) { const char *err; mutex_t *mutex; GetMutexPtr(self, mutex); err = mutex_unlock(mutex, GET_THREAD()); if (err) rb_raise(rb_eThreadError, "%s", err); return self; } static void rb_mutex_unlock_all(mutex_t *mutexes, rb_thread_t *th) { const char *err; mutex_t *mutex; while (mutexes) { mutex = mutexes; /* rb_warn("mutex #<%p> remains to be locked by terminated thread", mutexes); */ mutexes = mutex->next_mutex; err = mutex_unlock(mutex, th); if (err) rb_bug("invalid keeping_mutexes: %s", err); } } static void rb_mutex_abandon_all(mutex_t *mutexes) { mutex_t *mutex; while (mutexes) { mutex = mutexes; mutexes = mutex->next_mutex; mutex->th = 0; mutex->next_mutex = 0; } } static VALUE rb_mutex_sleep_forever(VALUE time) { rb_thread_sleep_deadly(); return Qnil; } static VALUE rb_mutex_wait_for(VALUE time) { const struct timeval *t = (struct timeval *)time; rb_thread_wait_for(*t); return Qnil; } VALUE rb_mutex_sleep(VALUE self, VALUE timeout) { time_t beg, end; struct timeval t; if (!NIL_P(timeout)) { t = rb_time_interval(timeout); } rb_mutex_unlock(self); beg = time(0); if (NIL_P(timeout)) { rb_ensure(rb_mutex_sleep_forever, Qnil, rb_mutex_lock, self); } else { rb_ensure(rb_mutex_wait_for, (VALUE)&t, rb_mutex_lock, self); } end = time(0) - beg; return INT2FIX(end); } /* * call-seq: * mutex.sleep(timeout = nil) -> number * * Releases the lock and sleeps +timeout+ seconds if it is given and * non-nil or forever. Raises +ThreadError+ if +mutex+ wasn't locked by * the current thread. */ static VALUE mutex_sleep(int argc, VALUE *argv, VALUE self) { VALUE timeout; rb_scan_args(argc, argv, "01", &timeout); return rb_mutex_sleep(self, timeout); } /* * call-seq: * mutex.synchronize { ... } -> result of the block * * Obtains a lock, runs the block, and releases the lock when the block * completes. See the example under +Mutex+. */ VALUE rb_mutex_synchronize(VALUE mutex, VALUE (*func)(VALUE arg), VALUE arg) { rb_mutex_lock(mutex); return rb_ensure(func, arg, rb_mutex_unlock, mutex); } /* * Document-class: Barrier */ static void barrier_mark(void *ptr) { rb_gc_mark((VALUE)ptr); } static const rb_data_type_t barrier_data_type = { "barrier", {barrier_mark, 0, 0,}, }; static VALUE barrier_alloc(VALUE klass) { return TypedData_Wrap_Struct(klass, &barrier_data_type, (void *)mutex_alloc(0)); } #define GetBarrierPtr(obj) (VALUE)rb_check_typeddata(obj, &barrier_data_type) VALUE rb_barrier_new(void) { VALUE barrier = barrier_alloc(rb_cBarrier); rb_mutex_lock((VALUE)DATA_PTR(barrier)); return barrier; } VALUE rb_barrier_wait(VALUE self) { VALUE mutex = GetBarrierPtr(self); mutex_t *m; if (!mutex) return Qfalse; GetMutexPtr(mutex, m); if (m->th == GET_THREAD()) return Qfalse; rb_mutex_lock(mutex); if (DATA_PTR(self)) return Qtrue; rb_mutex_unlock(mutex); return Qfalse; } VALUE rb_barrier_release(VALUE self) { return rb_mutex_unlock(GetBarrierPtr(self)); } VALUE rb_barrier_destroy(VALUE self) { VALUE mutex = GetBarrierPtr(self); DATA_PTR(self) = 0; return rb_mutex_unlock(mutex); } /* variables for recursive traversals */ static ID recursive_key; /* * Returns the current "recursive list" used to detect recursion. * This list is a hash table, unique for the current thread and for * the current __callee__. */ static VALUE recursive_list_access(void) { volatile VALUE hash = rb_thread_local_aref(rb_thread_current(), recursive_key); VALUE sym = ID2SYM(rb_frame_this_func()); VALUE list; if (NIL_P(hash) || TYPE(hash) != T_HASH) { hash = rb_hash_new(); OBJ_UNTRUST(hash); rb_thread_local_aset(rb_thread_current(), recursive_key, hash); list = Qnil; } else { list = rb_hash_aref(hash, sym); } if (NIL_P(list) || TYPE(list) != T_HASH) { list = rb_hash_new(); OBJ_UNTRUST(list); rb_hash_aset(hash, sym, list); } return list; } /* * Returns Qtrue iff obj_id (or the pair ) is already * in the recursion list. * Assumes the recursion list is valid. */ static VALUE recursive_check(VALUE list, VALUE obj_id, VALUE paired_obj_id) { VALUE pair_list = rb_hash_lookup2(list, obj_id, Qundef); if (pair_list == Qundef) return Qfalse; if (paired_obj_id) { if (TYPE(pair_list) != T_HASH) { if (pair_list != paired_obj_id) return Qfalse; } else { if (NIL_P(rb_hash_lookup(pair_list, paired_obj_id))) return Qfalse; } } return Qtrue; } /* * Pushes obj_id (or the pair ) in the recursion list. * For a single obj_id, it sets list[obj_id] to Qtrue. * For a pair, it sets list[obj_id] to paired_obj_id if possible, * otherwise list[obj_id] becomes a hash like: * {paired_obj_id_1 => true, paired_obj_id_2 => true, ... } * Assumes the recursion list is valid. */ static void recursive_push(VALUE list, VALUE obj, VALUE paired_obj) { VALUE pair_list; if (!paired_obj) { rb_hash_aset(list, obj, Qtrue); } else if ((pair_list = rb_hash_lookup2(list, obj, Qundef)) == Qundef) { rb_hash_aset(list, obj, paired_obj); } else { if (TYPE(pair_list) != T_HASH){ VALUE other_paired_obj = pair_list; pair_list = rb_hash_new(); OBJ_UNTRUST(pair_list); rb_hash_aset(pair_list, other_paired_obj, Qtrue); rb_hash_aset(list, obj, pair_list); } rb_hash_aset(pair_list, paired_obj, Qtrue); } } /* * Pops obj_id (or the pair ) from the recursion list. * For a pair, if list[obj_id] is a hash, then paired_obj_id is * removed from the hash and no attempt is made to simplify * list[obj_id] from {only_one_paired_id => true} to only_one_paired_id * Assumes the recursion list is valid. */ static void recursive_pop(VALUE list, VALUE obj, VALUE paired_obj) { if (paired_obj) { VALUE pair_list = rb_hash_lookup2(list, obj, Qundef); if (pair_list == Qundef) { VALUE symname = rb_inspect(ID2SYM(rb_frame_this_func())); VALUE thrname = rb_inspect(rb_thread_current()); rb_raise(rb_eTypeError, "invalid inspect_tbl pair_list for %s in %s", StringValuePtr(symname), StringValuePtr(thrname)); } if (TYPE(pair_list) == T_HASH) { rb_hash_delete(pair_list, paired_obj); if (!RHASH_EMPTY_P(pair_list)) { return; /* keep hash until is empty */ } } } rb_hash_delete(list, obj); } struct exec_recursive_params { VALUE (*func) (VALUE, VALUE, int); VALUE list; VALUE obj; VALUE objid; VALUE pairid; VALUE arg; }; static VALUE exec_recursive_i(VALUE tag, struct exec_recursive_params *p) { VALUE result = Qundef; int state; recursive_push(p->list, p->objid, p->pairid); PUSH_TAG(); if ((state = EXEC_TAG()) == 0) { result = (*p->func)(p->obj, p->arg, FALSE); } POP_TAG(); recursive_pop(p->list, p->objid, p->pairid); if (state) JUMP_TAG(state); return result; } /* * Calls func(obj, arg, recursive), where recursive is non-zero if the * current method is called recursively on obj, or on the pair * If outer is 0, then the innermost func will be called with recursive set * to Qtrue, otherwise the outermost func will be called. In the latter case, * all inner func are short-circuited by throw. * Implementation details: the value thrown is the recursive list which is * proper to the current method and unlikely to be catched anywhere else. * list[recursive_key] is used as a flag for the outermost call. */ static VALUE exec_recursive(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE pairid, VALUE arg, int outer) { struct exec_recursive_params p; int outermost; p.list = recursive_list_access(); p.objid = rb_obj_id(obj); outermost = outer && !recursive_check(p.list, ID2SYM(recursive_key), 0); if (recursive_check(p.list, p.objid, pairid)) { if (outer && !outermost) { rb_throw_obj(p.list, p.list); } return (*func)(obj, arg, TRUE); } else { VALUE result = Qundef; p.func = func; p.obj = obj; p.pairid = pairid; p.arg = arg; if (outermost) { recursive_push(p.list, ID2SYM(recursive_key), 0); result = rb_catch_obj(p.list, exec_recursive_i, (VALUE)&p); recursive_pop(p.list, ID2SYM(recursive_key), 0); if (result == p.list) { result = (*func)(obj, arg, TRUE); } } else { result = exec_recursive_i(0, &p); } return result; } } /* * Calls func(obj, arg, recursive), where recursive is non-zero if the * current method is called recursively on obj */ VALUE rb_exec_recursive(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE arg) { return exec_recursive(func, obj, 0, arg, 0); } /* * Calls func(obj, arg, recursive), where recursive is non-zero if the * current method is called recursively on the ordered pair */ VALUE rb_exec_recursive_paired(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE paired_obj, VALUE arg) { return exec_recursive(func, obj, rb_obj_id(paired_obj), arg, 0); } /* * If recursion is detected on the current method and obj, the outermost * func will be called with (obj, arg, Qtrue). All inner func will be * short-circuited using throw. */ VALUE rb_exec_recursive_outer(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE arg) { return exec_recursive(func, obj, 0, arg, 1); } /* tracer */ enum { EVENT_RUNNING_NOTHING, EVENT_RUNNING_TRACE = 1, EVENT_RUNNING_THREAD = 2, EVENT_RUNNING_VM = 4, EVENT_RUNNING_EVENT_MASK = EVENT_RUNNING_VM|EVENT_RUNNING_THREAD }; static VALUE thread_suppress_tracing(rb_thread_t *th, int ev, VALUE (*func)(VALUE, int), VALUE arg, int always); VALUE ruby_suppress_tracing(VALUE (*func)(VALUE, int), VALUE arg, int always); struct event_call_args { rb_thread_t *th; VALUE klass; VALUE self; VALUE proc; ID id; rb_event_flag_t event; }; static rb_event_hook_t * alloc_event_hook(rb_event_hook_func_t func, rb_event_flag_t events, VALUE data) { rb_event_hook_t *hook = ALLOC(rb_event_hook_t); hook->func = func; hook->flag = events; hook->data = data; return hook; } static void thread_reset_event_flags(rb_thread_t *th) { rb_event_hook_t *hook = th->event_hooks; rb_event_flag_t flag = th->event_flags & RUBY_EVENT_VM; while (hook) { flag |= hook->flag; hook = hook->next; } th->event_flags = flag; } static void rb_threadptr_add_event_hook(rb_thread_t *th, rb_event_hook_func_t func, rb_event_flag_t events, VALUE data) { rb_event_hook_t *hook = alloc_event_hook(func, events, data); hook->next = th->event_hooks; th->event_hooks = hook; thread_reset_event_flags(th); } static rb_thread_t * thval2thread_t(VALUE thval) { rb_thread_t *th; GetThreadPtr(thval, th); return th; } void rb_thread_add_event_hook(VALUE thval, rb_event_hook_func_t func, rb_event_flag_t events, VALUE data) { rb_threadptr_add_event_hook(thval2thread_t(thval), func, events, data); } static int set_threads_event_flags_i(st_data_t key, st_data_t val, st_data_t flag) { VALUE thval = key; rb_thread_t *th; GetThreadPtr(thval, th); if (flag) { th->event_flags |= RUBY_EVENT_VM; } else { th->event_flags &= (~RUBY_EVENT_VM); } return ST_CONTINUE; } static void set_threads_event_flags(int flag) { st_foreach(GET_VM()->living_threads, set_threads_event_flags_i, (st_data_t) flag); } static inline void exec_event_hooks(const rb_event_hook_t *hook, rb_event_flag_t flag, VALUE self, ID id, VALUE klass) { for (; hook; hook = hook->next) { if (flag & hook->flag) { (*hook->func)(flag, hook->data, self, id, klass); } } } static VALUE thread_exec_event_hooks(VALUE args, int running) { struct event_call_args *argp = (struct event_call_args *)args; rb_thread_t *th = argp->th; rb_event_flag_t flag = argp->event; VALUE self = argp->self; ID id = argp->id; VALUE klass = argp->klass; const rb_event_flag_t wait_event = th->event_flags; if (self == rb_mRubyVMFrozenCore) return 0; if ((wait_event & flag) && !(running & EVENT_RUNNING_THREAD)) { th->tracing |= EVENT_RUNNING_THREAD; exec_event_hooks(th->event_hooks, flag, self, id, klass); th->tracing &= ~EVENT_RUNNING_THREAD; } if (wait_event & RUBY_EVENT_VM) { if (th->vm->event_hooks == NULL) { th->event_flags &= (~RUBY_EVENT_VM); } else if (!(running & EVENT_RUNNING_VM)) { th->tracing |= EVENT_RUNNING_VM; exec_event_hooks(th->vm->event_hooks, flag, self, id, klass); th->tracing &= ~EVENT_RUNNING_VM; } } return 0; } void rb_threadptr_exec_event_hooks(rb_thread_t *th, rb_event_flag_t flag, VALUE self, ID id, VALUE klass) { const VALUE errinfo = th->errinfo; struct event_call_args args; args.th = th; args.event = flag; args.self = self; args.id = id; args.klass = klass; args.proc = 0; thread_suppress_tracing(th, EVENT_RUNNING_EVENT_MASK, thread_exec_event_hooks, (VALUE)&args, FALSE); th->errinfo = errinfo; } void rb_add_event_hook(rb_event_hook_func_t func, rb_event_flag_t events, VALUE data) { rb_event_hook_t *hook = alloc_event_hook(func, events, data); rb_vm_t *vm = GET_VM(); hook->next = vm->event_hooks; vm->event_hooks = hook; set_threads_event_flags(1); } static int remove_event_hook(rb_event_hook_t **root, rb_event_hook_func_t func) { rb_event_hook_t *prev = NULL, *hook = *root, *next; while (hook) { next = hook->next; if (func == 0 || hook->func == func) { if (prev) { prev->next = hook->next; } else { *root = hook->next; } xfree(hook); } else { prev = hook; } hook = next; } return -1; } static int rb_threadptr_remove_event_hook(rb_thread_t *th, rb_event_hook_func_t func) { int ret = remove_event_hook(&th->event_hooks, func); thread_reset_event_flags(th); return ret; } int rb_thread_remove_event_hook(VALUE thval, rb_event_hook_func_t func) { return rb_threadptr_remove_event_hook(thval2thread_t(thval), func); } int rb_remove_event_hook(rb_event_hook_func_t func) { rb_vm_t *vm = GET_VM(); rb_event_hook_t *hook = vm->event_hooks; int ret = remove_event_hook(&vm->event_hooks, func); if (hook != NULL && vm->event_hooks == NULL) { set_threads_event_flags(0); } return ret; } static int clear_trace_func_i(st_data_t key, st_data_t val, st_data_t flag) { rb_thread_t *th; GetThreadPtr((VALUE)key, th); rb_threadptr_remove_event_hook(th, 0); return ST_CONTINUE; } void rb_clear_trace_func(void) { st_foreach(GET_VM()->living_threads, clear_trace_func_i, (st_data_t) 0); rb_remove_event_hook(0); } static void call_trace_func(rb_event_flag_t, VALUE data, VALUE self, ID id, VALUE klass); /* * call-seq: * set_trace_func(proc) -> proc * set_trace_func(nil) -> nil * * Establishes _proc_ as the handler for tracing, or disables * tracing if the parameter is +nil+. _proc_ takes up * to six parameters: an event name, a filename, a line number, an * object id, a binding, and the name of a class. _proc_ is * invoked whenever an event occurs. Events are: c-call * (call a C-language routine), c-return (return from a * C-language routine), call (call a Ruby method), * class (start a class or module definition), * end (finish a class or module definition), * line (execute code on a new line), raise * (raise an exception), and return (return from a Ruby * method). Tracing is disabled within the context of _proc_. * * class Test * def test * a = 1 * b = 2 * end * end * * set_trace_func proc { |event, file, line, id, binding, classname| * printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname * } * t = Test.new * t.test * * line prog.rb:11 false * c-call prog.rb:11 new Class * c-call prog.rb:11 initialize Object * c-return prog.rb:11 initialize Object * c-return prog.rb:11 new Class * line prog.rb:12 false * call prog.rb:2 test Test * line prog.rb:3 test Test * line prog.rb:4 test Test * return prog.rb:4 test Test */ static VALUE set_trace_func(VALUE obj, VALUE trace) { rb_remove_event_hook(call_trace_func); if (NIL_P(trace)) { return Qnil; } if (!rb_obj_is_proc(trace)) { rb_raise(rb_eTypeError, "trace_func needs to be Proc"); } rb_add_event_hook(call_trace_func, RUBY_EVENT_ALL, trace); return trace; } static void thread_add_trace_func(rb_thread_t *th, VALUE trace) { if (!rb_obj_is_proc(trace)) { rb_raise(rb_eTypeError, "trace_func needs to be Proc"); } rb_threadptr_add_event_hook(th, call_trace_func, RUBY_EVENT_ALL, trace); } /* * call-seq: * thr.add_trace_func(proc) -> proc * * Adds _proc_ as a handler for tracing. * See Thread#set_trace_func and +set_trace_func+. */ static VALUE thread_add_trace_func_m(VALUE obj, VALUE trace) { rb_thread_t *th; GetThreadPtr(obj, th); thread_add_trace_func(th, trace); return trace; } /* * call-seq: * thr.set_trace_func(proc) -> proc * thr.set_trace_func(nil) -> nil * * Establishes _proc_ on _thr_ as the handler for tracing, or * disables tracing if the parameter is +nil+. * See +set_trace_func+. */ static VALUE thread_set_trace_func_m(VALUE obj, VALUE trace) { rb_thread_t *th; GetThreadPtr(obj, th); rb_threadptr_remove_event_hook(th, call_trace_func); if (NIL_P(trace)) { return Qnil; } thread_add_trace_func(th, trace); return trace; } static const char * get_event_name(rb_event_flag_t event) { switch (event) { case RUBY_EVENT_LINE: return "line"; case RUBY_EVENT_CLASS: return "class"; case RUBY_EVENT_END: return "end"; case RUBY_EVENT_CALL: return "call"; case RUBY_EVENT_RETURN: return "return"; case RUBY_EVENT_C_CALL: return "c-call"; case RUBY_EVENT_C_RETURN: return "c-return"; case RUBY_EVENT_RAISE: return "raise"; default: return "unknown"; } } static VALUE call_trace_proc(VALUE args, int tracing) { struct event_call_args *p = (struct event_call_args *)args; const char *srcfile = rb_sourcefile(); VALUE eventname = rb_str_new2(get_event_name(p->event)); VALUE filename = srcfile ? rb_str_new2(srcfile) : Qnil; VALUE argv[6]; int line = rb_sourceline(); ID id = 0; VALUE klass = 0; if (p->event == RUBY_EVENT_C_CALL || p->event == RUBY_EVENT_C_RETURN) { id = p->id; klass = p->klass; } else { rb_thread_method_id_and_class(p->th, &id, &klass); } if (id == ID_ALLOCATOR) return Qnil; if (klass) { if (TYPE(klass) == T_ICLASS) { klass = RBASIC(klass)->klass; } else if (FL_TEST(klass, FL_SINGLETON)) { klass = rb_iv_get(klass, "__attached__"); } } argv[0] = eventname; argv[1] = filename; argv[2] = INT2FIX(line); argv[3] = id ? ID2SYM(id) : Qnil; argv[4] = (p->self && srcfile) ? rb_binding_new() : Qnil; argv[5] = klass ? klass : Qnil; return rb_proc_call_with_block(p->proc, 6, argv, Qnil); } static void call_trace_func(rb_event_flag_t event, VALUE proc, VALUE self, ID id, VALUE klass) { struct event_call_args args; args.th = GET_THREAD(); args.event = event; args.proc = proc; args.self = self; args.id = id; args.klass = klass; ruby_suppress_tracing(call_trace_proc, (VALUE)&args, FALSE); } VALUE ruby_suppress_tracing(VALUE (*func)(VALUE, int), VALUE arg, int always) { rb_thread_t *th = GET_THREAD(); return thread_suppress_tracing(th, EVENT_RUNNING_TRACE, func, arg, always); } static VALUE thread_suppress_tracing(rb_thread_t *th, int ev, VALUE (*func)(VALUE, int), VALUE arg, int always) { int state, tracing = th->tracing, running = tracing & ev; volatile int raised; volatile int outer_state; VALUE result = Qnil; if (running == ev && !always) { return Qnil; } else { th->tracing |= ev; } raised = rb_threadptr_reset_raised(th); outer_state = th->state; th->state = 0; PUSH_TAG(); if ((state = EXEC_TAG()) == 0) { result = (*func)(arg, running); } if (raised) { rb_threadptr_set_raised(th); } POP_TAG(); th->tracing = tracing; if (state) { JUMP_TAG(state); } th->state = outer_state; return result; } VALUE rb_thread_backtrace(VALUE thval); /* * call-seq: * thr.backtrace -> array * * Returns the current back trace of the _thr_. */ static VALUE rb_thread_backtrace_m(VALUE thval) { return rb_thread_backtrace(thval); } /* * Document-class: ThreadError * * Raised when an invalid operation is attempted on a thread. * * For example, when no other thread has been started: * * Thread.stop * * raises the exception: * * ThreadError: stopping only thread */ /* * +Thread+ encapsulates the behavior of a thread of * execution, including the main thread of the Ruby script. * * In the descriptions of the methods in this class, the parameter _sym_ * refers to a symbol, which is either a quoted string or a * +Symbol+ (such as :name). */ void Init_Thread(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) VALUE cThGroup; rb_define_singleton_method(rb_cThread, "new", thread_s_new, -1); rb_define_singleton_method(rb_cThread, "start", thread_start, -2); rb_define_singleton_method(rb_cThread, "fork", thread_start, -2); rb_define_singleton_method(rb_cThread, "main", rb_thread_s_main, 0); rb_define_singleton_method(rb_cThread, "current", thread_s_current, 0); rb_define_singleton_method(rb_cThread, "stop", rb_thread_stop, 0); rb_define_singleton_method(rb_cThread, "kill", rb_thread_s_kill, 1); rb_define_singleton_method(rb_cThread, "exit", rb_thread_exit, 0); rb_define_singleton_method(rb_cThread, "pass", thread_s_pass, 0); rb_define_singleton_method(rb_cThread, "list", rb_thread_list, 0); rb_define_singleton_method(rb_cThread, "abort_on_exception", rb_thread_s_abort_exc, 0); rb_define_singleton_method(rb_cThread, "abort_on_exception=", rb_thread_s_abort_exc_set, 1); #if THREAD_DEBUG < 0 rb_define_singleton_method(rb_cThread, "DEBUG", rb_thread_s_debug, 0); rb_define_singleton_method(rb_cThread, "DEBUG=", rb_thread_s_debug_set, 1); #endif rb_define_method(rb_cThread, "initialize", thread_initialize, -2); rb_define_method(rb_cThread, "raise", thread_raise_m, -1); rb_define_method(rb_cThread, "join", thread_join_m, -1); rb_define_method(rb_cThread, "value", thread_value, 0); rb_define_method(rb_cThread, "kill", rb_thread_kill, 0); rb_define_method(rb_cThread, "terminate", rb_thread_kill, 0); rb_define_method(rb_cThread, "exit", rb_thread_kill, 0); rb_define_method(rb_cThread, "run", rb_thread_run, 0); rb_define_method(rb_cThread, "wakeup", rb_thread_wakeup, 0); rb_define_method(rb_cThread, "[]", rb_thread_aref, 1); rb_define_method(rb_cThread, "[]=", rb_thread_aset, 2); rb_define_method(rb_cThread, "key?", rb_thread_key_p, 1); rb_define_method(rb_cThread, "keys", rb_thread_keys, 0); rb_define_method(rb_cThread, "priority", rb_thread_priority, 0); rb_define_method(rb_cThread, "priority=", rb_thread_priority_set, 1); rb_define_method(rb_cThread, "status", rb_thread_status, 0); rb_define_method(rb_cThread, "alive?", rb_thread_alive_p, 0); rb_define_method(rb_cThread, "stop?", rb_thread_stop_p, 0); rb_define_method(rb_cThread, "abort_on_exception", rb_thread_abort_exc, 0); rb_define_method(rb_cThread, "abort_on_exception=", rb_thread_abort_exc_set, 1); rb_define_method(rb_cThread, "safe_level", rb_thread_safe_level, 0); rb_define_method(rb_cThread, "group", rb_thread_group, 0); rb_define_method(rb_cThread, "backtrace", rb_thread_backtrace_m, 0); rb_define_method(rb_cThread, "inspect", rb_thread_inspect, 0); cThGroup = rb_define_class("ThreadGroup", rb_cObject); rb_define_alloc_func(cThGroup, thgroup_s_alloc); rb_define_method(cThGroup, "list", thgroup_list, 0); rb_define_method(cThGroup, "enclose", thgroup_enclose, 0); rb_define_method(cThGroup, "enclosed?", thgroup_enclosed_p, 0); rb_define_method(cThGroup, "add", thgroup_add, 1); { rb_thread_t *th = GET_THREAD(); th->thgroup = th->vm->thgroup_default = rb_obj_alloc(cThGroup); rb_define_const(cThGroup, "Default", th->thgroup); } rb_cMutex = rb_define_class("Mutex", rb_cObject); rb_define_alloc_func(rb_cMutex, mutex_alloc); rb_define_method(rb_cMutex, "initialize", mutex_initialize, 0); rb_define_method(rb_cMutex, "locked?", rb_mutex_locked_p, 0); rb_define_method(rb_cMutex, "try_lock", rb_mutex_trylock, 0); rb_define_method(rb_cMutex, "lock", rb_mutex_lock, 0); rb_define_method(rb_cMutex, "unlock", rb_mutex_unlock, 0); rb_define_method(rb_cMutex, "sleep", mutex_sleep, -1); recursive_key = rb_intern("__recursive_key__"); rb_eThreadError = rb_define_class("ThreadError", rb_eStandardError); /* trace */ rb_define_global_function("set_trace_func", set_trace_func, 1); rb_define_method(rb_cThread, "set_trace_func", thread_set_trace_func_m, 1); rb_define_method(rb_cThread, "add_trace_func", thread_add_trace_func_m, 1); /* init thread core */ { /* main thread setting */ { /* acquire global vm lock */ rb_thread_lock_t *lp = &GET_THREAD()->vm->global_vm_lock; native_mutex_initialize(lp); native_mutex_lock(lp); native_mutex_initialize(&GET_THREAD()->interrupt_lock); } } rb_thread_create_timer_thread(); (void)native_mutex_trylock; } int ruby_native_thread_p(void) { rb_thread_t *th = ruby_thread_from_native(); return th != 0; } static int check_deadlock_i(st_data_t key, st_data_t val, int *found) { VALUE thval = key; rb_thread_t *th; GetThreadPtr(thval, th); if (th->status != THREAD_STOPPED_FOREVER || RUBY_VM_INTERRUPTED(th) || th->transition_for_lock) { *found = 1; } else if (th->locking_mutex) { mutex_t *mutex; GetMutexPtr(th->locking_mutex, mutex); native_mutex_lock(&mutex->lock); if (mutex->th == th || (!mutex->th && mutex->cond_notified)) { *found = 1; } native_mutex_unlock(&mutex->lock); } return (*found) ? ST_STOP : ST_CONTINUE; } #if 0 /* for debug */ static int debug_i(st_data_t key, st_data_t val, int *found) { VALUE thval = key; rb_thread_t *th; GetThreadPtr(thval, th); printf("th:%p %d %d %d", th, th->status, th->interrupt_flag, th->transition_for_lock); if (th->locking_mutex) { mutex_t *mutex; GetMutexPtr(th->locking_mutex, mutex); native_mutex_lock(&mutex->lock); printf(" %p %d\n", mutex->th, mutex->cond_notified); native_mutex_unlock(&mutex->lock); } else puts(""); return ST_CONTINUE; } #endif static void rb_check_deadlock(rb_vm_t *vm) { int found = 0; if (vm_living_thread_num(vm) > vm->sleeper) return; if (vm_living_thread_num(vm) < vm->sleeper) rb_bug("sleeper must not be more than vm_living_thread_num(vm)"); st_foreach(vm->living_threads, check_deadlock_i, (st_data_t)&found); if (!found) { VALUE argv[2]; argv[0] = rb_eFatal; argv[1] = rb_str_new2("deadlock detected"); #if 0 /* for debug */ printf("%d %d %p %p\n", vm->living_threads->num_entries, vm->sleeper, GET_THREAD(), vm->main_thread); st_foreach(vm->living_threads, debug_i, (st_data_t)0); #endif vm->sleeper--; rb_threadptr_raise(vm->main_thread, 2, argv); } } static void update_coverage(rb_event_flag_t event, VALUE proc, VALUE self, ID id, VALUE klass) { VALUE coverage = GET_THREAD()->cfp->iseq->coverage; if (coverage && RBASIC(coverage)->klass == 0) { long line = rb_sourceline() - 1; long count; if (RARRAY_PTR(coverage)[line] == Qnil) { rb_bug("bug"); } count = FIX2LONG(RARRAY_PTR(coverage)[line]) + 1; if (POSFIXABLE(count)) { RARRAY_PTR(coverage)[line] = LONG2FIX(count); } } } VALUE rb_get_coverages(void) { return GET_VM()->coverages; } void rb_set_coverages(VALUE coverages) { GET_VM()->coverages = coverages; rb_add_event_hook(update_coverage, RUBY_EVENT_COVERAGE, Qnil); } void rb_reset_coverages(void) { GET_VM()->coverages = Qfalse; rb_remove_event_hook(update_coverage); }