/********************************************************************** Vm.c - $Author$ Copyright (C) 2004-2007 Koichi Sasada **********************************************************************/ #define vm_exec rb_vm_exec #include "eval_intern.h" #include "internal.h" #include "internal/class.h" #include "internal/compile.h" #include "internal/cont.h" #include "internal/error.h" #include "internal/encoding.h" #include "internal/eval.h" #include "internal/gc.h" #include "internal/inits.h" #include "internal/missing.h" #include "internal/object.h" #include "internal/proc.h" #include "internal/re.h" #include "internal/ruby_parser.h" #include "internal/symbol.h" #include "internal/thread.h" #include "internal/transcode.h" #include "internal/vm.h" #include "internal/sanitizers.h" #include "internal/variable.h" #include "iseq.h" #include "rjit.h" #include "yjit.h" #include "ruby/st.h" #include "ruby/vm.h" #include "vm_core.h" #include "vm_callinfo.h" #include "vm_debug.h" #include "vm_exec.h" #include "vm_insnhelper.h" #include "ractor_core.h" #include "vm_sync.h" #include "shape.h" #include "builtin.h" #include "probes.h" #include "probes_helper.h" #ifdef RUBY_ASSERT_CRITICAL_SECTION int ruby_assert_critical_section_entered = 0; #endif static void *native_main_thread_stack_top; VALUE rb_str_concat_literals(size_t, const VALUE*); VALUE vm_exec(rb_execution_context_t *); extern const char *const rb_debug_counter_names[]; PUREFUNC(static inline const VALUE *VM_EP_LEP(const VALUE *)); static inline const VALUE * VM_EP_LEP(const VALUE *ep) { while (!VM_ENV_LOCAL_P(ep)) { ep = VM_ENV_PREV_EP(ep); } return ep; } static inline const rb_control_frame_t * rb_vm_search_cf_from_ep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, const VALUE * const ep) { if (!ep) { return NULL; } else { const rb_control_frame_t * const eocfp = RUBY_VM_END_CONTROL_FRAME(ec); /* end of control frame pointer */ while (cfp < eocfp) { if (cfp->ep == ep) { return cfp; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return NULL; } } const VALUE * rb_vm_ep_local_ep(const VALUE *ep) { return VM_EP_LEP(ep); } PUREFUNC(static inline const VALUE *VM_CF_LEP(const rb_control_frame_t * const cfp)); static inline const VALUE * VM_CF_LEP(const rb_control_frame_t * const cfp) { return VM_EP_LEP(cfp->ep); } static inline const VALUE * VM_CF_PREV_EP(const rb_control_frame_t * const cfp) { return VM_ENV_PREV_EP(cfp->ep); } PUREFUNC(static inline VALUE VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp)); static inline VALUE VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp) { const VALUE *ep = VM_CF_LEP(cfp); return VM_ENV_BLOCK_HANDLER(ep); } int rb_vm_cframe_keyword_p(const rb_control_frame_t *cfp) { return VM_FRAME_CFRAME_KW_P(cfp); } VALUE rb_vm_frame_block_handler(const rb_control_frame_t *cfp) { return VM_CF_BLOCK_HANDLER(cfp); } #if VM_CHECK_MODE > 0 static int VM_CFP_IN_HEAP_P(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { const VALUE *start = ec->vm_stack; const VALUE *end = (VALUE *)ec->vm_stack + ec->vm_stack_size; VM_ASSERT(start != NULL); if (start <= (VALUE *)cfp && (VALUE *)cfp < end) { return FALSE; } else { return TRUE; } } static int VM_EP_IN_HEAP_P(const rb_execution_context_t *ec, const VALUE *ep) { const VALUE *start = ec->vm_stack; const VALUE *end = (VALUE *)ec->cfp; VM_ASSERT(start != NULL); if (start <= ep && ep < end) { return FALSE; } else { return TRUE; } } static int vm_ep_in_heap_p_(const rb_execution_context_t *ec, const VALUE *ep) { if (VM_EP_IN_HEAP_P(ec, ep)) { VALUE envval = ep[VM_ENV_DATA_INDEX_ENV]; /* VM_ENV_ENVVAL(ep); */ if (!UNDEF_P(envval)) { const rb_env_t *env = (const rb_env_t *)envval; VM_ASSERT(vm_assert_env(envval)); VM_ASSERT(VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED)); VM_ASSERT(env->ep == ep); } return TRUE; } else { return FALSE; } } int rb_vm_ep_in_heap_p(const VALUE *ep) { const rb_execution_context_t *ec = GET_EC(); if (ec->vm_stack == NULL) return TRUE; return vm_ep_in_heap_p_(ec, ep); } #endif static struct rb_captured_block * VM_CFP_TO_CAPTURED_BLOCK(const rb_control_frame_t *cfp) { VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp)); return (struct rb_captured_block *)&cfp->self; } static rb_control_frame_t * VM_CAPTURED_BLOCK_TO_CFP(const struct rb_captured_block *captured) { rb_control_frame_t *cfp = ((rb_control_frame_t *)((VALUE *)(captured) - 3)); VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp)); VM_ASSERT(sizeof(rb_control_frame_t)/sizeof(VALUE) == 7 + VM_DEBUG_BP_CHECK ? 1 : 0); return cfp; } static int VM_BH_FROM_CFP_P(VALUE block_handler, const rb_control_frame_t *cfp) { const struct rb_captured_block *captured = VM_CFP_TO_CAPTURED_BLOCK(cfp); return VM_TAGGED_PTR_REF(block_handler, 0x03) == captured; } static VALUE vm_passed_block_handler(rb_execution_context_t *ec) { VALUE block_handler = ec->passed_block_handler; ec->passed_block_handler = VM_BLOCK_HANDLER_NONE; vm_block_handler_verify(block_handler); return block_handler; } static rb_cref_t * vm_cref_new0(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval, int use_prev_prev, int singleton) { VALUE refinements = Qnil; int omod_shared = FALSE; /* scope */ union { rb_scope_visibility_t visi; VALUE value; } scope_visi; scope_visi.visi.method_visi = visi; scope_visi.visi.module_func = module_func; /* refinements */ if (prev_cref != NULL && prev_cref != (void *)1 /* TODO: why CREF_NEXT(cref) is 1? */) { refinements = CREF_REFINEMENTS(prev_cref); if (!NIL_P(refinements)) { omod_shared = TRUE; CREF_OMOD_SHARED_SET(prev_cref); } } VM_ASSERT(singleton || klass); rb_cref_t *cref = IMEMO_NEW(rb_cref_t, imemo_cref, refinements); cref->klass_or_self = klass; cref->next = use_prev_prev ? CREF_NEXT(prev_cref) : prev_cref; *((rb_scope_visibility_t *)&cref->scope_visi) = scope_visi.visi; if (pushed_by_eval) CREF_PUSHED_BY_EVAL_SET(cref); if (omod_shared) CREF_OMOD_SHARED_SET(cref); if (singleton) CREF_SINGLETON_SET(cref); return cref; } static rb_cref_t * vm_cref_new(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval, int singleton) { return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, FALSE, singleton); } static rb_cref_t * vm_cref_new_use_prev(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval) { return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, TRUE, FALSE); } static int ref_delete_symkey(VALUE key, VALUE value, VALUE unused) { return SYMBOL_P(key) ? ST_DELETE : ST_CONTINUE; } static rb_cref_t * vm_cref_dup(const rb_cref_t *cref) { const rb_scope_visibility_t *visi = CREF_SCOPE_VISI(cref); rb_cref_t *next_cref = CREF_NEXT(cref), *new_cref; int pushed_by_eval = CREF_PUSHED_BY_EVAL(cref); int singleton = CREF_SINGLETON(cref); new_cref = vm_cref_new(cref->klass_or_self, visi->method_visi, visi->module_func, next_cref, pushed_by_eval, singleton); if (!NIL_P(CREF_REFINEMENTS(cref))) { VALUE ref = rb_hash_dup(CREF_REFINEMENTS(cref)); rb_hash_foreach(ref, ref_delete_symkey, Qnil); CREF_REFINEMENTS_SET(new_cref, ref); CREF_OMOD_SHARED_UNSET(new_cref); } return new_cref; } rb_cref_t * rb_vm_cref_dup_without_refinements(const rb_cref_t *cref) { const rb_scope_visibility_t *visi = CREF_SCOPE_VISI(cref); rb_cref_t *next_cref = CREF_NEXT(cref), *new_cref; int pushed_by_eval = CREF_PUSHED_BY_EVAL(cref); int singleton = CREF_SINGLETON(cref); new_cref = vm_cref_new(cref->klass_or_self, visi->method_visi, visi->module_func, next_cref, pushed_by_eval, singleton); if (!NIL_P(CREF_REFINEMENTS(cref))) { CREF_REFINEMENTS_SET(new_cref, Qnil); CREF_OMOD_SHARED_UNSET(new_cref); } return new_cref; } static rb_cref_t * vm_cref_new_toplevel(rb_execution_context_t *ec) { rb_cref_t *cref = vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE /* toplevel visibility is private */, FALSE, NULL, FALSE, FALSE); VALUE top_wrapper = rb_ec_thread_ptr(ec)->top_wrapper; if (top_wrapper) { cref = vm_cref_new(top_wrapper, METHOD_VISI_PRIVATE, FALSE, cref, FALSE, FALSE); } return cref; } rb_cref_t * rb_vm_cref_new_toplevel(void) { return vm_cref_new_toplevel(GET_EC()); } static void vm_cref_dump(const char *mesg, const rb_cref_t *cref) { ruby_debug_printf("vm_cref_dump: %s (%p)\n", mesg, (void *)cref); while (cref) { ruby_debug_printf("= cref| klass: %s\n", RSTRING_PTR(rb_class_path(CREF_CLASS(cref)))); cref = CREF_NEXT(cref); } } void rb_vm_block_ep_update(VALUE obj, const struct rb_block *dst, const VALUE *ep) { *((const VALUE **)&dst->as.captured.ep) = ep; RB_OBJ_WRITTEN(obj, Qundef, VM_ENV_ENVVAL(ep)); } static void vm_bind_update_env(VALUE bindval, rb_binding_t *bind, VALUE envval) { const rb_env_t *env = (rb_env_t *)envval; RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq); rb_vm_block_ep_update(bindval, &bind->block, env->ep); } #if VM_COLLECT_USAGE_DETAILS static void vm_collect_usage_operand(int insn, int n, VALUE op); static void vm_collect_usage_insn(int insn); static void vm_collect_usage_register(int reg, int isset); #endif static VALUE vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp); extern VALUE rb_vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE block_handler, const rb_callable_method_entry_t *me); static VALUE vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE block_handler); #if USE_YJIT // Counter to serve as a proxy for execution time, total number of calls static uint64_t yjit_total_entry_hits = 0; // Number of calls used to estimate how hot an ISEQ is #define YJIT_CALL_COUNT_INTERV 20u /// Test whether we are ready to compile an ISEQ or not static inline bool rb_yjit_threshold_hit(const rb_iseq_t *iseq, uint64_t entry_calls) { yjit_total_entry_hits += 1; // Record the number of calls at the beginning of the interval if (entry_calls + YJIT_CALL_COUNT_INTERV == rb_yjit_call_threshold) { iseq->body->yjit_calls_at_interv = yjit_total_entry_hits; } // Try to estimate the total time taken (total number of calls) to reach 20 calls to this ISEQ // This give us a ratio of how hot/cold this ISEQ is if (entry_calls == rb_yjit_call_threshold) { // We expect threshold 1 to compile everything immediately if (rb_yjit_call_threshold < YJIT_CALL_COUNT_INTERV) { return true; } uint64_t num_calls = yjit_total_entry_hits - iseq->body->yjit_calls_at_interv; // Reject ISEQs that don't get called often enough if (num_calls > rb_yjit_cold_threshold) { rb_yjit_incr_counter("cold_iseq_entry"); return false; } return true; } return false; } #else #define rb_yjit_threshold_hit(iseq, entry_calls) false #endif #if USE_RJIT || USE_YJIT // Generate JIT code that supports the following kinds of ISEQ entries: // * The first ISEQ on vm_exec (e.g.
, or Ruby methods/blocks // called by a C method). The current frame has VM_FRAME_FLAG_FINISH. // The current vm_exec stops if JIT code returns a non-Qundef value. // * ISEQs called by the interpreter on vm_sendish (e.g. Ruby methods or // blocks called by a Ruby frame that isn't compiled or side-exited). // The current frame doesn't have VM_FRAME_FLAG_FINISH. The current // vm_exec does NOT stop whether JIT code returns Qundef or not. static inline rb_jit_func_t jit_compile(rb_execution_context_t *ec) { const rb_iseq_t *iseq = ec->cfp->iseq; struct rb_iseq_constant_body *body = ISEQ_BODY(iseq); bool yjit_enabled = rb_yjit_enabled_p; if (!(yjit_enabled || rb_rjit_call_p)) { return NULL; } // Increment the ISEQ's call counter and trigger JIT compilation if not compiled if (body->jit_entry == NULL) { body->jit_entry_calls++; if (yjit_enabled) { if (rb_yjit_threshold_hit(iseq, body->jit_entry_calls)) { rb_yjit_compile_iseq(iseq, ec, false); } } else if (body->jit_entry_calls == rb_rjit_call_threshold()) { rb_rjit_compile(iseq); } } return body->jit_entry; } // Execute JIT code compiled by jit_compile() static inline VALUE jit_exec(rb_execution_context_t *ec) { rb_jit_func_t func = jit_compile(ec); if (func) { // Call the JIT code return func(ec, ec->cfp); } else { return Qundef; } } #else # define jit_compile(ec) ((rb_jit_func_t)0) # define jit_exec(ec) Qundef #endif #if USE_YJIT // Generate JIT code that supports the following kind of ISEQ entry: // * The first ISEQ pushed by vm_exec_handle_exception. The frame would // point to a location specified by a catch table, and it doesn't have // VM_FRAME_FLAG_FINISH. The current vm_exec stops if JIT code returns // a non-Qundef value. So you should not return a non-Qundef value // until ec->cfp is changed to a frame with VM_FRAME_FLAG_FINISH. static inline rb_jit_func_t jit_compile_exception(rb_execution_context_t *ec) { const rb_iseq_t *iseq = ec->cfp->iseq; struct rb_iseq_constant_body *body = ISEQ_BODY(iseq); if (!rb_yjit_enabled_p) { return NULL; } // Increment the ISEQ's call counter and trigger JIT compilation if not compiled if (body->jit_exception == NULL) { body->jit_exception_calls++; if (body->jit_exception_calls == rb_yjit_call_threshold) { rb_yjit_compile_iseq(iseq, ec, true); } } return body->jit_exception; } // Execute JIT code compiled by jit_compile_exception() static inline VALUE jit_exec_exception(rb_execution_context_t *ec) { rb_jit_func_t func = jit_compile_exception(ec); if (func) { // Call the JIT code return func(ec, ec->cfp); } else { return Qundef; } } #else # define jit_compile_exception(ec) ((rb_jit_func_t)0) # define jit_exec_exception(ec) Qundef #endif static void add_opt_method_entry(const rb_method_entry_t *me); #include "vm_insnhelper.c" #include "vm_exec.c" #include "vm_method.c" #include "vm_eval.c" #define PROCDEBUG 0 VALUE rb_cRubyVM; VALUE rb_cThread; VALUE rb_mRubyVMFrozenCore; VALUE rb_block_param_proxy; VALUE ruby_vm_const_missing_count = 0; rb_vm_t *ruby_current_vm_ptr = NULL; rb_ractor_t *ruby_single_main_ractor; bool ruby_vm_keep_script_lines; #ifdef RB_THREAD_LOCAL_SPECIFIER RB_THREAD_LOCAL_SPECIFIER rb_execution_context_t *ruby_current_ec; #ifdef RUBY_NT_SERIAL RB_THREAD_LOCAL_SPECIFIER rb_atomic_t ruby_nt_serial; #endif // no-inline decl on thread_pthread.h rb_execution_context_t * rb_current_ec_noinline(void) { return ruby_current_ec; } void rb_current_ec_set(rb_execution_context_t *ec) { ruby_current_ec = ec; } #ifdef __APPLE__ rb_execution_context_t * rb_current_ec(void) { return ruby_current_ec; } #endif #else native_tls_key_t ruby_current_ec_key; #endif rb_event_flag_t ruby_vm_event_flags; rb_event_flag_t ruby_vm_event_enabled_global_flags; unsigned int ruby_vm_event_local_num; rb_serial_t ruby_vm_constant_cache_invalidations = 0; rb_serial_t ruby_vm_constant_cache_misses = 0; rb_serial_t ruby_vm_global_cvar_state = 1; static const struct rb_callcache vm_empty_cc = { .flags = T_IMEMO | (imemo_callcache << FL_USHIFT) | VM_CALLCACHE_UNMARKABLE, .klass = Qfalse, .cme_ = NULL, .call_ = vm_call_general, .aux_ = { .v = Qfalse, } }; static const struct rb_callcache vm_empty_cc_for_super = { .flags = T_IMEMO | (imemo_callcache << FL_USHIFT) | VM_CALLCACHE_UNMARKABLE, .klass = Qfalse, .cme_ = NULL, .call_ = vm_call_super_method, .aux_ = { .v = Qfalse, } }; static void thread_free(void *ptr); void rb_vm_inc_const_missing_count(void) { ruby_vm_const_missing_count +=1; } int rb_dtrace_setup(rb_execution_context_t *ec, VALUE klass, ID id, struct ruby_dtrace_method_hook_args *args) { enum ruby_value_type type; if (!klass) { if (!ec) ec = GET_EC(); if (!rb_ec_frame_method_id_and_class(ec, &id, 0, &klass) || !klass) return FALSE; } if (RB_TYPE_P(klass, T_ICLASS)) { klass = RBASIC(klass)->klass; } else if (RCLASS_SINGLETON_P(klass)) { klass = RCLASS_ATTACHED_OBJECT(klass); if (NIL_P(klass)) return FALSE; } type = BUILTIN_TYPE(klass); if (type == T_CLASS || type == T_ICLASS || type == T_MODULE) { VALUE name = rb_class_path(klass); const char *classname, *filename; const char *methodname = rb_id2name(id); if (methodname && (filename = rb_source_location_cstr(&args->line_no)) != 0) { if (NIL_P(name) || !(classname = StringValuePtr(name))) classname = ""; args->classname = classname; args->methodname = methodname; args->filename = filename; args->klass = klass; args->name = name; return TRUE; } } return FALSE; } extern unsigned int redblack_buffer_size; /* * call-seq: * RubyVM.stat -> Hash * RubyVM.stat(hsh) -> hsh * RubyVM.stat(Symbol) -> Numeric * * Returns a Hash containing implementation-dependent counters inside the VM. * * This hash includes information about method/constant caches: * * { * :constant_cache_invalidations=>2, * :constant_cache_misses=>14, * :global_cvar_state=>27 * } * * If USE_DEBUG_COUNTER is enabled, debug counters will be included. * * The contents of the hash are implementation specific and may be changed in * the future. * * This method is only expected to work on C Ruby. */ static VALUE vm_stat(int argc, VALUE *argv, VALUE self) { static VALUE sym_constant_cache_invalidations, sym_constant_cache_misses, sym_global_cvar_state, sym_next_shape_id; static VALUE sym_shape_cache_size; VALUE arg = Qnil; VALUE hash = Qnil, key = Qnil; if (rb_check_arity(argc, 0, 1) == 1) { arg = argv[0]; if (SYMBOL_P(arg)) key = arg; else if (RB_TYPE_P(arg, T_HASH)) hash = arg; else rb_raise(rb_eTypeError, "non-hash or symbol given"); } else { hash = rb_hash_new(); } #define S(s) sym_##s = ID2SYM(rb_intern_const(#s)) S(constant_cache_invalidations); S(constant_cache_misses); S(global_cvar_state); S(next_shape_id); S(shape_cache_size); #undef S #define SET(name, attr) \ if (key == sym_##name) \ return SERIALT2NUM(attr); \ else if (hash != Qnil) \ rb_hash_aset(hash, sym_##name, SERIALT2NUM(attr)); SET(constant_cache_invalidations, ruby_vm_constant_cache_invalidations); SET(constant_cache_misses, ruby_vm_constant_cache_misses); SET(global_cvar_state, ruby_vm_global_cvar_state); SET(next_shape_id, (rb_serial_t)GET_SHAPE_TREE()->next_shape_id); SET(shape_cache_size, (rb_serial_t)GET_SHAPE_TREE()->cache_size); #undef SET #if USE_DEBUG_COUNTER ruby_debug_counter_show_at_exit(FALSE); for (size_t i = 0; i < RB_DEBUG_COUNTER_MAX; i++) { const VALUE name = rb_sym_intern_ascii_cstr(rb_debug_counter_names[i]); const VALUE boxed_value = SIZET2NUM(rb_debug_counter[i]); if (key == name) { return boxed_value; } else if (hash != Qnil) { rb_hash_aset(hash, name, boxed_value); } } #endif if (!NIL_P(key)) { /* matched key should return above */ rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key)); } return hash; } /* control stack frame */ static void vm_set_top_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq) { if (ISEQ_BODY(iseq)->type != ISEQ_TYPE_TOP) { rb_raise(rb_eTypeError, "Not a toplevel InstructionSequence"); } /* for return */ vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH, rb_ec_thread_ptr(ec)->top_self, VM_BLOCK_HANDLER_NONE, (VALUE)vm_cref_new_toplevel(ec), /* cref or me */ ISEQ_BODY(iseq)->iseq_encoded, ec->cfp->sp, ISEQ_BODY(iseq)->local_table_size, ISEQ_BODY(iseq)->stack_max); } static void vm_set_eval_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq, const rb_cref_t *cref, const struct rb_block *base_block) { vm_push_frame(ec, iseq, VM_FRAME_MAGIC_EVAL | VM_FRAME_FLAG_FINISH, vm_block_self(base_block), VM_GUARDED_PREV_EP(vm_block_ep(base_block)), (VALUE)cref, /* cref or me */ ISEQ_BODY(iseq)->iseq_encoded, ec->cfp->sp, ISEQ_BODY(iseq)->local_table_size, ISEQ_BODY(iseq)->stack_max); } static void vm_set_main_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq) { VALUE toplevel_binding = rb_const_get(rb_cObject, rb_intern("TOPLEVEL_BINDING")); rb_binding_t *bind; GetBindingPtr(toplevel_binding, bind); RUBY_ASSERT_MESG(bind, "TOPLEVEL_BINDING is not built"); vm_set_eval_stack(ec, iseq, 0, &bind->block); /* save binding */ if (ISEQ_BODY(iseq)->local_table_size > 0) { vm_bind_update_env(toplevel_binding, bind, vm_make_env_object(ec, ec->cfp)); } } rb_control_frame_t * rb_vm_get_binding_creatable_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) { if (cfp->iseq) { return (rb_control_frame_t *)cfp; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return 0; } rb_control_frame_t * rb_vm_get_ruby_level_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) { if (VM_FRAME_RUBYFRAME_P(cfp)) { return (rb_control_frame_t *)cfp; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return 0; } static rb_control_frame_t * vm_get_ruby_level_caller_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { if (VM_FRAME_RUBYFRAME_P(cfp)) { return (rb_control_frame_t *)cfp; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) { if (VM_FRAME_RUBYFRAME_P(cfp)) { return (rb_control_frame_t *)cfp; } if (VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_PASSED) == FALSE) { break; } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return 0; } void rb_vm_pop_cfunc_frame(void) { rb_execution_context_t *ec = GET_EC(); rb_control_frame_t *cfp = ec->cfp; const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp); EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, Qnil); RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id); vm_pop_frame(ec, cfp, cfp->ep); } void rb_vm_rewind_cfp(rb_execution_context_t *ec, rb_control_frame_t *cfp) { /* check skipped frame */ while (ec->cfp != cfp) { #if VMDEBUG printf("skipped frame: %s\n", vm_frametype_name(ec->cfp)); #endif if (VM_FRAME_TYPE(ec->cfp) != VM_FRAME_MAGIC_CFUNC) { rb_vm_pop_frame(ec); } else { /* unlikely path */ rb_vm_pop_cfunc_frame(); } } } /* at exit */ void ruby_vm_at_exit(void (*func)(rb_vm_t *)) { rb_vm_t *vm = GET_VM(); rb_at_exit_list *nl = ALLOC(rb_at_exit_list); nl->func = func; nl->next = vm->at_exit; vm->at_exit = nl; } static void ruby_vm_run_at_exit_hooks(rb_vm_t *vm) { rb_at_exit_list *l = vm->at_exit; while (l) { rb_at_exit_list* t = l->next; rb_vm_at_exit_func *func = l->func; ruby_xfree(l); l = t; (*func)(vm); } } /* Env */ static VALUE check_env_value(const rb_env_t *env); static int check_env(const rb_env_t *env) { fputs("---\n", stderr); ruby_debug_printf("envptr: %p\n", (void *)&env->ep[0]); ruby_debug_printf("envval: %10p ", (void *)env->ep[1]); dp(env->ep[1]); ruby_debug_printf("ep: %10p\n", (void *)env->ep); if (rb_vm_env_prev_env(env)) { fputs(">>\n", stderr); check_env_value(rb_vm_env_prev_env(env)); fputs("<<\n", stderr); } return 1; } static VALUE check_env_value(const rb_env_t *env) { if (check_env(env)) { return (VALUE)env; } rb_bug("invalid env"); return Qnil; /* unreachable */ } static VALUE vm_block_handler_escape(const rb_execution_context_t *ec, VALUE block_handler) { switch (vm_block_handler_type(block_handler)) { case block_handler_type_ifunc: case block_handler_type_iseq: return rb_vm_make_proc(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc); case block_handler_type_symbol: case block_handler_type_proc: return block_handler; } VM_UNREACHABLE(vm_block_handler_escape); return Qnil; } static VALUE vm_make_env_each(const rb_execution_context_t * const ec, rb_control_frame_t *const cfp) { const VALUE * const ep = cfp->ep; VALUE *env_body, *env_ep; int local_size, env_size; if (VM_ENV_ESCAPED_P(ep)) { return VM_ENV_ENVVAL(ep); } if (!VM_ENV_LOCAL_P(ep)) { const VALUE *prev_ep = VM_ENV_PREV_EP(ep); if (!VM_ENV_ESCAPED_P(prev_ep)) { rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); while (prev_cfp->ep != prev_ep) { prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(prev_cfp); VM_ASSERT(prev_cfp->ep != NULL); } vm_make_env_each(ec, prev_cfp); VM_FORCE_WRITE_SPECIAL_CONST(&ep[VM_ENV_DATA_INDEX_SPECVAL], VM_GUARDED_PREV_EP(prev_cfp->ep)); } } else { VALUE block_handler = VM_ENV_BLOCK_HANDLER(ep); if (block_handler != VM_BLOCK_HANDLER_NONE) { VALUE blockprocval = vm_block_handler_escape(ec, block_handler); VM_STACK_ENV_WRITE(ep, VM_ENV_DATA_INDEX_SPECVAL, blockprocval); } } if (!VM_FRAME_RUBYFRAME_P(cfp)) { local_size = VM_ENV_DATA_SIZE; } else { local_size = ISEQ_BODY(cfp->iseq)->local_table_size + VM_ENV_DATA_SIZE; } /* * # local variables on a stack frame (N == local_size) * [lvar1, lvar2, ..., lvarN, SPECVAL] * ^ * ep[0] * * # moved local variables * [lvar1, lvar2, ..., lvarN, SPECVAL, Envval, BlockProcval (if needed)] * ^ ^ * env->env[0] ep[0] */ env_size = local_size + 1 /* envval */; // Careful with order in the following sequence. Each allocation can move objects. env_body = ALLOC_N(VALUE, env_size); rb_env_t *env = IMEMO_NEW(rb_env_t, imemo_env, 0); // Set up env without WB since it's brand new (similar to newobj_init(), newobj_fill()) MEMCPY(env_body, ep - (local_size - 1 /* specval */), VALUE, local_size); env_ep = &env_body[local_size - 1 /* specval */]; env_ep[VM_ENV_DATA_INDEX_ENV] = (VALUE)env; env->iseq = (rb_iseq_t *)(VM_FRAME_RUBYFRAME_P(cfp) ? cfp->iseq : NULL); env->ep = env_ep; env->env = env_body; env->env_size = env_size; cfp->ep = env_ep; VM_ENV_FLAGS_SET(env_ep, VM_ENV_FLAG_ESCAPED | VM_ENV_FLAG_WB_REQUIRED); VM_STACK_ENV_WRITE(ep, 0, (VALUE)env); /* GC mark */ #if 0 for (i = 0; i < local_size; i++) { if (VM_FRAME_RUBYFRAME_P(cfp)) { /* clear value stack for GC */ ep[-local_size + i] = 0; } } #endif // Invalidate JIT code that assumes cfp->ep == vm_base_ptr(cfp). if (env->iseq) { rb_yjit_invalidate_ep_is_bp(env->iseq); } return (VALUE)env; } static VALUE vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp) { VALUE envval = vm_make_env_each(ec, cfp); if (PROCDEBUG) { check_env_value((const rb_env_t *)envval); } return envval; } void rb_vm_stack_to_heap(rb_execution_context_t *ec) { rb_control_frame_t *cfp = ec->cfp; while ((cfp = rb_vm_get_binding_creatable_next_cfp(ec, cfp)) != 0) { vm_make_env_object(ec, cfp); cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } } const rb_env_t * rb_vm_env_prev_env(const rb_env_t *env) { const VALUE *ep = env->ep; if (VM_ENV_LOCAL_P(ep)) { return NULL; } else { const VALUE *prev_ep = VM_ENV_PREV_EP(ep); return VM_ENV_ENVVAL_PTR(prev_ep); } } static int collect_local_variables_in_iseq(const rb_iseq_t *iseq, const struct local_var_list *vars) { unsigned int i; if (!iseq) return 0; for (i = 0; i < ISEQ_BODY(iseq)->local_table_size; i++) { local_var_list_add(vars, ISEQ_BODY(iseq)->local_table[i]); } return 1; } static void collect_local_variables_in_env(const rb_env_t *env, const struct local_var_list *vars) { do { if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) break; collect_local_variables_in_iseq(env->iseq, vars); } while ((env = rb_vm_env_prev_env(env)) != NULL); } static int vm_collect_local_variables_in_heap(const VALUE *ep, const struct local_var_list *vars) { if (VM_ENV_ESCAPED_P(ep)) { collect_local_variables_in_env(VM_ENV_ENVVAL_PTR(ep), vars); return 1; } else { return 0; } } VALUE rb_vm_env_local_variables(const rb_env_t *env) { struct local_var_list vars; local_var_list_init(&vars); collect_local_variables_in_env(env, &vars); return local_var_list_finish(&vars); } VALUE rb_iseq_local_variables(const rb_iseq_t *iseq) { struct local_var_list vars; local_var_list_init(&vars); while (collect_local_variables_in_iseq(iseq, &vars)) { iseq = ISEQ_BODY(iseq)->parent_iseq; } return local_var_list_finish(&vars); } /* Proc */ static VALUE vm_proc_create_from_captured(VALUE klass, const struct rb_captured_block *captured, enum rb_block_type block_type, int8_t is_from_method, int8_t is_lambda) { VALUE procval = rb_proc_alloc(klass); rb_proc_t *proc = RTYPEDDATA_DATA(procval); VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), captured->ep)); /* copy block */ RB_OBJ_WRITE(procval, &proc->block.as.captured.code.val, captured->code.val); RB_OBJ_WRITE(procval, &proc->block.as.captured.self, captured->self); rb_vm_block_ep_update(procval, &proc->block, captured->ep); vm_block_type_set(&proc->block, block_type); proc->is_from_method = is_from_method; proc->is_lambda = is_lambda; return procval; } void rb_vm_block_copy(VALUE obj, const struct rb_block *dst, const struct rb_block *src) { /* copy block */ switch (vm_block_type(src)) { case block_type_iseq: case block_type_ifunc: RB_OBJ_WRITE(obj, &dst->as.captured.self, src->as.captured.self); RB_OBJ_WRITE(obj, &dst->as.captured.code.val, src->as.captured.code.val); rb_vm_block_ep_update(obj, dst, src->as.captured.ep); break; case block_type_symbol: RB_OBJ_WRITE(obj, &dst->as.symbol, src->as.symbol); break; case block_type_proc: RB_OBJ_WRITE(obj, &dst->as.proc, src->as.proc); break; } } static VALUE proc_create(VALUE klass, const struct rb_block *block, int8_t is_from_method, int8_t is_lambda) { VALUE procval = rb_proc_alloc(klass); rb_proc_t *proc = RTYPEDDATA_DATA(procval); VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), vm_block_ep(block))); rb_vm_block_copy(procval, &proc->block, block); vm_block_type_set(&proc->block, block->type); proc->is_from_method = is_from_method; proc->is_lambda = is_lambda; return procval; } VALUE rb_proc_dup(VALUE self) { VALUE procval; rb_proc_t *src; GetProcPtr(self, src); procval = proc_create(rb_obj_class(self), &src->block, src->is_from_method, src->is_lambda); if (RB_OBJ_SHAREABLE_P(self)) FL_SET_RAW(procval, RUBY_FL_SHAREABLE); RB_GC_GUARD(self); /* for: body = rb_proc_dup(body) */ return procval; } struct collect_outer_variable_name_data { VALUE ary; VALUE read_only; bool yield; bool isolate; }; static VALUE ID2NUM(ID id) { if (SIZEOF_VOIDP > SIZEOF_LONG) return ULL2NUM(id); else return ULONG2NUM(id); } static ID NUM2ID(VALUE num) { if (SIZEOF_VOIDP > SIZEOF_LONG) return (ID)NUM2ULL(num); else return (ID)NUM2ULONG(num); } static enum rb_id_table_iterator_result collect_outer_variable_names(ID id, VALUE val, void *ptr) { struct collect_outer_variable_name_data *data = (struct collect_outer_variable_name_data *)ptr; if (id == rb_intern("yield")) { data->yield = true; } else { VALUE *store; if (data->isolate || val == Qtrue /* write */) { store = &data->ary; } else { store = &data->read_only; } if (*store == Qfalse) *store = rb_ary_new(); rb_ary_push(*store, ID2NUM(id)); } return ID_TABLE_CONTINUE; } static const rb_env_t * env_copy(const VALUE *src_ep, VALUE read_only_variables) { const rb_env_t *src_env = (rb_env_t *)VM_ENV_ENVVAL(src_ep); VM_ASSERT(src_env->ep == src_ep); VALUE *env_body = ZALLOC_N(VALUE, src_env->env_size); // fill with Qfalse VALUE *ep = &env_body[src_env->env_size - 2]; const rb_env_t *copied_env = vm_env_new(ep, env_body, src_env->env_size, src_env->iseq); // Copy after allocations above, since they can move objects in src_ep. RB_OBJ_WRITE(copied_env, &ep[VM_ENV_DATA_INDEX_ME_CREF], src_ep[VM_ENV_DATA_INDEX_ME_CREF]); ep[VM_ENV_DATA_INDEX_FLAGS] = src_ep[VM_ENV_DATA_INDEX_FLAGS] | VM_ENV_FLAG_ISOLATED; if (!VM_ENV_LOCAL_P(src_ep)) { VM_ENV_FLAGS_SET(ep, VM_ENV_FLAG_LOCAL); } if (read_only_variables) { for (int i=RARRAY_LENINT(read_only_variables)-1; i>=0; i--) { ID id = NUM2ID(RARRAY_AREF(read_only_variables, i)); for (unsigned int j=0; jiseq)->local_table_size; j++) { if (id == ISEQ_BODY(src_env->iseq)->local_table[j]) { VALUE v = src_env->env[j]; if (!rb_ractor_shareable_p(v)) { VALUE name = rb_id2str(id); VALUE msg = rb_sprintf("can not make shareable Proc because it can refer" " unshareable object %+" PRIsVALUE " from ", v); if (name) rb_str_catf(msg, "variable '%" PRIsVALUE "'", name); else rb_str_cat_cstr(msg, "a hidden variable"); rb_exc_raise(rb_exc_new_str(rb_eRactorIsolationError, msg)); } RB_OBJ_WRITE((VALUE)copied_env, &env_body[j], v); rb_ary_delete_at(read_only_variables, i); break; } } } } if (!VM_ENV_LOCAL_P(src_ep)) { const VALUE *prev_ep = VM_ENV_PREV_EP(src_env->ep); const rb_env_t *new_prev_env = env_copy(prev_ep, read_only_variables); ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_GUARDED_PREV_EP(new_prev_env->ep); RB_OBJ_WRITTEN(copied_env, Qundef, new_prev_env); VM_ENV_FLAGS_UNSET(ep, VM_ENV_FLAG_LOCAL); } else { ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE; } return copied_env; } static void proc_isolate_env(VALUE self, rb_proc_t *proc, VALUE read_only_variables) { const struct rb_captured_block *captured = &proc->block.as.captured; const rb_env_t *env = env_copy(captured->ep, read_only_variables); *((const VALUE **)&proc->block.as.captured.ep) = env->ep; RB_OBJ_WRITTEN(self, Qundef, env); } static VALUE proc_shared_outer_variables(struct rb_id_table *outer_variables, bool isolate, const char *message) { struct collect_outer_variable_name_data data = { .isolate = isolate, .ary = Qfalse, .read_only = Qfalse, .yield = false, }; rb_id_table_foreach(outer_variables, collect_outer_variable_names, (void *)&data); if (data.ary != Qfalse) { VALUE str = rb_sprintf("can not %s because it accesses outer variables", message); VALUE ary = data.ary; const char *sep = " ("; for (long i = 0; i < RARRAY_LEN(ary); i++) { VALUE name = rb_id2str(NUM2ID(RARRAY_AREF(ary, i))); if (!name) continue; rb_str_cat_cstr(str, sep); sep = ", "; rb_str_append(str, name); } if (*sep == ',') rb_str_cat_cstr(str, ")"); rb_str_cat_cstr(str, data.yield ? " and uses 'yield'." : "."); rb_exc_raise(rb_exc_new_str(rb_eArgError, str)); } else if (data.yield) { rb_raise(rb_eArgError, "can not %s because it uses 'yield'.", message); } return data.read_only; } VALUE rb_proc_isolate_bang(VALUE self) { const rb_iseq_t *iseq = vm_proc_iseq(self); if (iseq) { rb_proc_t *proc = (rb_proc_t *)RTYPEDDATA_DATA(self); if (proc->block.type != block_type_iseq) rb_raise(rb_eRuntimeError, "not supported yet"); if (ISEQ_BODY(iseq)->outer_variables) { proc_shared_outer_variables(ISEQ_BODY(iseq)->outer_variables, true, "isolate a Proc"); } proc_isolate_env(self, proc, Qfalse); proc->is_isolated = TRUE; } FL_SET_RAW(self, RUBY_FL_SHAREABLE); return self; } VALUE rb_proc_isolate(VALUE self) { VALUE dst = rb_proc_dup(self); rb_proc_isolate_bang(dst); return dst; } VALUE rb_proc_ractor_make_shareable(VALUE self) { const rb_iseq_t *iseq = vm_proc_iseq(self); if (iseq) { rb_proc_t *proc = (rb_proc_t *)RTYPEDDATA_DATA(self); if (proc->block.type != block_type_iseq) rb_raise(rb_eRuntimeError, "not supported yet"); if (!rb_ractor_shareable_p(vm_block_self(&proc->block))) { rb_raise(rb_eRactorIsolationError, "Proc's self is not shareable: %" PRIsVALUE, self); } VALUE read_only_variables = Qfalse; if (ISEQ_BODY(iseq)->outer_variables) { read_only_variables = proc_shared_outer_variables(ISEQ_BODY(iseq)->outer_variables, false, "make a Proc shareable"); } proc_isolate_env(self, proc, read_only_variables); proc->is_isolated = TRUE; } FL_SET_RAW(self, RUBY_FL_SHAREABLE); return self; } VALUE rb_vm_make_proc_lambda(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass, int8_t is_lambda) { VALUE procval; enum imemo_type code_type = imemo_type(captured->code.val); if (!VM_ENV_ESCAPED_P(captured->ep)) { rb_control_frame_t *cfp = VM_CAPTURED_BLOCK_TO_CFP(captured); vm_make_env_object(ec, cfp); } VM_ASSERT(VM_EP_IN_HEAP_P(ec, captured->ep)); VM_ASSERT(code_type == imemo_iseq || code_type == imemo_ifunc); procval = vm_proc_create_from_captured(klass, captured, code_type == imemo_iseq ? block_type_iseq : block_type_ifunc, FALSE, is_lambda); if (code_type == imemo_ifunc) { struct vm_ifunc *ifunc = (struct vm_ifunc *)captured->code.val; if (ifunc->svar_lep) { VALUE ep0 = ifunc->svar_lep[0]; if (RB_TYPE_P(ep0, T_IMEMO) && imemo_type_p(ep0, imemo_env)) { // `ep0 == imemo_env` means this ep is escaped to heap (in env object). const rb_env_t *env = (const rb_env_t *)ep0; ifunc->svar_lep = (VALUE *)env->ep; } else { VM_ASSERT(FIXNUM_P(ep0)); if (ep0 & VM_ENV_FLAG_ESCAPED) { // ok. do nothing } else { ifunc->svar_lep = NULL; } } } } return procval; } /* Binding */ VALUE rb_vm_make_binding(const rb_execution_context_t *ec, const rb_control_frame_t *src_cfp) { rb_control_frame_t *cfp = rb_vm_get_binding_creatable_next_cfp(ec, src_cfp); rb_control_frame_t *ruby_level_cfp = rb_vm_get_ruby_level_next_cfp(ec, src_cfp); VALUE bindval, envval; rb_binding_t *bind; if (cfp == 0 || ruby_level_cfp == 0) { rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber."); } if (!VM_FRAME_RUBYFRAME_P(src_cfp) && !VM_FRAME_RUBYFRAME_P(RUBY_VM_PREVIOUS_CONTROL_FRAME(src_cfp))) { rb_raise(rb_eRuntimeError, "Cannot create Binding object for non-Ruby caller"); } envval = vm_make_env_object(ec, cfp); bindval = rb_binding_alloc(rb_cBinding); GetBindingPtr(bindval, bind); vm_bind_update_env(bindval, bind, envval); RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, cfp->self); RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, cfp->iseq); RB_OBJ_WRITE(bindval, &bind->pathobj, ISEQ_BODY(ruby_level_cfp->iseq)->location.pathobj); bind->first_lineno = rb_vm_get_sourceline(ruby_level_cfp); return bindval; } const VALUE * rb_binding_add_dynavars(VALUE bindval, rb_binding_t *bind, int dyncount, const ID *dynvars) { VALUE envval, pathobj = bind->pathobj; VALUE path = pathobj_path(pathobj); VALUE realpath = pathobj_realpath(pathobj); const struct rb_block *base_block; const rb_env_t *env; rb_execution_context_t *ec = GET_EC(); const rb_iseq_t *base_iseq, *iseq; rb_node_scope_t tmp_node; if (dyncount < 0) return 0; base_block = &bind->block; base_iseq = vm_block_iseq(base_block); VALUE idtmp = 0; rb_ast_id_table_t *dyns = ALLOCV(idtmp, sizeof(rb_ast_id_table_t) + dyncount * sizeof(ID)); dyns->size = dyncount; MEMCPY(dyns->ids, dynvars, ID, dyncount); rb_node_init(RNODE(&tmp_node), NODE_SCOPE); tmp_node.nd_tbl = dyns; tmp_node.nd_body = 0; tmp_node.nd_args = 0; VALUE ast_value = rb_ruby_ast_new(RNODE(&tmp_node)); if (base_iseq) { iseq = rb_iseq_new(ast_value, ISEQ_BODY(base_iseq)->location.label, path, realpath, base_iseq, ISEQ_TYPE_EVAL); } else { VALUE tempstr = rb_fstring_lit(""); iseq = rb_iseq_new_top(ast_value, tempstr, tempstr, tempstr, NULL); } tmp_node.nd_tbl = 0; /* reset table */ ALLOCV_END(idtmp); vm_set_eval_stack(ec, iseq, 0, base_block); vm_bind_update_env(bindval, bind, envval = vm_make_env_object(ec, ec->cfp)); rb_vm_pop_frame(ec); env = (const rb_env_t *)envval; return env->env; } /* C -> Ruby: block */ static inline VALUE invoke_block(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_cref_t *cref, VALUE type, int opt_pc) { int arg_size = ISEQ_BODY(iseq)->param.size; vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_FINISH, self, VM_GUARDED_PREV_EP(captured->ep), (VALUE)cref, /* cref or method */ ISEQ_BODY(iseq)->iseq_encoded + opt_pc, ec->cfp->sp + arg_size, ISEQ_BODY(iseq)->local_table_size - arg_size, ISEQ_BODY(iseq)->stack_max); return vm_exec(ec); } static VALUE invoke_bmethod(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_callable_method_entry_t *me, VALUE type, int opt_pc) { /* bmethod call from outside the VM */ int arg_size = ISEQ_BODY(iseq)->param.size; VALUE ret; VM_ASSERT(me->def->type == VM_METHOD_TYPE_BMETHOD); vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_BMETHOD, self, VM_GUARDED_PREV_EP(captured->ep), (VALUE)me, ISEQ_BODY(iseq)->iseq_encoded + opt_pc, ec->cfp->sp + 1 /* self */ + arg_size, ISEQ_BODY(iseq)->local_table_size - arg_size, ISEQ_BODY(iseq)->stack_max); VM_ENV_FLAGS_SET(ec->cfp->ep, VM_FRAME_FLAG_FINISH); ret = vm_exec(ec); return ret; } ALWAYS_INLINE(static VALUE invoke_iseq_block_from_c(rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler, const rb_cref_t *cref, int is_lambda, const rb_callable_method_entry_t *me)); static inline VALUE invoke_iseq_block_from_c(rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler, const rb_cref_t *cref, int is_lambda, const rb_callable_method_entry_t *me) { const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq); int opt_pc; VALUE type = VM_FRAME_MAGIC_BLOCK | (is_lambda ? VM_FRAME_FLAG_LAMBDA : 0); rb_control_frame_t *cfp = ec->cfp; VALUE *sp = cfp->sp; int flags = (kw_splat ? VM_CALL_KW_SPLAT : 0); VALUE *use_argv = (VALUE *)argv; VALUE av[2]; stack_check(ec); if (UNLIKELY(argc > VM_ARGC_STACK_MAX) && (VM_ARGC_STACK_MAX >= 1 || /* Skip ruby array for potential autosplat case */ (argc != 1 || is_lambda))) { use_argv = vm_argv_ruby_array(av, argv, &flags, &argc, kw_splat); } CHECK_VM_STACK_OVERFLOW(cfp, argc + 1); vm_check_canary(ec, sp); VALUE *stack_argv = sp; if (me) { *sp = self; // bemthods need `self` on the VM stack stack_argv++; } cfp->sp = stack_argv + argc; MEMCPY(stack_argv, use_argv, VALUE, argc); // restrict: new stack space opt_pc = vm_yield_setup_args(ec, iseq, argc, stack_argv, flags, passed_block_handler, (is_lambda ? arg_setup_method : arg_setup_block)); cfp->sp = sp; if (me == NULL) { return invoke_block(ec, iseq, self, captured, cref, type, opt_pc); } else { return invoke_bmethod(ec, iseq, self, captured, me, type, opt_pc); } } static inline VALUE invoke_block_from_c_bh(rb_execution_context_t *ec, VALUE block_handler, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler, const rb_cref_t *cref, int is_lambda, int force_blockarg) { again: switch (vm_block_handler_type(block_handler)) { case block_handler_type_iseq: { const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(block_handler); return invoke_iseq_block_from_c(ec, captured, captured->self, argc, argv, kw_splat, passed_block_handler, cref, is_lambda, NULL); } case block_handler_type_ifunc: return vm_yield_with_cfunc(ec, VM_BH_TO_IFUNC_BLOCK(block_handler), VM_BH_TO_IFUNC_BLOCK(block_handler)->self, argc, argv, kw_splat, passed_block_handler, NULL); case block_handler_type_symbol: return vm_yield_with_symbol(ec, VM_BH_TO_SYMBOL(block_handler), argc, argv, kw_splat, passed_block_handler); case block_handler_type_proc: if (force_blockarg == FALSE) { is_lambda = block_proc_is_lambda(VM_BH_TO_PROC(block_handler)); } block_handler = vm_proc_to_block_handler(VM_BH_TO_PROC(block_handler)); goto again; } VM_UNREACHABLE(invoke_block_from_c_splattable); return Qundef; } static inline VALUE check_block_handler(rb_execution_context_t *ec) { VALUE block_handler = VM_CF_BLOCK_HANDLER(ec->cfp); vm_block_handler_verify(block_handler); if (UNLIKELY(block_handler == VM_BLOCK_HANDLER_NONE)) { rb_vm_localjump_error("no block given", Qnil, 0); } return block_handler; } static VALUE vm_yield_with_cref(rb_execution_context_t *ec, int argc, const VALUE *argv, int kw_splat, const rb_cref_t *cref, int is_lambda) { return invoke_block_from_c_bh(ec, check_block_handler(ec), argc, argv, kw_splat, VM_BLOCK_HANDLER_NONE, cref, is_lambda, FALSE); } static VALUE vm_yield(rb_execution_context_t *ec, int argc, const VALUE *argv, int kw_splat) { return vm_yield_with_cref(ec, argc, argv, kw_splat, NULL, FALSE); } static VALUE vm_yield_with_block(rb_execution_context_t *ec, int argc, const VALUE *argv, VALUE block_handler, int kw_splat) { return invoke_block_from_c_bh(ec, check_block_handler(ec), argc, argv, kw_splat, block_handler, NULL, FALSE, FALSE); } static VALUE vm_yield_force_blockarg(rb_execution_context_t *ec, VALUE args) { return invoke_block_from_c_bh(ec, check_block_handler(ec), 1, &args, RB_NO_KEYWORDS, VM_BLOCK_HANDLER_NONE, NULL, FALSE, TRUE); } ALWAYS_INLINE(static VALUE invoke_block_from_c_proc(rb_execution_context_t *ec, const rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler, int is_lambda, const rb_callable_method_entry_t *me)); static inline VALUE invoke_block_from_c_proc(rb_execution_context_t *ec, const rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler, int is_lambda, const rb_callable_method_entry_t *me) { const struct rb_block *block = &proc->block; again: switch (vm_block_type(block)) { case block_type_iseq: return invoke_iseq_block_from_c(ec, &block->as.captured, self, argc, argv, kw_splat, passed_block_handler, NULL, is_lambda, me); case block_type_ifunc: if (kw_splat == 1) { VALUE keyword_hash = argv[argc-1]; if (!RB_TYPE_P(keyword_hash, T_HASH)) { keyword_hash = rb_to_hash_type(keyword_hash); } if (RHASH_EMPTY_P(keyword_hash)) { argc--; } else { ((VALUE *)argv)[argc-1] = rb_hash_dup(keyword_hash); } } return vm_yield_with_cfunc(ec, &block->as.captured, self, argc, argv, kw_splat, passed_block_handler, me); case block_type_symbol: return vm_yield_with_symbol(ec, block->as.symbol, argc, argv, kw_splat, passed_block_handler); case block_type_proc: is_lambda = block_proc_is_lambda(block->as.proc); block = vm_proc_block(block->as.proc); goto again; } VM_UNREACHABLE(invoke_block_from_c_proc); return Qundef; } static VALUE vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler) { return invoke_block_from_c_proc(ec, proc, self, argc, argv, kw_splat, passed_block_handler, proc->is_lambda, NULL); } VALUE rb_vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE block_handler, const rb_callable_method_entry_t *me) { return invoke_block_from_c_proc(ec, proc, self, argc, argv, kw_splat, block_handler, TRUE, me); } VALUE rb_vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler) { VALUE self = vm_block_self(&proc->block); vm_block_handler_verify(passed_block_handler); if (proc->is_from_method) { return rb_vm_invoke_bmethod(ec, proc, self, argc, argv, kw_splat, passed_block_handler, NULL); } else { return vm_invoke_proc(ec, proc, self, argc, argv, kw_splat, passed_block_handler); } } VALUE rb_vm_invoke_proc_with_self(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler) { vm_block_handler_verify(passed_block_handler); if (proc->is_from_method) { return rb_vm_invoke_bmethod(ec, proc, self, argc, argv, kw_splat, passed_block_handler, NULL); } else { return vm_invoke_proc(ec, proc, self, argc, argv, kw_splat, passed_block_handler); } } /* special variable */ VALUE * rb_vm_svar_lep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { while (cfp->pc == 0 || cfp->iseq == 0) { if (VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_IFUNC) { struct vm_ifunc *ifunc = (struct vm_ifunc *)cfp->iseq; return ifunc->svar_lep; } else { cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) { return NULL; } } return (VALUE *)VM_CF_LEP(cfp); } static VALUE vm_cfp_svar_get(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key) { return lep_svar_get(ec, rb_vm_svar_lep(ec, cfp), key); } static void vm_cfp_svar_set(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key, const VALUE val) { lep_svar_set(ec, rb_vm_svar_lep(ec, cfp), key, val); } static VALUE vm_svar_get(const rb_execution_context_t *ec, VALUE key) { return vm_cfp_svar_get(ec, ec->cfp, key); } static void vm_svar_set(const rb_execution_context_t *ec, VALUE key, VALUE val) { vm_cfp_svar_set(ec, ec->cfp, key, val); } VALUE rb_backref_get(void) { return vm_svar_get(GET_EC(), VM_SVAR_BACKREF); } void rb_backref_set(VALUE val) { vm_svar_set(GET_EC(), VM_SVAR_BACKREF, val); } VALUE rb_lastline_get(void) { return vm_svar_get(GET_EC(), VM_SVAR_LASTLINE); } void rb_lastline_set(VALUE val) { vm_svar_set(GET_EC(), VM_SVAR_LASTLINE, val); } void rb_lastline_set_up(VALUE val, unsigned int up) { rb_control_frame_t * cfp = GET_EC()->cfp; for(unsigned int i = 0; i < up; i++) { cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } vm_cfp_svar_set(GET_EC(), cfp, VM_SVAR_LASTLINE, val); } /* misc */ const char * rb_sourcefile(void) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); if (cfp) { return RSTRING_PTR(rb_iseq_path(cfp->iseq)); } else { return 0; } } int rb_sourceline(void) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); if (cfp) { return rb_vm_get_sourceline(cfp); } else { return 0; } } VALUE rb_source_location(int *pline) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); if (cfp && VM_FRAME_RUBYFRAME_P(cfp)) { if (pline) *pline = rb_vm_get_sourceline(cfp); return rb_iseq_path(cfp->iseq); } else { if (pline) *pline = 0; return Qnil; } } const char * rb_source_location_cstr(int *pline) { VALUE path = rb_source_location(pline); if (NIL_P(path)) return NULL; return RSTRING_PTR(path); } rb_cref_t * rb_vm_cref(void) { const rb_execution_context_t *ec = GET_EC(); return vm_ec_cref(ec); } rb_cref_t * rb_vm_cref_replace_with_duplicated_cref(void) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); rb_cref_t *cref = vm_cref_replace_with_duplicated_cref(cfp->ep); ASSUME(cref); return cref; } const rb_cref_t * rb_vm_cref_in_context(VALUE self, VALUE cbase) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); const rb_cref_t *cref; if (!cfp || cfp->self != self) return NULL; if (!vm_env_cref_by_cref(cfp->ep)) return NULL; cref = vm_get_cref(cfp->ep); if (CREF_CLASS(cref) != cbase) return NULL; return cref; } #if 0 void debug_cref(rb_cref_t *cref) { while (cref) { dp(CREF_CLASS(cref)); printf("%ld\n", CREF_VISI(cref)); cref = CREF_NEXT(cref); } } #endif VALUE rb_vm_cbase(void) { const rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp); if (cfp == 0) { rb_raise(rb_eRuntimeError, "Can't call on top of Fiber or Thread"); } return vm_get_cbase(cfp->ep); } /* jump */ static VALUE make_localjump_error(const char *mesg, VALUE value, int reason) { extern VALUE rb_eLocalJumpError; VALUE exc = rb_exc_new2(rb_eLocalJumpError, mesg); ID id; switch (reason) { case TAG_BREAK: CONST_ID(id, "break"); break; case TAG_REDO: CONST_ID(id, "redo"); break; case TAG_RETRY: CONST_ID(id, "retry"); break; case TAG_NEXT: CONST_ID(id, "next"); break; case TAG_RETURN: CONST_ID(id, "return"); break; default: CONST_ID(id, "noreason"); break; } rb_iv_set(exc, "@exit_value", value); rb_iv_set(exc, "@reason", ID2SYM(id)); return exc; } void rb_vm_localjump_error(const char *mesg, VALUE value, int reason) { VALUE exc = make_localjump_error(mesg, value, reason); rb_exc_raise(exc); } VALUE rb_vm_make_jump_tag_but_local_jump(enum ruby_tag_type state, VALUE val) { const char *mesg; switch (state) { case TAG_RETURN: mesg = "unexpected return"; break; case TAG_BREAK: mesg = "unexpected break"; break; case TAG_NEXT: mesg = "unexpected next"; break; case TAG_REDO: mesg = "unexpected redo"; val = Qnil; break; case TAG_RETRY: mesg = "retry outside of rescue clause"; val = Qnil; break; default: return Qnil; } if (UNDEF_P(val)) { val = GET_EC()->tag->retval; } return make_localjump_error(mesg, val, state); } void rb_vm_jump_tag_but_local_jump(enum ruby_tag_type state) { VALUE exc = rb_vm_make_jump_tag_but_local_jump(state, Qundef); if (!NIL_P(exc)) rb_exc_raise(exc); EC_JUMP_TAG(GET_EC(), state); } static rb_control_frame_t * next_not_local_frame(rb_control_frame_t *cfp) { while (VM_ENV_LOCAL_P(cfp->ep)) { cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } return cfp; } NORETURN(static void vm_iter_break(rb_execution_context_t *ec, VALUE val)); static void vm_iter_break(rb_execution_context_t *ec, VALUE val) { rb_control_frame_t *cfp = next_not_local_frame(ec->cfp); const VALUE *ep = VM_CF_PREV_EP(cfp); const rb_control_frame_t *target_cfp = rb_vm_search_cf_from_ep(ec, cfp, ep); if (!target_cfp) { rb_vm_localjump_error("unexpected break", val, TAG_BREAK); } ec->errinfo = (VALUE)THROW_DATA_NEW(val, target_cfp, TAG_BREAK); EC_JUMP_TAG(ec, TAG_BREAK); } void rb_iter_break(void) { vm_iter_break(GET_EC(), Qnil); } void rb_iter_break_value(VALUE val) { vm_iter_break(GET_EC(), val); } /* optimization: redefine management */ short ruby_vm_redefined_flag[BOP_LAST_]; static st_table *vm_opt_method_def_table = 0; static st_table *vm_opt_mid_table = 0; void rb_free_vm_opt_tables(void) { st_free_table(vm_opt_method_def_table); st_free_table(vm_opt_mid_table); } static int vm_redefinition_check_flag(VALUE klass) { if (klass == rb_cInteger) return INTEGER_REDEFINED_OP_FLAG; if (klass == rb_cFloat) return FLOAT_REDEFINED_OP_FLAG; if (klass == rb_cString) return STRING_REDEFINED_OP_FLAG; if (klass == rb_cArray) return ARRAY_REDEFINED_OP_FLAG; if (klass == rb_cHash) return HASH_REDEFINED_OP_FLAG; if (klass == rb_cSymbol) return SYMBOL_REDEFINED_OP_FLAG; #if 0 if (klass == rb_cTime) return TIME_REDEFINED_OP_FLAG; #endif if (klass == rb_cRegexp) return REGEXP_REDEFINED_OP_FLAG; if (klass == rb_cNilClass) return NIL_REDEFINED_OP_FLAG; if (klass == rb_cTrueClass) return TRUE_REDEFINED_OP_FLAG; if (klass == rb_cFalseClass) return FALSE_REDEFINED_OP_FLAG; if (klass == rb_cProc) return PROC_REDEFINED_OP_FLAG; return 0; } int rb_vm_check_optimizable_mid(VALUE mid) { if (!vm_opt_mid_table) { return FALSE; } return st_lookup(vm_opt_mid_table, mid, NULL); } static int vm_redefinition_check_method_type(const rb_method_entry_t *me) { if (me->called_id != me->def->original_id) { return FALSE; } if (METHOD_ENTRY_BASIC(me)) return TRUE; const rb_method_definition_t *def = me->def; switch (def->type) { case VM_METHOD_TYPE_CFUNC: case VM_METHOD_TYPE_OPTIMIZED: return TRUE; default: return FALSE; } } static void rb_vm_check_redefinition_opt_method(const rb_method_entry_t *me, VALUE klass) { st_data_t bop; if (RB_TYPE_P(klass, T_ICLASS) && FL_TEST(klass, RICLASS_IS_ORIGIN) && RB_TYPE_P(RBASIC_CLASS(klass), T_CLASS)) { klass = RBASIC_CLASS(klass); } if (vm_redefinition_check_method_type(me)) { if (st_lookup(vm_opt_method_def_table, (st_data_t)me->def, &bop)) { int flag = vm_redefinition_check_flag(klass); if (flag != 0) { rb_category_warn( RB_WARN_CATEGORY_PERFORMANCE, "Redefining '%s#%s' disables interpreter and JIT optimizations", rb_class2name(me->owner), rb_id2name(me->called_id) ); rb_yjit_bop_redefined(flag, (enum ruby_basic_operators)bop); rb_rjit_bop_redefined(flag, (enum ruby_basic_operators)bop); ruby_vm_redefined_flag[bop] |= flag; } } } } static enum rb_id_table_iterator_result check_redefined_method(ID mid, VALUE value, void *data) { VALUE klass = (VALUE)data; const rb_method_entry_t *me = (rb_method_entry_t *)value; const rb_method_entry_t *newme = rb_method_entry(klass, mid); if (newme != me) rb_vm_check_redefinition_opt_method(me, me->owner); return ID_TABLE_CONTINUE; } void rb_vm_check_redefinition_by_prepend(VALUE klass) { if (!vm_redefinition_check_flag(klass)) return; rb_id_table_foreach(RCLASS_M_TBL(RCLASS_ORIGIN(klass)), check_redefined_method, (void *)klass); } static void add_opt_method_entry_bop(const rb_method_entry_t *me, ID mid, enum ruby_basic_operators bop) { st_insert(vm_opt_method_def_table, (st_data_t)me->def, (st_data_t)bop); st_insert(vm_opt_mid_table, (st_data_t)mid, (st_data_t)Qtrue); } static void add_opt_method(VALUE klass, ID mid, enum ruby_basic_operators bop) { const rb_method_entry_t *me = rb_method_entry_at(klass, mid); if (me && vm_redefinition_check_method_type(me)) { add_opt_method_entry_bop(me, mid, bop); } else { rb_bug("undefined optimized method: %s", rb_id2name(mid)); } } static enum ruby_basic_operators vm_redefinition_bop_for_id(ID mid); static void add_opt_method_entry(const rb_method_entry_t *me) { if (me && vm_redefinition_check_method_type(me)) { ID mid = me->called_id; enum ruby_basic_operators bop = vm_redefinition_bop_for_id(mid); if ((int)bop >= 0) { add_opt_method_entry_bop(me, mid, bop); } } } static void vm_init_redefined_flag(void) { ID mid; enum ruby_basic_operators bop; #define OP(mid_, bop_) (mid = id##mid_, bop = BOP_##bop_, ruby_vm_redefined_flag[bop] = 0) #define C(k) add_opt_method(rb_c##k, mid, bop) OP(PLUS, PLUS), (C(Integer), C(Float), C(String), C(Array)); OP(MINUS, MINUS), (C(Integer), C(Float)); OP(MULT, MULT), (C(Integer), C(Float)); OP(DIV, DIV), (C(Integer), C(Float)); OP(MOD, MOD), (C(Integer), C(Float)); OP(Eq, EQ), (C(Integer), C(Float), C(String), C(Symbol)); OP(Eqq, EQQ), (C(Integer), C(Float), C(Symbol), C(String), C(NilClass), C(TrueClass), C(FalseClass)); OP(LT, LT), (C(Integer), C(Float)); OP(LE, LE), (C(Integer), C(Float)); OP(GT, GT), (C(Integer), C(Float)); OP(GE, GE), (C(Integer), C(Float)); OP(LTLT, LTLT), (C(String), C(Array)); OP(AREF, AREF), (C(Array), C(Hash), C(Integer)); OP(ASET, ASET), (C(Array), C(Hash)); OP(Length, LENGTH), (C(Array), C(String), C(Hash)); OP(Size, SIZE), (C(Array), C(String), C(Hash)); OP(EmptyP, EMPTY_P), (C(Array), C(String), C(Hash)); OP(Succ, SUCC), (C(Integer), C(String)); OP(EqTilde, MATCH), (C(Regexp), C(String)); OP(Freeze, FREEZE), (C(String)); OP(UMinus, UMINUS), (C(String)); OP(Max, MAX), (C(Array)); OP(Min, MIN), (C(Array)); OP(Hash, HASH), (C(Array)); OP(Call, CALL), (C(Proc)); OP(And, AND), (C(Integer)); OP(Or, OR), (C(Integer)); OP(NilP, NIL_P), (C(NilClass)); OP(Cmp, CMP), (C(Integer), C(Float), C(String)); OP(Default, DEFAULT), (C(Hash)); #undef C #undef OP } static enum ruby_basic_operators vm_redefinition_bop_for_id(ID mid) { switch (mid) { #define OP(mid_, bop_) case id##mid_: return BOP_##bop_ OP(PLUS, PLUS); OP(MINUS, MINUS); OP(MULT, MULT); OP(DIV, DIV); OP(MOD, MOD); OP(Eq, EQ); OP(Eqq, EQQ); OP(LT, LT); OP(LE, LE); OP(GT, GT); OP(GE, GE); OP(LTLT, LTLT); OP(AREF, AREF); OP(ASET, ASET); OP(Length, LENGTH); OP(Size, SIZE); OP(EmptyP, EMPTY_P); OP(Succ, SUCC); OP(EqTilde, MATCH); OP(Freeze, FREEZE); OP(UMinus, UMINUS); OP(Max, MAX); OP(Min, MIN); OP(Hash, HASH); OP(Call, CALL); OP(And, AND); OP(Or, OR); OP(NilP, NIL_P); OP(Cmp, CMP); OP(Default, DEFAULT); OP(Pack, PACK); #undef OP } return -1; } /* for vm development */ #if VMDEBUG static const char * vm_frametype_name(const rb_control_frame_t *cfp) { switch (VM_FRAME_TYPE(cfp)) { case VM_FRAME_MAGIC_METHOD: return "method"; case VM_FRAME_MAGIC_BLOCK: return "block"; case VM_FRAME_MAGIC_CLASS: return "class"; case VM_FRAME_MAGIC_TOP: return "top"; case VM_FRAME_MAGIC_CFUNC: return "cfunc"; case VM_FRAME_MAGIC_IFUNC: return "ifunc"; case VM_FRAME_MAGIC_EVAL: return "eval"; case VM_FRAME_MAGIC_RESCUE: return "rescue"; default: rb_bug("unknown frame"); } } #endif static VALUE frame_return_value(const struct vm_throw_data *err) { if (THROW_DATA_P(err) && THROW_DATA_STATE(err) == TAG_BREAK && THROW_DATA_CONSUMED_P(err) == FALSE) { return THROW_DATA_VAL(err); } else { return Qnil; } } #if 0 /* for debug */ static const char * frame_name(const rb_control_frame_t *cfp) { unsigned long type = VM_FRAME_TYPE(cfp); #define C(t) if (type == VM_FRAME_MAGIC_##t) return #t C(METHOD); C(BLOCK); C(CLASS); C(TOP); C(CFUNC); C(PROC); C(IFUNC); C(EVAL); C(LAMBDA); C(RESCUE); C(DUMMY); #undef C return "unknown"; } #endif // cfp_returning_with_value: // Whether cfp is the last frame in the unwinding process for a non-local return. static void hook_before_rewind(rb_execution_context_t *ec, bool cfp_returning_with_value, int state, struct vm_throw_data *err) { if (state == TAG_RAISE && RBASIC(err)->klass == rb_eSysStackError) { return; } else { const rb_iseq_t *iseq = ec->cfp->iseq; rb_hook_list_t *local_hooks = iseq->aux.exec.local_hooks; switch (VM_FRAME_TYPE(ec->cfp)) { case VM_FRAME_MAGIC_METHOD: RUBY_DTRACE_METHOD_RETURN_HOOK(ec, 0, 0); EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err)); if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_RETURN)) { rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err), TRUE); } THROW_DATA_CONSUMED_SET(err); break; case VM_FRAME_MAGIC_BLOCK: if (VM_FRAME_BMETHOD_P(ec->cfp)) { VALUE bmethod_return_value = frame_return_value(err); if (cfp_returning_with_value) { // Non-local return terminating at a BMETHOD control frame. bmethod_return_value = THROW_DATA_VAL(err); } EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, bmethod_return_value); if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_B_RETURN)) { rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, bmethod_return_value, TRUE); } const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(ec->cfp); EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self, rb_vm_frame_method_entry(ec->cfp)->def->original_id, rb_vm_frame_method_entry(ec->cfp)->called_id, rb_vm_frame_method_entry(ec->cfp)->owner, bmethod_return_value); VM_ASSERT(me->def->type == VM_METHOD_TYPE_BMETHOD); local_hooks = me->def->body.bmethod.hooks; if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_RETURN)) { rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_RETURN, ec->cfp->self, rb_vm_frame_method_entry(ec->cfp)->def->original_id, rb_vm_frame_method_entry(ec->cfp)->called_id, rb_vm_frame_method_entry(ec->cfp)->owner, bmethod_return_value, TRUE); } THROW_DATA_CONSUMED_SET(err); } else { EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err)); if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_B_RETURN)) { rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err), TRUE); } THROW_DATA_CONSUMED_SET(err); } break; case VM_FRAME_MAGIC_CLASS: EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_END, ec->cfp->self, 0, 0, 0, Qnil); break; } } } /* evaluator body */ /* finish VMe (h1) finish VM finish F1 F2 cfunc finish F1 F2 C1 rb_funcall finish F1 F2 C1 VMe finish F1 F2 C1 VM finish F1 F2 C1 F3 F1 - F3 : pushed by VM C1 : pushed by send insn (CFUNC) struct CONTROL_FRAME { VALUE *pc; // cfp[0], program counter VALUE *sp; // cfp[1], stack pointer rb_iseq_t *iseq; // cfp[2], iseq VALUE self; // cfp[3], self const VALUE *ep; // cfp[4], env pointer const void *block_code; // cfp[5], block code }; struct rb_captured_block { VALUE self; VALUE *ep; union code; }; struct METHOD_ENV { VALUE param0; ... VALUE paramN; VALUE lvar1; ... VALUE lvarM; VALUE cref; // ep[-2] VALUE special; // ep[-1] VALUE flags; // ep[ 0] == lep[0] }; struct BLOCK_ENV { VALUE block_param0; ... VALUE block_paramN; VALUE block_lvar1; ... VALUE block_lvarM; VALUE cref; // ep[-2] VALUE special; // ep[-1] VALUE flags; // ep[ 0] }; struct CLASS_ENV { VALUE class_lvar0; ... VALUE class_lvarN; VALUE cref; VALUE prev_ep; // for frame jump VALUE flags; }; struct C_METHOD_CONTROL_FRAME { VALUE *pc; // 0 VALUE *sp; // stack pointer rb_iseq_t *iseq; // cmi VALUE self; // ? VALUE *ep; // ep == lep void *code; // }; struct C_BLOCK_CONTROL_FRAME { VALUE *pc; // point only "finish" insn VALUE *sp; // sp rb_iseq_t *iseq; // ? VALUE self; // VALUE *ep; // ep void *code; // }; */ static inline VALUE vm_exec_handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state, VALUE errinfo); static inline VALUE vm_exec_loop(rb_execution_context_t *ec, enum ruby_tag_type state, struct rb_vm_tag *tag, VALUE result); // for non-Emscripten Wasm build, use vm_exec with optimized setjmp for runtime performance #if defined(__wasm__) && !defined(__EMSCRIPTEN__) struct rb_vm_exec_context { rb_execution_context_t *const ec; struct rb_vm_tag *const tag; VALUE result; }; static void vm_exec_bottom_main(void *context) { struct rb_vm_exec_context *ctx = context; rb_execution_context_t *ec = ctx->ec; ctx->result = vm_exec_loop(ec, TAG_NONE, ctx->tag, vm_exec_core(ec)); } static void vm_exec_bottom_rescue(void *context) { struct rb_vm_exec_context *ctx = context; rb_execution_context_t *ec = ctx->ec; ctx->result = vm_exec_loop(ec, rb_ec_tag_state(ec), ctx->tag, ec->errinfo); } #endif VALUE vm_exec(rb_execution_context_t *ec) { VALUE result = Qundef; EC_PUSH_TAG(ec); _tag.retval = Qnil; #if defined(__wasm__) && !defined(__EMSCRIPTEN__) struct rb_vm_exec_context ctx = { .ec = ec, .tag = &_tag, }; struct rb_wasm_try_catch try_catch; EC_REPUSH_TAG(); rb_wasm_try_catch_init(&try_catch, vm_exec_bottom_main, vm_exec_bottom_rescue, &ctx); rb_wasm_try_catch_loop_run(&try_catch, &RB_VM_TAG_JMPBUF_GET(_tag.buf)); result = ctx.result; #else enum ruby_tag_type state; if ((state = EC_EXEC_TAG()) == TAG_NONE) { if (UNDEF_P(result = jit_exec(ec))) { result = vm_exec_core(ec); } /* fallback to the VM */ result = vm_exec_loop(ec, TAG_NONE, &_tag, result); } else { result = vm_exec_loop(ec, state, &_tag, ec->errinfo); } #endif EC_POP_TAG(); return result; } static inline VALUE vm_exec_loop(rb_execution_context_t *ec, enum ruby_tag_type state, struct rb_vm_tag *tag, VALUE result) { if (state == TAG_NONE) { /* no jumps, result is discarded */ goto vm_loop_start; } rb_ec_raised_reset(ec, RAISED_STACKOVERFLOW | RAISED_NOMEMORY); while (UNDEF_P(result = vm_exec_handle_exception(ec, state, result))) { // caught a jump, exec the handler. JIT code in jit_exec_exception() // may return Qundef to run remaining frames with vm_exec_core(). if (UNDEF_P(result = jit_exec_exception(ec))) { result = vm_exec_core(ec); } vm_loop_start: VM_ASSERT(ec->tag == tag); /* when caught `throw`, `tag.state` is set. */ if ((state = tag->state) == TAG_NONE) break; tag->state = TAG_NONE; } return result; } static inline VALUE vm_exec_handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state, VALUE errinfo) { struct vm_throw_data *err = (struct vm_throw_data *)errinfo; for (;;) { unsigned int i; const struct iseq_catch_table_entry *entry; const struct iseq_catch_table *ct; unsigned long epc, cont_pc, cont_sp; const rb_iseq_t *catch_iseq; VALUE type; const rb_control_frame_t *escape_cfp; cont_pc = cont_sp = 0; catch_iseq = NULL; while (ec->cfp->pc == 0 || ec->cfp->iseq == 0) { if (UNLIKELY(VM_FRAME_TYPE(ec->cfp) == VM_FRAME_MAGIC_CFUNC)) { EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_C_RETURN, ec->cfp->self, rb_vm_frame_method_entry(ec->cfp)->def->original_id, rb_vm_frame_method_entry(ec->cfp)->called_id, rb_vm_frame_method_entry(ec->cfp)->owner, Qnil); RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, rb_vm_frame_method_entry(ec->cfp)->owner, rb_vm_frame_method_entry(ec->cfp)->def->original_id); } rb_vm_pop_frame(ec); } rb_control_frame_t *const cfp = ec->cfp; epc = cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded; escape_cfp = NULL; if (state == TAG_BREAK || state == TAG_RETURN) { escape_cfp = THROW_DATA_CATCH_FRAME(err); if (cfp == escape_cfp) { if (state == TAG_RETURN) { if (!VM_FRAME_FINISHED_P(cfp)) { THROW_DATA_CATCH_FRAME_SET(err, cfp + 1); THROW_DATA_STATE_SET(err, state = TAG_BREAK); } else { ct = ISEQ_BODY(cfp->iseq)->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = UNALIGNED_MEMBER_PTR(ct, entries[i]); if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } } } if (catch_iseq == NULL) { ec->errinfo = Qnil; THROW_DATA_CATCH_FRAME_SET(err, cfp + 1); // cfp == escape_cfp here so calling with cfp_returning_with_value = true hook_before_rewind(ec, true, state, err); rb_vm_pop_frame(ec); return THROW_DATA_VAL(err); } } /* through */ } else { /* TAG_BREAK */ *cfp->sp++ = THROW_DATA_VAL(err); ec->errinfo = Qnil; return Qundef; } } } if (state == TAG_RAISE) { ct = ISEQ_BODY(cfp->iseq)->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = UNALIGNED_MEMBER_PTR(ct, entries[i]); if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_RESCUE || entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } } } } else if (state == TAG_RETRY) { ct = ISEQ_BODY(cfp->iseq)->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = UNALIGNED_MEMBER_PTR(ct, entries[i]); if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } else if (entry->type == CATCH_TYPE_RETRY) { const rb_control_frame_t *escape_cfp; escape_cfp = THROW_DATA_CATCH_FRAME(err); if (cfp == escape_cfp) { cfp->pc = ISEQ_BODY(cfp->iseq)->iseq_encoded + entry->cont; ec->errinfo = Qnil; return Qundef; } } } } } else if ((state == TAG_BREAK && !escape_cfp) || (state == TAG_REDO) || (state == TAG_NEXT)) { type = (const enum rb_catch_type[TAG_MASK]) { [TAG_BREAK] = CATCH_TYPE_BREAK, [TAG_NEXT] = CATCH_TYPE_NEXT, [TAG_REDO] = CATCH_TYPE_REDO, /* otherwise = dontcare */ }[state]; ct = ISEQ_BODY(cfp->iseq)->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = UNALIGNED_MEMBER_PTR(ct, entries[i]); if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } else if (entry->type == type) { cfp->pc = ISEQ_BODY(cfp->iseq)->iseq_encoded + entry->cont; cfp->sp = vm_base_ptr(cfp) + entry->sp; if (state != TAG_REDO) { *cfp->sp++ = THROW_DATA_VAL(err); } ec->errinfo = Qnil; VM_ASSERT(ec->tag->state == TAG_NONE); return Qundef; } } } } else { ct = ISEQ_BODY(cfp->iseq)->catch_table; if (ct) for (i = 0; i < ct->size; i++) { entry = UNALIGNED_MEMBER_PTR(ct, entries[i]); if (entry->start < epc && entry->end >= epc) { if (entry->type == CATCH_TYPE_ENSURE) { catch_iseq = entry->iseq; cont_pc = entry->cont; cont_sp = entry->sp; break; } } } } if (catch_iseq != NULL) { /* found catch table */ /* enter catch scope */ const int arg_size = 1; rb_iseq_check(catch_iseq); cfp->sp = vm_base_ptr(cfp) + cont_sp; cfp->pc = ISEQ_BODY(cfp->iseq)->iseq_encoded + cont_pc; /* push block frame */ cfp->sp[0] = (VALUE)err; vm_push_frame(ec, catch_iseq, VM_FRAME_MAGIC_RESCUE, cfp->self, VM_GUARDED_PREV_EP(cfp->ep), 0, /* cref or me */ ISEQ_BODY(catch_iseq)->iseq_encoded, cfp->sp + arg_size /* push value */, ISEQ_BODY(catch_iseq)->local_table_size - arg_size, ISEQ_BODY(catch_iseq)->stack_max); state = 0; ec->tag->state = TAG_NONE; ec->errinfo = Qnil; return Qundef; } else { hook_before_rewind(ec, (cfp == escape_cfp), state, err); if (VM_FRAME_FINISHED_P(ec->cfp)) { rb_vm_pop_frame(ec); ec->errinfo = (VALUE)err; ec->tag = ec->tag->prev; EC_JUMP_TAG(ec, state); } else { rb_vm_pop_frame(ec); } } } } /* misc */ VALUE rb_iseq_eval(const rb_iseq_t *iseq) { rb_execution_context_t *ec = GET_EC(); VALUE val; vm_set_top_stack(ec, iseq); val = vm_exec(ec); return val; } VALUE rb_iseq_eval_main(const rb_iseq_t *iseq) { rb_execution_context_t *ec = GET_EC(); VALUE val; vm_set_main_stack(ec, iseq); val = vm_exec(ec); return val; } int rb_vm_control_frame_id_and_class(const rb_control_frame_t *cfp, ID *idp, ID *called_idp, VALUE *klassp) { const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp); if (me) { if (idp) *idp = me->def->original_id; if (called_idp) *called_idp = me->called_id; if (klassp) *klassp = me->owner; return TRUE; } else { return FALSE; } } int rb_ec_frame_method_id_and_class(const rb_execution_context_t *ec, ID *idp, ID *called_idp, VALUE *klassp) { return rb_vm_control_frame_id_and_class(ec->cfp, idp, called_idp, klassp); } int rb_frame_method_id_and_class(ID *idp, VALUE *klassp) { return rb_ec_frame_method_id_and_class(GET_EC(), idp, 0, klassp); } VALUE rb_vm_call_cfunc(VALUE recv, VALUE (*func)(VALUE), VALUE arg, VALUE block_handler, VALUE filename) { rb_execution_context_t *ec = GET_EC(); const rb_control_frame_t *reg_cfp = ec->cfp; const rb_iseq_t *iseq = rb_iseq_new(Qnil, filename, filename, Qnil, 0, ISEQ_TYPE_TOP); VALUE val; vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH, recv, block_handler, (VALUE)vm_cref_new_toplevel(ec), /* cref or me */ 0, reg_cfp->sp, 0, 0); val = (*func)(arg); rb_vm_pop_frame(ec); return val; } /* vm */ void rb_vm_update_references(void *ptr) { if (ptr) { rb_vm_t *vm = ptr; rb_gc_update_tbl_refs(vm->ci_table); rb_gc_update_tbl_refs(vm->frozen_strings); vm->mark_object_ary = rb_gc_location(vm->mark_object_ary); vm->load_path = rb_gc_location(vm->load_path); vm->load_path_snapshot = rb_gc_location(vm->load_path_snapshot); if (vm->load_path_check_cache) { vm->load_path_check_cache = rb_gc_location(vm->load_path_check_cache); } vm->expanded_load_path = rb_gc_location(vm->expanded_load_path); vm->loaded_features = rb_gc_location(vm->loaded_features); vm->loaded_features_snapshot = rb_gc_location(vm->loaded_features_snapshot); vm->loaded_features_realpaths = rb_gc_location(vm->loaded_features_realpaths); vm->loaded_features_realpath_map = rb_gc_location(vm->loaded_features_realpath_map); vm->top_self = rb_gc_location(vm->top_self); vm->orig_progname = rb_gc_location(vm->orig_progname); rb_gc_update_tbl_refs(vm->overloaded_cme_table); rb_gc_update_values(RUBY_NSIG, vm->trap_list.cmd); if (vm->coverages) { vm->coverages = rb_gc_location(vm->coverages); vm->me2counter = rb_gc_location(vm->me2counter); } } } void rb_vm_each_stack_value(void *ptr, void (*cb)(VALUE, void*), void *ctx) { if (ptr) { rb_vm_t *vm = ptr; rb_ractor_t *r = 0; ccan_list_for_each(&vm->ractor.set, r, vmlr_node) { VM_ASSERT(rb_ractor_status_p(r, ractor_blocking) || rb_ractor_status_p(r, ractor_running)); if (r->threads.cnt > 0) { rb_thread_t *th = 0; ccan_list_for_each(&r->threads.set, th, lt_node) { VM_ASSERT(th != NULL); rb_execution_context_t * ec = th->ec; if (ec->vm_stack) { VALUE *p = ec->vm_stack; VALUE *sp = ec->cfp->sp; while (p < sp) { if (!RB_SPECIAL_CONST_P(*p)) { cb(*p, ctx); } p++; } } } } } } } static enum rb_id_table_iterator_result vm_mark_negative_cme(VALUE val, void *dmy) { rb_gc_mark(val); return ID_TABLE_CONTINUE; } void rb_thread_sched_mark_zombies(rb_vm_t *vm); void rb_vm_mark(void *ptr) { RUBY_MARK_ENTER("vm"); RUBY_GC_INFO("-------------------------------------------------\n"); if (ptr) { rb_vm_t *vm = ptr; rb_ractor_t *r = 0; long i; ccan_list_for_each(&vm->ractor.set, r, vmlr_node) { // ractor.set only contains blocking or running ractors VM_ASSERT(rb_ractor_status_p(r, ractor_blocking) || rb_ractor_status_p(r, ractor_running)); rb_gc_mark(rb_ractor_self(r)); } for (struct global_object_list *list = vm->global_object_list; list; list = list->next) { rb_gc_mark_maybe(*list->varptr); } rb_gc_mark_movable(vm->mark_object_ary); rb_gc_mark_movable(vm->load_path); rb_gc_mark_movable(vm->load_path_snapshot); rb_gc_mark_movable(vm->load_path_check_cache); rb_gc_mark_movable(vm->expanded_load_path); rb_gc_mark_movable(vm->loaded_features); rb_gc_mark_movable(vm->loaded_features_snapshot); rb_gc_mark_movable(vm->loaded_features_realpaths); rb_gc_mark_movable(vm->loaded_features_realpath_map); rb_gc_mark_movable(vm->top_self); rb_gc_mark_movable(vm->orig_progname); rb_gc_mark_movable(vm->coverages); rb_gc_mark_movable(vm->me2counter); if (vm->loading_table) { rb_mark_tbl(vm->loading_table); } rb_gc_mark_values(RUBY_NSIG, vm->trap_list.cmd); rb_id_table_foreach_values(vm->negative_cme_table, vm_mark_negative_cme, NULL); rb_mark_tbl_no_pin(vm->overloaded_cme_table); for (i=0; iglobal_cc_cache_table[i]; if (cc != NULL) { if (!vm_cc_invalidated_p(cc)) { rb_gc_mark((VALUE)cc); } else { vm->global_cc_cache_table[i] = NULL; } } } rb_thread_sched_mark_zombies(vm); rb_rjit_mark(); } RUBY_MARK_LEAVE("vm"); } #undef rb_vm_register_special_exception void rb_vm_register_special_exception_str(enum ruby_special_exceptions sp, VALUE cls, VALUE mesg) { rb_vm_t *vm = GET_VM(); VALUE exc = rb_exc_new3(cls, rb_obj_freeze(mesg)); OBJ_FREEZE(exc); ((VALUE *)vm->special_exceptions)[sp] = exc; rb_vm_register_global_object(exc); } static int free_loading_table_entry(st_data_t key, st_data_t value, st_data_t arg) { xfree((char *)key); return ST_DELETE; } void rb_free_loaded_features_index(rb_vm_t *vm); void rb_objspace_free_objects(void *objspace); int ruby_vm_destruct(rb_vm_t *vm) { RUBY_FREE_ENTER("vm"); if (vm) { rb_thread_t *th = vm->ractor.main_thread; VALUE *stack = th->ec->vm_stack; if (rb_free_at_exit) { rb_free_encoded_insn_data(); rb_free_global_enc_table(); rb_free_loaded_builtin_table(); rb_free_shared_fiber_pool(); rb_free_static_symid_str(); rb_free_transcoder_table(); rb_free_vm_opt_tables(); rb_free_warning(); rb_free_rb_global_tbl(); rb_free_loaded_features_index(vm); rb_id_table_free(vm->negative_cme_table); st_free_table(vm->overloaded_cme_table); rb_id_table_free(RCLASS(rb_mRubyVMFrozenCore)->m_tbl); rb_shape_t *cursor = rb_shape_get_root_shape(); rb_shape_t *end = rb_shape_get_shape_by_id(GET_SHAPE_TREE()->next_shape_id); while (cursor < end) { // 0x1 == SINGLE_CHILD_P if (cursor->edges && !(((uintptr_t)cursor->edges) & 0x1)) rb_id_table_free(cursor->edges); cursor += 1; } xfree(GET_SHAPE_TREE()); st_free_table(vm->static_ext_inits); st_free_table(vm->ensure_rollback_table); rb_vm_postponed_job_free(); rb_id_table_free(vm->constant_cache); st_free_table(vm->unused_block_warning_table); if (th) { xfree(th->nt); th->nt = NULL; } #ifndef HAVE_SETPROCTITLE ruby_free_proctitle(); #endif } else { if (th) { rb_fiber_reset_root_local_storage(th); thread_free(th); } } struct rb_objspace *objspace = vm->objspace; rb_vm_living_threads_init(vm); ruby_vm_run_at_exit_hooks(vm); if (vm->loading_table) { st_foreach(vm->loading_table, free_loading_table_entry, 0); st_free_table(vm->loading_table); vm->loading_table = 0; } if (vm->ci_table) { st_free_table(vm->ci_table); vm->ci_table = NULL; } if (vm->frozen_strings) { st_free_table(vm->frozen_strings); vm->frozen_strings = 0; } RB_ALTSTACK_FREE(vm->main_altstack); struct global_object_list *next; for (struct global_object_list *list = vm->global_object_list; list; list = next) { next = list->next; xfree(list); } if (objspace) { if (rb_free_at_exit) { rb_objspace_free_objects(objspace); rb_free_generic_iv_tbl_(); rb_free_default_rand_key(); if (th && vm->fork_gen == 0) { /* If we have forked, main_thread may not be the initial thread */ xfree(stack); ruby_mimfree(th); } } rb_objspace_free(objspace); } rb_native_mutex_destroy(&vm->workqueue_lock); /* after freeing objspace, you *can't* use ruby_xfree() */ ruby_mimfree(vm); ruby_current_vm_ptr = NULL; } RUBY_FREE_LEAVE("vm"); return 0; } size_t rb_vm_memsize_waiting_fds(struct ccan_list_head *waiting_fds); // thread.c size_t rb_vm_memsize_workqueue(struct ccan_list_head *workqueue); // vm_trace.c // Used for VM memsize reporting. Returns the size of the at_exit list by // looping through the linked list and adding up the size of the structs. static enum rb_id_table_iterator_result vm_memsize_constant_cache_i(ID id, VALUE ics, void *size) { *((size_t *) size) += rb_st_memsize((st_table *) ics); return ID_TABLE_CONTINUE; } // Returns a size_t representing the memory footprint of the VM's constant // cache, which is the memsize of the table as well as the memsize of all of the // nested tables. static size_t vm_memsize_constant_cache(void) { rb_vm_t *vm = GET_VM(); size_t size = rb_id_table_memsize(vm->constant_cache); rb_id_table_foreach(vm->constant_cache, vm_memsize_constant_cache_i, &size); return size; } static size_t vm_memsize_at_exit_list(rb_at_exit_list *at_exit) { size_t size = 0; while (at_exit) { size += sizeof(rb_at_exit_list); at_exit = at_exit->next; } return size; } // Used for VM memsize reporting. Returns the size of the builtin function // table if it has been defined. static size_t vm_memsize_builtin_function_table(const struct rb_builtin_function *builtin_function_table) { return builtin_function_table == NULL ? 0 : sizeof(struct rb_builtin_function); } // Reports the memsize of the VM struct object and the structs that are // associated with it. static size_t vm_memsize(const void *ptr) { rb_vm_t *vm = GET_VM(); return ( sizeof(rb_vm_t) + rb_vm_memsize_waiting_fds(&vm->waiting_fds) + rb_st_memsize(vm->loaded_features_index) + rb_st_memsize(vm->loading_table) + rb_st_memsize(vm->ensure_rollback_table) + rb_vm_memsize_postponed_job_queue() + rb_vm_memsize_workqueue(&vm->workqueue) + vm_memsize_at_exit_list(vm->at_exit) + rb_st_memsize(vm->ci_table) + rb_st_memsize(vm->frozen_strings) + vm_memsize_builtin_function_table(vm->builtin_function_table) + rb_id_table_memsize(vm->negative_cme_table) + rb_st_memsize(vm->overloaded_cme_table) + vm_memsize_constant_cache() + GET_SHAPE_TREE()->cache_size * sizeof(redblack_node_t) ); // TODO // struct { struct ccan_list_head set; } ractor; // void *main_altstack; #ifdef USE_SIGALTSTACK // struct rb_objspace *objspace; } static const rb_data_type_t vm_data_type = { "VM", {0, 0, vm_memsize,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static VALUE vm_default_params(void) { rb_vm_t *vm = GET_VM(); VALUE result = rb_hash_new_with_size(4); #define SET(name) rb_hash_aset(result, ID2SYM(rb_intern(#name)), SIZET2NUM(vm->default_params.name)); SET(thread_vm_stack_size); SET(thread_machine_stack_size); SET(fiber_vm_stack_size); SET(fiber_machine_stack_size); #undef SET rb_obj_freeze(result); return result; } static size_t get_param(const char *name, size_t default_value, size_t min_value) { const char *envval; size_t result = default_value; if ((envval = getenv(name)) != 0) { long val = atol(envval); if (val < (long)min_value) { val = (long)min_value; } result = (size_t)(((val -1 + RUBY_VM_SIZE_ALIGN) / RUBY_VM_SIZE_ALIGN) * RUBY_VM_SIZE_ALIGN); } if (0) ruby_debug_printf("%s: %"PRIuSIZE"\n", name, result); /* debug print */ return result; } static void check_machine_stack_size(size_t *sizep) { #ifdef PTHREAD_STACK_MIN size_t size = *sizep; #endif #ifdef PTHREAD_STACK_MIN if (size < (size_t)PTHREAD_STACK_MIN) { *sizep = (size_t)PTHREAD_STACK_MIN * 2; } #endif } static void vm_default_params_setup(rb_vm_t *vm) { vm->default_params.thread_vm_stack_size = get_param("RUBY_THREAD_VM_STACK_SIZE", RUBY_VM_THREAD_VM_STACK_SIZE, RUBY_VM_THREAD_VM_STACK_SIZE_MIN); vm->default_params.thread_machine_stack_size = get_param("RUBY_THREAD_MACHINE_STACK_SIZE", RUBY_VM_THREAD_MACHINE_STACK_SIZE, RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN); vm->default_params.fiber_vm_stack_size = get_param("RUBY_FIBER_VM_STACK_SIZE", RUBY_VM_FIBER_VM_STACK_SIZE, RUBY_VM_FIBER_VM_STACK_SIZE_MIN); vm->default_params.fiber_machine_stack_size = get_param("RUBY_FIBER_MACHINE_STACK_SIZE", RUBY_VM_FIBER_MACHINE_STACK_SIZE, RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN); /* environment dependent check */ check_machine_stack_size(&vm->default_params.thread_machine_stack_size); check_machine_stack_size(&vm->default_params.fiber_machine_stack_size); } static void vm_init2(rb_vm_t *vm) { rb_vm_living_threads_init(vm); vm->thread_report_on_exception = 1; vm->src_encoding_index = -1; vm_default_params_setup(vm); } void rb_execution_context_update(rb_execution_context_t *ec) { /* update VM stack */ if (ec->vm_stack) { long i; VM_ASSERT(ec->cfp); VALUE *p = ec->vm_stack; VALUE *sp = ec->cfp->sp; rb_control_frame_t *cfp = ec->cfp; rb_control_frame_t *limit_cfp = (void *)(ec->vm_stack + ec->vm_stack_size); for (i = 0; i < (long)(sp - p); i++) { VALUE ref = p[i]; VALUE update = rb_gc_location(ref); if (ref != update) { p[i] = update; } } while (cfp != limit_cfp) { const VALUE *ep = cfp->ep; cfp->self = rb_gc_location(cfp->self); cfp->iseq = (rb_iseq_t *)rb_gc_location((VALUE)cfp->iseq); cfp->block_code = (void *)rb_gc_location((VALUE)cfp->block_code); if (!VM_ENV_LOCAL_P(ep)) { const VALUE *prev_ep = VM_ENV_PREV_EP(ep); if (VM_ENV_FLAGS(prev_ep, VM_ENV_FLAG_ESCAPED)) { VM_FORCE_WRITE(&prev_ep[VM_ENV_DATA_INDEX_ENV], rb_gc_location(prev_ep[VM_ENV_DATA_INDEX_ENV])); } if (VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED)) { VM_FORCE_WRITE(&ep[VM_ENV_DATA_INDEX_ENV], rb_gc_location(ep[VM_ENV_DATA_INDEX_ENV])); VM_FORCE_WRITE(&ep[VM_ENV_DATA_INDEX_ME_CREF], rb_gc_location(ep[VM_ENV_DATA_INDEX_ME_CREF])); } } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } } ec->storage = rb_gc_location(ec->storage); } static enum rb_id_table_iterator_result mark_local_storage_i(VALUE local, void *data) { rb_gc_mark(local); return ID_TABLE_CONTINUE; } void rb_execution_context_mark(const rb_execution_context_t *ec) { /* mark VM stack */ if (ec->vm_stack) { VM_ASSERT(ec->cfp); VALUE *p = ec->vm_stack; VALUE *sp = ec->cfp->sp; rb_control_frame_t *cfp = ec->cfp; rb_control_frame_t *limit_cfp = (void *)(ec->vm_stack + ec->vm_stack_size); VM_ASSERT(sp == ec->cfp->sp); rb_gc_mark_vm_stack_values((long)(sp - p), p); while (cfp != limit_cfp) { const VALUE *ep = cfp->ep; VM_ASSERT(!!VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED) == vm_ep_in_heap_p_(ec, ep)); if (VM_FRAME_TYPE(cfp) != VM_FRAME_MAGIC_DUMMY) { rb_gc_mark_movable(cfp->self); rb_gc_mark_movable((VALUE)cfp->iseq); rb_gc_mark_movable((VALUE)cfp->block_code); if (!VM_ENV_LOCAL_P(ep)) { const VALUE *prev_ep = VM_ENV_PREV_EP(ep); if (VM_ENV_FLAGS(prev_ep, VM_ENV_FLAG_ESCAPED)) { rb_gc_mark_movable(prev_ep[VM_ENV_DATA_INDEX_ENV]); } if (VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED)) { rb_gc_mark_movable(ep[VM_ENV_DATA_INDEX_ENV]); rb_gc_mark(ep[VM_ENV_DATA_INDEX_ME_CREF]); } } } cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } } /* mark machine stack */ if (ec->machine.stack_start && ec->machine.stack_end && ec != GET_EC() /* marked for current ec at the first stage of marking */ ) { rb_gc_mark_machine_context(ec); } rb_gc_mark(ec->errinfo); rb_gc_mark(ec->root_svar); if (ec->local_storage) { rb_id_table_foreach_values(ec->local_storage, mark_local_storage_i, NULL); } rb_gc_mark(ec->local_storage_recursive_hash); rb_gc_mark(ec->local_storage_recursive_hash_for_trace); rb_gc_mark(ec->private_const_reference); rb_gc_mark_movable(ec->storage); } void rb_fiber_mark_self(rb_fiber_t *fib); void rb_fiber_update_self(rb_fiber_t *fib); void rb_threadptr_root_fiber_setup(rb_thread_t *th); void rb_threadptr_root_fiber_release(rb_thread_t *th); static void thread_compact(void *ptr) { rb_thread_t *th = ptr; th->self = rb_gc_location(th->self); if (!th->root_fiber) { rb_execution_context_update(th->ec); } } static void thread_mark(void *ptr) { rb_thread_t *th = ptr; RUBY_MARK_ENTER("thread"); rb_fiber_mark_self(th->ec->fiber_ptr); /* mark ruby objects */ switch (th->invoke_type) { case thread_invoke_type_proc: case thread_invoke_type_ractor_proc: rb_gc_mark(th->invoke_arg.proc.proc); rb_gc_mark(th->invoke_arg.proc.args); break; case thread_invoke_type_func: rb_gc_mark_maybe((VALUE)th->invoke_arg.func.arg); break; default: break; } rb_gc_mark(rb_ractor_self(th->ractor)); rb_gc_mark(th->thgroup); rb_gc_mark(th->value); rb_gc_mark(th->pending_interrupt_queue); rb_gc_mark(th->pending_interrupt_mask_stack); rb_gc_mark(th->top_self); rb_gc_mark(th->top_wrapper); if (th->root_fiber) rb_fiber_mark_self(th->root_fiber); RUBY_ASSERT(th->ec == rb_fiberptr_get_ec(th->ec->fiber_ptr)); rb_gc_mark(th->stat_insn_usage); rb_gc_mark(th->last_status); rb_gc_mark(th->locking_mutex); rb_gc_mark(th->name); rb_gc_mark(th->scheduler); RUBY_MARK_LEAVE("thread"); } void rb_threadptr_sched_free(rb_thread_t *th); // thread_*.c static void thread_free(void *ptr) { rb_thread_t *th = ptr; RUBY_FREE_ENTER("thread"); rb_threadptr_sched_free(th); if (th->locking_mutex != Qfalse) { rb_bug("thread_free: locking_mutex must be NULL (%p:%p)", (void *)th, (void *)th->locking_mutex); } if (th->keeping_mutexes != NULL) { rb_bug("thread_free: keeping_mutexes must be NULL (%p:%p)", (void *)th, (void *)th->keeping_mutexes); } ruby_xfree(th->specific_storage); rb_threadptr_root_fiber_release(th); if (th->vm && th->vm->ractor.main_thread == th) { RUBY_GC_INFO("MRI main thread\n"); } else { // ruby_xfree(th->nt); // TODO: MN system collect nt, but without MN system it should be freed here. ruby_xfree(th); } RUBY_FREE_LEAVE("thread"); } static size_t thread_memsize(const void *ptr) { const rb_thread_t *th = ptr; size_t size = sizeof(rb_thread_t); if (!th->root_fiber) { size += th->ec->vm_stack_size * sizeof(VALUE); } if (th->ec->local_storage) { size += rb_id_table_memsize(th->ec->local_storage); } return size; } #define thread_data_type ruby_threadptr_data_type const rb_data_type_t ruby_threadptr_data_type = { "VM/thread", { thread_mark, thread_free, thread_memsize, thread_compact, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; VALUE rb_obj_is_thread(VALUE obj) { return RBOOL(rb_typeddata_is_kind_of(obj, &thread_data_type)); } static VALUE thread_alloc(VALUE klass) { rb_thread_t *th; return TypedData_Make_Struct(klass, rb_thread_t, &thread_data_type, th); } inline void rb_ec_set_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size) { ec->vm_stack = stack; ec->vm_stack_size = size; } void rb_ec_initialize_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size) { rb_ec_set_vm_stack(ec, stack, size); #if VM_CHECK_MODE > 0 MEMZERO(stack, VALUE, size); // malloc memory could have the VM canary in it #endif ec->cfp = (void *)(ec->vm_stack + ec->vm_stack_size); vm_push_frame(ec, NULL /* dummy iseq */, VM_FRAME_MAGIC_DUMMY | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH | VM_FRAME_FLAG_CFRAME /* dummy frame */, Qnil /* dummy self */, VM_BLOCK_HANDLER_NONE /* dummy block ptr */, 0 /* dummy cref/me */, 0 /* dummy pc */, ec->vm_stack, 0, 0 ); } void rb_ec_clear_vm_stack(rb_execution_context_t *ec) { rb_ec_set_vm_stack(ec, NULL, 0); // Avoid dangling pointers: ec->cfp = NULL; } static void th_init(rb_thread_t *th, VALUE self, rb_vm_t *vm) { th->self = self; rb_threadptr_root_fiber_setup(th); /* All threads are blocking until a non-blocking fiber is scheduled */ th->blocking = 1; th->scheduler = Qnil; if (self == 0) { size_t size = vm->default_params.thread_vm_stack_size / sizeof(VALUE); rb_ec_initialize_vm_stack(th->ec, ALLOC_N(VALUE, size), size); } else { VM_ASSERT(th->ec->cfp == NULL); VM_ASSERT(th->ec->vm_stack == NULL); VM_ASSERT(th->ec->vm_stack_size == 0); } th->status = THREAD_RUNNABLE; th->last_status = Qnil; th->top_wrapper = 0; th->top_self = vm->top_self; // 0 while self == 0 th->value = Qundef; th->ec->errinfo = Qnil; th->ec->root_svar = Qfalse; th->ec->local_storage_recursive_hash = Qnil; th->ec->local_storage_recursive_hash_for_trace = Qnil; th->ec->storage = Qnil; #if OPT_CALL_THREADED_CODE th->retval = Qundef; #endif th->name = Qnil; th->report_on_exception = vm->thread_report_on_exception; th->ext_config.ractor_safe = true; #if USE_RUBY_DEBUG_LOG static rb_atomic_t thread_serial = 1; th->serial = RUBY_ATOMIC_FETCH_ADD(thread_serial, 1); RUBY_DEBUG_LOG("th:%u", th->serial); #endif } VALUE rb_thread_alloc(VALUE klass) { VALUE self = thread_alloc(klass); rb_thread_t *target_th = rb_thread_ptr(self); target_th->ractor = GET_RACTOR(); th_init(target_th, self, target_th->vm = GET_VM()); return self; } #define REWIND_CFP(expr) do { \ rb_execution_context_t *ec__ = GET_EC(); \ VALUE *const curr_sp = (ec__->cfp++)->sp; \ VALUE *const saved_sp = ec__->cfp->sp; \ ec__->cfp->sp = curr_sp; \ expr; \ (ec__->cfp--)->sp = saved_sp; \ } while (0) static VALUE m_core_set_method_alias(VALUE self, VALUE cbase, VALUE sym1, VALUE sym2) { REWIND_CFP({ rb_alias(cbase, SYM2ID(sym1), SYM2ID(sym2)); }); return Qnil; } static VALUE m_core_set_variable_alias(VALUE self, VALUE sym1, VALUE sym2) { REWIND_CFP({ rb_alias_variable(SYM2ID(sym1), SYM2ID(sym2)); }); return Qnil; } static VALUE m_core_undef_method(VALUE self, VALUE cbase, VALUE sym) { REWIND_CFP({ ID mid = SYM2ID(sym); rb_undef(cbase, mid); rb_clear_method_cache(self, mid); }); return Qnil; } static VALUE m_core_set_postexe(VALUE self) { rb_set_end_proc(rb_call_end_proc, rb_block_proc()); return Qnil; } static VALUE core_hash_merge_kwd(VALUE hash, VALUE kw); static VALUE core_hash_merge(VALUE hash, long argc, const VALUE *argv) { Check_Type(hash, T_HASH); VM_ASSERT(argc % 2 == 0); rb_hash_bulk_insert(argc, argv, hash); return hash; } static VALUE m_core_hash_merge_ptr(int argc, VALUE *argv, VALUE recv) { VALUE hash = argv[0]; REWIND_CFP(hash = core_hash_merge(hash, argc-1, argv+1)); return hash; } static int kwmerge_i(VALUE key, VALUE value, VALUE hash) { rb_hash_aset(hash, key, value); return ST_CONTINUE; } static VALUE m_core_hash_merge_kwd(VALUE recv, VALUE hash, VALUE kw) { if (!NIL_P(kw)) { REWIND_CFP(hash = core_hash_merge_kwd(hash, kw)); } return hash; } static VALUE m_core_make_shareable(VALUE recv, VALUE obj) { return rb_ractor_make_shareable(obj); } static VALUE m_core_make_shareable_copy(VALUE recv, VALUE obj) { return rb_ractor_make_shareable_copy(obj); } static VALUE m_core_ensure_shareable(VALUE recv, VALUE obj, VALUE name) { return rb_ractor_ensure_shareable(obj, name); } static VALUE core_hash_merge_kwd(VALUE hash, VALUE kw) { rb_hash_foreach(rb_to_hash_type(kw), kwmerge_i, hash); return hash; } extern VALUE *rb_gc_stack_start; extern size_t rb_gc_stack_maxsize; /* debug functions */ /* :nodoc: */ static VALUE sdr(VALUE self) { rb_vm_bugreport(NULL, stderr); return Qnil; } /* :nodoc: */ static VALUE nsdr(VALUE self) { VALUE ary = rb_ary_new(); #ifdef HAVE_BACKTRACE #include #define MAX_NATIVE_TRACE 1024 static void *trace[MAX_NATIVE_TRACE]; int n = (int)backtrace(trace, MAX_NATIVE_TRACE); char **syms = backtrace_symbols(trace, n); int i; if (syms == 0) { rb_memerror(); } for (i=0; i true or false * * Return current +keep_script_lines+ status. Now it only returns * +true+ of +false+, but it can return other objects in future. * * Note that this is an API for ruby internal use, debugging, * and research. Do not use this for any other purpose. * The compatibility is not guaranteed. */ static VALUE vm_keep_script_lines(VALUE self) { return RBOOL(ruby_vm_keep_script_lines); } /* * call-seq: * RubyVM.keep_script_lines = true / false * * It set +keep_script_lines+ flag. If the flag is set, all * loaded scripts are recorded in a interpreter process. * * Note that this is an API for ruby internal use, debugging, * and research. Do not use this for any other purpose. * The compatibility is not guaranteed. */ static VALUE vm_keep_script_lines_set(VALUE self, VALUE flags) { ruby_vm_keep_script_lines = RTEST(flags); return flags; } void Init_VM(void) { VALUE opts; VALUE klass; VALUE fcore; /* * Document-class: RubyVM * * The RubyVM module only exists on MRI. +RubyVM+ is not defined in * other Ruby implementations such as JRuby and TruffleRuby. * * The RubyVM module provides some access to MRI internals. * This module is for very limited purposes, such as debugging, * prototyping, and research. Normal users must not use it. * This module is not portable between Ruby implementations. */ rb_cRubyVM = rb_define_class("RubyVM", rb_cObject); rb_undef_alloc_func(rb_cRubyVM); rb_undef_method(CLASS_OF(rb_cRubyVM), "new"); rb_define_singleton_method(rb_cRubyVM, "stat", vm_stat, -1); rb_define_singleton_method(rb_cRubyVM, "keep_script_lines", vm_keep_script_lines, 0); rb_define_singleton_method(rb_cRubyVM, "keep_script_lines=", vm_keep_script_lines_set, 1); #if USE_DEBUG_COUNTER rb_define_singleton_method(rb_cRubyVM, "reset_debug_counters", rb_debug_counter_reset, 0); rb_define_singleton_method(rb_cRubyVM, "show_debug_counters", rb_debug_counter_show, 0); #endif /* FrozenCore (hidden) */ fcore = rb_class_new(rb_cBasicObject); rb_set_class_path(fcore, rb_cRubyVM, "FrozenCore"); rb_vm_register_global_object(rb_class_path_cached(fcore)); RBASIC(fcore)->flags = T_ICLASS; klass = rb_singleton_class(fcore); rb_define_method_id(klass, id_core_set_method_alias, m_core_set_method_alias, 3); rb_define_method_id(klass, id_core_set_variable_alias, m_core_set_variable_alias, 2); rb_define_method_id(klass, id_core_undef_method, m_core_undef_method, 2); rb_define_method_id(klass, id_core_set_postexe, m_core_set_postexe, 0); rb_define_method_id(klass, id_core_hash_merge_ptr, m_core_hash_merge_ptr, -1); rb_define_method_id(klass, id_core_hash_merge_kwd, m_core_hash_merge_kwd, 2); rb_define_method_id(klass, id_core_raise, f_raise, -1); rb_define_method_id(klass, id_core_sprintf, f_sprintf, -1); rb_define_method_id(klass, idProc, f_proc, 0); rb_define_method_id(klass, idLambda, f_lambda, 0); rb_define_method(klass, "make_shareable", m_core_make_shareable, 1); rb_define_method(klass, "make_shareable_copy", m_core_make_shareable_copy, 1); rb_define_method(klass, "ensure_shareable", m_core_ensure_shareable, 2); rb_obj_freeze(fcore); RBASIC_CLEAR_CLASS(klass); rb_obj_freeze(klass); rb_vm_register_global_object(fcore); rb_mRubyVMFrozenCore = fcore; /* * Document-class: Thread * * Threads are the Ruby implementation for a concurrent programming model. * * Programs that require multiple threads of execution are a perfect * candidate for Ruby's Thread class. * * For example, we can create a new thread separate from the main thread's * execution using ::new. * * thr = Thread.new { puts "What's the big deal" } * * Then we are able to pause the execution of the main thread and allow * our new thread to finish, using #join: * * thr.join #=> "What's the big deal" * * If we don't call +thr.join+ before the main thread terminates, then all * other threads including +thr+ will be killed. * * Alternatively, you can use an array for handling multiple threads at * once, like in the following example: * * threads = [] * threads << Thread.new { puts "What's the big deal" } * threads << Thread.new { 3.times { puts "Threads are fun!" } } * * After creating a few threads we wait for them all to finish * consecutively. * * threads.each { |thr| thr.join } * * To retrieve the last value of a thread, use #value * * thr = Thread.new { sleep 1; "Useful value" } * thr.value #=> "Useful value" * * === Thread initialization * * In order to create new threads, Ruby provides ::new, ::start, and * ::fork. A block must be provided with each of these methods, otherwise * a ThreadError will be raised. * * When subclassing the Thread class, the +initialize+ method of your * subclass will be ignored by ::start and ::fork. Otherwise, be sure to * call super in your +initialize+ method. * * === Thread termination * * For terminating threads, Ruby provides a variety of ways to do this. * * The class method ::kill, is meant to exit a given thread: * * thr = Thread.new { sleep } * Thread.kill(thr) # sends exit() to thr * * Alternatively, you can use the instance method #exit, or any of its * aliases #kill or #terminate. * * thr.exit * * === Thread status * * Ruby provides a few instance methods for querying the state of a given * thread. To get a string with the current thread's state use #status * * thr = Thread.new { sleep } * thr.status # => "sleep" * thr.exit * thr.status # => false * * You can also use #alive? to tell if the thread is running or sleeping, * and #stop? if the thread is dead or sleeping. * * === Thread variables and scope * * Since threads are created with blocks, the same rules apply to other * Ruby blocks for variable scope. Any local variables created within this * block are accessible to only this thread. * * ==== Fiber-local vs. Thread-local * * Each fiber has its own bucket for Thread#[] storage. When you set a * new fiber-local it is only accessible within this Fiber. To illustrate: * * Thread.new { * Thread.current[:foo] = "bar" * Fiber.new { * p Thread.current[:foo] # => nil * }.resume * }.join * * This example uses #[] for getting and #[]= for setting fiber-locals, * you can also use #keys to list the fiber-locals for a given * thread and #key? to check if a fiber-local exists. * * When it comes to thread-locals, they are accessible within the entire * scope of the thread. Given the following example: * * Thread.new{ * Thread.current.thread_variable_set(:foo, 1) * p Thread.current.thread_variable_get(:foo) # => 1 * Fiber.new{ * Thread.current.thread_variable_set(:foo, 2) * p Thread.current.thread_variable_get(:foo) # => 2 * }.resume * p Thread.current.thread_variable_get(:foo) # => 2 * }.join * * You can see that the thread-local +:foo+ carried over into the fiber * and was changed to +2+ by the end of the thread. * * This example makes use of #thread_variable_set to create new * thread-locals, and #thread_variable_get to reference them. * * There is also #thread_variables to list all thread-locals, and * #thread_variable? to check if a given thread-local exists. * * === Exception handling * * When an unhandled exception is raised inside a thread, it will * terminate. By default, this exception will not propagate to other * threads. The exception is stored and when another thread calls #value * or #join, the exception will be re-raised in that thread. * * t = Thread.new{ raise 'something went wrong' } * t.value #=> RuntimeError: something went wrong * * An exception can be raised from outside the thread using the * Thread#raise instance method, which takes the same parameters as * Kernel#raise. * * Setting Thread.abort_on_exception = true, Thread#abort_on_exception = * true, or $DEBUG = true will cause a subsequent unhandled exception * raised in a thread to be automatically re-raised in the main thread. * * With the addition of the class method ::handle_interrupt, you can now * handle exceptions asynchronously with threads. * * === Scheduling * * Ruby provides a few ways to support scheduling threads in your program. * * The first way is by using the class method ::stop, to put the current * running thread to sleep and schedule the execution of another thread. * * Once a thread is asleep, you can use the instance method #wakeup to * mark your thread as eligible for scheduling. * * You can also try ::pass, which attempts to pass execution to another * thread but is dependent on the OS whether a running thread will switch * or not. The same goes for #priority, which lets you hint to the thread * scheduler which threads you want to take precedence when passing * execution. This method is also dependent on the OS and may be ignored * on some platforms. * */ rb_cThread = rb_define_class("Thread", rb_cObject); rb_undef_alloc_func(rb_cThread); #if VM_COLLECT_USAGE_DETAILS /* ::RubyVM::USAGE_ANALYSIS_* */ #define define_usage_analysis_hash(name) /* shut up rdoc -C */ \ rb_define_const(rb_cRubyVM, "USAGE_ANALYSIS_" #name, rb_hash_new()) define_usage_analysis_hash(INSN); define_usage_analysis_hash(REGS); define_usage_analysis_hash(INSN_BIGRAM); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_START", usage_analysis_insn_start, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_START", usage_analysis_operand_start, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_START", usage_analysis_register_start, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_STOP", usage_analysis_insn_stop, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_STOP", usage_analysis_operand_stop, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_STOP", usage_analysis_register_stop, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_RUNNING", usage_analysis_insn_running, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_RUNNING", usage_analysis_operand_running, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_RUNNING", usage_analysis_register_running, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_CLEAR", usage_analysis_insn_clear, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_CLEAR", usage_analysis_operand_clear, 0); rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_CLEAR", usage_analysis_register_clear, 0); #endif /* ::RubyVM::OPTS * An Array of VM build options. * This constant is MRI specific. */ rb_define_const(rb_cRubyVM, "OPTS", opts = rb_ary_new()); #if OPT_DIRECT_THREADED_CODE rb_ary_push(opts, rb_str_new2("direct threaded code")); #elif OPT_TOKEN_THREADED_CODE rb_ary_push(opts, rb_str_new2("token threaded code")); #elif OPT_CALL_THREADED_CODE rb_ary_push(opts, rb_str_new2("call threaded code")); #endif #if OPT_OPERANDS_UNIFICATION rb_ary_push(opts, rb_str_new2("operands unification")); #endif #if OPT_INSTRUCTIONS_UNIFICATION rb_ary_push(opts, rb_str_new2("instructions unification")); #endif #if OPT_INLINE_METHOD_CACHE rb_ary_push(opts, rb_str_new2("inline method cache")); #endif /* ::RubyVM::INSTRUCTION_NAMES * A list of bytecode instruction names in MRI. * This constant is MRI specific. */ rb_define_const(rb_cRubyVM, "INSTRUCTION_NAMES", rb_insns_name_array()); /* ::RubyVM::DEFAULT_PARAMS * This constant exposes the VM's default parameters. * Note that changing these values does not affect VM execution. * Specification is not stable and you should not depend on this value. * Of course, this constant is MRI specific. */ rb_define_const(rb_cRubyVM, "DEFAULT_PARAMS", vm_default_params()); /* debug functions ::RubyVM::SDR(), ::RubyVM::NSDR() */ #if VMDEBUG rb_define_singleton_method(rb_cRubyVM, "SDR", sdr, 0); rb_define_singleton_method(rb_cRubyVM, "NSDR", nsdr, 0); rb_define_singleton_method(rb_cRubyVM, "mtbl", vm_mtbl, 2); rb_define_singleton_method(rb_cRubyVM, "mtbl2", vm_mtbl2, 2); #else (void)sdr; (void)nsdr; (void)vm_mtbl; (void)vm_mtbl2; #endif /* VM bootstrap: phase 2 */ { rb_vm_t *vm = ruby_current_vm_ptr; rb_thread_t *th = GET_THREAD(); VALUE filename = rb_fstring_lit("
"); const rb_iseq_t *iseq = rb_iseq_new(Qnil, filename, filename, Qnil, 0, ISEQ_TYPE_TOP); // Ractor setup rb_ractor_main_setup(vm, th->ractor, th); /* create vm object */ vm->self = TypedData_Wrap_Struct(rb_cRubyVM, &vm_data_type, vm); /* create main thread */ th->self = TypedData_Wrap_Struct(rb_cThread, &thread_data_type, th); vm->ractor.main_thread = th; vm->ractor.main_ractor = th->ractor; th->vm = vm; th->top_wrapper = 0; th->top_self = rb_vm_top_self(); rb_vm_register_global_object((VALUE)iseq); th->ec->cfp->iseq = iseq; th->ec->cfp->pc = ISEQ_BODY(iseq)->iseq_encoded; th->ec->cfp->self = th->top_self; VM_ENV_FLAGS_UNSET(th->ec->cfp->ep, VM_FRAME_FLAG_CFRAME); VM_STACK_ENV_WRITE(th->ec->cfp->ep, VM_ENV_DATA_INDEX_ME_CREF, (VALUE)vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE, FALSE, NULL, FALSE, FALSE)); /* * The Binding of the top level scope */ rb_define_global_const("TOPLEVEL_BINDING", rb_binding_new()); #ifdef _WIN32 rb_objspace_gc_enable(vm->objspace); #endif } vm_init_redefined_flag(); rb_block_param_proxy = rb_obj_alloc(rb_cObject); rb_add_method_optimized(rb_singleton_class(rb_block_param_proxy), idCall, OPTIMIZED_METHOD_TYPE_BLOCK_CALL, 0, METHOD_VISI_PUBLIC); rb_obj_freeze(rb_block_param_proxy); rb_vm_register_global_object(rb_block_param_proxy); /* vm_backtrace.c */ Init_vm_backtrace(); } void rb_vm_set_progname(VALUE filename) { rb_thread_t *th = GET_VM()->ractor.main_thread; rb_control_frame_t *cfp = (void *)(th->ec->vm_stack + th->ec->vm_stack_size); --cfp; filename = rb_str_new_frozen(filename); rb_iseq_pathobj_set(cfp->iseq, filename, rb_iseq_realpath(cfp->iseq)); } extern const struct st_hash_type rb_fstring_hash_type; void Init_BareVM(void) { /* VM bootstrap: phase 1 */ rb_vm_t *vm = ruby_mimcalloc(1, sizeof(*vm)); rb_thread_t *th = ruby_mimcalloc(1, sizeof(*th)); if (!vm || !th) { fputs("[FATAL] failed to allocate memory\n", stderr); exit(EXIT_FAILURE); } // setup the VM vm_init2(vm); rb_vm_postponed_job_queue_init(vm); ruby_current_vm_ptr = vm; rb_objspace_alloc(); vm->negative_cme_table = rb_id_table_create(16); vm->overloaded_cme_table = st_init_numtable(); vm->constant_cache = rb_id_table_create(0); vm->unused_block_warning_table = st_init_numtable(); // TODO: remove before Ruby 3.4.0 release const char *s = getenv("RUBY_TRY_UNUSED_BLOCK_WARNING_STRICT"); if (s && strcmp(s, "1") == 0) { vm->unused_block_warning_strict = true; } // setup main thread th->nt = ZALLOC(struct rb_native_thread); th->vm = vm; th->ractor = vm->ractor.main_ractor = rb_ractor_main_alloc(); Init_native_thread(th); rb_jit_cont_init(); th_init(th, 0, vm); rb_ractor_set_current_ec(th->ractor, th->ec); /* n.b. native_main_thread_stack_top is set by the INIT_STACK macro */ ruby_thread_init_stack(th, native_main_thread_stack_top); // setup ractor system rb_native_mutex_initialize(&vm->ractor.sync.lock); rb_native_cond_initialize(&vm->ractor.sync.terminate_cond); vm_opt_method_def_table = st_init_numtable(); vm_opt_mid_table = st_init_numtable(); #ifdef RUBY_THREAD_WIN32_H rb_native_cond_initialize(&vm->ractor.sync.barrier_cond); #endif } void ruby_init_stack(void *addr) { native_main_thread_stack_top = addr; } #ifndef _WIN32 #include #include #endif #ifndef MARK_OBJECT_ARY_BUCKET_SIZE #define MARK_OBJECT_ARY_BUCKET_SIZE 1024 #endif struct pin_array_list { VALUE next; long len; VALUE *array; }; static void pin_array_list_mark(void *data) { struct pin_array_list *array = (struct pin_array_list *)data; rb_gc_mark_movable(array->next); rb_gc_mark_vm_stack_values(array->len, array->array); } static void pin_array_list_free(void *data) { struct pin_array_list *array = (struct pin_array_list *)data; xfree(array->array); } static size_t pin_array_list_memsize(const void *data) { return sizeof(struct pin_array_list) + (MARK_OBJECT_ARY_BUCKET_SIZE * sizeof(VALUE)); } static void pin_array_list_update_references(void *data) { struct pin_array_list *array = (struct pin_array_list *)data; array->next = rb_gc_location(array->next); } static const rb_data_type_t pin_array_list_type = { .wrap_struct_name = "VM/pin_array_list", .function = { .dmark = pin_array_list_mark, .dfree = pin_array_list_free, .dsize = pin_array_list_memsize, .dcompact = pin_array_list_update_references, }, .flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE, }; static VALUE pin_array_list_new(VALUE next) { struct pin_array_list *array_list; VALUE obj = TypedData_Make_Struct(0, struct pin_array_list, &pin_array_list_type, array_list); RB_OBJ_WRITE(obj, &array_list->next, next); array_list->array = ALLOC_N(VALUE, MARK_OBJECT_ARY_BUCKET_SIZE); return obj; } static VALUE pin_array_list_append(VALUE obj, VALUE item) { struct pin_array_list *array_list; TypedData_Get_Struct(obj, struct pin_array_list, &pin_array_list_type, array_list); if (array_list->len >= MARK_OBJECT_ARY_BUCKET_SIZE) { obj = pin_array_list_new(obj); TypedData_Get_Struct(obj, struct pin_array_list, &pin_array_list_type, array_list); } RB_OBJ_WRITE(obj, &array_list->array[array_list->len], item); array_list->len++; return obj; } void rb_vm_register_global_object(VALUE obj) { RUBY_ASSERT(!RB_SPECIAL_CONST_P(obj)); if (RB_SPECIAL_CONST_P(obj)) { return; } switch (RB_BUILTIN_TYPE(obj)) { case T_CLASS: case T_MODULE: if (FL_TEST(obj, RCLASS_IS_ROOT)) { return; } FL_SET(obj, RCLASS_IS_ROOT); break; default: break; } RB_VM_LOCK_ENTER(); { VALUE list = GET_VM()->mark_object_ary; VALUE head = pin_array_list_append(list, obj); if (head != list) { GET_VM()->mark_object_ary = head; } RB_GC_GUARD(obj); } RB_VM_LOCK_LEAVE(); } void Init_vm_objects(void) { rb_vm_t *vm = GET_VM(); /* initialize mark object array, hash */ vm->mark_object_ary = pin_array_list_new(Qnil); vm->loading_table = st_init_strtable(); vm->ci_table = st_init_table(&vm_ci_hashtype); vm->frozen_strings = st_init_table_with_size(&rb_fstring_hash_type, 10000); } /* Stub for builtin function when not building YJIT units*/ #if !USE_YJIT void Init_builtin_yjit(void) {} #endif /* top self */ static VALUE main_to_s(VALUE obj) { return rb_str_new2("main"); } VALUE rb_vm_top_self(void) { return GET_VM()->top_self; } void Init_top_self(void) { rb_vm_t *vm = GET_VM(); vm->top_self = rb_obj_alloc(rb_cObject); rb_define_singleton_method(rb_vm_top_self(), "to_s", main_to_s, 0); rb_define_alias(rb_singleton_class(rb_vm_top_self()), "inspect", "to_s"); } VALUE * rb_ruby_verbose_ptr(void) { rb_ractor_t *cr = GET_RACTOR(); return &cr->verbose; } static bool prism; bool * rb_ruby_prism_ptr(void) { return &prism; } VALUE * rb_ruby_debug_ptr(void) { rb_ractor_t *cr = GET_RACTOR(); return &cr->debug; } bool rb_free_at_exit = false; bool ruby_free_at_exit_p(void) { return rb_free_at_exit; } /* iseq.c */ VALUE rb_insn_operand_intern(const rb_iseq_t *iseq, VALUE insn, int op_no, VALUE op, int len, size_t pos, VALUE *pnop, VALUE child); st_table * rb_vm_fstring_table(void) { return GET_VM()->frozen_strings; } #if VM_COLLECT_USAGE_DETAILS #define HASH_ASET(h, k, v) rb_hash_aset((h), (st_data_t)(k), (st_data_t)(v)) /* uh = { * insn(Fixnum) => ihash(Hash) * } * ihash = { * -1(Fixnum) => count, # insn usage * 0(Fixnum) => ophash, # operand usage * } * ophash = { * val(interned string) => count(Fixnum) * } */ static void vm_analysis_insn(int insn) { ID usage_hash; ID bigram_hash; static int prev_insn = -1; VALUE uh; VALUE ihash; VALUE cv; CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN"); CONST_ID(bigram_hash, "USAGE_ANALYSIS_INSN_BIGRAM"); uh = rb_const_get(rb_cRubyVM, usage_hash); if (NIL_P(ihash = rb_hash_aref(uh, INT2FIX(insn)))) { ihash = rb_hash_new(); HASH_ASET(uh, INT2FIX(insn), ihash); } if (NIL_P(cv = rb_hash_aref(ihash, INT2FIX(-1)))) { cv = INT2FIX(0); } HASH_ASET(ihash, INT2FIX(-1), INT2FIX(FIX2INT(cv) + 1)); /* calc bigram */ if (prev_insn != -1) { VALUE bi; VALUE ary[2]; VALUE cv; ary[0] = INT2FIX(prev_insn); ary[1] = INT2FIX(insn); bi = rb_ary_new4(2, &ary[0]); uh = rb_const_get(rb_cRubyVM, bigram_hash); if (NIL_P(cv = rb_hash_aref(uh, bi))) { cv = INT2FIX(0); } HASH_ASET(uh, bi, INT2FIX(FIX2INT(cv) + 1)); } prev_insn = insn; } static void vm_analysis_operand(int insn, int n, VALUE op) { ID usage_hash; VALUE uh; VALUE ihash; VALUE ophash; VALUE valstr; VALUE cv; CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN"); uh = rb_const_get(rb_cRubyVM, usage_hash); if (NIL_P(ihash = rb_hash_aref(uh, INT2FIX(insn)))) { ihash = rb_hash_new(); HASH_ASET(uh, INT2FIX(insn), ihash); } if (NIL_P(ophash = rb_hash_aref(ihash, INT2FIX(n)))) { ophash = rb_hash_new(); HASH_ASET(ihash, INT2FIX(n), ophash); } /* intern */ valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0); /* set count */ if (NIL_P(cv = rb_hash_aref(ophash, valstr))) { cv = INT2FIX(0); } HASH_ASET(ophash, valstr, INT2FIX(FIX2INT(cv) + 1)); } static void vm_analysis_register(int reg, int isset) { ID usage_hash; VALUE uh; VALUE valstr; static const char regstrs[][5] = { "pc", /* 0 */ "sp", /* 1 */ "ep", /* 2 */ "cfp", /* 3 */ "self", /* 4 */ "iseq", /* 5 */ }; static const char getsetstr[][4] = { "get", "set", }; static VALUE syms[sizeof(regstrs) / sizeof(regstrs[0])][2]; VALUE cv; CONST_ID(usage_hash, "USAGE_ANALYSIS_REGS"); if (syms[0] == 0) { char buff[0x10]; int i; for (i = 0; i < (int)(sizeof(regstrs) / sizeof(regstrs[0])); i++) { int j; for (j = 0; j < 2; j++) { snprintf(buff, 0x10, "%d %s %-4s", i, getsetstr[j], regstrs[i]); syms[i][j] = ID2SYM(rb_intern(buff)); } } } valstr = syms[reg][isset]; uh = rb_const_get(rb_cRubyVM, usage_hash); if (NIL_P(cv = rb_hash_aref(uh, valstr))) { cv = INT2FIX(0); } HASH_ASET(uh, valstr, INT2FIX(FIX2INT(cv) + 1)); } #undef HASH_ASET static void (*ruby_vm_collect_usage_func_insn)(int insn) = NULL; static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op) = NULL; static void (*ruby_vm_collect_usage_func_register)(int reg, int isset) = NULL; /* :nodoc: */ static VALUE usage_analysis_insn_start(VALUE self) { ruby_vm_collect_usage_func_insn = vm_analysis_insn; return Qnil; } /* :nodoc: */ static VALUE usage_analysis_operand_start(VALUE self) { ruby_vm_collect_usage_func_operand = vm_analysis_operand; return Qnil; } /* :nodoc: */ static VALUE usage_analysis_register_start(VALUE self) { ruby_vm_collect_usage_func_register = vm_analysis_register; return Qnil; } /* :nodoc: */ static VALUE usage_analysis_insn_stop(VALUE self) { ruby_vm_collect_usage_func_insn = 0; return Qnil; } /* :nodoc: */ static VALUE usage_analysis_operand_stop(VALUE self) { ruby_vm_collect_usage_func_operand = 0; return Qnil; } /* :nodoc: */ static VALUE usage_analysis_register_stop(VALUE self) { ruby_vm_collect_usage_func_register = 0; return Qnil; } /* :nodoc: */ static VALUE usage_analysis_insn_running(VALUE self) { return RBOOL(ruby_vm_collect_usage_func_insn != 0); } /* :nodoc: */ static VALUE usage_analysis_operand_running(VALUE self) { return RBOOL(ruby_vm_collect_usage_func_operand != 0); } /* :nodoc: */ static VALUE usage_analysis_register_running(VALUE self) { return RBOOL(ruby_vm_collect_usage_func_register != 0); } static VALUE usage_analysis_clear(VALUE self, ID usage_hash) { VALUE uh; uh = rb_const_get(self, usage_hash); rb_hash_clear(uh); return Qtrue; } /* :nodoc: */ static VALUE usage_analysis_insn_clear(VALUE self) { ID usage_hash; ID bigram_hash; CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN"); CONST_ID(bigram_hash, "USAGE_ANALYSIS_INSN_BIGRAM"); usage_analysis_clear(rb_cRubyVM, usage_hash); return usage_analysis_clear(rb_cRubyVM, bigram_hash); } /* :nodoc: */ static VALUE usage_analysis_operand_clear(VALUE self) { ID usage_hash; CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN"); return usage_analysis_clear(self, usage_hash); } /* :nodoc: */ static VALUE usage_analysis_register_clear(VALUE self) { ID usage_hash; CONST_ID(usage_hash, "USAGE_ANALYSIS_REGS"); return usage_analysis_clear(self, usage_hash); } #else MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_insn)(int insn)) = 0; MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op)) = 0; MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_register)(int reg, int isset)) = 0; #endif #if VM_COLLECT_USAGE_DETAILS /* @param insn instruction number */ static void vm_collect_usage_insn(int insn) { if (RUBY_DTRACE_INSN_ENABLED()) { RUBY_DTRACE_INSN(rb_insns_name(insn)); } if (ruby_vm_collect_usage_func_insn) (*ruby_vm_collect_usage_func_insn)(insn); } /* @param insn instruction number * @param n n-th operand * @param op operand value */ static void vm_collect_usage_operand(int insn, int n, VALUE op) { if (RUBY_DTRACE_INSN_OPERAND_ENABLED()) { VALUE valstr; valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0); RUBY_DTRACE_INSN_OPERAND(RSTRING_PTR(valstr), rb_insns_name(insn)); RB_GC_GUARD(valstr); } if (ruby_vm_collect_usage_func_operand) (*ruby_vm_collect_usage_func_operand)(insn, n, op); } /* @param reg register id. see code of vm_analysis_register() */ /* @param isset 0: read, 1: write */ static void vm_collect_usage_register(int reg, int isset) { if (ruby_vm_collect_usage_func_register) (*ruby_vm_collect_usage_func_register)(reg, isset); } #endif const struct rb_callcache * rb_vm_empty_cc(void) { return &vm_empty_cc; } const struct rb_callcache * rb_vm_empty_cc_for_super(void) { return &vm_empty_cc_for_super; } #include "vm_call_iseq_optimized.inc" /* required from vm_insnhelper.c */