/********************************************************************** enum.c - $Author$ created at: Fri Oct 1 15:15:19 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "id.h" #include "internal.h" #include "internal/compar.h" #include "internal/enum.h" #include "internal/hash.h" #include "internal/imemo.h" #include "internal/numeric.h" #include "internal/object.h" #include "internal/proc.h" #include "internal/rational.h" #include "internal/re.h" #include "ruby/util.h" #include "ruby_assert.h" #include "symbol.h" VALUE rb_mEnumerable; static ID id_next; static ID id__alone; static ID id__separator; static ID id_chunk_categorize; static ID id_chunk_enumerable; static ID id_sliceafter_enum; static ID id_sliceafter_pat; static ID id_sliceafter_pred; static ID id_slicebefore_enumerable; static ID id_slicebefore_sep_pat; static ID id_slicebefore_sep_pred; static ID id_slicewhen_enum; static ID id_slicewhen_inverted; static ID id_slicewhen_pred; #define id_div idDiv #define id_each idEach #define id_eqq idEqq #define id_cmp idCmp #define id_lshift idLTLT #define id_call idCall #define id_size idSize VALUE rb_enum_values_pack(int argc, const VALUE *argv) { if (argc == 0) return Qnil; if (argc == 1) return argv[0]; return rb_ary_new4(argc, argv); } #define ENUM_WANT_SVALUE() do { \ i = rb_enum_values_pack(argc, argv); \ } while (0) static VALUE enum_yield(int argc, VALUE ary) { if (argc > 1) return rb_yield_force_blockarg(ary); if (argc == 1) return rb_yield(ary); return rb_yield_values2(0, 0); } static VALUE enum_yield_array(VALUE ary) { long len = RARRAY_LEN(ary); if (len > 1) return rb_yield_force_blockarg(ary); if (len == 1) return rb_yield(RARRAY_AREF(ary, 0)); return rb_yield_values2(0, 0); } static VALUE grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); ENUM_WANT_SVALUE(); if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) { rb_ary_push(memo->v2, i); } return Qnil; } static VALUE grep_regexp_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); VALUE converted_element, match; ENUM_WANT_SVALUE(); /* In case element can't be converted to a Symbol or String: not a match (don't raise) */ converted_element = SYMBOL_P(i) ? i : rb_check_string_type(i); match = NIL_P(converted_element) ? Qfalse : rb_reg_match_p(memo->v1, i, 0); if (match == memo->u3.value) { rb_ary_push(memo->v2, i); } return Qnil; } static VALUE grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); ENUM_WANT_SVALUE(); if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) { rb_ary_push(memo->v2, enum_yield(argc, i)); } return Qnil; } static VALUE enum_grep0(VALUE obj, VALUE pat, VALUE test) { VALUE ary = rb_ary_new(); struct MEMO *memo = MEMO_NEW(pat, ary, test); rb_block_call_func_t fn; if (rb_block_given_p()) { fn = grep_iter_i; } else if (RB_TYPE_P(pat, T_REGEXP) && LIKELY(rb_method_basic_definition_p(CLASS_OF(pat), idEqq))) { fn = grep_regexp_i; } else { fn = grep_i; } rb_block_call(obj, id_each, 0, 0, fn, (VALUE)memo); return ary; } /* * call-seq: * grep(pattern) -> array * grep(pattern) {|element| ... } -> array * * Returns an array of objects based elements of +self+ that match the given pattern. * * With no block given, returns an array containing each element * for which pattern === element is +true+: * * a = ['foo', 'bar', 'car', 'moo'] * a.grep(/ar/) # => ["bar", "car"] * (1..10).grep(3..8) # => [3, 4, 5, 6, 7, 8] * ['a', 'b', 0, 1].grep(Integer) # => [0, 1] * * With a block given, * calls the block with each matching element and returns an array containing each * object returned by the block: * * a = ['foo', 'bar', 'car', 'moo'] * a.grep(/ar/) {|element| element.upcase } # => ["BAR", "CAR"] * * Related: #grep_v. */ static VALUE enum_grep(VALUE obj, VALUE pat) { return enum_grep0(obj, pat, Qtrue); } /* * call-seq: * grep_v(pattern) -> array * grep_v(pattern) {|element| ... } -> array * * Returns an array of objects based on elements of +self+ * that don't match the given pattern. * * With no block given, returns an array containing each element * for which pattern === element is +false+: * * a = ['foo', 'bar', 'car', 'moo'] * a.grep_v(/ar/) # => ["foo", "moo"] * (1..10).grep_v(3..8) # => [1, 2, 9, 10] * ['a', 'b', 0, 1].grep_v(Integer) # => ["a", "b"] * * With a block given, * calls the block with each non-matching element and returns an array containing each * object returned by the block: * * a = ['foo', 'bar', 'car', 'moo'] * a.grep_v(/ar/) {|element| element.upcase } # => ["FOO", "MOO"] * * Related: #grep. */ static VALUE enum_grep_v(VALUE obj, VALUE pat) { return enum_grep0(obj, pat, Qfalse); } #define COUNT_BIGNUM IMEMO_FL_USER0 #define MEMO_V3_SET(m, v) RB_OBJ_WRITE((m), &(m)->u3.value, (v)) static void imemo_count_up(struct MEMO *memo) { if (memo->flags & COUNT_BIGNUM) { MEMO_V3_SET(memo, rb_int_succ(memo->u3.value)); } else if (++memo->u3.cnt == 0) { /* overflow */ unsigned long buf[2] = {0, 1}; MEMO_V3_SET(memo, rb_big_unpack(buf, 2)); memo->flags |= COUNT_BIGNUM; } } static VALUE imemo_count_value(struct MEMO *memo) { if (memo->flags & COUNT_BIGNUM) { return memo->u3.value; } else { return ULONG2NUM(memo->u3.cnt); } } static VALUE count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); ENUM_WANT_SVALUE(); if (rb_equal(i, memo->v1)) { imemo_count_up(memo); } return Qnil; } static VALUE count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); if (RTEST(rb_yield_values2(argc, argv))) { imemo_count_up(memo); } return Qnil; } static VALUE count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); imemo_count_up(memo); return Qnil; } /* * call-seq: * count -> integer * count(object) -> integer * count {|element| ... } -> integer * * Returns the count of elements, based on an argument or block criterion, if given. * * With no argument and no block given, returns the number of elements: * * [0, 1, 2].count # => 3 * {foo: 0, bar: 1, baz: 2}.count # => 3 * * With argument +object+ given, * returns the number of elements that are == to +object+: * * [0, 1, 2, 1].count(1) # => 2 * * With a block given, calls the block with each element * and returns the number of elements for which the block returns a truthy value: * * [0, 1, 2, 3].count {|element| element < 2} # => 2 * {foo: 0, bar: 1, baz: 2}.count {|key, value| value < 2} # => 2 * */ static VALUE enum_count(int argc, VALUE *argv, VALUE obj) { VALUE item = Qnil; struct MEMO *memo; rb_block_call_func *func; if (argc == 0) { if (rb_block_given_p()) { func = count_iter_i; } else { func = count_all_i; } } else { rb_scan_args(argc, argv, "1", &item); if (rb_block_given_p()) { rb_warn("given block not used"); } func = count_i; } memo = MEMO_NEW(item, 0, 0); rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); return imemo_count_value(memo); } static VALUE find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { ENUM_WANT_SVALUE(); if (RTEST(enum_yield(argc, i))) { struct MEMO *memo = MEMO_CAST(memop); MEMO_V1_SET(memo, i); memo->u3.cnt = 1; rb_iter_break(); } return Qnil; } /* * call-seq: * find(if_none_proc = nil) {|element| ... } -> object or nil * find(if_none_proc = nil) -> enumerator * * Returns the first element for which the block returns a truthy value. * * With a block given, calls the block with successive elements of the collection; * returns the first element for which the block returns a truthy value: * * (0..9).find {|element| element > 2} # => 3 * * If no such element is found, calls +if_none_proc+ and returns its return value. * * (0..9).find(proc {false}) {|element| element > 12} # => false * {foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') } # => [:bar, 1] * {foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => [] * * With no block given, returns an Enumerator. * */ static VALUE enum_find(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; VALUE if_none; if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil; RETURN_ENUMERATOR(obj, argc, argv); memo = MEMO_NEW(Qundef, 0, 0); rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo); if (memo->u3.cnt) { return memo->v1; } if (!NIL_P(if_none)) { return rb_funcallv(if_none, id_call, 0, 0); } return Qnil; } static VALUE find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); ENUM_WANT_SVALUE(); if (rb_equal(i, memo->v2)) { MEMO_V1_SET(memo, imemo_count_value(memo)); rb_iter_break(); } imemo_count_up(memo); return Qnil; } static VALUE find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); if (RTEST(rb_yield_values2(argc, argv))) { MEMO_V1_SET(memo, imemo_count_value(memo)); rb_iter_break(); } imemo_count_up(memo); return Qnil; } /* * call-seq: * find_index(object) -> integer or nil * find_index {|element| ... } -> integer or nil * find_index -> enumerator * * Returns the index of the first element that meets a specified criterion, * or +nil+ if no such element is found. * * With argument +object+ given, * returns the index of the first element that is == +object+: * * ['a', 'b', 'c', 'b'].find_index('b') # => 1 * * With a block given, calls the block with successive elements; * returns the first element for which the block returns a truthy value: * * ['a', 'b', 'c', 'b'].find_index {|element| element.start_with?('b') } # => 1 * {foo: 0, bar: 1, baz: 2}.find_index {|key, value| value > 1 } # => 2 * * With no argument and no block given, returns an Enumerator. * */ static VALUE enum_find_index(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; /* [return value, current index, ] */ VALUE condition_value = Qnil; rb_block_call_func *func; if (argc == 0) { RETURN_ENUMERATOR(obj, 0, 0); func = find_index_iter_i; } else { rb_scan_args(argc, argv, "1", &condition_value); if (rb_block_given_p()) { rb_warn("given block not used"); } func = find_index_i; } memo = MEMO_NEW(Qnil, condition_value, 0); rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); return memo->v1; } static VALUE find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { ENUM_WANT_SVALUE(); if (RTEST(enum_yield(argc, i))) { rb_ary_push(ary, i); } return Qnil; } static VALUE enum_size(VALUE self, VALUE args, VALUE eobj) { return rb_check_funcall_default(self, id_size, 0, 0, Qnil); } static long limit_by_enum_size(VALUE obj, long n) { unsigned long limit; VALUE size = rb_check_funcall(obj, id_size, 0, 0); if (!FIXNUM_P(size)) return n; limit = FIX2ULONG(size); return ((unsigned long)n > limit) ? (long)limit : n; } static int enum_size_over_p(VALUE obj, long n) { VALUE size = rb_check_funcall(obj, id_size, 0, 0); if (!FIXNUM_P(size)) return 0; return ((unsigned long)n > FIX2ULONG(size)); } /* * call-seq: * select {|element| ... } -> array * select -> enumerator * * Returns an array containing elements selected by the block. * * With a block given, calls the block with successive elements; * returns an array of those elements for which the block returns a truthy value: * * (0..9).select {|element| element % 3 == 0 } # => [0, 3, 6, 9] * a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') } * a # => {:bar=>1, :baz=>2} * * With no block given, returns an Enumerator. * * Related: #reject. */ static VALUE enum_find_all(VALUE obj) { VALUE ary; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, find_all_i, ary); return ary; } static VALUE filter_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { i = rb_yield_values2(argc, argv); if (RTEST(i)) { rb_ary_push(ary, i); } return Qnil; } /* * call-seq: * filter_map {|element| ... } -> array * filter_map -> enumerator * * Returns an array containing truthy elements returned by the block. * * With a block given, calls the block with successive elements; * returns an array containing each truthy value returned by the block: * * (0..9).filter_map {|i| i * 2 if i.even? } # => [0, 4, 8, 12, 16] * {foo: 0, bar: 1, baz: 2}.filter_map {|key, value| key if value.even? } # => [:foo, :baz] * * When no block given, returns an Enumerator. * */ static VALUE enum_filter_map(VALUE obj) { VALUE ary; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, filter_map_i, ary); return ary; } static VALUE reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { ENUM_WANT_SVALUE(); if (!RTEST(enum_yield(argc, i))) { rb_ary_push(ary, i); } return Qnil; } /* * call-seq: * reject {|element| ... } -> array * reject -> enumerator * * Returns an array of objects rejected by the block. * * With a block given, calls the block with successive elements; * returns an array of those elements for which the block returns +nil+ or +false+: * * (0..9).reject {|i| i * 2 if i.even? } # => [1, 3, 5, 7, 9] * {foo: 0, bar: 1, baz: 2}.reject {|key, value| key if value.odd? } # => {:foo=>0, :baz=>2} * * When no block given, returns an Enumerator. * * Related: #select. */ static VALUE enum_reject(VALUE obj) { VALUE ary; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, reject_i, ary); return ary; } static VALUE collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { rb_ary_push(ary, rb_yield_values2(argc, argv)); return Qnil; } static VALUE collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { rb_ary_push(ary, rb_enum_values_pack(argc, argv)); return Qnil; } /* * call-seq: * map {|element| ... } -> array * map -> enumerator * * Returns an array of objects returned by the block. * * With a block given, calls the block with successive elements; * returns an array of the objects returned by the block: * * (0..4).map {|i| i*i } # => [0, 1, 4, 9, 16] * {foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4] * * With no block given, returns an Enumerator. * */ static VALUE enum_collect(VALUE obj) { VALUE ary; int min_argc, max_argc; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); ary = rb_ary_new(); min_argc = rb_block_min_max_arity(&max_argc); rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary); return ary; } static VALUE flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { VALUE tmp; i = rb_yield_values2(argc, argv); tmp = rb_check_array_type(i); if (NIL_P(tmp)) { rb_ary_push(ary, i); } else { rb_ary_concat(ary, tmp); } return Qnil; } /* * call-seq: * flat_map {|element| ... } -> array * flat_map -> enumerator * * Returns an array of flattened objects returned by the block. * * With a block given, calls the block with successive elements; * returns a flattened array of objects returned by the block: * * [0, 1, 2, 3].flat_map {|element| -element } # => [0, -1, -2, -3] * [0, 1, 2, 3].flat_map {|element| [element, -element] } # => [0, 0, 1, -1, 2, -2, 3, -3] * [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100] * {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2] * * With no block given, returns an Enumerator. * * Alias: #collect_concat. */ static VALUE enum_flat_map(VALUE obj) { VALUE ary; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, flat_map_i, ary); return ary; } /* * call-seq: * to_a(*args) -> array * * Returns an array containing the items in +self+: * * (0..4).to_a # => [0, 1, 2, 3, 4] * */ static VALUE enum_to_a(int argc, VALUE *argv, VALUE obj) { VALUE ary = rb_ary_new(); rb_block_call_kw(obj, id_each, argc, argv, collect_all, ary, RB_PASS_CALLED_KEYWORDS); return ary; } static VALUE enum_hashify_into(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter, VALUE hash) { rb_block_call(obj, id_each, argc, argv, iter, hash); return hash; } static VALUE enum_hashify(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter) { return enum_hashify_into(obj, argc, argv, iter, rb_hash_new()); } static VALUE enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { ENUM_WANT_SVALUE(); return rb_hash_set_pair(hash, i); } static VALUE enum_to_h_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { return rb_hash_set_pair(hash, rb_yield_values2(argc, argv)); } /* * call-seq: * to_h(*args) -> hash * to_h(*args) {|element| ... } -> hash * * When +self+ consists of 2-element arrays, * returns a hash each of whose entries is the key-value pair * formed from one of those arrays: * * [[:foo, 0], [:bar, 1], [:baz, 2]].to_h # => {:foo=>0, :bar=>1, :baz=>2} * * When a block is given, the block is called with each element of +self+; * the block should return a 2-element array which becomes a key-value pair * in the returned hash: * * (0..3).to_h {|i| [i, i ** 2]} # => {0=>0, 1=>1, 2=>4, 3=>9} * * Raises an exception if an element of +self+ is not a 2-element array, * and a block is not passed. */ static VALUE enum_to_h(int argc, VALUE *argv, VALUE obj) { rb_block_call_func *iter = rb_block_given_p() ? enum_to_h_ii : enum_to_h_i; return enum_hashify(obj, argc, argv, iter); } static VALUE inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) { struct MEMO *memo = MEMO_CAST(p); ENUM_WANT_SVALUE(); if (UNDEF_P(memo->v1)) { MEMO_V1_SET(memo, i); } else { MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i)); } return Qnil; } static VALUE inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) { struct MEMO *memo = MEMO_CAST(p); VALUE name; ENUM_WANT_SVALUE(); if (UNDEF_P(memo->v1)) { MEMO_V1_SET(memo, i); } else if (SYMBOL_P(name = memo->u3.value)) { const ID mid = SYM2ID(name); MEMO_V1_SET(memo, rb_funcallv_public(memo->v1, mid, 1, &i)); } else { VALUE args[2]; args[0] = name; args[1] = i; MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1)); } return Qnil; } static VALUE ary_inject_op(VALUE ary, VALUE init, VALUE op) { ID id; VALUE v, e; long i, n; if (RARRAY_LEN(ary) == 0) return UNDEF_P(init) ? Qnil : init; if (UNDEF_P(init)) { v = RARRAY_AREF(ary, 0); i = 1; if (RARRAY_LEN(ary) == 1) return v; } else { v = init; i = 0; } id = SYM2ID(op); if (id == idPLUS) { if (RB_INTEGER_TYPE_P(v) && rb_method_basic_definition_p(rb_cInteger, idPLUS) && rb_obj_respond_to(v, idPLUS, FALSE)) { n = 0; for (; i < RARRAY_LEN(ary); i++) { e = RARRAY_AREF(ary, i); if (FIXNUM_P(e)) { n += FIX2LONG(e); /* should not overflow long type */ if (!FIXABLE(n)) { v = rb_big_plus(LONG2NUM(n), v); n = 0; } } else if (RB_BIGNUM_TYPE_P(e)) v = rb_big_plus(e, v); else goto not_integer; } if (n != 0) v = rb_fix_plus(LONG2FIX(n), v); return v; not_integer: if (n != 0) v = rb_fix_plus(LONG2FIX(n), v); } } for (; i < RARRAY_LEN(ary); i++) { VALUE arg = RARRAY_AREF(ary, i); v = rb_funcallv_public(v, id, 1, &arg); } return v; } /* * call-seq: * inject(symbol) -> object * inject(initial_value, symbol) -> object * inject {|memo, value| ... } -> object * inject(initial_value) {|memo, value| ... } -> object * * Returns the result of applying a reducer to an initial value and * the first element of the Enumerable. It then takes the result and applies the * function to it and the second element of the collection, and so on. The * return value is the result returned by the final call to the function. * * You can think of * * [ a, b, c, d ].inject(i) { |r, v| fn(r, v) } * * as being * * fn(fn(fn(fn(i, a), b), c), d) * * In a way the +inject+ function _injects_ the function * between the elements of the enumerable. * * +inject+ is aliased as +reduce+. You use it when you want to * _reduce_ a collection to a single value. * * The Calling Sequences * * Let's start with the most verbose: * * enum.inject(initial_value) do |result, next_value| * # do something with +result+ and +next_value+ * # the value returned by the block becomes the * # value passed in to the next iteration * # as +result+ * end * * For example: * * product = [ 2, 3, 4 ].inject(1) do |result, next_value| * result * next_value * end * product #=> 24 * * When this runs, the block is first called with +1+ (the initial value) and * +2+ (the first element of the array). The block returns 1*2, so on * the next iteration the block is called with +2+ (the previous result) and * +3+. The block returns +6+, and is called one last time with +6+ and +4+. * The result of the block, +24+ becomes the value returned by +inject+. This * code returns the product of the elements in the enumerable. * * First Shortcut: Default Initial value * * In the case of the previous example, the initial value, +1+, wasn't really * necessary: the calculation of the product of a list of numbers is self-contained. * * In these circumstances, you can omit the +initial_value+ parameter. +inject+ * will then initially call the block with the first element of the collection * as the +result+ parameter and the second element as the +next_value+. * * [ 2, 3, 4 ].inject do |result, next_value| * result * next_value * end * * This shortcut is convenient, but can only be used when the block produces a result * which can be passed back to it as a first parameter. * * Here's an example where that's not the case: it returns a hash where the keys are words * and the values are the number of occurrences of that word in the enumerable. * * freqs = File.read("README.md") * .scan(/\w{2,}/) * .reduce(Hash.new(0)) do |counts, word| * counts[word] += 1 * counts * end * freqs #=> {"Actions"=>4, * "Status"=>5, * "MinGW"=>3, * "https"=>27, * "github"=>10, * "com"=>15, ... * * Note that the last line of the block is just the word +counts+. This ensures the * return value of the block is the result that's being calculated. * * Second Shortcut: a Reducer function * * A reducer function is a function that takes a partial result and the next value, * returning the next partial result. The block that is given to +inject+ is a reducer. * * You can also write a reducer as a function and pass the name of that function * (as a symbol) to +inject+. However, for this to work, the function * * 1. Must be defined on the type of the result value * 2. Must accept a single parameter, the next value in the collection, and * 3. Must return an updated result which will also implement the function. * * Here's an example that adds elements to a string. The two calls invoke the functions * String#concat and String#+ on the result so far, passing it the next value. * * s = [ "cat", " ", "dog" ].inject("", :concat) * s #=> "cat dog" * s = [ "cat", " ", "dog" ].inject("The result is:", :+) * s #=> "The result is: cat dog" * * Here's a more complex example when the result object maintains * state of a different type to the enumerable elements. * * class Turtle * * def initialize * @x = @y = 0 * end * * def move(dir) * case dir * when "n" then @y += 1 * when "s" then @y -= 1 * when "e" then @x += 1 * when "w" then @x -= 1 * end * self * end * end * * position = "nnneesw".chars.reduce(Turtle.new, :move) * position #=>> # * * Third Shortcut: Reducer With no Initial Value * * If your reducer returns a value that it can accept as a parameter, then you * don't have to pass in an initial value. Here :* is the name of the * _times_ function: * * product = [ 2, 3, 4 ].inject(:*) * product # => 24 * * String concatenation again: * * s = [ "cat", " ", "dog" ].inject(:+) * s #=> "cat dog" * * And an example that converts a hash to an array of two-element subarrays. * * nested = {foo: 0, bar: 1}.inject([], :push) * nested # => [[:foo, 0], [:bar, 1]] * * */ static VALUE enum_inject(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; VALUE init, op; rb_block_call_func *iter = inject_i; ID id; int num_args; if (rb_block_given_p()) { num_args = rb_scan_args(argc, argv, "02", &init, &op); } else { num_args = rb_scan_args(argc, argv, "11", &init, &op); } switch (num_args) { case 0: init = Qundef; break; case 1: if (rb_block_given_p()) { break; } id = rb_check_id(&init); op = id ? ID2SYM(id) : init; init = Qundef; iter = inject_op_i; break; case 2: if (rb_block_given_p()) { rb_warning("given block not used"); } id = rb_check_id(&op); if (id) op = ID2SYM(id); iter = inject_op_i; break; } if (iter == inject_op_i && SYMBOL_P(op) && RB_TYPE_P(obj, T_ARRAY) && rb_method_basic_definition_p(CLASS_OF(obj), id_each)) { return ary_inject_op(obj, init, op); } memo = MEMO_NEW(init, Qnil, op); rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo); if (UNDEF_P(memo->v1)) return Qnil; return memo->v1; } static VALUE partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys)) { struct MEMO *memo = MEMO_CAST(arys); VALUE ary; ENUM_WANT_SVALUE(); if (RTEST(enum_yield(argc, i))) { ary = memo->v1; } else { ary = memo->v2; } rb_ary_push(ary, i); return Qnil; } /* * call-seq: * partition {|element| ... } -> [true_array, false_array] * partition -> enumerator * * With a block given, returns an array of two arrays: * * - The first having those elements for which the block returns a truthy value. * - The other having all other elements. * * Examples: * * p = (1..4).partition {|i| i.even? } * p # => [[2, 4], [1, 3]] * p = ('a'..'d').partition {|c| c < 'c' } * p # => [["a", "b"], ["c", "d"]] * h = {foo: 0, bar: 1, baz: 2, bat: 3} * p = h.partition {|key, value| key.start_with?('b') } * p # => [[[:bar, 1], [:baz, 2], [:bat, 3]], [[:foo, 0]]] * p = h.partition {|key, value| value < 2 } * p # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]]] * * With no block given, returns an Enumerator. * * Related: Enumerable#group_by. * */ static VALUE enum_partition(VALUE obj) { struct MEMO *memo; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0); rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo); return rb_assoc_new(memo->v1, memo->v2); } static VALUE group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { VALUE group; VALUE values; ENUM_WANT_SVALUE(); group = enum_yield(argc, i); values = rb_hash_aref(hash, group); if (!RB_TYPE_P(values, T_ARRAY)) { values = rb_ary_new3(1, i); rb_hash_aset(hash, group, values); } else { rb_ary_push(values, i); } return Qnil; } /* * call-seq: * group_by {|element| ... } -> hash * group_by -> enumerator * * With a block given returns a hash: * * - Each key is a return value from the block. * - Each value is an array of those elements for which the block returned that key. * * Examples: * * g = (1..6).group_by {|i| i%3 } * g # => {1=>[1, 4], 2=>[2, 5], 0=>[3, 6]} * h = {foo: 0, bar: 1, baz: 0, bat: 1} * g = h.group_by {|key, value| value } * g # => {0=>[[:foo, 0], [:baz, 0]], 1=>[[:bar, 1], [:bat, 1]]} * * With no block given, returns an Enumerator. * */ static VALUE enum_group_by(VALUE obj) { RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); return enum_hashify(obj, 0, 0, group_by_i); } static int tally_up(st_data_t *group, st_data_t *value, st_data_t arg, int existing) { VALUE tally = (VALUE)*value; VALUE hash = (VALUE)arg; if (!existing) { tally = INT2FIX(1); } else if (FIXNUM_P(tally) && tally < INT2FIX(FIXNUM_MAX)) { tally += INT2FIX(1) & ~FIXNUM_FLAG; } else { Check_Type(tally, T_BIGNUM); tally = rb_big_plus(tally, INT2FIX(1)); RB_OBJ_WRITTEN(hash, Qundef, tally); } *value = (st_data_t)tally; if (!SPECIAL_CONST_P(*group)) RB_OBJ_WRITTEN(hash, Qundef, *group); return ST_CONTINUE; } static VALUE rb_enum_tally_up(VALUE hash, VALUE group) { rb_hash_stlike_update(hash, group, tally_up, (st_data_t)hash); return hash; } static VALUE tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { ENUM_WANT_SVALUE(); rb_enum_tally_up(hash, i); return Qnil; } /* * call-seq: * tally -> new_hash * tally(hash) -> hash * * Returns a hash containing the counts of equal elements: * * - Each key is an element of +self+. * - Each value is the number elements equal to that key. * * With no argument: * * %w[a b c b c a c b].tally # => {"a"=>2, "b"=>3, "c"=>3} * * With a hash argument, that hash is used for the tally (instead of a new hash), * and is returned; * this may be useful for accumulating tallies across multiple enumerables: * * hash = {} * hash = %w[a c d b c a].tally(hash) * hash # => {"a"=>2, "c"=>2, "d"=>1, "b"=>1} * hash = %w[b a z].tally(hash) * hash # => {"a"=>3, "c"=>2, "d"=>1, "b"=>2, "z"=>1} * hash = %w[b a m].tally(hash) * hash # => {"a"=>4, "c"=>2, "d"=>1, "b"=>3, "z"=>1, "m"=> 1} * */ static VALUE enum_tally(int argc, VALUE *argv, VALUE obj) { VALUE hash; if (rb_check_arity(argc, 0, 1)) { hash = rb_to_hash_type(argv[0]); rb_check_frozen(hash); } else { hash = rb_hash_new(); } return enum_hashify_into(obj, 0, 0, tally_i, hash); } NORETURN(static VALUE first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params))); static VALUE first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params)) { struct MEMO *memo = MEMO_CAST(params); ENUM_WANT_SVALUE(); MEMO_V1_SET(memo, i); rb_iter_break(); UNREACHABLE_RETURN(Qnil); } static VALUE enum_take(VALUE obj, VALUE n); /* * call-seq: * first -> element or nil * first(n) -> array * * Returns the first element or elements. * * With no argument, returns the first element, or +nil+ if there is none: * * (1..4).first # => 1 * %w[a b c].first # => "a" * {foo: 1, bar: 1, baz: 2}.first # => [:foo, 1] * [].first # => nil * * With integer argument +n+, returns an array * containing the first +n+ elements that exist: * * (1..4).first(2) # => [1, 2] * %w[a b c d].first(3) # => ["a", "b", "c"] * %w[a b c d].first(50) # => ["a", "b", "c", "d"] * {foo: 1, bar: 1, baz: 2}.first(2) # => [[:foo, 1], [:bar, 1]] * [].first(2) # => [] * */ static VALUE enum_first(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; rb_check_arity(argc, 0, 1); if (argc > 0) { return enum_take(obj, argv[0]); } else { memo = MEMO_NEW(Qnil, 0, 0); rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo); return memo->v1; } } /* * call-seq: * sort -> array * sort {|a, b| ... } -> array * * Returns an array containing the sorted elements of +self+. * The ordering of equal elements is indeterminate and may be unstable. * * With no block given, the sort compares * using the elements' own method <=>: * * %w[b c a d].sort # => ["a", "b", "c", "d"] * {foo: 0, bar: 1, baz: 2}.sort # => [[:bar, 1], [:baz, 2], [:foo, 0]] * * With a block given, comparisons in the block determine the ordering. * The block is called with two elements +a+ and +b+, and must return: * * - A negative integer if a < b. * - Zero if a == b. * - A positive integer if a > b. * * Examples: * * a = %w[b c a d] * a.sort {|a, b| b <=> a } # => ["d", "c", "b", "a"] * h = {foo: 0, bar: 1, baz: 2} * h.sort {|a, b| b <=> a } # => [[:foo, 0], [:baz, 2], [:bar, 1]] * * See also #sort_by. It implements a Schwartzian transform * which is useful when key computation or comparison is expensive. */ static VALUE enum_sort(VALUE obj) { return rb_ary_sort_bang(enum_to_a(0, 0, obj)); } #define SORT_BY_BUFSIZE 16 #define SORT_BY_UNIFORMED(num, flo, fix) (((num&1)<<2)|((flo&1)<<1)|fix) struct sort_by_data { const VALUE ary; const VALUE buf; uint8_t n; uint8_t primitive_uniformed; }; static VALUE sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data)) { struct sort_by_data *data = (struct sort_by_data *)&MEMO_CAST(_data)->v1; VALUE ary = data->ary; VALUE v; ENUM_WANT_SVALUE(); v = enum_yield(argc, i); if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } if (data->primitive_uniformed) { data->primitive_uniformed &= SORT_BY_UNIFORMED((FIXNUM_P(v)) || (RB_FLOAT_TYPE_P(v)), RB_FLOAT_TYPE_P(v), FIXNUM_P(v)); } RARRAY_ASET(data->buf, data->n*2, v); RARRAY_ASET(data->buf, data->n*2+1, i); data->n++; if (data->n == SORT_BY_BUFSIZE) { rb_ary_concat(ary, data->buf); data->n = 0; } return Qnil; } static int sort_by_cmp(const void *ap, const void *bp, void *data) { VALUE a; VALUE b; VALUE ary = (VALUE)data; if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } a = *(VALUE *)ap; b = *(VALUE *)bp; return OPTIMIZED_CMP(a, b); } /* This is parts of uniform sort */ #define uless rb_uniform_is_less #define UNIFORM_SWAP(a,b)\ do{struct rb_uniform_sort_data tmp = a; a = b; b = tmp;} while(0) struct rb_uniform_sort_data { VALUE v; VALUE i; }; static inline bool rb_uniform_is_less(VALUE a, VALUE b) { if (FIXNUM_P(a) && FIXNUM_P(b)) { return (SIGNED_VALUE)a < (SIGNED_VALUE)b; } else if (FIXNUM_P(a)) { RUBY_ASSERT(RB_FLOAT_TYPE_P(b)); return rb_float_cmp(b, a) > 0; } else { RUBY_ASSERT(RB_FLOAT_TYPE_P(a)); return rb_float_cmp(a, b) < 0; } } static inline bool rb_uniform_is_larger(VALUE a, VALUE b) { if (FIXNUM_P(a) && FIXNUM_P(b)) { return (SIGNED_VALUE)a > (SIGNED_VALUE)b; } else if (FIXNUM_P(a)) { RUBY_ASSERT(RB_FLOAT_TYPE_P(b)); return rb_float_cmp(b, a) < 0; } else { RUBY_ASSERT(RB_FLOAT_TYPE_P(a)); return rb_float_cmp(a, b) > 0; } } #define med3_val(a,b,c) (uless(a,b)?(uless(b,c)?b:uless(c,a)?a:c):(uless(c,b)?b:uless(a,c)?a:c)) static void rb_uniform_insertionsort_2(struct rb_uniform_sort_data* ptr_begin, struct rb_uniform_sort_data* ptr_end) { if ((ptr_end - ptr_begin) < 2) return; struct rb_uniform_sort_data tmp, *j, *k, *index = ptr_begin+1; for (; index < ptr_end; index++) { tmp = *index; j = k = index; if (uless(tmp.v, ptr_begin->v)) { while (ptr_begin < j) { *j = *(--k); j = k; } } else { while (uless(tmp.v, (--k)->v)) { *j = *k; j = k; } } *j = tmp; } } static inline void rb_uniform_heap_down_2(struct rb_uniform_sort_data* ptr_begin, size_t offset, size_t len) { size_t c; struct rb_uniform_sort_data tmp = ptr_begin[offset]; while ((c = (offset<<1)+1) <= len) { if (c < len && uless(ptr_begin[c].v, ptr_begin[c+1].v)) { c++; } if (!uless(tmp.v, ptr_begin[c].v)) break; ptr_begin[offset] = ptr_begin[c]; offset = c; } ptr_begin[offset] = tmp; } static void rb_uniform_heapsort_2(struct rb_uniform_sort_data* ptr_begin, struct rb_uniform_sort_data* ptr_end) { size_t n = ptr_end - ptr_begin; if (n < 2) return; for (size_t offset = n>>1; offset > 0;) { rb_uniform_heap_down_2(ptr_begin, --offset, n-1); } for (size_t offset = n-1; offset > 0;) { UNIFORM_SWAP(*ptr_begin, ptr_begin[offset]); rb_uniform_heap_down_2(ptr_begin, 0, --offset); } } static void rb_uniform_quicksort_intro_2(struct rb_uniform_sort_data* ptr_begin, struct rb_uniform_sort_data* ptr_end, size_t d) { if (ptr_end - ptr_begin <= 16) { rb_uniform_insertionsort_2(ptr_begin, ptr_end); return; } if (d == 0) { rb_uniform_heapsort_2(ptr_begin, ptr_end); return; } VALUE x = med3_val(ptr_begin->v, ptr_begin[(ptr_end - ptr_begin)>>1].v, ptr_end[-1].v); struct rb_uniform_sort_data *i = ptr_begin; struct rb_uniform_sort_data *j = ptr_end-1; do { while (uless(i->v, x)) i++; while (uless(x, j->v)) j--; if (i <= j) { UNIFORM_SWAP(*i, *j); i++; j--; } } while (i <= j); j++; if (ptr_end - j > 1) rb_uniform_quicksort_intro_2(j, ptr_end, d-1); if (i - ptr_begin > 1) rb_uniform_quicksort_intro_2(ptr_begin, i, d-1); } /** * Direct primitive data compare sort. Implement with intro sort. * @param[in] ptr_begin The begin address of target rb_ary's raw pointer. * @param[in] ptr_end The end address of target rb_ary's raw pointer. **/ static void rb_uniform_intro_sort_2(struct rb_uniform_sort_data* ptr_begin, struct rb_uniform_sort_data* ptr_end) { size_t n = ptr_end - ptr_begin; size_t d = CHAR_BIT * sizeof(n) - nlz_intptr(n) - 1; bool sorted_flag = true; for (struct rb_uniform_sort_data* ptr = ptr_begin+1; ptr < ptr_end; ptr++) { if (rb_uniform_is_larger((ptr-1)->v, (ptr)->v)) { sorted_flag = false; break; } } if (sorted_flag) { return; } rb_uniform_quicksort_intro_2(ptr_begin, ptr_end, d<<1); } #undef uless /* * call-seq: * sort_by {|element| ... } -> array * sort_by -> enumerator * * With a block given, returns an array of elements of +self+, * sorted according to the value returned by the block for each element. * The ordering of equal elements is indeterminate and may be unstable. * * Examples: * * a = %w[xx xxx x xxxx] * a.sort_by {|s| s.size } # => ["x", "xx", "xxx", "xxxx"] * a.sort_by {|s| -s.size } # => ["xxxx", "xxx", "xx", "x"] * h = {foo: 2, bar: 1, baz: 0} * h.sort_by{|key, value| value } # => [[:baz, 0], [:bar, 1], [:foo, 2]] * h.sort_by{|key, value| key } # => [[:bar, 1], [:baz, 0], [:foo, 2]] * * With no block given, returns an Enumerator. * * The current implementation of #sort_by generates an array of * tuples containing the original collection element and the mapped * value. This makes #sort_by fairly expensive when the keysets are * simple. * * require 'benchmark' * * a = (1..100000).map { rand(100000) } * * Benchmark.bm(10) do |b| * b.report("Sort") { a.sort } * b.report("Sort by") { a.sort_by { |a| a } } * end * * produces: * * user system total real * Sort 0.180000 0.000000 0.180000 ( 0.175469) * Sort by 1.980000 0.040000 2.020000 ( 2.013586) * * However, consider the case where comparing the keys is a non-trivial * operation. The following code sorts some files on modification time * using the basic #sort method. * * files = Dir["*"] * sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This sort is inefficient: it generates two new File * objects during every comparison. A slightly better technique is to * use the Kernel#test method to generate the modification * times directly. * * files = Dir["*"] * sorted = files.sort { |a, b| * test(?M, a) <=> test(?M, b) * } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This still generates many unnecessary Time objects. A more * efficient technique is to cache the sort keys (modification times * in this case) before the sort. Perl users often call this approach * a Schwartzian transform, after Randal Schwartz. We construct a * temporary array, where each element is an array containing our * sort key along with the filename. We sort this array, and then * extract the filename from the result. * * sorted = Dir["*"].collect { |f| * [test(?M, f), f] * }.sort.collect { |f| f[1] } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This is exactly what #sort_by does internally. * * sorted = Dir["*"].sort_by { |f| test(?M, f) } * sorted #=> ["mon", "tues", "wed", "thurs"] * * To produce the reverse of a specific order, the following can be used: * * ary.sort_by { ... }.reverse! */ static VALUE enum_sort_by(VALUE obj) { VALUE ary, buf; struct MEMO *memo; long i; struct sort_by_data *data; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) { ary = rb_ary_new2(RARRAY_LEN(obj)*2); } else { ary = rb_ary_new(); } RBASIC_CLEAR_CLASS(ary); buf = rb_ary_hidden_new(SORT_BY_BUFSIZE*2); rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil); memo = MEMO_NEW(0, 0, 0); data = (struct sort_by_data *)&memo->v1; RB_OBJ_WRITE(memo, &data->ary, ary); RB_OBJ_WRITE(memo, &data->buf, buf); data->n = 0; data->primitive_uniformed = SORT_BY_UNIFORMED((CMP_OPTIMIZABLE(FLOAT) && CMP_OPTIMIZABLE(INTEGER)), CMP_OPTIMIZABLE(FLOAT), CMP_OPTIMIZABLE(INTEGER)); rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo); ary = data->ary; buf = data->buf; if (data->n) { rb_ary_resize(buf, data->n*2); rb_ary_concat(ary, buf); } if (RARRAY_LEN(ary) > 2) { if (data->primitive_uniformed) { RARRAY_PTR_USE(ary, ptr, rb_uniform_intro_sort_2((struct rb_uniform_sort_data*)ptr, (struct rb_uniform_sort_data*)(ptr + RARRAY_LEN(ary)))); } else { RARRAY_PTR_USE(ary, ptr, ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE), sort_by_cmp, (void *)ary)); } } if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } for (i=1; iv2, id_eqq, 1, &i), MEMO_CAST(memo)); \ } \ \ static VALUE \ enum_##name##_func(VALUE result, struct MEMO *memo) #define WARN_UNUSED_BLOCK(argc) do { \ if ((argc) > 0 && rb_block_given_p()) { \ rb_warn("given block not used"); \ } \ } while (0) DEFINE_ENUMFUNCS(all) { if (!RTEST(result)) { MEMO_V1_SET(memo, Qfalse); rb_iter_break(); } return Qnil; } /* * call-seq: * all? -> true or false * all?(pattern) -> true or false * all? {|element| ... } -> true or false * * Returns whether every element meets a given criterion. * * If +self+ has no element, returns +true+ and argument or block * are not used. * * With no argument and no block, * returns whether every element is truthy: * * (1..4).all? # => true * %w[a b c d].all? # => true * [1, 2, nil].all? # => false * ['a','b', false].all? # => false * [].all? # => true * * With argument +pattern+ and no block, * returns whether for each element +element+, * pattern === element: * * (1..4).all?(Integer) # => true * (1..4).all?(Numeric) # => true * (1..4).all?(Float) # => false * %w[bar baz bat bam].all?(/ba/) # => true * %w[bar baz bat bam].all?(/bar/) # => false * %w[bar baz bat bam].all?('ba') # => false * {foo: 0, bar: 1, baz: 2}.all?(Array) # => true * {foo: 0, bar: 1, baz: 2}.all?(Hash) # => false * [].all?(Integer) # => true * * With a block given, returns whether the block returns a truthy value * for every element: * * (1..4).all? {|element| element < 5 } # => true * (1..4).all? {|element| element < 4 } # => false * {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 3 } # => true * {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 2 } # => false * * Related: #any?, #none? #one?. * */ static VALUE enum_all(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qtrue); WARN_UNUSED_BLOCK(argc); rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo); return memo->v1; } DEFINE_ENUMFUNCS(any) { if (RTEST(result)) { MEMO_V1_SET(memo, Qtrue); rb_iter_break(); } return Qnil; } /* * call-seq: * any? -> true or false * any?(pattern) -> true or false * any? {|element| ... } -> true or false * * Returns whether any element meets a given criterion. * * If +self+ has no element, returns +false+ and argument or block * are not used. * * With no argument and no block, * returns whether any element is truthy: * * (1..4).any? # => true * %w[a b c d].any? # => true * [1, false, nil].any? # => true * [].any? # => false * * With argument +pattern+ and no block, * returns whether for any element +element+, * pattern === element: * * [nil, false, 0].any?(Integer) # => true * [nil, false, 0].any?(Numeric) # => true * [nil, false, 0].any?(Float) # => false * %w[bar baz bat bam].any?(/m/) # => true * %w[bar baz bat bam].any?(/foo/) # => false * %w[bar baz bat bam].any?('ba') # => false * {foo: 0, bar: 1, baz: 2}.any?(Array) # => true * {foo: 0, bar: 1, baz: 2}.any?(Hash) # => false * [].any?(Integer) # => false * * With a block given, returns whether the block returns a truthy value * for any element: * * (1..4).any? {|element| element < 2 } # => true * (1..4).any? {|element| element < 1 } # => false * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 1 } # => true * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 0 } # => false * * Related: #all?, #none?, #one?. */ static VALUE enum_any(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qfalse); WARN_UNUSED_BLOCK(argc); rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo); return memo->v1; } DEFINE_ENUMFUNCS(one) { if (RTEST(result)) { if (UNDEF_P(memo->v1)) { MEMO_V1_SET(memo, Qtrue); } else if (memo->v1 == Qtrue) { MEMO_V1_SET(memo, Qfalse); rb_iter_break(); } } return Qnil; } struct nmin_data { long n; long bufmax; long curlen; VALUE buf; VALUE limit; int (*cmpfunc)(const void *, const void *, void *); int rev: 1; /* max if 1 */ int by: 1; /* min_by if 1 */ }; static VALUE cmpint_reenter_check(struct nmin_data *data, VALUE val) { if (RBASIC(data->buf)->klass) { rb_raise(rb_eRuntimeError, "%s%s reentered", data->rev ? "max" : "min", data->by ? "_by" : ""); } return val; } static int nmin_cmp(const void *ap, const void *bp, void *_data) { struct nmin_data *data = (struct nmin_data *)_data; VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; #define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b) return OPTIMIZED_CMP(a, b); #undef rb_cmpint } static int nmin_block_cmp(const void *ap, const void *bp, void *_data) { struct nmin_data *data = (struct nmin_data *)_data; VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; VALUE cmp = rb_yield_values(2, a, b); cmpint_reenter_check(data, cmp); return rb_cmpint(cmp, a, b); } static void nmin_filter(struct nmin_data *data) { long n; VALUE *beg; int eltsize; long numelts; long left, right; long store_index; long i, j; if (data->curlen <= data->n) return; n = data->n; beg = RARRAY_PTR(data->buf); eltsize = data->by ? 2 : 1; numelts = data->curlen; left = 0; right = numelts-1; #define GETPTR(i) (beg+(i)*eltsize) #define SWAP(i, j) do { \ VALUE tmp[2]; \ memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \ memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \ memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \ } while (0) while (1) { long pivot_index = left + (right-left)/2; long num_pivots = 1; SWAP(pivot_index, right); pivot_index = right; store_index = left; i = left; while (i <= right-num_pivots) { int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data); if (data->rev) c = -c; if (c == 0) { SWAP(i, right-num_pivots); num_pivots++; continue; } if (c < 0) { SWAP(i, store_index); store_index++; } i++; } j = store_index; for (i = right; right-num_pivots < i; i--) { if (i <= j) break; SWAP(j, i); j++; } if (store_index <= n && n <= store_index+num_pivots) break; if (n < store_index) { right = store_index-1; } else { left = store_index+num_pivots; } } #undef GETPTR #undef SWAP data->limit = RARRAY_AREF(data->buf, store_index*eltsize); /* the last pivot */ data->curlen = data->n; rb_ary_resize(data->buf, data->n * eltsize); } static VALUE nmin_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data)) { struct nmin_data *data = (struct nmin_data *)_data; VALUE cmpv; ENUM_WANT_SVALUE(); if (data->by) cmpv = enum_yield(argc, i); else cmpv = i; if (!UNDEF_P(data->limit)) { int c = data->cmpfunc(&cmpv, &data->limit, data); if (data->rev) c = -c; if (c >= 0) return Qnil; } if (data->by) rb_ary_push(data->buf, cmpv); rb_ary_push(data->buf, i); data->curlen++; if (data->curlen == data->bufmax) { nmin_filter(data); } return Qnil; } VALUE rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary) { VALUE result; struct nmin_data data; data.n = NUM2LONG(num); if (data.n < 0) rb_raise(rb_eArgError, "negative size (%ld)", data.n); if (data.n == 0) return rb_ary_new2(0); if (LONG_MAX/4/(by ? 2 : 1) < data.n) rb_raise(rb_eArgError, "too big size"); data.bufmax = data.n * 4; data.curlen = 0; data.buf = rb_ary_hidden_new(data.bufmax * (by ? 2 : 1)); data.limit = Qundef; data.cmpfunc = by ? nmin_cmp : rb_block_given_p() ? nmin_block_cmp : nmin_cmp; data.rev = rev; data.by = by; if (ary) { long i; for (i = 0; i < RARRAY_LEN(obj); i++) { VALUE args[1]; args[0] = RARRAY_AREF(obj, i); nmin_i(obj, (VALUE)&data, 1, args, Qundef); } } else { rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data); } nmin_filter(&data); result = data.buf; if (by) { long i; RARRAY_PTR_USE(result, ptr, { ruby_qsort(ptr, RARRAY_LEN(result)/2, sizeof(VALUE)*2, data.cmpfunc, (void *)&data); for (i=1; i true or false * one?(pattern) -> true or false * one? {|element| ... } -> true or false * * Returns whether exactly one element meets a given criterion. * * With no argument and no block, * returns whether exactly one element is truthy: * * (1..1).one? # => true * [1, nil, false].one? # => true * (1..4).one? # => false * {foo: 0}.one? # => true * {foo: 0, bar: 1}.one? # => false * [].one? # => false * * With argument +pattern+ and no block, * returns whether for exactly one element +element+, * pattern === element: * * [nil, false, 0].one?(Integer) # => true * [nil, false, 0].one?(Numeric) # => true * [nil, false, 0].one?(Float) # => false * %w[bar baz bat bam].one?(/m/) # => true * %w[bar baz bat bam].one?(/foo/) # => false * %w[bar baz bat bam].one?('ba') # => false * {foo: 0, bar: 1, baz: 2}.one?(Array) # => false * {foo: 0}.one?(Array) # => true * [].one?(Integer) # => false * * With a block given, returns whether the block returns a truthy value * for exactly one element: * * (1..4).one? {|element| element < 2 } # => true * (1..4).one? {|element| element < 1 } # => false * {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 1 } # => true * {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 2 } # => false * * Related: #none?, #all?, #any?. * */ static VALUE enum_one(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qundef); VALUE result; WARN_UNUSED_BLOCK(argc); rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo); result = memo->v1; if (UNDEF_P(result)) return Qfalse; return result; } DEFINE_ENUMFUNCS(none) { if (RTEST(result)) { MEMO_V1_SET(memo, Qfalse); rb_iter_break(); } return Qnil; } /* * call-seq: * none? -> true or false * none?(pattern) -> true or false * none? {|element| ... } -> true or false * * Returns whether no element meets a given criterion. * * With no argument and no block, * returns whether no element is truthy: * * (1..4).none? # => false * [nil, false].none? # => true * {foo: 0}.none? # => false * {foo: 0, bar: 1}.none? # => false * [].none? # => true * * With argument +pattern+ and no block, * returns whether for no element +element+, * pattern === element: * * [nil, false, 1.1].none?(Integer) # => true * %w[bar baz bat bam].none?(/m/) # => false * %w[bar baz bat bam].none?(/foo/) # => true * %w[bar baz bat bam].none?('ba') # => true * {foo: 0, bar: 1, baz: 2}.none?(Hash) # => true * {foo: 0}.none?(Array) # => false * [].none?(Integer) # => true * * With a block given, returns whether the block returns a truthy value * for no element: * * (1..4).none? {|element| element < 1 } # => true * (1..4).none? {|element| element < 2 } # => false * {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 0 } # => true * {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 1 } # => false * * Related: #one?, #all?, #any?. * */ static VALUE enum_none(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qtrue); WARN_UNUSED_BLOCK(argc); rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo); return memo->v1; } struct min_t { VALUE min; }; static VALUE min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct min_t *memo = MEMO_FOR(struct min_t, args); ENUM_WANT_SVALUE(); if (UNDEF_P(memo->min)) { memo->min = i; } else { if (OPTIMIZED_CMP(i, memo->min) < 0) { memo->min = i; } } return Qnil; } static VALUE min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { VALUE cmp; struct min_t *memo = MEMO_FOR(struct min_t, args); ENUM_WANT_SVALUE(); if (UNDEF_P(memo->min)) { memo->min = i; } else { cmp = rb_yield_values(2, i, memo->min); if (rb_cmpint(cmp, i, memo->min) < 0) { memo->min = i; } } return Qnil; } /* * call-seq: * min -> element * min(n) -> array * min {|a, b| ... } -> element * min(n) {|a, b| ... } -> array * * Returns the element with the minimum element according to a given criterion. * The ordering of equal elements is indeterminate and may be unstable. * * With no argument and no block, returns the minimum element, * using the elements' own method <=> for comparison: * * (1..4).min # => 1 * (-4..-1).min # => -4 * %w[d c b a].min # => "a" * {foo: 0, bar: 1, baz: 2}.min # => [:bar, 1] * [].min # => nil * * With positive integer argument +n+ given, and no block, * returns an array containing the first +n+ minimum elements that exist: * * (1..4).min(2) # => [1, 2] * (-4..-1).min(2) # => [-4, -3] * %w[d c b a].min(2) # => ["a", "b"] * {foo: 0, bar: 1, baz: 2}.min(2) # => [[:bar, 1], [:baz, 2]] * [].min(2) # => [] * * With a block given, the block determines the minimum elements. * The block is called with two elements +a+ and +b+, and must return: * * - A negative integer if a < b. * - Zero if a == b. * - A positive integer if a > b. * * With a block given and no argument, * returns the minimum element as determined by the block: * * %w[xxx x xxxx xx].min {|a, b| a.size <=> b.size } # => "x" * h = {foo: 0, bar: 1, baz: 2} * h.min {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:foo, 0] * [].min {|a, b| a <=> b } # => nil * * With a block given and positive integer argument +n+ given, * returns an array containing the first +n+ minimum elements that exist, * as determined by the block. * * %w[xxx x xxxx xx].min(2) {|a, b| a.size <=> b.size } # => ["x", "xx"] * h = {foo: 0, bar: 1, baz: 2} * h.min(2) {|pair1, pair2| pair1[1] <=> pair2[1] } * # => [[:foo, 0], [:bar, 1]] * [].min(2) {|a, b| a <=> b } # => [] * * Related: #min_by, #minmax, #max. * */ static VALUE enum_min(int argc, VALUE *argv, VALUE obj) { VALUE memo; struct min_t *m = NEW_MEMO_FOR(struct min_t, memo); VALUE result; VALUE num; if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0])) return rb_nmin_run(obj, num, 0, 0, 0); m->min = Qundef; if (rb_block_given_p()) { rb_block_call(obj, id_each, 0, 0, min_ii, memo); } else { rb_block_call(obj, id_each, 0, 0, min_i, memo); } result = m->min; if (UNDEF_P(result)) return Qnil; return result; } struct max_t { VALUE max; }; static VALUE max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct max_t *memo = MEMO_FOR(struct max_t, args); ENUM_WANT_SVALUE(); if (UNDEF_P(memo->max)) { memo->max = i; } else { if (OPTIMIZED_CMP(i, memo->max) > 0) { memo->max = i; } } return Qnil; } static VALUE max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct max_t *memo = MEMO_FOR(struct max_t, args); VALUE cmp; ENUM_WANT_SVALUE(); if (UNDEF_P(memo->max)) { memo->max = i; } else { cmp = rb_yield_values(2, i, memo->max); if (rb_cmpint(cmp, i, memo->max) > 0) { memo->max = i; } } return Qnil; } /* * call-seq: * max -> element * max(n) -> array * max {|a, b| ... } -> element * max(n) {|a, b| ... } -> array * * Returns the element with the maximum element according to a given criterion. * The ordering of equal elements is indeterminate and may be unstable. * * With no argument and no block, returns the maximum element, * using the elements' own method <=> for comparison: * * (1..4).max # => 4 * (-4..-1).max # => -1 * %w[d c b a].max # => "d" * {foo: 0, bar: 1, baz: 2}.max # => [:foo, 0] * [].max # => nil * * With positive integer argument +n+ given, and no block, * returns an array containing the first +n+ maximum elements that exist: * * (1..4).max(2) # => [4, 3] * (-4..-1).max(2) # => [-1, -2] * %w[d c b a].max(2) # => ["d", "c"] * {foo: 0, bar: 1, baz: 2}.max(2) # => [[:foo, 0], [:baz, 2]] * [].max(2) # => [] * * With a block given, the block determines the maximum elements. * The block is called with two elements +a+ and +b+, and must return: * * - A negative integer if a < b. * - Zero if a == b. * - A positive integer if a > b. * * With a block given and no argument, * returns the maximum element as determined by the block: * * %w[xxx x xxxx xx].max {|a, b| a.size <=> b.size } # => "xxxx" * h = {foo: 0, bar: 1, baz: 2} * h.max {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:baz, 2] * [].max {|a, b| a <=> b } # => nil * * With a block given and positive integer argument +n+ given, * returns an array containing the first +n+ maximum elements that exist, * as determined by the block. * * %w[xxx x xxxx xx].max(2) {|a, b| a.size <=> b.size } # => ["xxxx", "xxx"] * h = {foo: 0, bar: 1, baz: 2} * h.max(2) {|pair1, pair2| pair1[1] <=> pair2[1] } * # => [[:baz, 2], [:bar, 1]] * [].max(2) {|a, b| a <=> b } # => [] * * Related: #min, #minmax, #max_by. * */ static VALUE enum_max(int argc, VALUE *argv, VALUE obj) { VALUE memo; struct max_t *m = NEW_MEMO_FOR(struct max_t, memo); VALUE result; VALUE num; if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0])) return rb_nmin_run(obj, num, 0, 1, 0); m->max = Qundef; if (rb_block_given_p()) { rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo); } else { rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo); } result = m->max; if (UNDEF_P(result)) return Qnil; return result; } struct minmax_t { VALUE min; VALUE max; VALUE last; }; static void minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo) { int n; if (UNDEF_P(memo->min)) { memo->min = i; memo->max = j; } else { n = OPTIMIZED_CMP(i, memo->min); if (n < 0) { memo->min = i; } n = OPTIMIZED_CMP(j, memo->max); if (n > 0) { memo->max = j; } } } static VALUE minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo); int n; VALUE j; ENUM_WANT_SVALUE(); if (UNDEF_P(memo->last)) { memo->last = i; return Qnil; } j = memo->last; memo->last = Qundef; n = OPTIMIZED_CMP(j, i); if (n == 0) i = j; else if (n < 0) { VALUE tmp; tmp = i; i = j; j = tmp; } minmax_i_update(i, j, memo); return Qnil; } static void minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo) { int n; if (UNDEF_P(memo->min)) { memo->min = i; memo->max = j; } else { n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min); if (n < 0) { memo->min = i; } n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max); if (n > 0) { memo->max = j; } } } static VALUE minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo); int n; VALUE j; ENUM_WANT_SVALUE(); if (UNDEF_P(memo->last)) { memo->last = i; return Qnil; } j = memo->last; memo->last = Qundef; n = rb_cmpint(rb_yield_values(2, j, i), j, i); if (n == 0) i = j; else if (n < 0) { VALUE tmp; tmp = i; i = j; j = tmp; } minmax_ii_update(i, j, memo); return Qnil; } /* * call-seq: * minmax -> [minimum, maximum] * minmax {|a, b| ... } -> [minimum, maximum] * * Returns a 2-element array containing the minimum and maximum elements * according to a given criterion. * The ordering of equal elements is indeterminate and may be unstable. * * With no argument and no block, returns the minimum and maximum elements, * using the elements' own method <=> for comparison: * * (1..4).minmax # => [1, 4] * (-4..-1).minmax # => [-4, -1] * %w[d c b a].minmax # => ["a", "d"] * {foo: 0, bar: 1, baz: 2}.minmax # => [[:bar, 1], [:foo, 0]] * [].minmax # => [nil, nil] * * With a block given, returns the minimum and maximum elements * as determined by the block: * * %w[xxx x xxxx xx].minmax {|a, b| a.size <=> b.size } # => ["x", "xxxx"] * h = {foo: 0, bar: 1, baz: 2} * h.minmax {|pair1, pair2| pair1[1] <=> pair2[1] } * # => [[:foo, 0], [:baz, 2]] * [].minmax {|a, b| a <=> b } # => [nil, nil] * * Related: #min, #max, #minmax_by. * */ static VALUE enum_minmax(VALUE obj) { VALUE memo; struct minmax_t *m = NEW_MEMO_FOR(struct minmax_t, memo); m->min = Qundef; m->last = Qundef; if (rb_block_given_p()) { rb_block_call(obj, id_each, 0, 0, minmax_ii, memo); if (!UNDEF_P(m->last)) minmax_ii_update(m->last, m->last, m); } else { rb_block_call(obj, id_each, 0, 0, minmax_i, memo); if (!UNDEF_P(m->last)) minmax_i_update(m->last, m->last, m); } if (!UNDEF_P(m->min)) { return rb_assoc_new(m->min, m->max); } return rb_assoc_new(Qnil, Qnil); } static VALUE min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); VALUE v; ENUM_WANT_SVALUE(); v = enum_yield(argc, i); if (UNDEF_P(memo->v1)) { MEMO_V1_SET(memo, v); MEMO_V2_SET(memo, i); } else if (OPTIMIZED_CMP(v, memo->v1) < 0) { MEMO_V1_SET(memo, v); MEMO_V2_SET(memo, i); } return Qnil; } /* * call-seq: * min_by {|element| ... } -> element * min_by(n) {|element| ... } -> array * min_by -> enumerator * min_by(n) -> enumerator * * Returns the elements for which the block returns the minimum values. * * With a block given and no argument, * returns the element for which the block returns the minimum value: * * (1..4).min_by {|element| -element } # => 4 * %w[a b c d].min_by {|element| -element.ord } # => "d" * {foo: 0, bar: 1, baz: 2}.min_by {|key, value| -value } # => [:baz, 2] * [].min_by {|element| -element } # => nil * * With a block given and positive integer argument +n+ given, * returns an array containing the +n+ elements * for which the block returns minimum values: * * (1..4).min_by(2) {|element| -element } * # => [4, 3] * %w[a b c d].min_by(2) {|element| -element.ord } * # => ["d", "c"] * {foo: 0, bar: 1, baz: 2}.min_by(2) {|key, value| -value } * # => [[:baz, 2], [:bar, 1]] * [].min_by(2) {|element| -element } * # => [] * * Returns an Enumerator if no block is given. * * Related: #min, #minmax, #max_by. * */ static VALUE enum_min_by(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; VALUE num; rb_check_arity(argc, 0, 1); RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); if (argc && !NIL_P(num = argv[0])) return rb_nmin_run(obj, num, 1, 0, 0); memo = MEMO_NEW(Qundef, Qnil, 0); rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo); return memo->v2; } static VALUE max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); VALUE v; ENUM_WANT_SVALUE(); v = enum_yield(argc, i); if (UNDEF_P(memo->v1)) { MEMO_V1_SET(memo, v); MEMO_V2_SET(memo, i); } else if (OPTIMIZED_CMP(v, memo->v1) > 0) { MEMO_V1_SET(memo, v); MEMO_V2_SET(memo, i); } return Qnil; } /* * call-seq: * max_by {|element| ... } -> element * max_by(n) {|element| ... } -> array * max_by -> enumerator * max_by(n) -> enumerator * * Returns the elements for which the block returns the maximum values. * * With a block given and no argument, * returns the element for which the block returns the maximum value: * * (1..4).max_by {|element| -element } # => 1 * %w[a b c d].max_by {|element| -element.ord } # => "a" * {foo: 0, bar: 1, baz: 2}.max_by {|key, value| -value } # => [:foo, 0] * [].max_by {|element| -element } # => nil * * With a block given and positive integer argument +n+ given, * returns an array containing the +n+ elements * for which the block returns maximum values: * * (1..4).max_by(2) {|element| -element } * # => [1, 2] * %w[a b c d].max_by(2) {|element| -element.ord } * # => ["a", "b"] * {foo: 0, bar: 1, baz: 2}.max_by(2) {|key, value| -value } * # => [[:foo, 0], [:bar, 1]] * [].max_by(2) {|element| -element } * # => [] * * Returns an Enumerator if no block is given. * * Related: #max, #minmax, #min_by. * */ static VALUE enum_max_by(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; VALUE num; rb_check_arity(argc, 0, 1); RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); if (argc && !NIL_P(num = argv[0])) return rb_nmin_run(obj, num, 1, 1, 0); memo = MEMO_NEW(Qundef, Qnil, 0); rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo); return memo->v2; } struct minmax_by_t { VALUE min_bv; VALUE max_bv; VALUE min; VALUE max; VALUE last_bv; VALUE last; }; static void minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo) { if (UNDEF_P(memo->min_bv)) { memo->min_bv = v1; memo->max_bv = v2; memo->min = i1; memo->max = i2; } else { if (OPTIMIZED_CMP(v1, memo->min_bv) < 0) { memo->min_bv = v1; memo->min = i1; } if (OPTIMIZED_CMP(v2, memo->max_bv) > 0) { memo->max_bv = v2; memo->max = i2; } } } static VALUE minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo); VALUE vi, vj, j; int n; ENUM_WANT_SVALUE(); vi = enum_yield(argc, i); if (UNDEF_P(memo->last_bv)) { memo->last_bv = vi; memo->last = i; return Qnil; } vj = memo->last_bv; j = memo->last; memo->last_bv = Qundef; n = OPTIMIZED_CMP(vj, vi); if (n == 0) { i = j; vi = vj; } else if (n < 0) { VALUE tmp; tmp = i; i = j; j = tmp; tmp = vi; vi = vj; vj = tmp; } minmax_by_i_update(vi, vj, i, j, memo); return Qnil; } /* * call-seq: * minmax_by {|element| ... } -> [minimum, maximum] * minmax_by -> enumerator * * Returns a 2-element array containing the elements * for which the block returns minimum and maximum values: * * (1..4).minmax_by {|element| -element } * # => [4, 1] * %w[a b c d].minmax_by {|element| -element.ord } * # => ["d", "a"] * {foo: 0, bar: 1, baz: 2}.minmax_by {|key, value| -value } * # => [[:baz, 2], [:foo, 0]] * [].minmax_by {|element| -element } * # => [nil, nil] * * Returns an Enumerator if no block is given. * * Related: #max_by, #minmax, #min_by. * */ static VALUE enum_minmax_by(VALUE obj) { VALUE memo; struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo); RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); m->min_bv = Qundef; m->max_bv = Qundef; m->min = Qnil; m->max = Qnil; m->last_bv = Qundef; m->last = Qundef; rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo); if (!UNDEF_P(m->last_bv)) minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m); m = MEMO_FOR(struct minmax_by_t, memo); return rb_assoc_new(m->min, m->max); } static VALUE member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args)) { struct MEMO *memo = MEMO_CAST(args); if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) { MEMO_V2_SET(memo, Qtrue); rb_iter_break(); } return Qnil; } /* * call-seq: * include?(object) -> true or false * * Returns whether for any element object == element: * * (1..4).include?(2) # => true * (1..4).include?(5) # => false * (1..4).include?('2') # => false * %w[a b c d].include?('b') # => true * %w[a b c d].include?('2') # => false * {foo: 0, bar: 1, baz: 2}.include?(:foo) # => true * {foo: 0, bar: 1, baz: 2}.include?('foo') # => false * {foo: 0, bar: 1, baz: 2}.include?(0) # => false * */ static VALUE enum_member(VALUE obj, VALUE val) { struct MEMO *memo = MEMO_NEW(val, Qfalse, 0); rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo); return memo->v2; } static VALUE each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) { struct MEMO *m = MEMO_CAST(memo); VALUE n = imemo_count_value(m); imemo_count_up(m); return rb_yield_values(2, rb_enum_values_pack(argc, argv), n); } /* * call-seq: * each_with_index(*args) {|element, i| ..... } -> self * each_with_index(*args) -> enumerator * * With a block given, calls the block with each element and its index; * returns +self+: * * h = {} * (1..4).each_with_index {|element, i| h[element] = i } # => 1..4 * h # => {1=>0, 2=>1, 3=>2, 4=>3} * * h = {} * %w[a b c d].each_with_index {|element, i| h[element] = i } * # => ["a", "b", "c", "d"] * h # => {"a"=>0, "b"=>1, "c"=>2, "d"=>3} * * a = [] * h = {foo: 0, bar: 1, baz: 2} * h.each_with_index {|element, i| a.push([i, element]) } * # => {:foo=>0, :bar=>1, :baz=>2} * a # => [[0, [:foo, 0]], [1, [:bar, 1]], [2, [:baz, 2]]] * * With no block given, returns an Enumerator. * */ static VALUE enum_each_with_index(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); memo = MEMO_NEW(0, 0, 0); rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo); return obj; } /* * call-seq: * reverse_each(*args) {|element| ... } -> self * reverse_each(*args) -> enumerator * * With a block given, calls the block with each element, * but in reverse order; returns +self+: * * a = [] * (1..4).reverse_each {|element| a.push(-element) } # => 1..4 * a # => [-4, -3, -2, -1] * * a = [] * %w[a b c d].reverse_each {|element| a.push(element) } * # => ["a", "b", "c", "d"] * a # => ["d", "c", "b", "a"] * * a = [] * h.reverse_each {|element| a.push(element) } * # => {:foo=>0, :bar=>1, :baz=>2} * a # => [[:baz, 2], [:bar, 1], [:foo, 0]] * * With no block given, returns an Enumerator. * */ static VALUE enum_reverse_each(int argc, VALUE *argv, VALUE obj) { VALUE ary; long len; RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); ary = enum_to_a(argc, argv, obj); len = RARRAY_LEN(ary); while (len--) { long nlen; rb_yield(RARRAY_AREF(ary, len)); nlen = RARRAY_LEN(ary); if (nlen < len) { len = nlen; } } return obj; } static VALUE each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) { ENUM_WANT_SVALUE(); enum_yield(argc, i); return Qnil; } /* * call-seq: * each_entry(*args) {|element| ... } -> self * each_entry(*args) -> enumerator * * Calls the given block with each element, * converting multiple values from yield to an array; returns +self+: * * a = [] * (1..4).each_entry {|element| a.push(element) } # => 1..4 * a # => [1, 2, 3, 4] * * a = [] * h = {foo: 0, bar: 1, baz:2} * h.each_entry {|element| a.push(element) } * # => {:foo=>0, :bar=>1, :baz=>2} * a # => [[:foo, 0], [:bar, 1], [:baz, 2]] * * class Foo * include Enumerable * def each * yield 1 * yield 1, 2 * yield * end * end * Foo.new.each_entry {|yielded| p yielded } * * Output: * * 1 * [1, 2] * nil * * With no block given, returns an Enumerator. * */ static VALUE enum_each_entry(int argc, VALUE *argv, VALUE obj) { RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); rb_block_call(obj, id_each, argc, argv, each_val_i, 0); return obj; } static VALUE add_int(VALUE x, long n) { const VALUE y = LONG2NUM(n); if (RB_INTEGER_TYPE_P(x)) return rb_int_plus(x, y); return rb_funcallv(x, '+', 1, &y); } static VALUE div_int(VALUE x, long n) { const VALUE y = LONG2NUM(n); if (RB_INTEGER_TYPE_P(x)) return rb_int_idiv(x, y); return rb_funcallv(x, id_div, 1, &y); } #define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0) static VALUE each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m)) { struct MEMO *memo = MEMO_CAST(m); VALUE ary = memo->v1; VALUE v = Qnil; long size = memo->u3.cnt; ENUM_WANT_SVALUE(); rb_ary_push(ary, i); if (RARRAY_LEN(ary) == size) { v = rb_yield(ary); if (memo->v2) { MEMO_V1_SET(memo, rb_ary_new2(size)); } else { rb_ary_clear(ary); } } return v; } static VALUE enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj) { VALUE n, size; long slice_size = NUM2LONG(RARRAY_AREF(args, 0)); ID infinite_p; CONST_ID(infinite_p, "infinite?"); if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size"); size = enum_size(obj, 0, 0); if (NIL_P(size)) return Qnil; if (RB_FLOAT_TYPE_P(size) && RTEST(rb_funcall(size, infinite_p, 0))) { return size; } n = add_int(size, slice_size-1); return div_int(n, slice_size); } /* * call-seq: * each_slice(n) { ... } -> self * each_slice(n) -> enumerator * * Calls the block with each successive disjoint +n+-tuple of elements; * returns +self+: * * a = [] * (1..10).each_slice(3) {|tuple| a.push(tuple) } * a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]] * * a = [] * h = {foo: 0, bar: 1, baz: 2, bat: 3, bam: 4} * h.each_slice(2) {|tuple| a.push(tuple) } * a # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]], [[:bam, 4]]] * * With no block given, returns an Enumerator. * */ static VALUE enum_each_slice(VALUE obj, VALUE n) { long size = NUM2LONG(n); VALUE ary; struct MEMO *memo; int arity; if (size <= 0) rb_raise(rb_eArgError, "invalid slice size"); RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size); size = limit_by_enum_size(obj, size); ary = rb_ary_new2(size); arity = rb_block_arity(); memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size); rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo); ary = memo->v1; if (RARRAY_LEN(ary) > 0) rb_yield(ary); return obj; } static VALUE each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); VALUE ary = memo->v1; VALUE v = Qnil; long size = memo->u3.cnt; ENUM_WANT_SVALUE(); if (RARRAY_LEN(ary) == size) { rb_ary_shift(ary); } rb_ary_push(ary, i); if (RARRAY_LEN(ary) == size) { if (memo->v2) { ary = rb_ary_dup(ary); } v = rb_yield(ary); } return v; } static VALUE enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj) { const VALUE zero = LONG2FIX(0); VALUE n, size; long cons_size = NUM2LONG(RARRAY_AREF(args, 0)); if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size"); size = enum_size(obj, 0, 0); if (NIL_P(size)) return Qnil; n = add_int(size, 1 - cons_size); return (OPTIMIZED_CMP(n, zero) == -1) ? zero : n; } /* * call-seq: * each_cons(n) { ... } -> self * each_cons(n) -> enumerator * * Calls the block with each successive overlapped +n+-tuple of elements; * returns +self+: * * a = [] * (1..5).each_cons(3) {|element| a.push(element) } * a # => [[1, 2, 3], [2, 3, 4], [3, 4, 5]] * * a = [] * h = {foo: 0, bar: 1, baz: 2, bam: 3} * h.each_cons(2) {|element| a.push(element) } * a # => [[[:foo, 0], [:bar, 1]], [[:bar, 1], [:baz, 2]], [[:baz, 2], [:bam, 3]]] * * With no block given, returns an Enumerator. * */ static VALUE enum_each_cons(VALUE obj, VALUE n) { long size = NUM2LONG(n); struct MEMO *memo; int arity; if (size <= 0) rb_raise(rb_eArgError, "invalid size"); RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size); arity = rb_block_arity(); if (enum_size_over_p(obj, size)) return obj; memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size); rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo); return obj; } static VALUE each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) { ENUM_WANT_SVALUE(); return rb_yield_values(2, i, memo); } /* * call-seq: * each_with_object(object) { |(*args), memo_object| ... } -> object * each_with_object(object) -> enumerator * * Calls the block once for each element, passing both the element * and the given object: * * (1..4).each_with_object([]) {|i, a| a.push(i**2) } * # => [1, 4, 9, 16] * * {foo: 0, bar: 1, baz: 2}.each_with_object({}) {|(k, v), h| h[v] = k } * # => {0=>:foo, 1=>:bar, 2=>:baz} * * With no block given, returns an Enumerator. * */ static VALUE enum_each_with_object(VALUE obj, VALUE memo) { RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size); rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo); return memo; } static VALUE zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval)) { struct MEMO *memo = (struct MEMO *)memoval; VALUE result = memo->v1; VALUE args = memo->v2; long n = memo->u3.cnt++; VALUE tmp; int i; tmp = rb_ary_new2(RARRAY_LEN(args) + 1); rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv)); for (i=0; iv1; VALUE args = memo->v2; VALUE tmp; int i; tmp = rb_ary_new2(RARRAY_LEN(args) + 1); rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv)); for (i=0; i array * zip(*other_enums) {|array| ... } -> nil * * With no block given, returns a new array +new_array+ of size self.size * whose elements are arrays. * Each nested array new_array[n] * is of size other_enums.size+1, and contains: * * - The +n+-th element of self. * - The +n+-th element of each of the +other_enums+. * * If all +other_enums+ and self are the same size, * all elements are included in the result, and there is no +nil+-filling: * * a = [:a0, :a1, :a2, :a3] * b = [:b0, :b1, :b2, :b3] * c = [:c0, :c1, :c2, :c3] * d = a.zip(b, c) * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]] * * f = {foo: 0, bar: 1, baz: 2} * g = {goo: 3, gar: 4, gaz: 5} * h = {hoo: 6, har: 7, haz: 8} * d = f.zip(g, h) * d # => [ * # [[:foo, 0], [:goo, 3], [:hoo, 6]], * # [[:bar, 1], [:gar, 4], [:har, 7]], * # [[:baz, 2], [:gaz, 5], [:haz, 8]] * # ] * * If any enumerable in other_enums is smaller than self, * fills to self.size with +nil+: * * a = [:a0, :a1, :a2, :a3] * b = [:b0, :b1, :b2] * c = [:c0, :c1] * d = a.zip(b, c) * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, nil], [:a3, nil, nil]] * * If any enumerable in other_enums is larger than self, * its trailing elements are ignored: * * a = [:a0, :a1, :a2, :a3] * b = [:b0, :b1, :b2, :b3, :b4] * c = [:c0, :c1, :c2, :c3, :c4, :c5] * d = a.zip(b, c) * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]] * * When a block is given, calls the block with each of the sub-arrays * (formed as above); returns nil: * * a = [:a0, :a1, :a2, :a3] * b = [:b0, :b1, :b2, :b3] * c = [:c0, :c1, :c2, :c3] * a.zip(b, c) {|sub_array| p sub_array} # => nil * * Output: * * [:a0, :b0, :c0] * [:a1, :b1, :c1] * [:a2, :b2, :c2] * [:a3, :b3, :c3] * */ static VALUE enum_zip(int argc, VALUE *argv, VALUE obj) { int i; ID conv; struct MEMO *memo; VALUE result = Qnil; VALUE args = rb_ary_new4(argc, argv); int allary = TRUE; argv = RARRAY_PTR(args); for (i=0; iv1, rb_enum_values_pack(argc, argv)); if (--memo->u3.cnt == 0) rb_iter_break(); return Qnil; } /* * call-seq: * take(n) -> array * * For non-negative integer +n+, returns the first +n+ elements: * * r = (1..4) * r.take(2) # => [1, 2] * r.take(0) # => [] * * h = {foo: 0, bar: 1, baz: 2, bat: 3} * h.take(2) # => [[:foo, 0], [:bar, 1]] * */ static VALUE enum_take(VALUE obj, VALUE n) { struct MEMO *memo; VALUE result; long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to take negative size"); } if (len == 0) return rb_ary_new2(0); result = rb_ary_new2(len); memo = MEMO_NEW(result, 0, len); rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo); return result; } static VALUE take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { if (!RTEST(rb_yield_values2(argc, argv))) rb_iter_break(); rb_ary_push(ary, rb_enum_values_pack(argc, argv)); return Qnil; } /* * call-seq: * take_while {|element| ... } -> array * take_while -> enumerator * * Calls the block with successive elements as long as the block * returns a truthy value; * returns an array of all elements up to that point: * * * (1..4).take_while{|i| i < 3 } # => [1, 2] * h = {foo: 0, bar: 1, baz: 2} * h.take_while{|element| key, value = *element; value < 2 } * # => [[:foo, 0], [:bar, 1]] * * With no block given, returns an Enumerator. * */ static VALUE enum_take_while(VALUE obj) { VALUE ary; RETURN_ENUMERATOR(obj, 0, 0); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, take_while_i, ary); return ary; } static VALUE drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); if (memo->u3.cnt == 0) { rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv)); } else { memo->u3.cnt--; } return Qnil; } /* * call-seq: * drop(n) -> array * * For positive integer +n+, returns an array containing * all but the first +n+ elements: * * r = (1..4) * r.drop(3) # => [4] * r.drop(2) # => [3, 4] * r.drop(1) # => [2, 3, 4] * r.drop(0) # => [1, 2, 3, 4] * r.drop(50) # => [] * * h = {foo: 0, bar: 1, baz: 2, bat: 3} * h.drop(2) # => [[:baz, 2], [:bat, 3]] * */ static VALUE enum_drop(VALUE obj, VALUE n) { VALUE result; struct MEMO *memo; long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to drop negative size"); } result = rb_ary_new(); memo = MEMO_NEW(result, 0, len); rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo); return result; } static VALUE drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); ENUM_WANT_SVALUE(); if (!memo->u3.state && !RTEST(enum_yield(argc, i))) { memo->u3.state = TRUE; } if (memo->u3.state) { rb_ary_push(memo->v1, i); } return Qnil; } /* * call-seq: * drop_while {|element| ... } -> array * drop_while -> enumerator * * Calls the block with successive elements as long as the block * returns a truthy value; * returns an array of all elements after that point: * * * (1..4).drop_while{|i| i < 3 } # => [3, 4] * h = {foo: 0, bar: 1, baz: 2} * a = h.drop_while{|element| key, value = *element; value < 2 } * a # => [[:baz, 2]] * * With no block given, returns an Enumerator. * */ static VALUE enum_drop_while(VALUE obj) { VALUE result; struct MEMO *memo; RETURN_ENUMERATOR(obj, 0, 0); result = rb_ary_new(); memo = MEMO_NEW(result, 0, FALSE); rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo); return result; } static VALUE cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { ENUM_WANT_SVALUE(); rb_ary_push(ary, argc > 1 ? i : rb_ary_new_from_values(argc, argv)); enum_yield(argc, i); return Qnil; } static VALUE enum_cycle_size(VALUE self, VALUE args, VALUE eobj) { long mul = 0; VALUE n = Qnil; VALUE size; if (args && (RARRAY_LEN(args) > 0)) { n = RARRAY_AREF(args, 0); if (!NIL_P(n)) mul = NUM2LONG(n); } size = enum_size(self, args, 0); if (NIL_P(size) || FIXNUM_ZERO_P(size)) return size; if (NIL_P(n)) return DBL2NUM(HUGE_VAL); if (mul <= 0) return INT2FIX(0); n = LONG2FIX(mul); return rb_funcallv(size, '*', 1, &n); } /* * call-seq: * cycle(n = nil) {|element| ...} -> nil * cycle(n = nil) -> enumerator * * When called with positive integer argument +n+ and a block, * calls the block with each element, then does so again, * until it has done so +n+ times; returns +nil+: * * a = [] * (1..4).cycle(3) {|element| a.push(element) } # => nil * a # => [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4] * a = [] * ('a'..'d').cycle(2) {|element| a.push(element) } * a # => ["a", "b", "c", "d", "a", "b", "c", "d"] * a = [] * {foo: 0, bar: 1, baz: 2}.cycle(2) {|element| a.push(element) } * a # => [[:foo, 0], [:bar, 1], [:baz, 2], [:foo, 0], [:bar, 1], [:baz, 2]] * * If count is zero or negative, does not call the block. * * When called with a block and +n+ is +nil+, cycles forever. * * When no block is given, returns an Enumerator. * */ static VALUE enum_cycle(int argc, VALUE *argv, VALUE obj) { VALUE ary; VALUE nv = Qnil; long n, i, len; rb_check_arity(argc, 0, 1); RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size); if (!argc || NIL_P(nv = argv[0])) { n = -1; } else { n = NUM2LONG(nv); if (n <= 0) return Qnil; } ary = rb_ary_new(); RBASIC_CLEAR_CLASS(ary); rb_block_call(obj, id_each, 0, 0, cycle_i, ary); len = RARRAY_LEN(ary); if (len == 0) return Qnil; while (n < 0 || 0 < --n) { for (i=0; icategorize, id_call, 1, &i); if (v == alone) { if (!NIL_P(argp->prev_value)) { s = rb_assoc_new(argp->prev_value, argp->prev_elts); rb_funcallv(argp->yielder, id_lshift, 1, &s); argp->prev_value = argp->prev_elts = Qnil; } v = rb_assoc_new(v, rb_ary_new3(1, i)); rb_funcallv(argp->yielder, id_lshift, 1, &v); } else if (NIL_P(v) || v == separator) { if (!NIL_P(argp->prev_value)) { v = rb_assoc_new(argp->prev_value, argp->prev_elts); rb_funcallv(argp->yielder, id_lshift, 1, &v); argp->prev_value = argp->prev_elts = Qnil; } } else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) { rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved"); } else { if (NIL_P(argp->prev_value)) { argp->prev_value = v; argp->prev_elts = rb_ary_new3(1, i); } else { if (rb_equal(argp->prev_value, v)) { rb_ary_push(argp->prev_elts, i); } else { s = rb_assoc_new(argp->prev_value, argp->prev_elts); rb_funcallv(argp->yielder, id_lshift, 1, &s); argp->prev_value = v; argp->prev_elts = rb_ary_new3(1, i); } } } return Qnil; } static VALUE chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) { VALUE enumerable; VALUE arg; struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg); enumerable = rb_ivar_get(enumerator, id_chunk_enumerable); memo->categorize = rb_ivar_get(enumerator, id_chunk_categorize); memo->prev_value = Qnil; memo->prev_elts = Qnil; memo->yielder = yielder; rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg); memo = MEMO_FOR(struct chunk_arg, arg); if (!NIL_P(memo->prev_elts)) { arg = rb_assoc_new(memo->prev_value, memo->prev_elts); rb_funcallv(memo->yielder, id_lshift, 1, &arg); } return Qnil; } /* * call-seq: * chunk {|array| ... } -> enumerator * * Each element in the returned enumerator is a 2-element array consisting of: * * - A value returned by the block. * - An array ("chunk") containing the element for which that value was returned, * and all following elements for which the block returned the same value: * * So that: * * - Each block return value that is different from its predecessor * begins a new chunk. * - Each block return value that is the same as its predecessor * continues the same chunk. * * Example: * * e = (0..10).chunk {|i| (i / 3).floor } # => # * # The enumerator elements. * e.next # => [0, [0, 1, 2]] * e.next # => [1, [3, 4, 5]] * e.next # => [2, [6, 7, 8]] * e.next # => [3, [9, 10]] * * \Method +chunk+ is especially useful for an enumerable that is already sorted. * This example counts words for each initial letter in a large array of words: * * # Get sorted words from a web page. * url = 'https://raw.githubusercontent.com/eneko/data-repository/master/data/words.txt' * words = URI::open(url).readlines * # Make chunks, one for each letter. * e = words.chunk {|word| word.upcase[0] } # => # * # Display 'A' through 'F'. * e.each {|c, words| p [c, words.length]; break if c == 'F' } * * Output: * * ["A", 17096] * ["B", 11070] * ["C", 19901] * ["D", 10896] * ["E", 8736] * ["F", 6860] * * You can use the special symbol :_alone to force an element * into its own separate chuck: * * a = [0, 0, 1, 1] * e = a.chunk{|i| i.even? ? :_alone : true } * e.to_a # => [[:_alone, [0]], [:_alone, [0]], [true, [1, 1]]] * * For example, you can put each line that contains a URL into its own chunk: * * pattern = /http/ * open(filename) { |f| * f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines| * pp lines * } * } * * You can use the special symbol :_separator or +nil+ * to force an element to be ignored (not included in any chunk): * * a = [0, 0, -1, 1, 1] * e = a.chunk{|i| i < 0 ? :_separator : true } * e.to_a # => [[true, [0, 0]], [true, [1, 1]]] * * Note that the separator does end the chunk: * * a = [0, 0, -1, 1, -1, 1] * e = a.chunk{|i| i < 0 ? :_separator : true } * e.to_a # => [[true, [0, 0]], [true, [1]], [true, [1]]] * * For example, the sequence of hyphens in svn log can be eliminated as follows: * * sep = "-"*72 + "\n" * IO.popen("svn log README") { |f| * f.chunk { |line| * line != sep || nil * }.each { |_, lines| * pp lines * } * } * #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n", * # "\n", * # "* README, README.ja: Update the portability section.\n", * # "\n"] * # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n", * # "\n", * # "* README, README.ja: Add a note about default C flags.\n", * # "\n"] * # ... * * Paragraphs separated by empty lines can be parsed as follows: * * File.foreach("README").chunk { |line| * /\A\s*\z/ !~ line || nil * }.each { |_, lines| * pp lines * } * */ static VALUE enum_chunk(VALUE enumerable) { VALUE enumerator; RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, id_chunk_enumerable, enumerable); rb_ivar_set(enumerator, id_chunk_categorize, rb_block_proc()); rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator); return enumerator; } struct slicebefore_arg { VALUE sep_pred; VALUE sep_pat; VALUE prev_elts; VALUE yielder; }; static VALUE slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp)) { struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp); VALUE header_p; ENUM_WANT_SVALUE(); if (!NIL_P(argp->sep_pat)) header_p = rb_funcallv(argp->sep_pat, id_eqq, 1, &i); else header_p = rb_funcallv(argp->sep_pred, id_call, 1, &i); if (RTEST(header_p)) { if (!NIL_P(argp->prev_elts)) rb_funcallv(argp->yielder, id_lshift, 1, &argp->prev_elts); argp->prev_elts = rb_ary_new3(1, i); } else { if (NIL_P(argp->prev_elts)) argp->prev_elts = rb_ary_new3(1, i); else rb_ary_push(argp->prev_elts, i); } return Qnil; } static VALUE slicebefore_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) { VALUE enumerable; VALUE arg; struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg); enumerable = rb_ivar_get(enumerator, id_slicebefore_enumerable); memo->sep_pred = rb_attr_get(enumerator, id_slicebefore_sep_pred); memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, id_slicebefore_sep_pat) : Qnil; memo->prev_elts = Qnil; memo->yielder = yielder; rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg); memo = MEMO_FOR(struct slicebefore_arg, arg); if (!NIL_P(memo->prev_elts)) rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); return Qnil; } /* * call-seq: * slice_before(pattern) -> enumerator * slice_before {|elt| ... } -> enumerator * * With argument +pattern+, returns an enumerator that uses the pattern * to partition elements into arrays ("slices"). * An element begins a new slice if element === pattern * (or if it is the first element). * * a = %w[foo bar fop for baz fob fog bam foy] * e = a.slice_before(/ba/) # => # * e.each {|array| p array } * * Output: * * ["foo"] * ["bar", "fop", "for"] * ["baz", "fob", "fog"] * ["bam", "foy"] * * With a block, returns an enumerator that uses the block * to partition elements into arrays. * An element begins a new slice if its block return is a truthy value * (or if it is the first element): * * e = (1..20).slice_before {|i| i % 4 == 2 } # => # * e.each {|array| p array } * * Output: * * [1] * [2, 3, 4, 5] * [6, 7, 8, 9] * [10, 11, 12, 13] * [14, 15, 16, 17] * [18, 19, 20] * * Other methods of the Enumerator class and Enumerable module, * such as +to_a+, +map+, etc., are also usable. * * For example, iteration over ChangeLog entries can be implemented as * follows: * * # iterate over ChangeLog entries. * open("ChangeLog") { |f| * f.slice_before(/\A\S/).each { |e| pp e } * } * * # same as above. block is used instead of pattern argument. * open("ChangeLog") { |f| * f.slice_before { |line| /\A\S/ === line }.each { |e| pp e } * } * * "svn proplist -R" produces multiline output for each file. * They can be chunked as follows: * * IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f| * f.lines.slice_before(/\AProp/).each { |lines| p lines } * } * #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"] * # ["Properties on 'goruby.c':\n", " svn:eol-style\n"] * # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"] * # ["Properties on 'regparse.c':\n", " svn:eol-style\n"] * # ... * * If the block needs to maintain state over multiple elements, * local variables can be used. * For example, three or more consecutive increasing numbers can be squashed * as follows (see +chunk_while+ for a better way): * * a = [0, 2, 3, 4, 6, 7, 9] * prev = a[0] * p a.slice_before { |e| * prev, prev2 = e, prev * prev2 + 1 != e * }.map { |es| * es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}" * }.join(",") * #=> "0,2-4,6,7,9" * * However local variables should be used carefully * if the result enumerator is enumerated twice or more. * The local variables should be initialized for each enumeration. * Enumerator.new can be used to do it. * * # Word wrapping. This assumes all characters have same width. * def wordwrap(words, maxwidth) * Enumerator.new {|y| * # cols is initialized in Enumerator.new. * cols = 0 * words.slice_before { |w| * cols += 1 if cols != 0 * cols += w.length * if maxwidth < cols * cols = w.length * true * else * false * end * }.each {|ws| y.yield ws } * } * end * text = (1..20).to_a.join(" ") * enum = wordwrap(text.split(/\s+/), 10) * puts "-"*10 * enum.each { |ws| puts ws.join(" ") } # first enumeration. * puts "-"*10 * enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first. * puts "-"*10 * #=> ---------- * # 1 2 3 4 5 * # 6 7 8 9 10 * # 11 12 13 * # 14 15 16 * # 17 18 19 * # 20 * # ---------- * # 1 2 3 4 5 * # 6 7 8 9 10 * # 11 12 13 * # 14 15 16 * # 17 18 19 * # 20 * # ---------- * * mbox contains series of mails which start with Unix From line. * So each mail can be extracted by slice before Unix From line. * * # parse mbox * open("mbox") { |f| * f.slice_before { |line| * line.start_with? "From " * }.each { |mail| * unix_from = mail.shift * i = mail.index("\n") * header = mail[0...i] * body = mail[(i+1)..-1] * body.pop if body.last == "\n" * fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a * p unix_from * pp fields * pp body * } * } * * # split mails in mbox (slice before Unix From line after an empty line) * open("mbox") { |f| * emp = true * f.slice_before { |line| * prevemp = emp * emp = line == "\n" * prevemp && line.start_with?("From ") * }.each { |mail| * mail.pop if mail.last == "\n" * pp mail * } * } * */ static VALUE enum_slice_before(int argc, VALUE *argv, VALUE enumerable) { VALUE enumerator; if (rb_block_given_p()) { if (argc != 0) rb_error_arity(argc, 0, 0); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, id_slicebefore_sep_pred, rb_block_proc()); } else { VALUE sep_pat; rb_scan_args(argc, argv, "1", &sep_pat); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, id_slicebefore_sep_pat, sep_pat); } rb_ivar_set(enumerator, id_slicebefore_enumerable, enumerable); rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator); return enumerator; } struct sliceafter_arg { VALUE pat; VALUE pred; VALUE prev_elts; VALUE yielder; }; static VALUE sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { #define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo))) struct sliceafter_arg *memo; int split_p; UPDATE_MEMO; ENUM_WANT_SVALUE(); if (NIL_P(memo->prev_elts)) { memo->prev_elts = rb_ary_new3(1, i); } else { rb_ary_push(memo->prev_elts, i); } if (NIL_P(memo->pred)) { split_p = RTEST(rb_funcallv(memo->pat, id_eqq, 1, &i)); UPDATE_MEMO; } else { split_p = RTEST(rb_funcallv(memo->pred, id_call, 1, &i)); UPDATE_MEMO; } if (split_p) { rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); UPDATE_MEMO; memo->prev_elts = Qnil; } return Qnil; #undef UPDATE_MEMO } static VALUE sliceafter_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) { VALUE enumerable; VALUE arg; struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg); enumerable = rb_ivar_get(enumerator, id_sliceafter_enum); memo->pat = rb_ivar_get(enumerator, id_sliceafter_pat); memo->pred = rb_attr_get(enumerator, id_sliceafter_pred); memo->prev_elts = Qnil; memo->yielder = yielder; rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg); memo = MEMO_FOR(struct sliceafter_arg, arg); if (!NIL_P(memo->prev_elts)) rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); return Qnil; } /* * call-seq: * enum.slice_after(pattern) -> an_enumerator * enum.slice_after { |elt| bool } -> an_enumerator * * Creates an enumerator for each chunked elements. * The ends of chunks are defined by _pattern_ and the block. * * If _pattern_ === _elt_ returns true or the block * returns true for the element, the element is end of a * chunk. * * The === and _block_ is called from the first element to the last * element of _enum_. * * The result enumerator yields the chunked elements as an array. * So +each+ method can be called as follows: * * enum.slice_after(pattern).each { |ary| ... } * enum.slice_after { |elt| bool }.each { |ary| ... } * * Other methods of the Enumerator class and Enumerable module, * such as +map+, etc., are also usable. * * For example, continuation lines (lines end with backslash) can be * concatenated as follows: * * lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"] * e = lines.slice_after(/(? [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]] * p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last } * #=>["foo\n", "barbaz\n", "\n", "qux\n"] * */ static VALUE enum_slice_after(int argc, VALUE *argv, VALUE enumerable) { VALUE enumerator; VALUE pat = Qnil, pred = Qnil; if (rb_block_given_p()) { if (0 < argc) rb_raise(rb_eArgError, "both pattern and block are given"); pred = rb_block_proc(); } else { rb_scan_args(argc, argv, "1", &pat); } enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, id_sliceafter_enum, enumerable); rb_ivar_set(enumerator, id_sliceafter_pat, pat); rb_ivar_set(enumerator, id_sliceafter_pred, pred); rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator); return enumerator; } struct slicewhen_arg { VALUE pred; VALUE prev_elt; VALUE prev_elts; VALUE yielder; int inverted; /* 0 for slice_when and 1 for chunk_while. */ }; static VALUE slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { #define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo))) struct slicewhen_arg *memo; int split_p; UPDATE_MEMO; ENUM_WANT_SVALUE(); if (UNDEF_P(memo->prev_elt)) { /* The first element */ memo->prev_elt = i; memo->prev_elts = rb_ary_new3(1, i); } else { VALUE args[2]; args[0] = memo->prev_elt; args[1] = i; split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args)); UPDATE_MEMO; if (memo->inverted) split_p = !split_p; if (split_p) { rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); UPDATE_MEMO; memo->prev_elts = rb_ary_new3(1, i); } else { rb_ary_push(memo->prev_elts, i); } memo->prev_elt = i; } return Qnil; #undef UPDATE_MEMO } static VALUE slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) { VALUE enumerable; VALUE arg; struct slicewhen_arg *memo = NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted); enumerable = rb_ivar_get(enumerator, id_slicewhen_enum); memo->pred = rb_attr_get(enumerator, id_slicewhen_pred); memo->prev_elt = Qundef; memo->prev_elts = Qnil; memo->yielder = yielder; memo->inverted = RTEST(rb_attr_get(enumerator, id_slicewhen_inverted)); rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg); memo = MEMO_FOR(struct slicewhen_arg, arg); if (!NIL_P(memo->prev_elts)) rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); return Qnil; } /* * call-seq: * enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator * * Creates an enumerator for each chunked elements. * The beginnings of chunks are defined by the block. * * This method splits each chunk using adjacent elements, * _elt_before_ and _elt_after_, * in the receiver enumerator. * This method split chunks between _elt_before_ and _elt_after_ where * the block returns true. * * The block is called the length of the receiver enumerator minus one. * * The result enumerator yields the chunked elements as an array. * So +each+ method can be called as follows: * * enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... } * * Other methods of the Enumerator class and Enumerable module, * such as +to_a+, +map+, etc., are also usable. * * For example, one-by-one increasing subsequence can be chunked as follows: * * a = [1,2,4,9,10,11,12,15,16,19,20,21] * b = a.slice_when {|i, j| i+1 != j } * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]] * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" } * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"] * d = c.join(",") * p d #=> "1,2,4,9-12,15,16,19-21" * * Near elements (threshold: 6) in sorted array can be chunked as follows: * * a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57] * p a.slice_when {|i, j| 6 < j - i }.to_a * #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]] * * Increasing (non-decreasing) subsequence can be chunked as follows: * * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5] * p a.slice_when {|i, j| i > j }.to_a * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]] * * Adjacent evens and odds can be chunked as follows: * (Enumerable#chunk is another way to do it.) * * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0] * p a.slice_when {|i, j| i.even? != j.even? }.to_a * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]] * * Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: * (See Enumerable#chunk to ignore empty lines.) * * lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"] * p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a * #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]] * * Enumerable#chunk_while does the same, except splitting when the block * returns false instead of true. */ static VALUE enum_slice_when(VALUE enumerable) { VALUE enumerator; VALUE pred; pred = rb_block_proc(); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, id_slicewhen_enum, enumerable); rb_ivar_set(enumerator, id_slicewhen_pred, pred); rb_ivar_set(enumerator, id_slicewhen_inverted, Qfalse); rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator); return enumerator; } /* * call-seq: * enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator * * Creates an enumerator for each chunked elements. * The beginnings of chunks are defined by the block. * * This method splits each chunk using adjacent elements, * _elt_before_ and _elt_after_, * in the receiver enumerator. * This method split chunks between _elt_before_ and _elt_after_ where * the block returns false. * * The block is called the length of the receiver enumerator minus one. * * The result enumerator yields the chunked elements as an array. * So +each+ method can be called as follows: * * enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... } * * Other methods of the Enumerator class and Enumerable module, * such as +to_a+, +map+, etc., are also usable. * * For example, one-by-one increasing subsequence can be chunked as follows: * * a = [1,2,4,9,10,11,12,15,16,19,20,21] * b = a.chunk_while {|i, j| i+1 == j } * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]] * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" } * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"] * d = c.join(",") * p d #=> "1,2,4,9-12,15,16,19-21" * * Increasing (non-decreasing) subsequence can be chunked as follows: * * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5] * p a.chunk_while {|i, j| i <= j }.to_a * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]] * * Adjacent evens and odds can be chunked as follows: * (Enumerable#chunk is another way to do it.) * * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0] * p a.chunk_while {|i, j| i.even? == j.even? }.to_a * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]] * * Enumerable#slice_when does the same, except splitting when the block * returns true instead of false. */ static VALUE enum_chunk_while(VALUE enumerable) { VALUE enumerator; VALUE pred; pred = rb_block_proc(); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, id_slicewhen_enum, enumerable); rb_ivar_set(enumerator, id_slicewhen_pred, pred); rb_ivar_set(enumerator, id_slicewhen_inverted, Qtrue); rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator); return enumerator; } struct enum_sum_memo { VALUE v, r; long n; double f, c; int block_given; int float_value; }; static void sum_iter_normalize_memo(struct enum_sum_memo *memo) { RUBY_ASSERT(FIXABLE(memo->n)); memo->v = rb_fix_plus(LONG2FIX(memo->n), memo->v); memo->n = 0; switch (TYPE(memo->r)) { case T_RATIONAL: memo->v = rb_rational_plus(memo->r, memo->v); break; case T_UNDEF: break; default: UNREACHABLE; /* or ...? */ } memo->r = Qundef; } static void sum_iter_fixnum(VALUE i, struct enum_sum_memo *memo) { memo->n += FIX2LONG(i); /* should not overflow long type */ if (! FIXABLE(memo->n)) { memo->v = rb_big_plus(LONG2NUM(memo->n), memo->v); memo->n = 0; } } static void sum_iter_bignum(VALUE i, struct enum_sum_memo *memo) { memo->v = rb_big_plus(i, memo->v); } static void sum_iter_rational(VALUE i, struct enum_sum_memo *memo) { if (UNDEF_P(memo->r)) { memo->r = i; } else { memo->r = rb_rational_plus(memo->r, i); } } static void sum_iter_some_value(VALUE i, struct enum_sum_memo *memo) { memo->v = rb_funcallv(memo->v, idPLUS, 1, &i); } static void sum_iter_Kahan_Babuska(VALUE i, struct enum_sum_memo *memo) { /* * Kahan-Babuska balancing compensated summation algorithm * See https://link.springer.com/article/10.1007/s00607-005-0139-x */ double x; switch (TYPE(i)) { case T_FLOAT: x = RFLOAT_VALUE(i); break; case T_FIXNUM: x = FIX2LONG(i); break; case T_BIGNUM: x = rb_big2dbl(i); break; case T_RATIONAL: x = rb_num2dbl(i); break; default: memo->v = DBL2NUM(memo->f); memo->float_value = 0; sum_iter_some_value(i, memo); return; } double f = memo->f; if (isnan(f)) { return; } else if (! isfinite(x)) { if (isinf(x) && isinf(f) && signbit(x) != signbit(f)) { i = DBL2NUM(f); x = nan(""); } memo->v = i; memo->f = x; return; } else if (isinf(f)) { return; } double c = memo->c; double t = f + x; if (fabs(f) >= fabs(x)) { c += ((f - t) + x); } else { c += ((x - t) + f); } f = t; memo->f = f; memo->c = c; } static void sum_iter(VALUE i, struct enum_sum_memo *memo) { RUBY_ASSERT(memo != NULL); if (memo->block_given) { i = rb_yield(i); } if (memo->float_value) { sum_iter_Kahan_Babuska(i, memo); } else switch (TYPE(memo->v)) { default: sum_iter_some_value(i, memo); return; case T_FLOAT: sum_iter_Kahan_Babuska(i, memo); return; case T_FIXNUM: case T_BIGNUM: case T_RATIONAL: switch (TYPE(i)) { case T_FIXNUM: sum_iter_fixnum(i, memo); return; case T_BIGNUM: sum_iter_bignum(i, memo); return; case T_RATIONAL: sum_iter_rational(i, memo); return; case T_FLOAT: sum_iter_normalize_memo(memo); memo->f = NUM2DBL(memo->v); memo->c = 0.0; memo->float_value = 1; sum_iter_Kahan_Babuska(i, memo); return; default: sum_iter_normalize_memo(memo); sum_iter_some_value(i, memo); return; } } } static VALUE enum_sum_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { ENUM_WANT_SVALUE(); sum_iter(i, (struct enum_sum_memo *) args); return Qnil; } static int hash_sum_i(VALUE key, VALUE value, VALUE arg) { sum_iter(rb_assoc_new(key, value), (struct enum_sum_memo *) arg); return ST_CONTINUE; } static void hash_sum(VALUE hash, struct enum_sum_memo *memo) { RUBY_ASSERT(RB_TYPE_P(hash, T_HASH)); RUBY_ASSERT(memo != NULL); rb_hash_foreach(hash, hash_sum_i, (VALUE)memo); } static VALUE int_range_sum(VALUE beg, VALUE end, int excl, VALUE init) { if (excl) { if (FIXNUM_P(end)) end = LONG2FIX(FIX2LONG(end) - 1); else end = rb_big_minus(end, LONG2FIX(1)); } if (rb_int_ge(end, beg)) { VALUE a; a = rb_int_plus(rb_int_minus(end, beg), LONG2FIX(1)); a = rb_int_mul(a, rb_int_plus(end, beg)); a = rb_int_idiv(a, LONG2FIX(2)); return rb_int_plus(init, a); } return init; } /* * call-seq: * sum(initial_value = 0) -> number * sum(initial_value = 0) {|element| ... } -> object * * With no block given, * returns the sum of +initial_value+ and the elements: * * (1..100).sum # => 5050 * (1..100).sum(1) # => 5051 * ('a'..'d').sum('foo') # => "fooabcd" * * Generally, the sum is computed using methods + and +each+; * for performance optimizations, those methods may not be used, * and so any redefinition of those methods may not have effect here. * * One such optimization: When possible, computes using Gauss's summation * formula n(n+1)/2: * * 100 * (100 + 1) / 2 # => 5050 * * With a block given, calls the block with each element; * returns the sum of +initial_value+ and the block return values: * * (1..4).sum {|i| i*i } # => 30 * (1..4).sum(100) {|i| i*i } # => 130 * h = {a: 0, b: 1, c: 2, d: 3, e: 4, f: 5} * h.sum {|key, value| value.odd? ? value : 0 } # => 9 * ('a'..'f').sum('x') {|c| c < 'd' ? c : '' } # => "xabc" * */ static VALUE enum_sum(int argc, VALUE* argv, VALUE obj) { struct enum_sum_memo memo; VALUE beg, end; int excl; memo.v = (rb_check_arity(argc, 0, 1) == 0) ? LONG2FIX(0) : argv[0]; memo.block_given = rb_block_given_p(); memo.n = 0; memo.r = Qundef; if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) { memo.f = RFLOAT_VALUE(memo.v); memo.c = 0.0; } else { memo.f = 0.0; memo.c = 0.0; } if (RTEST(rb_range_values(obj, &beg, &end, &excl))) { if (!memo.block_given && !memo.float_value && (FIXNUM_P(beg) || RB_BIGNUM_TYPE_P(beg)) && (FIXNUM_P(end) || RB_BIGNUM_TYPE_P(end))) { return int_range_sum(beg, end, excl, memo.v); } } if (RB_TYPE_P(obj, T_HASH) && rb_method_basic_definition_p(CLASS_OF(obj), id_each)) hash_sum(obj, &memo); else rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo); if (memo.float_value) { return DBL2NUM(memo.f + memo.c); } else { if (memo.n != 0) memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v); if (!UNDEF_P(memo.r)) { memo.v = rb_rational_plus(memo.r, memo.v); } return memo.v; } } static VALUE uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { ENUM_WANT_SVALUE(); rb_hash_add_new_element(hash, i, i); return Qnil; } static VALUE uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { ENUM_WANT_SVALUE(); rb_hash_add_new_element(hash, rb_yield_values2(argc, argv), i); return Qnil; } /* * call-seq: * uniq -> array * uniq {|element| ... } -> array * * With no block, returns a new array containing only unique elements; * the array has no two elements +e0+ and +e1+ such that e0.eql?(e1): * * %w[a b c c b a a b c].uniq # => ["a", "b", "c"] * [0, 1, 2, 2, 1, 0, 0, 1, 2].uniq # => [0, 1, 2] * * With a block, returns a new array containing elements only for which the block * returns a unique value: * * a = [0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1] * a.uniq {|i| i.even? ? i : 0 } # => [0, 2, 4] * a = %w[a b c d e e d c b a a b c d e] * a.uniq {|c| c < 'c' } # => ["a", "c"] * */ static VALUE enum_uniq(VALUE obj) { VALUE hash, ret; rb_block_call_func *const func = rb_block_given_p() ? uniq_iter : uniq_func; hash = rb_obj_hide(rb_hash_new()); rb_block_call(obj, id_each, 0, 0, func, hash); ret = rb_hash_values(hash); rb_hash_clear(hash); return ret; } static VALUE compact_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { ENUM_WANT_SVALUE(); if (!NIL_P(i)) { rb_ary_push(ary, i); } return Qnil; } /* * call-seq: * compact -> array * * Returns an array of all non-+nil+ elements: * * a = [nil, 0, nil, 'a', false, nil, false, nil, 'a', nil, 0, nil] * a.compact # => [0, "a", false, false, "a", 0] * */ static VALUE enum_compact(VALUE obj) { VALUE ary; ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, compact_i, ary); return ary; } /* * == What's Here * * \Module \Enumerable provides methods that are useful to a collection class for: * * - {Querying}[rdoc-ref:Enumerable@Methods+for+Querying] * - {Fetching}[rdoc-ref:Enumerable@Methods+for+Fetching] * - {Searching and Filtering}[rdoc-ref:Enumerable@Methods+for+Searching+and+Filtering] * - {Sorting}[rdoc-ref:Enumerable@Methods+for+Sorting] * - {Iterating}[rdoc-ref:Enumerable@Methods+for+Iterating] * - {And more....}[rdoc-ref:Enumerable@Other+Methods] * * === Methods for Querying * * These methods return information about the \Enumerable other than the elements themselves: * * - #include?, #member?: Returns +true+ if self == object, +false+ otherwise. * - #all?: Returns +true+ if all elements meet a specified criterion; +false+ otherwise. * - #any?: Returns +true+ if any element meets a specified criterion; +false+ otherwise. * - #none?: Returns +true+ if no element meets a specified criterion; +false+ otherwise. * - #one?: Returns +true+ if exactly one element meets a specified criterion; +false+ otherwise. * - #count: Returns the count of elements, * based on an argument or block criterion, if given. * - #tally: Returns a new Hash containing the counts of occurrences of each element. * * === Methods for Fetching * * These methods return entries from the \Enumerable, without modifying it: * * Leading, trailing, or all elements: * * - #entries, #to_a: Returns all elements. * - #first: Returns the first element or leading elements. * - #take: Returns a specified number of leading elements. * - #drop: Returns a specified number of trailing elements. * - #take_while: Returns leading elements as specified by the given block. * - #drop_while: Returns trailing elements as specified by the given block. * * Minimum and maximum value elements: * * - #min: Returns the elements whose values are smallest among the elements, * as determined by <=> or a given block. * - #max: Returns the elements whose values are largest among the elements, * as determined by <=> or a given block. * - #minmax: Returns a 2-element Array containing the smallest and largest elements. * - #min_by: Returns the smallest element, as determined by the given block. * - #max_by: Returns the largest element, as determined by the given block. * - #minmax_by: Returns the smallest and largest elements, as determined by the given block. * * Groups, slices, and partitions: * * - #group_by: Returns a Hash that partitions the elements into groups. * - #partition: Returns elements partitioned into two new Arrays, as determined by the given block. * - #slice_after: Returns a new Enumerator whose entries are a partition of +self+, * based either on a given +object+ or a given block. * - #slice_before: Returns a new Enumerator whose entries are a partition of +self+, * based either on a given +object+ or a given block. * - #slice_when: Returns a new Enumerator whose entries are a partition of +self+ * based on the given block. * - #chunk: Returns elements organized into chunks as specified by the given block. * - #chunk_while: Returns elements organized into chunks as specified by the given block. * * === Methods for Searching and Filtering * * These methods return elements that meet a specified criterion: * * - #find, #detect: Returns an element selected by the block. * - #find_all, #filter, #select: Returns elements selected by the block. * - #find_index: Returns the index of an element selected by a given object or block. * - #reject: Returns elements not rejected by the block. * - #uniq: Returns elements that are not duplicates. * * === Methods for Sorting * * These methods return elements in sorted order: * * - #sort: Returns the elements, sorted by <=> or the given block. * - #sort_by: Returns the elements, sorted by the given block. * * === Methods for Iterating * * - #each_entry: Calls the block with each successive element * (slightly different from #each). * - #each_with_index: Calls the block with each successive element and its index. * - #each_with_object: Calls the block with each successive element and a given object. * - #each_slice: Calls the block with successive non-overlapping slices. * - #each_cons: Calls the block with successive overlapping slices. * (different from #each_slice). * - #reverse_each: Calls the block with each successive element, in reverse order. * * === Other Methods * * - #map, #collect: Returns objects returned by the block. * - #filter_map: Returns truthy objects returned by the block. * - #flat_map, #collect_concat: Returns flattened objects returned by the block. * - #grep: Returns elements selected by a given object * or objects returned by a given block. * - #grep_v: Returns elements selected by a given object * or objects returned by a given block. * - #reduce, #inject: Returns the object formed by combining all elements. * - #sum: Returns the sum of the elements, using method +. * - #zip: Combines each element with elements from other enumerables; * returns the n-tuples or calls the block with each. * - #cycle: Calls the block with each element, cycling repeatedly. * * == Usage * * To use module \Enumerable in a collection class: * * - Include it: * * include Enumerable * * - Implement method #each * which must yield successive elements of the collection. * The method will be called by almost any \Enumerable method. * * Example: * * class Foo * include Enumerable * def each * yield 1 * yield 1, 2 * yield * end * end * Foo.new.each_entry{ |element| p element } * * Output: * * 1 * [1, 2] * nil * * == \Enumerable in Ruby Classes * * These Ruby core classes include (or extend) \Enumerable: * * - ARGF * - Array * - Dir * - Enumerator * - ENV (extends) * - Hash * - IO * - Range * - Struct * * These Ruby standard library classes include \Enumerable: * * - CSV * - CSV::Table * - CSV::Row * - Set * * Virtually all methods in \Enumerable call method +#each+ in the including class: * * - Hash#each yields the next key-value pair as a 2-element Array. * - Struct#each yields the next name-value pair as a 2-element Array. * - For the other classes above, +#each+ yields the next object from the collection. * * == About the Examples * * The example code snippets for the \Enumerable methods: * * - Always show the use of one or more Array-like classes (often Array itself). * - Sometimes show the use of a Hash-like class. * For some methods, though, the usage would not make sense, * and so it is not shown. Example: #tally would find exactly one of each Hash entry. * */ void Init_Enumerable(void) { rb_mEnumerable = rb_define_module("Enumerable"); rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1); rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1); rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1); rb_define_method(rb_mEnumerable, "sort", enum_sort, 0); rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0); rb_define_method(rb_mEnumerable, "grep", enum_grep, 1); rb_define_method(rb_mEnumerable, "grep_v", enum_grep_v, 1); rb_define_method(rb_mEnumerable, "count", enum_count, -1); rb_define_method(rb_mEnumerable, "find", enum_find, -1); rb_define_method(rb_mEnumerable, "detect", enum_find, -1); rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1); rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0); rb_define_method(rb_mEnumerable, "select", enum_find_all, 0); rb_define_method(rb_mEnumerable, "filter", enum_find_all, 0); rb_define_method(rb_mEnumerable, "filter_map", enum_filter_map, 0); rb_define_method(rb_mEnumerable, "reject", enum_reject, 0); rb_define_method(rb_mEnumerable, "collect", enum_collect, 0); rb_define_method(rb_mEnumerable, "map", enum_collect, 0); rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0); rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0); rb_define_method(rb_mEnumerable, "inject", enum_inject, -1); rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1); rb_define_method(rb_mEnumerable, "partition", enum_partition, 0); rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0); rb_define_method(rb_mEnumerable, "tally", enum_tally, -1); rb_define_method(rb_mEnumerable, "first", enum_first, -1); rb_define_method(rb_mEnumerable, "all?", enum_all, -1); rb_define_method(rb_mEnumerable, "any?", enum_any, -1); rb_define_method(rb_mEnumerable, "one?", enum_one, -1); rb_define_method(rb_mEnumerable, "none?", enum_none, -1); rb_define_method(rb_mEnumerable, "min", enum_min, -1); rb_define_method(rb_mEnumerable, "max", enum_max, -1); rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0); rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1); rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1); rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0); rb_define_method(rb_mEnumerable, "member?", enum_member, 1); rb_define_method(rb_mEnumerable, "include?", enum_member, 1); rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1); rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1); rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1); rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1); rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1); rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1); rb_define_method(rb_mEnumerable, "zip", enum_zip, -1); rb_define_method(rb_mEnumerable, "take", enum_take, 1); rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0); rb_define_method(rb_mEnumerable, "drop", enum_drop, 1); rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0); rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1); rb_define_method(rb_mEnumerable, "chunk", enum_chunk, 0); rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1); rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1); rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0); rb_define_method(rb_mEnumerable, "chunk_while", enum_chunk_while, 0); rb_define_method(rb_mEnumerable, "sum", enum_sum, -1); rb_define_method(rb_mEnumerable, "uniq", enum_uniq, 0); rb_define_method(rb_mEnumerable, "compact", enum_compact, 0); id__alone = rb_intern_const("_alone"); id__separator = rb_intern_const("_separator"); id_chunk_categorize = rb_intern_const("chunk_categorize"); id_chunk_enumerable = rb_intern_const("chunk_enumerable"); id_next = rb_intern_const("next"); id_sliceafter_enum = rb_intern_const("sliceafter_enum"); id_sliceafter_pat = rb_intern_const("sliceafter_pat"); id_sliceafter_pred = rb_intern_const("sliceafter_pred"); id_slicebefore_enumerable = rb_intern_const("slicebefore_enumerable"); id_slicebefore_sep_pat = rb_intern_const("slicebefore_sep_pat"); id_slicebefore_sep_pred = rb_intern_const("slicebefore_sep_pred"); id_slicewhen_enum = rb_intern_const("slicewhen_enum"); id_slicewhen_inverted = rb_intern_const("slicewhen_inverted"); id_slicewhen_pred = rb_intern_const("slicewhen_pred"); }