#ifndef RUBY_VM_CORE_H #define RUBY_VM_CORE_H /********************************************************************** vm_core.h - $Author$ created at: 04/01/01 19:41:38 JST Copyright (C) 2004-2007 Koichi Sasada **********************************************************************/ /* * Enable check mode. * 1: enable local assertions. */ #ifndef VM_CHECK_MODE // respect RUBY_DUBUG: if given n is 0, then use RUBY_DEBUG #define N_OR_RUBY_DEBUG(n) (((n) > 0) ? (n) : RUBY_DEBUG) #define VM_CHECK_MODE N_OR_RUBY_DEBUG(0) #endif /** * VM Debug Level * * debug level: * 0: no debug output * 1: show instruction name * 2: show stack frame when control stack frame is changed * 3: show stack status * 4: show register * 5: * 10: gc check */ #ifndef VMDEBUG #define VMDEBUG 0 #endif #if 0 #undef VMDEBUG #define VMDEBUG 3 #endif #include "ruby/internal/config.h" #include #include #include #include "ruby_assert.h" #if VM_CHECK_MODE > 0 #define VM_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(VM_CHECK_MODE > 0, expr, #expr) #define VM_UNREACHABLE(func) rb_bug(#func ": unreachable") #define RUBY_ASSERT_CRITICAL_SECTION #define RUBY_DEBUG_THREAD_SCHEDULE() rb_thread_schedule() #else #define VM_ASSERT(expr) ((void)0) #define VM_UNREACHABLE(func) UNREACHABLE #define RUBY_DEBUG_THREAD_SCHEDULE() #endif #define RUBY_ASSERT_MUTEX_OWNED(mutex) VM_ASSERT(rb_mutex_owned_p(mutex)) #if defined(RUBY_ASSERT_CRITICAL_SECTION) // TODO add documentation extern int ruby_assert_critical_section_entered; #define RUBY_ASSERT_CRITICAL_SECTION_ENTER() do{ruby_assert_critical_section_entered += 1;}while(false) #define RUBY_ASSERT_CRITICAL_SECTION_LEAVE() do{VM_ASSERT(ruby_assert_critical_section_entered > 0);ruby_assert_critical_section_entered -= 1;}while(false) #else #define RUBY_ASSERT_CRITICAL_SECTION_ENTER() #define RUBY_ASSERT_CRITICAL_SECTION_LEAVE() #endif #if defined(__wasm__) && !defined(__EMSCRIPTEN__) # include "wasm/setjmp.h" #else # include #endif #if defined(__linux__) || defined(__FreeBSD__) # define RB_THREAD_T_HAS_NATIVE_ID #endif #include "ruby/internal/stdbool.h" #include "ccan/list/list.h" #include "id.h" #include "internal.h" #include "internal/array.h" #include "internal/basic_operators.h" #include "internal/serial.h" #include "internal/vm.h" #include "method.h" #include "node.h" #include "ruby/ruby.h" #include "ruby/st.h" #include "ruby_atomic.h" #include "vm_opts.h" #include "shape.h" #include "ruby/thread_native.h" /* * implementation selector of get_insn_info algorithm * 0: linear search * 1: binary search * 2: succinct bitvector */ #ifndef VM_INSN_INFO_TABLE_IMPL # define VM_INSN_INFO_TABLE_IMPL 2 #endif #if defined(NSIG_MAX) /* POSIX issue 8 */ # undef NSIG # define NSIG NSIG_MAX #elif defined(_SIG_MAXSIG) /* FreeBSD */ # undef NSIG # define NSIG _SIG_MAXSIG #elif defined(_SIGMAX) /* QNX */ # define NSIG (_SIGMAX + 1) #elif defined(NSIG) /* 99% of everything else */ # /* take it */ #else /* Last resort */ # define NSIG (sizeof(sigset_t) * CHAR_BIT + 1) #endif #define RUBY_NSIG NSIG #if defined(SIGCLD) # define RUBY_SIGCHLD (SIGCLD) #elif defined(SIGCHLD) # define RUBY_SIGCHLD (SIGCHLD) #else # define RUBY_SIGCHLD (0) #endif /* platforms with broken or non-existent SIGCHLD work by polling */ #if defined(__APPLE__) # define SIGCHLD_LOSSY (1) #else # define SIGCHLD_LOSSY (0) #endif /* define to 0 to test old code path */ #define WAITPID_USE_SIGCHLD (RUBY_SIGCHLD || SIGCHLD_LOSSY) #if defined(SIGSEGV) && defined(HAVE_SIGALTSTACK) && defined(SA_SIGINFO) && !defined(__NetBSD__) # define USE_SIGALTSTACK void *rb_allocate_sigaltstack(void); void *rb_register_sigaltstack(void *); # define RB_ALTSTACK_INIT(var, altstack) var = rb_register_sigaltstack(altstack) # define RB_ALTSTACK_FREE(var) free(var) # define RB_ALTSTACK(var) var #else /* noop */ # define RB_ALTSTACK_INIT(var, altstack) # define RB_ALTSTACK_FREE(var) # define RB_ALTSTACK(var) (0) #endif #include THREAD_IMPL_H #define RUBY_VM_THREAD_MODEL 2 /*****************/ /* configuration */ /*****************/ /* gcc ver. check */ #if defined(__GNUC__) && __GNUC__ >= 2 #if OPT_TOKEN_THREADED_CODE #if OPT_DIRECT_THREADED_CODE #undef OPT_DIRECT_THREADED_CODE #endif #endif #else /* defined(__GNUC__) && __GNUC__ >= 2 */ /* disable threaded code options */ #if OPT_DIRECT_THREADED_CODE #undef OPT_DIRECT_THREADED_CODE #endif #if OPT_TOKEN_THREADED_CODE #undef OPT_TOKEN_THREADED_CODE #endif #endif /* call threaded code */ #if OPT_CALL_THREADED_CODE #if OPT_DIRECT_THREADED_CODE #undef OPT_DIRECT_THREADED_CODE #endif /* OPT_DIRECT_THREADED_CODE */ #if OPT_STACK_CACHING #undef OPT_STACK_CACHING #endif /* OPT_STACK_CACHING */ #endif /* OPT_CALL_THREADED_CODE */ void rb_vm_encoded_insn_data_table_init(void); typedef unsigned long rb_num_t; typedef signed long rb_snum_t; enum ruby_tag_type { RUBY_TAG_NONE = 0x0, RUBY_TAG_RETURN = 0x1, RUBY_TAG_BREAK = 0x2, RUBY_TAG_NEXT = 0x3, RUBY_TAG_RETRY = 0x4, RUBY_TAG_REDO = 0x5, RUBY_TAG_RAISE = 0x6, RUBY_TAG_THROW = 0x7, RUBY_TAG_FATAL = 0x8, RUBY_TAG_MASK = 0xf }; #define TAG_NONE RUBY_TAG_NONE #define TAG_RETURN RUBY_TAG_RETURN #define TAG_BREAK RUBY_TAG_BREAK #define TAG_NEXT RUBY_TAG_NEXT #define TAG_RETRY RUBY_TAG_RETRY #define TAG_REDO RUBY_TAG_REDO #define TAG_RAISE RUBY_TAG_RAISE #define TAG_THROW RUBY_TAG_THROW #define TAG_FATAL RUBY_TAG_FATAL #define TAG_MASK RUBY_TAG_MASK enum ruby_vm_throw_flags { VM_THROW_NO_ESCAPE_FLAG = 0x8000, VM_THROW_STATE_MASK = 0xff }; /* forward declarations */ struct rb_thread_struct; struct rb_control_frame_struct; /* iseq data type */ typedef struct rb_compile_option_struct rb_compile_option_t; union ic_serial_entry { rb_serial_t raw; VALUE data[2]; }; // imemo_constcache struct iseq_inline_constant_cache_entry { VALUE flags; VALUE value; // v0 VALUE _unused1; // v1 VALUE _unused2; // v2 const rb_cref_t *ic_cref; // v3 }; STATIC_ASSERT(sizeof_iseq_inline_constant_cache_entry, (offsetof(struct iseq_inline_constant_cache_entry, ic_cref) + sizeof(const rb_cref_t *)) <= RVALUE_SIZE); struct iseq_inline_constant_cache { struct iseq_inline_constant_cache_entry *entry; /** * A null-terminated list of ids, used to represent a constant's path * idNULL is used to represent the :: prefix, and 0 is used to donate the end * of the list. * * For example * FOO {rb_intern("FOO"), 0} * FOO::BAR {rb_intern("FOO"), rb_intern("BAR"), 0} * ::FOO {idNULL, rb_intern("FOO"), 0} * ::FOO::BAR {idNULL, rb_intern("FOO"), rb_intern("BAR"), 0} */ const ID *segments; }; struct iseq_inline_iv_cache_entry { uintptr_t value; // attr_index in lower bits, dest_shape_id in upper bits ID iv_set_name; }; struct iseq_inline_cvar_cache_entry { struct rb_cvar_class_tbl_entry *entry; }; union iseq_inline_storage_entry { struct { struct rb_thread_struct *running_thread; VALUE value; } once; struct iseq_inline_constant_cache ic_cache; struct iseq_inline_iv_cache_entry iv_cache; }; struct rb_calling_info { const struct rb_callinfo *ci; const struct rb_callcache *cc; VALUE block_handler; VALUE recv; int argc; bool kw_splat; }; struct rb_execution_context_struct; #if 1 #define CoreDataFromValue(obj, type) (type*)DATA_PTR(obj) #else #define CoreDataFromValue(obj, type) (type*)rb_data_object_get(obj) #endif #define GetCoreDataFromValue(obj, type, ptr) ((ptr) = CoreDataFromValue((obj), type)) typedef struct rb_iseq_location_struct { VALUE pathobj; /* String (path) or Array [path, realpath]. Frozen. */ VALUE base_label; /* String */ VALUE label; /* String */ int first_lineno; int node_id; rb_code_location_t code_location; } rb_iseq_location_t; #define PATHOBJ_PATH 0 #define PATHOBJ_REALPATH 1 static inline VALUE pathobj_path(VALUE pathobj) { if (RB_TYPE_P(pathobj, T_STRING)) { return pathobj; } else { VM_ASSERT(RB_TYPE_P(pathobj, T_ARRAY)); return RARRAY_AREF(pathobj, PATHOBJ_PATH); } } static inline VALUE pathobj_realpath(VALUE pathobj) { if (RB_TYPE_P(pathobj, T_STRING)) { return pathobj; } else { VM_ASSERT(RB_TYPE_P(pathobj, T_ARRAY)); return RARRAY_AREF(pathobj, PATHOBJ_REALPATH); } } /* Forward declarations */ struct rb_mjit_unit; typedef uintptr_t iseq_bits_t; #define ISEQ_IS_SIZE(body) (body->ic_size + body->ivc_size + body->ise_size + body->icvarc_size) /* [ TS_IVC | TS_ICVARC | TS_ISE | TS_IC ] */ #define ISEQ_IS_IC_ENTRY(body, idx) (body->is_entries[(idx) + body->ise_size + body->icvarc_size + body->ivc_size].ic_cache); /* instruction sequence type */ enum rb_iseq_type { ISEQ_TYPE_TOP, ISEQ_TYPE_METHOD, ISEQ_TYPE_BLOCK, ISEQ_TYPE_CLASS, ISEQ_TYPE_RESCUE, ISEQ_TYPE_ENSURE, ISEQ_TYPE_EVAL, ISEQ_TYPE_MAIN, ISEQ_TYPE_PLAIN }; struct rb_iseq_constant_body { enum rb_iseq_type type; unsigned int iseq_size; VALUE *iseq_encoded; /* encoded iseq (insn addr and operands) */ /** * parameter information * * def m(a1, a2, ..., aM, # mandatory * b1=(...), b2=(...), ..., bN=(...), # optional * *c, # rest * d1, d2, ..., dO, # post * e1:(...), e2:(...), ..., eK:(...), # keyword * **f, # keyword_rest * &g) # block * => * * lead_num = M * opt_num = N * rest_start = M+N * post_start = M+N+(*1) * post_num = O * keyword_num = K * block_start = M+N+(*1)+O+K * keyword_bits = M+N+(*1)+O+K+(&1) * size = M+N+O+(*1)+K+(&1)+(**1) // parameter size. */ struct { struct { unsigned int has_lead : 1; unsigned int has_opt : 1; unsigned int has_rest : 1; unsigned int has_post : 1; unsigned int has_kw : 1; unsigned int has_kwrest : 1; unsigned int has_block : 1; unsigned int ambiguous_param0 : 1; /* {|a|} */ unsigned int accepts_no_kwarg : 1; unsigned int ruby2_keywords: 1; } flags; unsigned int size; int lead_num; int opt_num; int rest_start; int post_start; int post_num; int block_start; const VALUE *opt_table; /* (opt_num + 1) entries. */ /* opt_num and opt_table: * * def foo o1=e1, o2=e2, ..., oN=eN * #=> * # prologue code * A1: e1 * A2: e2 * ... * AN: eN * AL: body * opt_num = N * opt_table = [A1, A2, ..., AN, AL] */ const struct rb_iseq_param_keyword { int num; int required_num; int bits_start; int rest_start; const ID *table; VALUE *default_values; } *keyword; } param; rb_iseq_location_t location; /* insn info, must be freed */ struct iseq_insn_info { const struct iseq_insn_info_entry *body; unsigned int *positions; unsigned int size; #if VM_INSN_INFO_TABLE_IMPL == 2 struct succ_index_table *succ_index_table; #endif } insns_info; const ID *local_table; /* must free */ /* catch table */ struct iseq_catch_table *catch_table; /* for child iseq */ const struct rb_iseq_struct *parent_iseq; struct rb_iseq_struct *local_iseq; /* local_iseq->flip_cnt can be modified */ union iseq_inline_storage_entry *is_entries; /* [ TS_IVC | TS_ICVARC | TS_ISE | TS_IC ] */ struct rb_call_data *call_data; //struct rb_call_data calls[ci_size]; struct { rb_snum_t flip_count; VALUE script_lines; VALUE coverage; VALUE pc2branchindex; VALUE *original_iseq; } variable; unsigned int local_table_size; unsigned int ic_size; // Number of IC caches unsigned int ise_size; // Number of ISE caches unsigned int ivc_size; // Number of IVC caches unsigned int icvarc_size; // Number of ICVARC caches unsigned int ci_size; unsigned int stack_max; /* for stack overflow check */ bool catch_except_p; // If a frame of this ISeq may catch exception, set true. // If true, this ISeq is leaf *and* backtraces are not used, for example, // by rb_profile_frames. We verify only leafness on VM_CHECK_MODE though. // Note that GC allocations might use backtraces due to // ObjectSpace#trace_object_allocations. // For more details, see: https://bugs.ruby-lang.org/issues/16956 bool builtin_inline_p; union { iseq_bits_t * list; /* Find references for GC */ iseq_bits_t single; } mark_bits; struct rb_id_table *outer_variables; const rb_iseq_t *mandatory_only_iseq; #if USE_MJIT || USE_YJIT // Function pointer for JIT code VALUE (*jit_func)(struct rb_execution_context_struct *, struct rb_control_frame_struct *); // Number of total calls with jit_exec() long unsigned total_calls; #endif #if USE_MJIT // MJIT stores some data on each iseq. VALUE mjit_blocks; #endif #if USE_YJIT // YJIT stores some data on each iseq. void *yjit_payload; #endif }; /* T_IMEMO/iseq */ /* typedef rb_iseq_t is in method.h */ struct rb_iseq_struct { VALUE flags; /* 1 */ VALUE wrapper; /* 2 */ struct rb_iseq_constant_body *body; /* 3 */ union { /* 4, 5 words */ struct iseq_compile_data *compile_data; /* used at compile time */ struct { VALUE obj; int index; } loader; struct { struct rb_hook_list_struct *local_hooks; rb_event_flag_t global_trace_events; } exec; } aux; }; #define ISEQ_BODY(iseq) ((iseq)->body) #ifndef EXTSTATIC #define EXTSTATIC 0 #endif #ifndef USE_LAZY_LOAD #define USE_LAZY_LOAD 0 #endif #if USE_LAZY_LOAD const rb_iseq_t *rb_iseq_complete(const rb_iseq_t *iseq); #endif static inline const rb_iseq_t * rb_iseq_check(const rb_iseq_t *iseq) { #if USE_LAZY_LOAD if (ISEQ_BODY(iseq) == NULL) { rb_iseq_complete((rb_iseq_t *)iseq); } #endif return iseq; } static inline const rb_iseq_t * def_iseq_ptr(rb_method_definition_t *def) { //TODO: re-visit. to check the bug, enable this assertion. #if VM_CHECK_MODE > 0 if (def->type != VM_METHOD_TYPE_ISEQ) rb_bug("def_iseq_ptr: not iseq (%d)", def->type); #endif return rb_iseq_check(def->body.iseq.iseqptr); } enum ruby_special_exceptions { ruby_error_reenter, ruby_error_nomemory, ruby_error_sysstack, ruby_error_stackfatal, ruby_error_stream_closed, ruby_special_error_count }; #define GetVMPtr(obj, ptr) \ GetCoreDataFromValue((obj), rb_vm_t, (ptr)) struct rb_vm_struct; typedef void rb_vm_at_exit_func(struct rb_vm_struct*); typedef struct rb_at_exit_list { rb_vm_at_exit_func *func; struct rb_at_exit_list *next; } rb_at_exit_list; struct rb_objspace; struct rb_objspace *rb_objspace_alloc(void); void rb_objspace_free(struct rb_objspace *); void rb_objspace_call_finalizer(struct rb_objspace *); typedef struct rb_hook_list_struct { struct rb_event_hook_struct *hooks; rb_event_flag_t events; unsigned int running; bool need_clean; bool is_local; } rb_hook_list_t; // see builtin.h for definition typedef const struct rb_builtin_function *RB_BUILTIN; typedef struct rb_vm_struct { VALUE self; struct { struct ccan_list_head set; unsigned int cnt; unsigned int blocking_cnt; struct rb_ractor_struct *main_ractor; struct rb_thread_struct *main_thread; // == vm->ractor.main_ractor->threads.main struct { // monitor rb_nativethread_lock_t lock; struct rb_ractor_struct *lock_owner; unsigned int lock_rec; // barrier bool barrier_waiting; unsigned int barrier_cnt; rb_nativethread_cond_t barrier_cond; // join at exit rb_nativethread_cond_t terminate_cond; bool terminate_waiting; } sync; } ractor; #ifdef USE_SIGALTSTACK void *main_altstack; #endif rb_serial_t fork_gen; rb_nativethread_lock_t waitpid_lock; struct ccan_list_head waiting_pids; /* PID > 0: <=> struct waitpid_state */ struct ccan_list_head waiting_grps; /* PID <= 0: <=> struct waitpid_state */ struct ccan_list_head waiting_fds; /* <=> struct waiting_fd */ /* set in single-threaded processes only: */ volatile int ubf_async_safe; unsigned int running: 1; unsigned int thread_abort_on_exception: 1; unsigned int thread_report_on_exception: 1; unsigned int thread_ignore_deadlock: 1; /* object management */ VALUE mark_object_ary; const VALUE special_exceptions[ruby_special_error_count]; /* object shapes */ rb_shape_t *shape_list; rb_shape_t *root_shape; shape_id_t next_shape_id; /* load */ VALUE top_self; VALUE load_path; VALUE load_path_snapshot; VALUE load_path_check_cache; VALUE expanded_load_path; VALUE loaded_features; VALUE loaded_features_snapshot; VALUE loaded_features_realpaths; struct st_table *loaded_features_index; struct st_table *loading_table; #if EXTSTATIC // For running the init function of statically linked // extensions when they are loaded struct st_table *static_ext_inits; #endif /* signal */ struct { VALUE cmd[RUBY_NSIG]; } trap_list; /* relation table of ensure - rollback for callcc */ struct st_table *ensure_rollback_table; /* postponed_job (async-signal-safe, NOT thread-safe) */ struct rb_postponed_job_struct *postponed_job_buffer; rb_atomic_t postponed_job_index; int src_encoding_index; /* workqueue (thread-safe, NOT async-signal-safe) */ struct ccan_list_head workqueue; /* <=> rb_workqueue_job.jnode */ rb_nativethread_lock_t workqueue_lock; VALUE orig_progname, progname; VALUE coverages, me2counter; int coverage_mode; st_table * defined_module_hash; struct rb_objspace *objspace; rb_at_exit_list *at_exit; st_table *frozen_strings; const struct rb_builtin_function *builtin_function_table; int builtin_inline_index; struct rb_id_table *negative_cme_table; st_table *overloaded_cme_table; // cme -> overloaded_cme // This id table contains a mapping from ID to ICs. It does this with ID // keys and nested st_tables as values. The nested tables have ICs as keys // and Qtrue as values. It is used when inline constant caches need to be // invalidated or ISEQs are being freed. struct rb_id_table *constant_cache; #ifndef VM_GLOBAL_CC_CACHE_TABLE_SIZE #define VM_GLOBAL_CC_CACHE_TABLE_SIZE 1023 #endif const struct rb_callcache *global_cc_cache_table[VM_GLOBAL_CC_CACHE_TABLE_SIZE]; // vm_eval.c #if defined(USE_VM_CLOCK) && USE_VM_CLOCK uint32_t clock; #endif /* params */ struct { /* size in byte */ size_t thread_vm_stack_size; size_t thread_machine_stack_size; size_t fiber_vm_stack_size; size_t fiber_machine_stack_size; } default_params; } rb_vm_t; /* default values */ #define RUBY_VM_SIZE_ALIGN 4096 #define RUBY_VM_THREAD_VM_STACK_SIZE ( 128 * 1024 * sizeof(VALUE)) /* 512 KB or 1024 KB */ #define RUBY_VM_THREAD_VM_STACK_SIZE_MIN ( 2 * 1024 * sizeof(VALUE)) /* 8 KB or 16 KB */ #define RUBY_VM_THREAD_MACHINE_STACK_SIZE ( 128 * 1024 * sizeof(VALUE)) /* 512 KB or 1024 KB */ #define RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN ( 16 * 1024 * sizeof(VALUE)) /* 64 KB or 128 KB */ #define RUBY_VM_FIBER_VM_STACK_SIZE ( 16 * 1024 * sizeof(VALUE)) /* 64 KB or 128 KB */ #define RUBY_VM_FIBER_VM_STACK_SIZE_MIN ( 2 * 1024 * sizeof(VALUE)) /* 8 KB or 16 KB */ #define RUBY_VM_FIBER_MACHINE_STACK_SIZE ( 64 * 1024 * sizeof(VALUE)) /* 256 KB or 512 KB */ #if defined(__powerpc64__) || defined(__ppc64__) // macOS has __ppc64__ #define RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN ( 32 * 1024 * sizeof(VALUE)) /* 128 KB or 256 KB */ #else #define RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN ( 16 * 1024 * sizeof(VALUE)) /* 64 KB or 128 KB */ #endif #if __has_feature(memory_sanitizer) || __has_feature(address_sanitizer) /* It seems sanitizers consume A LOT of machine stacks */ #undef RUBY_VM_THREAD_MACHINE_STACK_SIZE #define RUBY_VM_THREAD_MACHINE_STACK_SIZE (1024 * 1024 * sizeof(VALUE)) #undef RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN #define RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN ( 512 * 1024 * sizeof(VALUE)) #undef RUBY_VM_FIBER_MACHINE_STACK_SIZE #define RUBY_VM_FIBER_MACHINE_STACK_SIZE ( 256 * 1024 * sizeof(VALUE)) #undef RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN #define RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN ( 128 * 1024 * sizeof(VALUE)) #endif #ifndef VM_DEBUG_BP_CHECK #define VM_DEBUG_BP_CHECK 0 #endif #ifndef VM_DEBUG_VERIFY_METHOD_CACHE #define VM_DEBUG_VERIFY_METHOD_CACHE (VMDEBUG != 0) #endif struct rb_captured_block { VALUE self; const VALUE *ep; union { const rb_iseq_t *iseq; const struct vm_ifunc *ifunc; VALUE val; } code; }; enum rb_block_handler_type { block_handler_type_iseq, block_handler_type_ifunc, block_handler_type_symbol, block_handler_type_proc }; enum rb_block_type { block_type_iseq, block_type_ifunc, block_type_symbol, block_type_proc }; struct rb_block { union { struct rb_captured_block captured; VALUE symbol; VALUE proc; } as; enum rb_block_type type; }; typedef struct rb_control_frame_struct { const VALUE *pc; /* cfp[0] */ VALUE *sp; /* cfp[1] */ const rb_iseq_t *iseq; /* cfp[2] */ VALUE self; /* cfp[3] / block[0] */ const VALUE *ep; /* cfp[4] / block[1] */ const void *block_code; /* cfp[5] / block[2] */ /* iseq or ifunc or forwarded block handler */ VALUE *__bp__; /* cfp[6] */ /* outside vm_push_frame, use vm_base_ptr instead. */ #if VM_DEBUG_BP_CHECK VALUE *bp_check; /* cfp[7] */ #endif // Return address for YJIT code void *jit_return; } rb_control_frame_t; extern const rb_data_type_t ruby_threadptr_data_type; static inline struct rb_thread_struct * rb_thread_ptr(VALUE thval) { return (struct rb_thread_struct *)rb_check_typeddata(thval, &ruby_threadptr_data_type); } enum rb_thread_status { THREAD_RUNNABLE, THREAD_STOPPED, THREAD_STOPPED_FOREVER, THREAD_KILLED }; #ifdef RUBY_JMP_BUF typedef RUBY_JMP_BUF rb_jmpbuf_t; #else typedef void *rb_jmpbuf_t[5]; #endif /* the members which are written in EC_PUSH_TAG() should be placed at the beginning and the end, so that entire region is accessible. */ struct rb_vm_tag { VALUE tag; VALUE retval; rb_jmpbuf_t buf; struct rb_vm_tag *prev; enum ruby_tag_type state; unsigned int lock_rec; }; STATIC_ASSERT(rb_vm_tag_buf_offset, offsetof(struct rb_vm_tag, buf) > 0); STATIC_ASSERT(rb_vm_tag_buf_end, offsetof(struct rb_vm_tag, buf) + sizeof(rb_jmpbuf_t) < sizeof(struct rb_vm_tag)); struct rb_unblock_callback { rb_unblock_function_t *func; void *arg; }; struct rb_mutex_struct; typedef struct rb_ensure_entry { VALUE marker; VALUE (*e_proc)(VALUE); VALUE data2; } rb_ensure_entry_t; typedef struct rb_ensure_list { struct rb_ensure_list *next; struct rb_ensure_entry entry; } rb_ensure_list_t; typedef struct rb_fiber_struct rb_fiber_t; struct rb_waiting_list { struct rb_waiting_list *next; struct rb_thread_struct *thread; struct rb_fiber_struct *fiber; }; struct rb_execution_context_struct { /* execution information */ VALUE *vm_stack; /* must free, must mark */ size_t vm_stack_size; /* size in word (byte size / sizeof(VALUE)) */ rb_control_frame_t *cfp; struct rb_vm_tag *tag; /* interrupt flags */ rb_atomic_t interrupt_flag; rb_atomic_t interrupt_mask; /* size should match flag */ #if defined(USE_VM_CLOCK) && USE_VM_CLOCK uint32_t checked_clock; #endif rb_fiber_t *fiber_ptr; struct rb_thread_struct *thread_ptr; /* storage (ec (fiber) local) */ struct rb_id_table *local_storage; VALUE local_storage_recursive_hash; VALUE local_storage_recursive_hash_for_trace; /* Inheritable fiber storage. */ VALUE storage; /* eval env */ const VALUE *root_lep; VALUE root_svar; /* ensure & callcc */ rb_ensure_list_t *ensure_list; /* trace information */ struct rb_trace_arg_struct *trace_arg; /* temporary places */ VALUE errinfo; VALUE passed_block_handler; /* for rb_iterate */ uint8_t raised_flag; /* only 3 bits needed */ /* n.b. only 7 bits needed, really: */ BITFIELD(enum method_missing_reason, method_missing_reason, 8); VALUE private_const_reference; /* for GC */ struct { VALUE *stack_start; VALUE *stack_end; size_t stack_maxsize; RUBY_ALIGNAS(SIZEOF_VALUE) jmp_buf regs; } machine; }; #ifndef rb_execution_context_t typedef struct rb_execution_context_struct rb_execution_context_t; #define rb_execution_context_t rb_execution_context_t #endif // for builtin.h #define VM_CORE_H_EC_DEFINED 1 // Set the vm_stack pointer in the execution context. void rb_ec_set_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size); // Initialize the vm_stack pointer in the execution context and push the initial stack frame. // @param ec the execution context to update. // @param stack a pointer to the stack to use. // @param size the size of the stack, as in `VALUE stack[size]`. void rb_ec_initialize_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size); // Clear (set to `NULL`) the vm_stack pointer. // @param ec the execution context to update. void rb_ec_clear_vm_stack(rb_execution_context_t *ec); struct rb_ext_config { bool ractor_safe; }; typedef struct rb_ractor_struct rb_ractor_t; struct rb_native_thread; typedef struct rb_thread_struct { struct ccan_list_node lt_node; // managed by a ractor VALUE self; rb_ractor_t *ractor; rb_vm_t *vm; struct rb_native_thread *nt; rb_execution_context_t *ec; struct rb_thread_sched_item sched; rb_atomic_t serial; // only for RUBY_DEBUG_LOG() VALUE last_status; /* $? */ /* for cfunc */ struct rb_calling_info *calling; /* for load(true) */ VALUE top_self; VALUE top_wrapper; /* thread control */ BITFIELD(enum rb_thread_status, status, 2); /* bit flags */ unsigned int locking_native_thread : 1; unsigned int to_kill : 1; unsigned int abort_on_exception: 1; unsigned int report_on_exception: 1; unsigned int pending_interrupt_queue_checked: 1; int8_t priority; /* -3 .. 3 (RUBY_THREAD_PRIORITY_{MIN,MAX}) */ uint32_t running_time_us; /* 12500..800000 */ void *blocking_region_buffer; VALUE thgroup; VALUE value; /* temporary place of retval on OPT_CALL_THREADED_CODE */ #if OPT_CALL_THREADED_CODE VALUE retval; #endif /* async errinfo queue */ VALUE pending_interrupt_queue; VALUE pending_interrupt_mask_stack; /* interrupt management */ rb_nativethread_lock_t interrupt_lock; struct rb_unblock_callback unblock; VALUE locking_mutex; struct rb_mutex_struct *keeping_mutexes; struct rb_waiting_list *join_list; union { struct { VALUE proc; VALUE args; int kw_splat; } proc; struct { VALUE (*func)(void *); void *arg; } func; } invoke_arg; enum thread_invoke_type { thread_invoke_type_none = 0, thread_invoke_type_proc, thread_invoke_type_ractor_proc, thread_invoke_type_func } invoke_type; /* statistics data for profiler */ VALUE stat_insn_usage; /* fiber */ rb_fiber_t *root_fiber; VALUE scheduler; unsigned int blocking; /* misc */ VALUE name; struct rb_ext_config ext_config; } rb_thread_t; static inline unsigned int rb_th_serial(const rb_thread_t *th) { return (unsigned int)th->serial; } typedef enum { VM_DEFINECLASS_TYPE_CLASS = 0x00, VM_DEFINECLASS_TYPE_SINGLETON_CLASS = 0x01, VM_DEFINECLASS_TYPE_MODULE = 0x02, /* 0x03..0x06 is reserved */ VM_DEFINECLASS_TYPE_MASK = 0x07 } rb_vm_defineclass_type_t; #define VM_DEFINECLASS_TYPE(x) ((rb_vm_defineclass_type_t)(x) & VM_DEFINECLASS_TYPE_MASK) #define VM_DEFINECLASS_FLAG_SCOPED 0x08 #define VM_DEFINECLASS_FLAG_HAS_SUPERCLASS 0x10 #define VM_DEFINECLASS_SCOPED_P(x) ((x) & VM_DEFINECLASS_FLAG_SCOPED) #define VM_DEFINECLASS_HAS_SUPERCLASS_P(x) \ ((x) & VM_DEFINECLASS_FLAG_HAS_SUPERCLASS) /* iseq.c */ RUBY_SYMBOL_EXPORT_BEGIN /* node -> iseq */ rb_iseq_t *rb_iseq_new (const rb_ast_body_t *ast, VALUE name, VALUE path, VALUE realpath, const rb_iseq_t *parent, enum rb_iseq_type); rb_iseq_t *rb_iseq_new_top (const rb_ast_body_t *ast, VALUE name, VALUE path, VALUE realpath, const rb_iseq_t *parent); rb_iseq_t *rb_iseq_new_main (const rb_ast_body_t *ast, VALUE path, VALUE realpath, const rb_iseq_t *parent, int opt); rb_iseq_t *rb_iseq_new_eval (const rb_ast_body_t *ast, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, int isolated_depth); rb_iseq_t *rb_iseq_new_with_opt(const rb_ast_body_t *ast, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, int isolated_depth, enum rb_iseq_type, const rb_compile_option_t*); struct iseq_link_anchor; struct rb_iseq_new_with_callback_callback_func { VALUE flags; VALUE reserved; void (*func)(rb_iseq_t *, struct iseq_link_anchor *, const void *); const void *data; }; static inline struct rb_iseq_new_with_callback_callback_func * rb_iseq_new_with_callback_new_callback( void (*func)(rb_iseq_t *, struct iseq_link_anchor *, const void *), const void *ptr) { VALUE memo = rb_imemo_new(imemo_ifunc, (VALUE)func, (VALUE)ptr, Qundef, Qfalse); return (struct rb_iseq_new_with_callback_callback_func *)memo; } rb_iseq_t *rb_iseq_new_with_callback(const struct rb_iseq_new_with_callback_callback_func * ifunc, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, enum rb_iseq_type, const rb_compile_option_t*); VALUE rb_iseq_disasm(const rb_iseq_t *iseq); int rb_iseq_disasm_insn(VALUE str, const VALUE *iseqval, size_t pos, const rb_iseq_t *iseq, VALUE child); attr_index_t rb_estimate_iv_count(VALUE klass, const rb_iseq_t * initialize_iseq); VALUE rb_iseq_coverage(const rb_iseq_t *iseq); RUBY_EXTERN VALUE rb_cISeq; RUBY_EXTERN VALUE rb_cRubyVM; RUBY_EXTERN VALUE rb_mRubyVMFrozenCore; RUBY_EXTERN VALUE rb_block_param_proxy; RUBY_SYMBOL_EXPORT_END #define GetProcPtr(obj, ptr) \ GetCoreDataFromValue((obj), rb_proc_t, (ptr)) typedef struct { const struct rb_block block; unsigned int is_from_method: 1; /* bool */ unsigned int is_lambda: 1; /* bool */ unsigned int is_isolated: 1; /* bool */ } rb_proc_t; RUBY_SYMBOL_EXPORT_BEGIN VALUE rb_proc_isolate(VALUE self); VALUE rb_proc_isolate_bang(VALUE self); VALUE rb_proc_ractor_make_shareable(VALUE self); RUBY_SYMBOL_EXPORT_END typedef struct { VALUE flags; /* imemo header */ rb_iseq_t *iseq; const VALUE *ep; const VALUE *env; unsigned int env_size; } rb_env_t; extern const rb_data_type_t ruby_binding_data_type; #define GetBindingPtr(obj, ptr) \ GetCoreDataFromValue((obj), rb_binding_t, (ptr)) typedef struct { const struct rb_block block; const VALUE pathobj; int first_lineno; } rb_binding_t; /* used by compile time and send insn */ enum vm_check_match_type { VM_CHECKMATCH_TYPE_WHEN = 1, VM_CHECKMATCH_TYPE_CASE = 2, VM_CHECKMATCH_TYPE_RESCUE = 3 }; #define VM_CHECKMATCH_TYPE_MASK 0x03 #define VM_CHECKMATCH_ARRAY 0x04 enum vm_special_object_type { VM_SPECIAL_OBJECT_VMCORE = 1, VM_SPECIAL_OBJECT_CBASE, VM_SPECIAL_OBJECT_CONST_BASE }; enum vm_svar_index { VM_SVAR_LASTLINE = 0, /* $_ */ VM_SVAR_BACKREF = 1, /* $~ */ VM_SVAR_EXTRA_START = 2, VM_SVAR_FLIPFLOP_START = 2 /* flipflop */ }; /* inline cache */ typedef struct iseq_inline_constant_cache *IC; typedef struct iseq_inline_iv_cache_entry *IVC; typedef struct iseq_inline_cvar_cache_entry *ICVARC; typedef union iseq_inline_storage_entry *ISE; typedef const struct rb_callinfo *CALL_INFO; typedef const struct rb_callcache *CALL_CACHE; typedef struct rb_call_data *CALL_DATA; typedef VALUE CDHASH; #ifndef FUNC_FASTCALL #define FUNC_FASTCALL(x) x #endif typedef rb_control_frame_t * (FUNC_FASTCALL(*rb_insn_func_t))(rb_execution_context_t *, rb_control_frame_t *); #define VM_TAGGED_PTR_SET(p, tag) ((VALUE)(p) | (tag)) #define VM_TAGGED_PTR_REF(v, mask) ((void *)((v) & ~mask)) #define GC_GUARDED_PTR(p) VM_TAGGED_PTR_SET((p), 0x01) #define GC_GUARDED_PTR_REF(p) VM_TAGGED_PTR_REF((p), 0x03) #define GC_GUARDED_PTR_P(p) (((VALUE)(p)) & 0x01) enum vm_frame_env_flags { /* Frame/Environment flag bits: * MMMM MMMM MMMM MMMM ____ FFFF FFFE EEEX (LSB) * * X : tag for GC marking (It seems as Fixnum) * EEE : 4 bits Env flags * FF..: 7 bits Frame flags * MM..: 15 bits frame magic (to check frame corruption) */ /* frame types */ VM_FRAME_MAGIC_METHOD = 0x11110001, VM_FRAME_MAGIC_BLOCK = 0x22220001, VM_FRAME_MAGIC_CLASS = 0x33330001, VM_FRAME_MAGIC_TOP = 0x44440001, VM_FRAME_MAGIC_CFUNC = 0x55550001, VM_FRAME_MAGIC_IFUNC = 0x66660001, VM_FRAME_MAGIC_EVAL = 0x77770001, VM_FRAME_MAGIC_RESCUE = 0x78880001, VM_FRAME_MAGIC_DUMMY = 0x79990001, VM_FRAME_MAGIC_MASK = 0x7fff0001, /* frame flag */ VM_FRAME_FLAG_FINISH = 0x0020, VM_FRAME_FLAG_BMETHOD = 0x0040, VM_FRAME_FLAG_CFRAME = 0x0080, VM_FRAME_FLAG_LAMBDA = 0x0100, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM = 0x0200, VM_FRAME_FLAG_CFRAME_KW = 0x0400, VM_FRAME_FLAG_PASSED = 0x0800, /* env flag */ VM_ENV_FLAG_LOCAL = 0x0002, VM_ENV_FLAG_ESCAPED = 0x0004, VM_ENV_FLAG_WB_REQUIRED = 0x0008, VM_ENV_FLAG_ISOLATED = 0x0010, }; #define VM_ENV_DATA_SIZE ( 3) #define VM_ENV_DATA_INDEX_ME_CREF (-2) /* ep[-2] */ #define VM_ENV_DATA_INDEX_SPECVAL (-1) /* ep[-1] */ #define VM_ENV_DATA_INDEX_FLAGS ( 0) /* ep[ 0] */ #define VM_ENV_DATA_INDEX_ENV ( 1) /* ep[ 1] */ #define VM_ENV_INDEX_LAST_LVAR (-VM_ENV_DATA_SIZE) static inline void VM_FORCE_WRITE_SPECIAL_CONST(const VALUE *ptr, VALUE special_const_value); static inline void VM_ENV_FLAGS_SET(const VALUE *ep, VALUE flag) { VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS]; VM_ASSERT(FIXNUM_P(flags)); VM_FORCE_WRITE_SPECIAL_CONST(&ep[VM_ENV_DATA_INDEX_FLAGS], flags | flag); } static inline void VM_ENV_FLAGS_UNSET(const VALUE *ep, VALUE flag) { VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS]; VM_ASSERT(FIXNUM_P(flags)); VM_FORCE_WRITE_SPECIAL_CONST(&ep[VM_ENV_DATA_INDEX_FLAGS], flags & ~flag); } static inline unsigned long VM_ENV_FLAGS(const VALUE *ep, long flag) { VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS]; VM_ASSERT(FIXNUM_P(flags)); return flags & flag; } static inline unsigned long VM_FRAME_TYPE(const rb_control_frame_t *cfp) { return VM_ENV_FLAGS(cfp->ep, VM_FRAME_MAGIC_MASK); } static inline int VM_FRAME_LAMBDA_P(const rb_control_frame_t *cfp) { return VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_LAMBDA) != 0; } static inline int VM_FRAME_CFRAME_KW_P(const rb_control_frame_t *cfp) { return VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_CFRAME_KW) != 0; } static inline int VM_FRAME_FINISHED_P(const rb_control_frame_t *cfp) { return VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_FINISH) != 0; } static inline int VM_FRAME_BMETHOD_P(const rb_control_frame_t *cfp) { return VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_BMETHOD) != 0; } static inline int rb_obj_is_iseq(VALUE iseq) { return imemo_type_p(iseq, imemo_iseq); } #if VM_CHECK_MODE > 0 #define RUBY_VM_NORMAL_ISEQ_P(iseq) rb_obj_is_iseq((VALUE)iseq) #endif static inline int VM_FRAME_CFRAME_P(const rb_control_frame_t *cfp) { int cframe_p = VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_CFRAME) != 0; VM_ASSERT(RUBY_VM_NORMAL_ISEQ_P(cfp->iseq) != cframe_p || (VM_FRAME_TYPE(cfp) & VM_FRAME_MAGIC_MASK) == VM_FRAME_MAGIC_DUMMY); return cframe_p; } static inline int VM_FRAME_RUBYFRAME_P(const rb_control_frame_t *cfp) { return !VM_FRAME_CFRAME_P(cfp); } #define RUBYVM_CFUNC_FRAME_P(cfp) \ (VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_CFUNC) #define VM_GUARDED_PREV_EP(ep) GC_GUARDED_PTR(ep) #define VM_BLOCK_HANDLER_NONE 0 static inline int VM_ENV_LOCAL_P(const VALUE *ep) { return VM_ENV_FLAGS(ep, VM_ENV_FLAG_LOCAL) ? 1 : 0; } static inline const VALUE * VM_ENV_PREV_EP(const VALUE *ep) { VM_ASSERT(VM_ENV_LOCAL_P(ep) == 0); return GC_GUARDED_PTR_REF(ep[VM_ENV_DATA_INDEX_SPECVAL]); } static inline VALUE VM_ENV_BLOCK_HANDLER(const VALUE *ep) { VM_ASSERT(VM_ENV_LOCAL_P(ep)); return ep[VM_ENV_DATA_INDEX_SPECVAL]; } #if VM_CHECK_MODE > 0 int rb_vm_ep_in_heap_p(const VALUE *ep); #endif static inline int VM_ENV_ESCAPED_P(const VALUE *ep) { VM_ASSERT(rb_vm_ep_in_heap_p(ep) == !!VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED)); return VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED) ? 1 : 0; } #if VM_CHECK_MODE > 0 static inline int vm_assert_env(VALUE obj) { VM_ASSERT(imemo_type_p(obj, imemo_env)); return 1; } #endif RBIMPL_ATTR_NONNULL((1)) static inline VALUE VM_ENV_ENVVAL(const VALUE *ep) { VALUE envval = ep[VM_ENV_DATA_INDEX_ENV]; VM_ASSERT(VM_ENV_ESCAPED_P(ep)); VM_ASSERT(vm_assert_env(envval)); return envval; } RBIMPL_ATTR_NONNULL((1)) static inline const rb_env_t * VM_ENV_ENVVAL_PTR(const VALUE *ep) { return (const rb_env_t *)VM_ENV_ENVVAL(ep); } static inline const rb_env_t * vm_env_new(VALUE *env_ep, VALUE *env_body, unsigned int env_size, const rb_iseq_t *iseq) { rb_env_t *env = (rb_env_t *)rb_imemo_new(imemo_env, (VALUE)env_ep, (VALUE)env_body, 0, (VALUE)iseq); env->env_size = env_size; env_ep[VM_ENV_DATA_INDEX_ENV] = (VALUE)env; return env; } static inline void VM_FORCE_WRITE(const VALUE *ptr, VALUE v) { *((VALUE *)ptr) = v; } static inline void VM_FORCE_WRITE_SPECIAL_CONST(const VALUE *ptr, VALUE special_const_value) { VM_ASSERT(RB_SPECIAL_CONST_P(special_const_value)); VM_FORCE_WRITE(ptr, special_const_value); } static inline void VM_STACK_ENV_WRITE(const VALUE *ep, int index, VALUE v) { VM_ASSERT(VM_ENV_FLAGS(ep, VM_ENV_FLAG_WB_REQUIRED) == 0); VM_FORCE_WRITE(&ep[index], v); } const VALUE *rb_vm_ep_local_ep(const VALUE *ep); const VALUE *rb_vm_proc_local_ep(VALUE proc); void rb_vm_block_ep_update(VALUE obj, const struct rb_block *dst, const VALUE *ep); void rb_vm_block_copy(VALUE obj, const struct rb_block *dst, const struct rb_block *src); VALUE rb_vm_frame_block_handler(const rb_control_frame_t *cfp); #define RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp) ((cfp)+1) #define RUBY_VM_NEXT_CONTROL_FRAME(cfp) ((cfp)-1) #define RUBY_VM_VALID_CONTROL_FRAME_P(cfp, ecfp) \ ((void *)(ecfp) > (void *)(cfp)) static inline const rb_control_frame_t * RUBY_VM_END_CONTROL_FRAME(const rb_execution_context_t *ec) { return (rb_control_frame_t *)(ec->vm_stack + ec->vm_stack_size); } static inline int RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(const rb_execution_context_t *ec, const rb_control_frame_t *cfp) { return !RUBY_VM_VALID_CONTROL_FRAME_P(cfp, RUBY_VM_END_CONTROL_FRAME(ec)); } static inline int VM_BH_ISEQ_BLOCK_P(VALUE block_handler) { if ((block_handler & 0x03) == 0x01) { #if VM_CHECK_MODE > 0 struct rb_captured_block *captured = VM_TAGGED_PTR_REF(block_handler, 0x03); VM_ASSERT(imemo_type_p(captured->code.val, imemo_iseq)); #endif return 1; } else { return 0; } } static inline VALUE VM_BH_FROM_ISEQ_BLOCK(const struct rb_captured_block *captured) { VALUE block_handler = VM_TAGGED_PTR_SET(captured, 0x01); VM_ASSERT(VM_BH_ISEQ_BLOCK_P(block_handler)); return block_handler; } static inline const struct rb_captured_block * VM_BH_TO_ISEQ_BLOCK(VALUE block_handler) { struct rb_captured_block *captured = VM_TAGGED_PTR_REF(block_handler, 0x03); VM_ASSERT(VM_BH_ISEQ_BLOCK_P(block_handler)); return captured; } static inline int VM_BH_IFUNC_P(VALUE block_handler) { if ((block_handler & 0x03) == 0x03) { #if VM_CHECK_MODE > 0 struct rb_captured_block *captured = (void *)(block_handler & ~0x03); VM_ASSERT(imemo_type_p(captured->code.val, imemo_ifunc)); #endif return 1; } else { return 0; } } static inline VALUE VM_BH_FROM_IFUNC_BLOCK(const struct rb_captured_block *captured) { VALUE block_handler = VM_TAGGED_PTR_SET(captured, 0x03); VM_ASSERT(VM_BH_IFUNC_P(block_handler)); return block_handler; } static inline const struct rb_captured_block * VM_BH_TO_IFUNC_BLOCK(VALUE block_handler) { struct rb_captured_block *captured = VM_TAGGED_PTR_REF(block_handler, 0x03); VM_ASSERT(VM_BH_IFUNC_P(block_handler)); return captured; } static inline const struct rb_captured_block * VM_BH_TO_CAPT_BLOCK(VALUE block_handler) { struct rb_captured_block *captured = VM_TAGGED_PTR_REF(block_handler, 0x03); VM_ASSERT(VM_BH_IFUNC_P(block_handler) || VM_BH_ISEQ_BLOCK_P(block_handler)); return captured; } static inline enum rb_block_handler_type vm_block_handler_type(VALUE block_handler) { if (VM_BH_ISEQ_BLOCK_P(block_handler)) { return block_handler_type_iseq; } else if (VM_BH_IFUNC_P(block_handler)) { return block_handler_type_ifunc; } else if (SYMBOL_P(block_handler)) { return block_handler_type_symbol; } else { VM_ASSERT(rb_obj_is_proc(block_handler)); return block_handler_type_proc; } } static inline void vm_block_handler_verify(MAYBE_UNUSED(VALUE block_handler)) { VM_ASSERT(block_handler == VM_BLOCK_HANDLER_NONE || (vm_block_handler_type(block_handler), 1)); } static inline int vm_cfp_forwarded_bh_p(const rb_control_frame_t *cfp, VALUE block_handler) { return ((VALUE) cfp->block_code) == block_handler; } static inline enum rb_block_type vm_block_type(const struct rb_block *block) { #if VM_CHECK_MODE > 0 switch (block->type) { case block_type_iseq: VM_ASSERT(imemo_type_p(block->as.captured.code.val, imemo_iseq)); break; case block_type_ifunc: VM_ASSERT(imemo_type_p(block->as.captured.code.val, imemo_ifunc)); break; case block_type_symbol: VM_ASSERT(SYMBOL_P(block->as.symbol)); break; case block_type_proc: VM_ASSERT(rb_obj_is_proc(block->as.proc)); break; } #endif return block->type; } static inline void vm_block_type_set(const struct rb_block *block, enum rb_block_type type) { struct rb_block *mb = (struct rb_block *)block; mb->type = type; } static inline const struct rb_block * vm_proc_block(VALUE procval) { VM_ASSERT(rb_obj_is_proc(procval)); return &((rb_proc_t *)RTYPEDDATA_DATA(procval))->block; } static inline const rb_iseq_t *vm_block_iseq(const struct rb_block *block); static inline const VALUE *vm_block_ep(const struct rb_block *block); static inline const rb_iseq_t * vm_proc_iseq(VALUE procval) { return vm_block_iseq(vm_proc_block(procval)); } static inline const VALUE * vm_proc_ep(VALUE procval) { return vm_block_ep(vm_proc_block(procval)); } static inline const rb_iseq_t * vm_block_iseq(const struct rb_block *block) { switch (vm_block_type(block)) { case block_type_iseq: return rb_iseq_check(block->as.captured.code.iseq); case block_type_proc: return vm_proc_iseq(block->as.proc); case block_type_ifunc: case block_type_symbol: return NULL; } VM_UNREACHABLE(vm_block_iseq); return NULL; } static inline const VALUE * vm_block_ep(const struct rb_block *block) { switch (vm_block_type(block)) { case block_type_iseq: case block_type_ifunc: return block->as.captured.ep; case block_type_proc: return vm_proc_ep(block->as.proc); case block_type_symbol: return NULL; } VM_UNREACHABLE(vm_block_ep); return NULL; } static inline VALUE vm_block_self(const struct rb_block *block) { switch (vm_block_type(block)) { case block_type_iseq: case block_type_ifunc: return block->as.captured.self; case block_type_proc: return vm_block_self(vm_proc_block(block->as.proc)); case block_type_symbol: return Qundef; } VM_UNREACHABLE(vm_block_self); return Qundef; } static inline VALUE VM_BH_TO_SYMBOL(VALUE block_handler) { VM_ASSERT(SYMBOL_P(block_handler)); return block_handler; } static inline VALUE VM_BH_FROM_SYMBOL(VALUE symbol) { VM_ASSERT(SYMBOL_P(symbol)); return symbol; } static inline VALUE VM_BH_TO_PROC(VALUE block_handler) { VM_ASSERT(rb_obj_is_proc(block_handler)); return block_handler; } static inline VALUE VM_BH_FROM_PROC(VALUE procval) { VM_ASSERT(rb_obj_is_proc(procval)); return procval; } /* VM related object allocate functions */ VALUE rb_thread_alloc(VALUE klass); VALUE rb_binding_alloc(VALUE klass); VALUE rb_proc_alloc(VALUE klass); VALUE rb_proc_dup(VALUE self); /* for debug */ extern void rb_vmdebug_stack_dump_raw(const rb_execution_context_t *ec, const rb_control_frame_t *cfp); extern void rb_vmdebug_debug_print_pre(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, const VALUE *_pc); extern void rb_vmdebug_debug_print_post(const rb_execution_context_t *ec, const rb_control_frame_t *cfp #if OPT_STACK_CACHING , VALUE reg_a, VALUE reg_b #endif ); #define SDR() rb_vmdebug_stack_dump_raw(GET_EC(), GET_EC()->cfp) #define SDR2(cfp) rb_vmdebug_stack_dump_raw(GET_EC(), (cfp)) void rb_vm_bugreport(const void *); typedef void (*ruby_sighandler_t)(int); RBIMPL_ATTR_FORMAT(RBIMPL_PRINTF_FORMAT, 4, 5) NORETURN(void rb_bug_for_fatal_signal(ruby_sighandler_t default_sighandler, int sig, const void *, const char *fmt, ...)); /* functions about thread/vm execution */ RUBY_SYMBOL_EXPORT_BEGIN VALUE rb_iseq_eval(const rb_iseq_t *iseq); VALUE rb_iseq_eval_main(const rb_iseq_t *iseq); VALUE rb_iseq_path(const rb_iseq_t *iseq); VALUE rb_iseq_realpath(const rb_iseq_t *iseq); RUBY_SYMBOL_EXPORT_END VALUE rb_iseq_pathobj_new(VALUE path, VALUE realpath); void rb_iseq_pathobj_set(const rb_iseq_t *iseq, VALUE path, VALUE realpath); int rb_ec_frame_method_id_and_class(const rb_execution_context_t *ec, ID *idp, ID *called_idp, VALUE *klassp); void rb_ec_setup_exception(const rb_execution_context_t *ec, VALUE mesg, VALUE cause); VALUE rb_vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, int argc, const VALUE *argv, int kw_splat, VALUE block_handler); VALUE rb_vm_make_proc_lambda(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass, int8_t is_lambda); static inline VALUE rb_vm_make_proc(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass) { return rb_vm_make_proc_lambda(ec, captured, klass, 0); } static inline VALUE rb_vm_make_lambda(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass) { return rb_vm_make_proc_lambda(ec, captured, klass, 1); } VALUE rb_vm_make_binding(const rb_execution_context_t *ec, const rb_control_frame_t *src_cfp); VALUE rb_vm_env_local_variables(const rb_env_t *env); const rb_env_t *rb_vm_env_prev_env(const rb_env_t *env); const VALUE *rb_binding_add_dynavars(VALUE bindval, rb_binding_t *bind, int dyncount, const ID *dynvars); void rb_vm_inc_const_missing_count(void); VALUE rb_vm_call_kw(rb_execution_context_t *ec, VALUE recv, VALUE id, int argc, const VALUE *argv, const rb_callable_method_entry_t *me, int kw_splat); void rb_vm_pop_frame_no_int(rb_execution_context_t *ec); MJIT_STATIC void rb_vm_pop_frame(rb_execution_context_t *ec); void rb_thread_start_timer_thread(void); void rb_thread_stop_timer_thread(void); void rb_thread_reset_timer_thread(void); void rb_thread_wakeup_timer_thread(int); static inline void rb_vm_living_threads_init(rb_vm_t *vm) { ccan_list_head_init(&vm->waiting_fds); ccan_list_head_init(&vm->waiting_pids); ccan_list_head_init(&vm->workqueue); ccan_list_head_init(&vm->waiting_grps); ccan_list_head_init(&vm->ractor.set); } typedef int rb_backtrace_iter_func(void *, VALUE, int, VALUE); rb_control_frame_t *rb_vm_get_ruby_level_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp); rb_control_frame_t *rb_vm_get_binding_creatable_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp); VALUE *rb_vm_svar_lep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp); int rb_vm_get_sourceline(const rb_control_frame_t *); void rb_vm_stack_to_heap(rb_execution_context_t *ec); void ruby_thread_init_stack(rb_thread_t *th); rb_thread_t * ruby_thread_from_native(void); int ruby_thread_set_native(rb_thread_t *th); int rb_vm_control_frame_id_and_class(const rb_control_frame_t *cfp, ID *idp, ID *called_idp, VALUE *klassp); void rb_vm_rewind_cfp(rb_execution_context_t *ec, rb_control_frame_t *cfp); MJIT_STATIC VALUE rb_vm_bh_to_procval(const rb_execution_context_t *ec, VALUE block_handler); void rb_vm_register_special_exception_str(enum ruby_special_exceptions sp, VALUE exception_class, VALUE mesg); #define rb_vm_register_special_exception(sp, e, m) \ rb_vm_register_special_exception_str(sp, e, rb_usascii_str_new_static((m), (long)rb_strlen_lit(m))) void rb_gc_mark_machine_stack(const rb_execution_context_t *ec); void rb_vm_rewrite_cref(rb_cref_t *node, VALUE old_klass, VALUE new_klass, rb_cref_t **new_cref_ptr); MJIT_STATIC const rb_callable_method_entry_t *rb_vm_frame_method_entry(const rb_control_frame_t *cfp); #define sysstack_error GET_VM()->special_exceptions[ruby_error_sysstack] #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) do { \ STATIC_ASSERT(sizeof_sp, sizeof(*(sp)) == sizeof(VALUE)); \ STATIC_ASSERT(sizeof_cfp, sizeof(*(cfp)) == sizeof(rb_control_frame_t)); \ const struct rb_control_frame_struct *bound = (void *)&(sp)[(margin)]; \ if (UNLIKELY((cfp) <= &bound[1])) { \ vm_stackoverflow(); \ } \ } while (0) #define CHECK_VM_STACK_OVERFLOW(cfp, margin) \ CHECK_VM_STACK_OVERFLOW0((cfp), (cfp)->sp, (margin)) VALUE rb_catch_protect(VALUE t, rb_block_call_func *func, VALUE data, enum ruby_tag_type *stateptr); rb_execution_context_t *rb_vm_main_ractor_ec(rb_vm_t *vm); // ractor.c /* for thread */ #if RUBY_VM_THREAD_MODEL == 2 RUBY_EXTERN struct rb_ractor_struct *ruby_single_main_ractor; // ractor.c RUBY_EXTERN rb_vm_t *ruby_current_vm_ptr; RUBY_EXTERN rb_event_flag_t ruby_vm_event_flags; RUBY_EXTERN rb_event_flag_t ruby_vm_event_enabled_global_flags; RUBY_EXTERN unsigned int ruby_vm_event_local_num; #define GET_VM() rb_current_vm() #define GET_RACTOR() rb_current_ractor() #define GET_THREAD() rb_current_thread() #define GET_EC() rb_current_execution_context(true) static inline rb_thread_t * rb_ec_thread_ptr(const rb_execution_context_t *ec) { return ec->thread_ptr; } static inline rb_ractor_t * rb_ec_ractor_ptr(const rb_execution_context_t *ec) { const rb_thread_t *th = rb_ec_thread_ptr(ec); if (th) { VM_ASSERT(th->ractor != NULL); return th->ractor; } else { return NULL; } } static inline rb_vm_t * rb_ec_vm_ptr(const rb_execution_context_t *ec) { const rb_thread_t *th = rb_ec_thread_ptr(ec); if (th) { return th->vm; } else { return NULL; } } static inline rb_execution_context_t * rb_current_execution_context(bool expect_ec) { #ifdef RB_THREAD_LOCAL_SPECIFIER #ifdef __APPLE__ rb_execution_context_t *ec = rb_current_ec(); #else rb_execution_context_t *ec = ruby_current_ec; #endif #else rb_execution_context_t *ec = native_tls_get(ruby_current_ec_key); #endif VM_ASSERT(!expect_ec || ec != NULL); return ec; } static inline rb_thread_t * rb_current_thread(void) { const rb_execution_context_t *ec = GET_EC(); return rb_ec_thread_ptr(ec); } static inline rb_ractor_t * rb_current_ractor(void) { if (ruby_single_main_ractor) { return ruby_single_main_ractor; } else { const rb_execution_context_t *ec = GET_EC(); return rb_ec_ractor_ptr(ec); } } static inline rb_vm_t * rb_current_vm(void) { #if 0 // TODO: reconsider the assertions VM_ASSERT(ruby_current_vm_ptr == NULL || ruby_current_execution_context_ptr == NULL || rb_ec_thread_ptr(GET_EC()) == NULL || rb_ec_thread_ptr(GET_EC())->status == THREAD_KILLED || rb_ec_vm_ptr(GET_EC()) == ruby_current_vm_ptr); #endif return ruby_current_vm_ptr; } void rb_ec_vm_lock_rec_release(const rb_execution_context_t *ec, unsigned int recorded_lock_rec, unsigned int current_lock_rec); static inline unsigned int rb_ec_vm_lock_rec(const rb_execution_context_t *ec) { rb_vm_t *vm = rb_ec_vm_ptr(ec); if (vm->ractor.sync.lock_owner != rb_ec_ractor_ptr(ec)) { return 0; } else { return vm->ractor.sync.lock_rec; } } #else #error "unsupported thread model" #endif enum { TIMER_INTERRUPT_MASK = 0x01, PENDING_INTERRUPT_MASK = 0x02, POSTPONED_JOB_INTERRUPT_MASK = 0x04, TRAP_INTERRUPT_MASK = 0x08, TERMINATE_INTERRUPT_MASK = 0x10, VM_BARRIER_INTERRUPT_MASK = 0x20, }; #define RUBY_VM_SET_TIMER_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, TIMER_INTERRUPT_MASK) #define RUBY_VM_SET_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, PENDING_INTERRUPT_MASK) #define RUBY_VM_SET_POSTPONED_JOB_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, POSTPONED_JOB_INTERRUPT_MASK) #define RUBY_VM_SET_TRAP_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, TRAP_INTERRUPT_MASK) #define RUBY_VM_SET_TERMINATE_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, TERMINATE_INTERRUPT_MASK) #define RUBY_VM_SET_VM_BARRIER_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, VM_BARRIER_INTERRUPT_MASK) #define RUBY_VM_INTERRUPTED(ec) ((ec)->interrupt_flag & ~(ec)->interrupt_mask & \ (PENDING_INTERRUPT_MASK|TRAP_INTERRUPT_MASK)) static inline bool RUBY_VM_INTERRUPTED_ANY(rb_execution_context_t *ec) { #if defined(USE_VM_CLOCK) && USE_VM_CLOCK uint32_t current_clock = rb_ec_vm_ptr(ec)->clock; if (current_clock != ec->checked_clock) { ec->checked_clock = current_clock; RUBY_VM_SET_TIMER_INTERRUPT(ec); } #endif return ec->interrupt_flag & ~(ec)->interrupt_mask; } VALUE rb_exc_set_backtrace(VALUE exc, VALUE bt); int rb_signal_buff_size(void); int rb_signal_exec(rb_thread_t *th, int sig); void rb_threadptr_check_signal(rb_thread_t *mth); void rb_threadptr_signal_raise(rb_thread_t *th, int sig); void rb_threadptr_signal_exit(rb_thread_t *th); int rb_threadptr_execute_interrupts(rb_thread_t *, int); void rb_threadptr_interrupt(rb_thread_t *th); void rb_threadptr_unlock_all_locking_mutexes(rb_thread_t *th); void rb_threadptr_pending_interrupt_clear(rb_thread_t *th); void rb_threadptr_pending_interrupt_enque(rb_thread_t *th, VALUE v); VALUE rb_ec_get_errinfo(const rb_execution_context_t *ec); void rb_ec_error_print(rb_execution_context_t * volatile ec, volatile VALUE errinfo); void rb_execution_context_update(rb_execution_context_t *ec); void rb_execution_context_mark(const rb_execution_context_t *ec); void rb_fiber_close(rb_fiber_t *fib); void Init_native_thread(rb_thread_t *th); int rb_vm_check_ints_blocking(rb_execution_context_t *ec); // vm_sync.h void rb_vm_cond_wait(rb_vm_t *vm, rb_nativethread_cond_t *cond); void rb_vm_cond_timedwait(rb_vm_t *vm, rb_nativethread_cond_t *cond, unsigned long msec); #define RUBY_VM_CHECK_INTS(ec) rb_vm_check_ints(ec) static inline void rb_vm_check_ints(rb_execution_context_t *ec) { #ifdef RUBY_ASSERT_CRITICAL_SECTION VM_ASSERT(ruby_assert_critical_section_entered == 0); #endif VM_ASSERT(ec == GET_EC()); if (UNLIKELY(RUBY_VM_INTERRUPTED_ANY(ec))) { rb_threadptr_execute_interrupts(rb_ec_thread_ptr(ec), 0); } } /* tracer */ struct rb_trace_arg_struct { rb_event_flag_t event; rb_execution_context_t *ec; const rb_control_frame_t *cfp; VALUE self; ID id; ID called_id; VALUE klass; VALUE data; int klass_solved; /* calc from cfp */ int lineno; VALUE path; }; void rb_hook_list_mark(rb_hook_list_t *hooks); void rb_hook_list_mark_and_update(rb_hook_list_t *hooks); void rb_hook_list_free(rb_hook_list_t *hooks); void rb_hook_list_connect_tracepoint(VALUE target, rb_hook_list_t *list, VALUE tpval, unsigned int target_line); void rb_hook_list_remove_tracepoint(rb_hook_list_t *list, VALUE tpval); void rb_exec_event_hooks(struct rb_trace_arg_struct *trace_arg, rb_hook_list_t *hooks, int pop_p); #define EXEC_EVENT_HOOK_ORIG(ec_, hooks_, flag_, self_, id_, called_id_, klass_, data_, pop_p_) do { \ const rb_event_flag_t flag_arg_ = (flag_); \ rb_hook_list_t *hooks_arg_ = (hooks_); \ if (UNLIKELY((hooks_arg_)->events & (flag_arg_))) { \ /* defer evaluating the other arguments */ \ rb_exec_event_hook_orig(ec_, hooks_arg_, flag_arg_, self_, id_, called_id_, klass_, data_, pop_p_); \ } \ } while (0) static inline void rb_exec_event_hook_orig(rb_execution_context_t *ec, rb_hook_list_t *hooks, rb_event_flag_t flag, VALUE self, ID id, ID called_id, VALUE klass, VALUE data, int pop_p) { struct rb_trace_arg_struct trace_arg; VM_ASSERT((hooks->events & flag) != 0); trace_arg.event = flag; trace_arg.ec = ec; trace_arg.cfp = ec->cfp; trace_arg.self = self; trace_arg.id = id; trace_arg.called_id = called_id; trace_arg.klass = klass; trace_arg.data = data; trace_arg.path = Qundef; trace_arg.klass_solved = 0; rb_exec_event_hooks(&trace_arg, hooks, pop_p); } struct rb_ractor_pub { VALUE self; uint32_t id; rb_hook_list_t hooks; }; static inline rb_hook_list_t * rb_ec_ractor_hooks(const rb_execution_context_t *ec) { struct rb_ractor_pub *cr_pub = (struct rb_ractor_pub *)rb_ec_ractor_ptr(ec); return &cr_pub->hooks; } #define EXEC_EVENT_HOOK(ec_, flag_, self_, id_, called_id_, klass_, data_) \ EXEC_EVENT_HOOK_ORIG(ec_, rb_ec_ractor_hooks(ec_), flag_, self_, id_, called_id_, klass_, data_, 0) #define EXEC_EVENT_HOOK_AND_POP_FRAME(ec_, flag_, self_, id_, called_id_, klass_, data_) \ EXEC_EVENT_HOOK_ORIG(ec_, rb_ec_ractor_hooks(ec_), flag_, self_, id_, called_id_, klass_, data_, 1) static inline void rb_exec_event_hook_script_compiled(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE eval_script) { EXEC_EVENT_HOOK(ec, RUBY_EVENT_SCRIPT_COMPILED, ec->cfp->self, 0, 0, 0, NIL_P(eval_script) ? (VALUE)iseq : rb_ary_new_from_args(2, eval_script, (VALUE)iseq)); } void rb_vm_trap_exit(rb_vm_t *vm); RUBY_SYMBOL_EXPORT_BEGIN int rb_thread_check_trap_pending(void); /* #define RUBY_EVENT_RESERVED_FOR_INTERNAL_USE 0x030000 */ /* from vm_core.h */ #define RUBY_EVENT_COVERAGE_LINE 0x010000 #define RUBY_EVENT_COVERAGE_BRANCH 0x020000 extern VALUE rb_get_coverages(void); extern void rb_set_coverages(VALUE, int, VALUE); extern void rb_clear_coverages(void); extern void rb_reset_coverages(void); extern void rb_resume_coverages(void); extern void rb_suspend_coverages(void); void rb_postponed_job_flush(rb_vm_t *vm); // ractor.c RUBY_EXTERN VALUE rb_eRactorUnsafeError; RUBY_EXTERN VALUE rb_eRactorIsolationError; RUBY_SYMBOL_EXPORT_END #endif /* RUBY_VM_CORE_H */