#include "prism.h" /** * This compiler defines its own concept of the location of a node. We do this * because we want to pair line information with node identifier so that we can * have reproducable parses. */ typedef struct { /** This is the line number of a node. */ int32_t line; /** This is a unique identifier for the node. */ uint32_t node_id; } pm_node_location_t; /******************************************************************************/ /* These macros operate on pm_node_location_t structs as opposed to NODE*s. */ /******************************************************************************/ #define PUSH_ADJUST(seq, location, label) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_adjust_body(iseq, (label), (int) (location).line)) #define PUSH_ADJUST_RESTORE(seq, label) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_adjust_body(iseq, (label), -1)) #define PUSH_INSN(seq, location, insn) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 0)) #define PUSH_INSN1(seq, location, insn, op1) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 1, (VALUE)(op1))) #define PUSH_INSN2(seq, location, insn, op1, op2) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 2, (VALUE)(op1), (VALUE)(op2))) #define PUSH_INSN3(seq, location, insn, op1, op2, op3) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 3, (VALUE)(op1), (VALUE)(op2), (VALUE)(op3))) #define PUSH_INSNL(seq, location, insn, label) \ (PUSH_INSN1(seq, location, insn, label), LABEL_REF(label)) #define PUSH_LABEL(seq, label) \ ADD_ELEM((seq), (LINK_ELEMENT *) (label)) #define PUSH_SEND_R(seq, location, id, argc, block, flag, keywords) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_send(iseq, (int) (location).line, (int) (location).node_id, (id), (VALUE)(argc), (block), (VALUE)(flag), (keywords))) #define PUSH_SEND(seq, location, id, argc) \ PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)INT2FIX(0), NULL) #define PUSH_SEND_WITH_FLAG(seq, location, id, argc, flag) \ PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)(flag), NULL) #define PUSH_SEND_WITH_BLOCK(seq, location, id, argc, block) \ PUSH_SEND_R((seq), location, (id), (argc), (block), (VALUE)INT2FIX(0), NULL) #define PUSH_CALL(seq, location, id, argc) \ PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)INT2FIX(VM_CALL_FCALL), NULL) #define PUSH_CALL_WITH_BLOCK(seq, location, id, argc, block) \ PUSH_SEND_R((seq), location, (id), (argc), (block), (VALUE)INT2FIX(VM_CALL_FCALL), NULL) #define PUSH_TRACE(seq, event) \ ADD_ELEM((seq), (LINK_ELEMENT *) new_trace_body(iseq, (event), 0)) #define PUSH_CATCH_ENTRY(type, ls, le, iseqv, lc) \ ADD_CATCH_ENTRY((type), (ls), (le), (iseqv), (lc)) #define PUSH_SEQ(seq1, seq2) \ APPEND_LIST((seq1), (seq2)) #define PUSH_SYNTHETIC_PUTNIL(seq, iseq) \ do { \ int lineno = ISEQ_COMPILE_DATA(iseq)->last_line; \ if (lineno == 0) lineno = FIX2INT(rb_iseq_first_lineno(iseq)); \ ADD_SYNTHETIC_INSN(seq, lineno, -1, putnil); \ } while (0) /******************************************************************************/ /* These functions compile getlocal/setlocal instructions but operate on */ /* prism locations instead of NODEs. */ /******************************************************************************/ static void pm_iseq_add_getlocal(rb_iseq_t *iseq, LINK_ANCHOR *const seq, int line, int node_id, int idx, int level) { if (iseq_local_block_param_p(iseq, idx, level)) { ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(getblockparam), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level))); } else { ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(getlocal), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level))); } if (level > 0) access_outer_variables(iseq, level, iseq_lvar_id(iseq, idx, level), Qfalse); } static void pm_iseq_add_setlocal(rb_iseq_t *iseq, LINK_ANCHOR *const seq, int line, int node_id, int idx, int level) { if (iseq_local_block_param_p(iseq, idx, level)) { ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(setblockparam), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level))); } else { ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(setlocal), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level))); } if (level > 0) access_outer_variables(iseq, level, iseq_lvar_id(iseq, idx, level), Qtrue); } #define PUSH_GETLOCAL(seq, location, idx, level) \ pm_iseq_add_getlocal(iseq, (seq), (int) (location).line, (int) (location).node_id, (idx), (level)) #define PUSH_SETLOCAL(seq, location, idx, level) \ pm_iseq_add_setlocal(iseq, (seq), (int) (location).line, (int) (location).node_id, (idx), (level)) /******************************************************************************/ /* These are helper macros for the compiler. */ /******************************************************************************/ #define OLD_ISEQ NEW_ISEQ #undef NEW_ISEQ #define NEW_ISEQ(node, name, type, line_no) \ pm_new_child_iseq(iseq, (node), rb_fstring(name), 0, (type), (line_no)) #define OLD_CHILD_ISEQ NEW_CHILD_ISEQ #undef NEW_CHILD_ISEQ #define NEW_CHILD_ISEQ(node, name, type, line_no) \ pm_new_child_iseq(iseq, (node), rb_fstring(name), iseq, (type), (line_no)) #define PM_COMPILE(node) \ pm_compile_node(iseq, (node), ret, popped, scope_node) #define PM_COMPILE_INTO_ANCHOR(_ret, node) \ pm_compile_node(iseq, (node), _ret, popped, scope_node) #define PM_COMPILE_POPPED(node) \ pm_compile_node(iseq, (node), ret, true, scope_node) #define PM_COMPILE_NOT_POPPED(node) \ pm_compile_node(iseq, (node), ret, false, scope_node) #define PM_SPECIAL_CONSTANT_FLAG ((pm_constant_id_t)(1 << 31)) #define PM_CONSTANT_AND ((pm_constant_id_t)(idAnd | PM_SPECIAL_CONSTANT_FLAG)) #define PM_CONSTANT_DOT3 ((pm_constant_id_t)(idDot3 | PM_SPECIAL_CONSTANT_FLAG)) #define PM_CONSTANT_MULT ((pm_constant_id_t)(idMULT | PM_SPECIAL_CONSTANT_FLAG)) #define PM_CONSTANT_POW ((pm_constant_id_t)(idPow | PM_SPECIAL_CONSTANT_FLAG)) #define PM_NODE_START_LOCATION(parser, node) \ ((pm_node_location_t) { .line = pm_newline_list_line(&(parser)->newline_list, ((const pm_node_t *) (node))->location.start, (parser)->start_line), .node_id = ((const pm_node_t *) (node))->node_id }) #define PM_NODE_END_LOCATION(parser, node) \ ((pm_node_location_t) { .line = pm_newline_list_line(&(parser)->newline_list, ((const pm_node_t *) (node))->location.end, (parser)->start_line), .node_id = ((const pm_node_t *) (node))->node_id }) #define PM_LOCATION_START_LOCATION(parser, location, id) \ ((pm_node_location_t) { .line = pm_newline_list_line(&(parser)->newline_list, (location)->start, (parser)->start_line), .node_id = id }) #define PM_NODE_START_LINE_COLUMN(parser, node) \ pm_newline_list_line_column(&(parser)->newline_list, ((const pm_node_t *) (node))->location.start, (parser)->start_line) #define PM_NODE_END_LINE_COLUMN(parser, node) \ pm_newline_list_line_column(&(parser)->newline_list, ((const pm_node_t *) (node))->location.end, (parser)->start_line) #define PM_LOCATION_START_LINE_COLUMN(parser, location) \ pm_newline_list_line_column(&(parser)->newline_list, (location)->start, (parser)->start_line) static int pm_node_line_number(const pm_parser_t *parser, const pm_node_t *node) { return (int) pm_newline_list_line(&parser->newline_list, node->location.start, parser->start_line); } static int pm_location_line_number(const pm_parser_t *parser, const pm_location_t *location) { return (int) pm_newline_list_line(&parser->newline_list, location->start, parser->start_line); } /** * Parse the value of a pm_integer_t into a Ruby Integer. */ static VALUE parse_integer_value(const pm_integer_t *integer) { VALUE result; if (integer->values == NULL) { result = UINT2NUM(integer->value); } else { VALUE string = rb_str_new(NULL, integer->length * 8); unsigned char *bytes = (unsigned char *) RSTRING_PTR(string); size_t offset = integer->length * 8; for (size_t value_index = 0; value_index < integer->length; value_index++) { uint32_t value = integer->values[value_index]; for (int index = 0; index < 8; index++) { int byte = (value >> (4 * index)) & 0xf; bytes[--offset] = byte < 10 ? byte + '0' : byte - 10 + 'a'; } } result = rb_funcall(string, rb_intern("to_i"), 1, UINT2NUM(16)); } if (integer->negative) { result = rb_funcall(result, rb_intern("-@"), 0); } return result; } /** * Convert the value of an integer node into a Ruby Integer. */ static inline VALUE parse_integer(const pm_integer_node_t *node) { return parse_integer_value(&node->value); } /** * Convert the value of a float node into a Ruby Float. */ static VALUE parse_float(const pm_float_node_t *node) { return DBL2NUM(node->value); } /** * Convert the value of a rational node into a Ruby Rational. Rational nodes can * either be wrapping an integer node or a float node. If it's an integer node, * we can reuse our parsing. If it's not, then we'll parse the numerator and * then parse the denominator and create the rational from those two values. */ static VALUE parse_rational(const pm_rational_node_t *node) { VALUE numerator = parse_integer_value(&node->numerator); VALUE denominator = parse_integer_value(&node->denominator); return rb_rational_new(numerator, denominator); } /** * Convert the value of an imaginary node into a Ruby Complex. Imaginary nodes * can be wrapping an integer node, a float node, or a rational node. In all * cases we will reuse parsing functions seen above to get the inner value, and * then convert into an imaginary with rb_complex_raw. */ static VALUE parse_imaginary(const pm_imaginary_node_t *node) { VALUE imaginary_part; switch (PM_NODE_TYPE(node->numeric)) { case PM_FLOAT_NODE: { imaginary_part = parse_float((const pm_float_node_t *) node->numeric); break; } case PM_INTEGER_NODE: { imaginary_part = parse_integer((const pm_integer_node_t *) node->numeric); break; } case PM_RATIONAL_NODE: { imaginary_part = parse_rational((const pm_rational_node_t *) node->numeric); break; } default: rb_bug("Unexpected numeric type on imaginary number %s\n", pm_node_type_to_str(PM_NODE_TYPE(node->numeric))); } return rb_complex_raw(INT2FIX(0), imaginary_part); } static inline VALUE parse_string(const pm_scope_node_t *scope_node, const pm_string_t *string) { return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), scope_node->encoding); } /** * Certain strings can have their encoding differ from the parser's encoding due * to bytes or escape sequences that have the top bit set. This function handles * creating those strings based on the flags set on the owning node. */ static inline VALUE parse_string_encoded(const pm_node_t *node, const pm_string_t *string, rb_encoding *default_encoding) { rb_encoding *encoding; if (node->flags & PM_ENCODING_FLAGS_FORCED_BINARY_ENCODING) { encoding = rb_ascii8bit_encoding(); } else if (node->flags & PM_ENCODING_FLAGS_FORCED_UTF8_ENCODING) { encoding = rb_utf8_encoding(); } else { encoding = default_encoding; } return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), encoding); } static inline VALUE parse_static_literal_string(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_string_t *string) { rb_encoding *encoding; if (node->flags & PM_STRING_FLAGS_FORCED_BINARY_ENCODING) { encoding = rb_ascii8bit_encoding(); } else if (node->flags & PM_STRING_FLAGS_FORCED_UTF8_ENCODING) { encoding = rb_utf8_encoding(); } else { encoding = scope_node->encoding; } VALUE value = rb_enc_literal_str((const char *) pm_string_source(string), pm_string_length(string), encoding); rb_enc_str_coderange(value); if (ISEQ_COMPILE_DATA(iseq)->option->debug_frozen_string_literal || RTEST(ruby_debug)) { int line_number = pm_node_line_number(scope_node->parser, node); VALUE debug_info = rb_ary_new_from_args(2, rb_iseq_path(iseq), INT2FIX(line_number)); value = rb_str_dup(value); rb_ivar_set(value, id_debug_created_info, rb_ary_freeze(debug_info)); rb_str_freeze(value); } return value; } static inline ID parse_string_symbol(const pm_scope_node_t *scope_node, const pm_symbol_node_t *symbol) { rb_encoding *encoding; if (symbol->base.flags & PM_SYMBOL_FLAGS_FORCED_UTF8_ENCODING) { encoding = rb_utf8_encoding(); } else if (symbol->base.flags & PM_SYMBOL_FLAGS_FORCED_BINARY_ENCODING) { encoding = rb_ascii8bit_encoding(); } else if (symbol->base.flags & PM_SYMBOL_FLAGS_FORCED_US_ASCII_ENCODING) { encoding = rb_usascii_encoding(); } else { encoding = scope_node->encoding; } return rb_intern3((const char *) pm_string_source(&symbol->unescaped), pm_string_length(&symbol->unescaped), encoding); } static int pm_optimizable_range_item_p(const pm_node_t *node) { return (!node || PM_NODE_TYPE_P(node, PM_INTEGER_NODE) || PM_NODE_TYPE_P(node, PM_NIL_NODE)); } /** Raise an error corresponding to the invalid regular expression. */ static VALUE parse_regexp_error(rb_iseq_t *iseq, int32_t line_number, const char *fmt, ...) { va_list args; va_start(args, fmt); VALUE error = rb_syntax_error_append(Qnil, rb_iseq_path(iseq), line_number, -1, NULL, "%" PRIsVALUE, args); va_end(args); rb_exc_raise(error); } static VALUE parse_regexp_string_part(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_string_t *unescaped, rb_encoding *implicit_regexp_encoding, rb_encoding *explicit_regexp_encoding) { // If we were passed an explicit regexp encoding, then we need to double // check that it's okay here for this fragment of the string. rb_encoding *encoding; if (explicit_regexp_encoding != NULL) { encoding = explicit_regexp_encoding; } else if (node->flags & PM_STRING_FLAGS_FORCED_BINARY_ENCODING) { encoding = rb_ascii8bit_encoding(); } else if (node->flags & PM_STRING_FLAGS_FORCED_UTF8_ENCODING) { encoding = rb_utf8_encoding(); } else { encoding = implicit_regexp_encoding; } VALUE string = rb_enc_str_new((const char *) pm_string_source(unescaped), pm_string_length(unescaped), encoding); VALUE error = rb_reg_check_preprocess(string); if (error != Qnil) parse_regexp_error(iseq, pm_node_line_number(scope_node->parser, node), "%" PRIsVALUE, rb_obj_as_string(error)); return string; } static VALUE pm_static_literal_concat(rb_iseq_t *iseq, const pm_node_list_t *nodes, const pm_scope_node_t *scope_node, rb_encoding *implicit_regexp_encoding, rb_encoding *explicit_regexp_encoding, bool top) { VALUE current = Qnil; for (size_t index = 0; index < nodes->size; index++) { const pm_node_t *part = nodes->nodes[index]; VALUE string; switch (PM_NODE_TYPE(part)) { case PM_STRING_NODE: if (implicit_regexp_encoding != NULL) { if (top) { string = parse_regexp_string_part(iseq, scope_node, part, &((const pm_string_node_t *) part)->unescaped, implicit_regexp_encoding, explicit_regexp_encoding); } else { string = parse_string_encoded(part, &((const pm_string_node_t *) part)->unescaped, scope_node->encoding); VALUE error = rb_reg_check_preprocess(string); if (error != Qnil) parse_regexp_error(iseq, pm_node_line_number(scope_node->parser, part), "%" PRIsVALUE, rb_obj_as_string(error)); } } else { string = parse_string_encoded(part, &((const pm_string_node_t *) part)->unescaped, scope_node->encoding); } break; case PM_INTERPOLATED_STRING_NODE: string = pm_static_literal_concat(iseq, &((const pm_interpolated_string_node_t *) part)->parts, scope_node, implicit_regexp_encoding, explicit_regexp_encoding, false); break; case PM_EMBEDDED_STATEMENTS_NODE: { const pm_embedded_statements_node_t *cast = (const pm_embedded_statements_node_t *) part; string = pm_static_literal_concat(iseq, &cast->statements->body, scope_node, implicit_regexp_encoding, explicit_regexp_encoding, false); break; } default: RUBY_ASSERT(false && "unexpected node type in pm_static_literal_concat"); return Qnil; } if (current != Qnil) { current = rb_str_concat(current, string); } else { current = string; } } return top ? rb_fstring(current) : current; } #define RE_OPTION_ENCODING_SHIFT 8 #define RE_OPTION_ENCODING(encoding) (((encoding) & 0xFF) << RE_OPTION_ENCODING_SHIFT) #define ARG_ENCODING_NONE 32 #define ARG_ENCODING_FIXED 16 #define ENC_ASCII8BIT 1 #define ENC_EUC_JP 2 #define ENC_Windows_31J 3 #define ENC_UTF8 4 /** * Check the prism flags of a regular expression-like node and return the flags * that are expected by the CRuby VM. */ static int parse_regexp_flags(const pm_node_t *node) { int flags = 0; // Check "no encoding" first so that flags don't get clobbered // We're calling `rb_char_to_option_kcode` in this case so that // we don't need to have access to `ARG_ENCODING_NONE` if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT)) { flags |= ARG_ENCODING_NONE; } if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_EUC_JP)) { flags |= (ARG_ENCODING_FIXED | RE_OPTION_ENCODING(ENC_EUC_JP)); } if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_WINDOWS_31J)) { flags |= (ARG_ENCODING_FIXED | RE_OPTION_ENCODING(ENC_Windows_31J)); } if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_UTF_8)) { flags |= (ARG_ENCODING_FIXED | RE_OPTION_ENCODING(ENC_UTF8)); } if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_IGNORE_CASE)) { flags |= ONIG_OPTION_IGNORECASE; } if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_MULTI_LINE)) { flags |= ONIG_OPTION_MULTILINE; } if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_EXTENDED)) { flags |= ONIG_OPTION_EXTEND; } return flags; } #undef RE_OPTION_ENCODING_SHIFT #undef RE_OPTION_ENCODING #undef ARG_ENCODING_FIXED #undef ARG_ENCODING_NONE #undef ENC_ASCII8BIT #undef ENC_EUC_JP #undef ENC_Windows_31J #undef ENC_UTF8 static rb_encoding * parse_regexp_encoding(const pm_scope_node_t *scope_node, const pm_node_t *node) { if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_FORCED_BINARY_ENCODING) || PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT)) { return rb_ascii8bit_encoding(); } else if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_UTF_8)) { return rb_utf8_encoding(); } else if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_EUC_JP)) { return rb_enc_get_from_index(ENCINDEX_EUC_JP); } else if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_WINDOWS_31J)) { return rb_enc_get_from_index(ENCINDEX_Windows_31J); } else { return NULL; } } static VALUE parse_regexp(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, VALUE string) { VALUE errinfo = rb_errinfo(); int32_t line_number = pm_node_line_number(scope_node->parser, node); VALUE regexp = rb_reg_compile(string, parse_regexp_flags(node), (const char *) pm_string_source(&scope_node->parser->filepath), line_number); if (NIL_P(regexp)) { VALUE message = rb_attr_get(rb_errinfo(), idMesg); rb_set_errinfo(errinfo); parse_regexp_error(iseq, line_number, "%" PRIsVALUE, message); return Qnil; } rb_obj_freeze(regexp); return regexp; } static inline VALUE parse_regexp_literal(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_string_t *unescaped) { rb_encoding *regexp_encoding = parse_regexp_encoding(scope_node, node); if (regexp_encoding == NULL) regexp_encoding = scope_node->encoding; VALUE string = rb_enc_str_new((const char *) pm_string_source(unescaped), pm_string_length(unescaped), regexp_encoding); return parse_regexp(iseq, scope_node, node, string); } static inline VALUE parse_regexp_concat(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_node_list_t *parts) { rb_encoding *explicit_regexp_encoding = parse_regexp_encoding(scope_node, node); rb_encoding *implicit_regexp_encoding = explicit_regexp_encoding != NULL ? explicit_regexp_encoding : scope_node->encoding; VALUE string = pm_static_literal_concat(iseq, parts, scope_node, implicit_regexp_encoding, explicit_regexp_encoding, false); return parse_regexp(iseq, scope_node, node, string); } static void pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node); static int pm_interpolated_node_compile(rb_iseq_t *iseq, const pm_node_list_t *parts, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, rb_encoding *implicit_regexp_encoding, rb_encoding *explicit_regexp_encoding) { int stack_size = 0; size_t parts_size = parts->size; bool interpolated = false; if (parts_size > 0) { VALUE current_string = Qnil; pm_node_location_t current_location = *node_location; for (size_t index = 0; index < parts_size; index++) { const pm_node_t *part = parts->nodes[index]; if (PM_NODE_TYPE_P(part, PM_STRING_NODE)) { const pm_string_node_t *string_node = (const pm_string_node_t *) part; VALUE string_value; if (implicit_regexp_encoding == NULL) { string_value = parse_string_encoded(part, &string_node->unescaped, scope_node->encoding); } else { string_value = parse_regexp_string_part(iseq, scope_node, (const pm_node_t *) string_node, &string_node->unescaped, implicit_regexp_encoding, explicit_regexp_encoding); } if (RTEST(current_string)) { current_string = rb_str_concat(current_string, string_value); } else { current_string = string_value; if (index != 0) current_location = PM_NODE_END_LOCATION(scope_node->parser, part); } } else { interpolated = true; if ( PM_NODE_TYPE_P(part, PM_EMBEDDED_STATEMENTS_NODE) && ((const pm_embedded_statements_node_t *) part)->statements != NULL && ((const pm_embedded_statements_node_t *) part)->statements->body.size == 1 && PM_NODE_TYPE_P(((const pm_embedded_statements_node_t *) part)->statements->body.nodes[0], PM_STRING_NODE) ) { const pm_string_node_t *string_node = (const pm_string_node_t *) ((const pm_embedded_statements_node_t *) part)->statements->body.nodes[0]; VALUE string_value; if (implicit_regexp_encoding == NULL) { string_value = parse_string_encoded(part, &string_node->unescaped, scope_node->encoding); } else { string_value = parse_regexp_string_part(iseq, scope_node, (const pm_node_t *) string_node, &string_node->unescaped, implicit_regexp_encoding, explicit_regexp_encoding); } if (RTEST(current_string)) { current_string = rb_str_concat(current_string, string_value); } else { current_string = string_value; current_location = PM_NODE_START_LOCATION(scope_node->parser, part); } } else { if (!RTEST(current_string)) { rb_encoding *encoding; if (implicit_regexp_encoding != NULL) { if (explicit_regexp_encoding != NULL) { encoding = explicit_regexp_encoding; } else if (scope_node->parser->encoding == PM_ENCODING_US_ASCII_ENTRY) { encoding = rb_ascii8bit_encoding(); } else { encoding = implicit_regexp_encoding; } } else { encoding = scope_node->encoding; } current_string = rb_enc_str_new(NULL, 0, encoding); } PUSH_INSN1(ret, current_location, putobject, rb_fstring(current_string)); PM_COMPILE_NOT_POPPED(part); const pm_node_location_t current_location = PM_NODE_START_LOCATION(scope_node->parser, part); PUSH_INSN(ret, current_location, dup); PUSH_INSN1(ret, current_location, objtostring, new_callinfo(iseq, idTo_s, 0, VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE, NULL, FALSE)); PUSH_INSN(ret, current_location, anytostring); current_string = Qnil; stack_size += 2; } } } if (RTEST(current_string)) { current_string = rb_fstring(current_string); if (stack_size == 0 && interpolated) { PUSH_INSN1(ret, current_location, putstring, current_string); } else { PUSH_INSN1(ret, current_location, putobject, current_string); } current_string = Qnil; stack_size++; } } else { PUSH_INSN(ret, *node_location, putnil); } return stack_size; } static void pm_compile_regexp_dynamic(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_list_t *parts, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { rb_encoding *explicit_regexp_encoding = parse_regexp_encoding(scope_node, node); rb_encoding *implicit_regexp_encoding = explicit_regexp_encoding != NULL ? explicit_regexp_encoding : scope_node->encoding; int length = pm_interpolated_node_compile(iseq, parts, node_location, ret, popped, scope_node, implicit_regexp_encoding, explicit_regexp_encoding); PUSH_INSN2(ret, *node_location, toregexp, INT2FIX(parse_regexp_flags(node) & 0xFF), INT2FIX(length)); } static VALUE pm_source_file_value(const pm_source_file_node_t *node, const pm_scope_node_t *scope_node) { const pm_string_t *filepath = &node->filepath; size_t length = pm_string_length(filepath); if (length > 0) { rb_encoding *filepath_encoding = scope_node->filepath_encoding != NULL ? scope_node->filepath_encoding : rb_utf8_encoding(); return rb_enc_interned_str((const char *) pm_string_source(filepath), length, filepath_encoding); } else { return rb_fstring_lit(""); } } /** * Return a static literal string, optionally with attached debugging * information. */ static VALUE pm_static_literal_string(rb_iseq_t *iseq, VALUE string, int line_number) { if (ISEQ_COMPILE_DATA(iseq)->option->debug_frozen_string_literal || RTEST(ruby_debug)) { VALUE debug_info = rb_ary_new_from_args(2, rb_iseq_path(iseq), INT2FIX(line_number)); rb_ivar_set(string, id_debug_created_info, rb_ary_freeze(debug_info)); return rb_str_freeze(string); } else { return rb_fstring(string); } } /** * Certain nodes can be compiled literally. This function returns the literal * value described by the given node. For example, an array node with all static * literal values can be compiled into a literal array. */ static VALUE pm_static_literal_value(rb_iseq_t *iseq, const pm_node_t *node, const pm_scope_node_t *scope_node) { // Every node that comes into this function should already be marked as // static literal. If it's not, then we have a bug somewhere. RUBY_ASSERT(PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)); switch (PM_NODE_TYPE(node)) { case PM_ARRAY_NODE: { const pm_array_node_t *cast = (const pm_array_node_t *) node; const pm_node_list_t *elements = &cast->elements; VALUE value = rb_ary_hidden_new(elements->size); for (size_t index = 0; index < elements->size; index++) { rb_ary_push(value, pm_static_literal_value(iseq, elements->nodes[index], scope_node)); } OBJ_FREEZE(value); return value; } case PM_FALSE_NODE: return Qfalse; case PM_FLOAT_NODE: return parse_float((const pm_float_node_t *) node); case PM_HASH_NODE: { const pm_hash_node_t *cast = (const pm_hash_node_t *) node; const pm_node_list_t *elements = &cast->elements; VALUE array = rb_ary_hidden_new(elements->size * 2); for (size_t index = 0; index < elements->size; index++) { RUBY_ASSERT(PM_NODE_TYPE_P(elements->nodes[index], PM_ASSOC_NODE)); const pm_assoc_node_t *cast = (const pm_assoc_node_t *) elements->nodes[index]; VALUE pair[2] = { pm_static_literal_value(iseq, cast->key, scope_node), pm_static_literal_value(iseq, cast->value, scope_node) }; rb_ary_cat(array, pair, 2); } VALUE value = rb_hash_new_with_size(elements->size); rb_hash_bulk_insert(RARRAY_LEN(array), RARRAY_CONST_PTR(array), value); value = rb_obj_hide(value); OBJ_FREEZE(value); return value; } case PM_IMAGINARY_NODE: return parse_imaginary((const pm_imaginary_node_t *) node); case PM_INTEGER_NODE: return parse_integer((const pm_integer_node_t *) node); case PM_INTERPOLATED_MATCH_LAST_LINE_NODE: { const pm_interpolated_match_last_line_node_t *cast = (const pm_interpolated_match_last_line_node_t *) node; return parse_regexp_concat(iseq, scope_node, (const pm_node_t *) cast, &cast->parts); } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { const pm_interpolated_regular_expression_node_t *cast = (const pm_interpolated_regular_expression_node_t *) node; return parse_regexp_concat(iseq, scope_node, (const pm_node_t *) cast, &cast->parts); } case PM_INTERPOLATED_STRING_NODE: { VALUE string = pm_static_literal_concat(iseq, &((const pm_interpolated_string_node_t *) node)->parts, scope_node, NULL, NULL, false); int line_number = pm_node_line_number(scope_node->parser, node); return pm_static_literal_string(iseq, string, line_number); } case PM_INTERPOLATED_SYMBOL_NODE: { const pm_interpolated_symbol_node_t *cast = (const pm_interpolated_symbol_node_t *) node; VALUE string = pm_static_literal_concat(iseq, &cast->parts, scope_node, NULL, NULL, true); return ID2SYM(rb_intern_str(string)); } case PM_MATCH_LAST_LINE_NODE: { const pm_match_last_line_node_t *cast = (const pm_match_last_line_node_t *) node; return parse_regexp_literal(iseq, scope_node, (const pm_node_t *) cast, &cast->unescaped); } case PM_NIL_NODE: return Qnil; case PM_RATIONAL_NODE: return parse_rational((const pm_rational_node_t *) node); case PM_REGULAR_EXPRESSION_NODE: { const pm_regular_expression_node_t *cast = (const pm_regular_expression_node_t *) node; return parse_regexp_literal(iseq, scope_node, (const pm_node_t *) cast, &cast->unescaped); } case PM_SOURCE_ENCODING_NODE: return rb_enc_from_encoding(scope_node->encoding); case PM_SOURCE_FILE_NODE: { const pm_source_file_node_t *cast = (const pm_source_file_node_t *) node; return pm_source_file_value(cast, scope_node); } case PM_SOURCE_LINE_NODE: return INT2FIX(pm_node_line_number(scope_node->parser, node)); case PM_STRING_NODE: { const pm_string_node_t *cast = (const pm_string_node_t *) node; return parse_static_literal_string(iseq, scope_node, node, &cast->unescaped); } case PM_SYMBOL_NODE: return ID2SYM(parse_string_symbol(scope_node, (const pm_symbol_node_t *) node)); case PM_TRUE_NODE: return Qtrue; default: rb_bug("Don't have a literal value for node type %s", pm_node_type_to_str(PM_NODE_TYPE(node))); return Qfalse; } } /** * A helper for converting a pm_location_t into a rb_code_location_t. */ static rb_code_location_t pm_code_location(const pm_scope_node_t *scope_node, const pm_node_t *node) { const pm_line_column_t start_location = PM_NODE_START_LINE_COLUMN(scope_node->parser, node); const pm_line_column_t end_location = PM_NODE_END_LINE_COLUMN(scope_node->parser, node); return (rb_code_location_t) { .beg_pos = { .lineno = start_location.line, .column = start_location.column }, .end_pos = { .lineno = end_location.line, .column = end_location.column } }; } /** * A macro for determining if we should go through the work of adding branch * coverage to the current iseq. We check this manually each time because we * want to avoid the overhead of creating rb_code_location_t objects. */ #define PM_BRANCH_COVERAGE_P(iseq) (ISEQ_COVERAGE(iseq) && ISEQ_BRANCH_COVERAGE(iseq)) static void pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node); static void pm_compile_logical(rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, cond); DECL_ANCHOR(seq); INIT_ANCHOR(seq); LABEL *label = NEW_LABEL(location.line); if (!then_label) then_label = label; else if (!else_label) else_label = label; pm_compile_branch_condition(iseq, seq, cond, then_label, else_label, popped, scope_node); if (LIST_INSN_SIZE_ONE(seq)) { INSN *insn = (INSN *) ELEM_FIRST_INSN(FIRST_ELEMENT(seq)); if (insn->insn_id == BIN(jump) && (LABEL *)(insn->operands[0]) == label) return; } if (!label->refcnt) { if (popped) PUSH_INSN(ret, location, putnil); } else { PUSH_LABEL(seq, label); } PUSH_SEQ(ret, seq); return; } static void pm_compile_flip_flop_bound(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = { .line = ISEQ_BODY(iseq)->location.first_lineno, .node_id = -1 }; if (PM_NODE_TYPE_P(node, PM_INTEGER_NODE)) { PM_COMPILE_NOT_POPPED(node); PUSH_INSN1(ret, location, getglobal, ID2SYM(rb_intern("$."))); PUSH_SEND(ret, location, idEq, INT2FIX(1)); if (popped) PUSH_INSN(ret, location, pop); } else { PM_COMPILE(node); } } static void pm_compile_flip_flop(const pm_flip_flop_node_t *flip_flop_node, LABEL *else_label, LABEL *then_label, rb_iseq_t *iseq, const int lineno, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = { .line = ISEQ_BODY(iseq)->location.first_lineno, .node_id = -1 }; LABEL *lend = NEW_LABEL(location.line); int again = !(flip_flop_node->base.flags & PM_RANGE_FLAGS_EXCLUDE_END); rb_num_t count = ISEQ_FLIP_CNT_INCREMENT(ISEQ_BODY(iseq)->local_iseq) + VM_SVAR_FLIPFLOP_START; VALUE key = INT2FIX(count); PUSH_INSN2(ret, location, getspecial, key, INT2FIX(0)); PUSH_INSNL(ret, location, branchif, lend); if (flip_flop_node->left) { pm_compile_flip_flop_bound(iseq, flip_flop_node->left, ret, popped, scope_node); } else { PUSH_INSN(ret, location, putnil); } PUSH_INSNL(ret, location, branchunless, else_label); PUSH_INSN1(ret, location, putobject, Qtrue); PUSH_INSN1(ret, location, setspecial, key); if (!again) { PUSH_INSNL(ret, location, jump, then_label); } PUSH_LABEL(ret, lend); if (flip_flop_node->right) { pm_compile_flip_flop_bound(iseq, flip_flop_node->right, ret, popped, scope_node); } else { PUSH_INSN(ret, location, putnil); } PUSH_INSNL(ret, location, branchunless, then_label); PUSH_INSN1(ret, location, putobject, Qfalse); PUSH_INSN1(ret, location, setspecial, key); PUSH_INSNL(ret, location, jump, then_label); } static void pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition); static void pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, cond); again: switch (PM_NODE_TYPE(cond)) { case PM_AND_NODE: { const pm_and_node_t *cast = (const pm_and_node_t *) cond; pm_compile_logical(iseq, ret, cast->left, NULL, else_label, popped, scope_node); cond = cast->right; goto again; } case PM_OR_NODE: { const pm_or_node_t *cast = (const pm_or_node_t *) cond; pm_compile_logical(iseq, ret, cast->left, then_label, NULL, popped, scope_node); cond = cast->right; goto again; } case PM_FALSE_NODE: case PM_NIL_NODE: PUSH_INSNL(ret, location, jump, else_label); return; case PM_FLOAT_NODE: case PM_IMAGINARY_NODE: case PM_INTEGER_NODE: case PM_LAMBDA_NODE: case PM_RATIONAL_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_TRUE_NODE: PUSH_INSNL(ret, location, jump, then_label); return; case PM_FLIP_FLOP_NODE: pm_compile_flip_flop((const pm_flip_flop_node_t *) cond, else_label, then_label, iseq, location.line, ret, popped, scope_node); return; case PM_DEFINED_NODE: { const pm_defined_node_t *cast = (const pm_defined_node_t *) cond; pm_compile_defined_expr(iseq, cast->value, &location, ret, popped, scope_node, true); break; } default: { DECL_ANCHOR(cond_seq); INIT_ANCHOR(cond_seq); pm_compile_node(iseq, cond, cond_seq, false, scope_node); if (LIST_INSN_SIZE_ONE(cond_seq)) { INSN *insn = (INSN *)ELEM_FIRST_INSN(FIRST_ELEMENT(cond_seq)); if (insn->insn_id == BIN(putobject)) { if (RTEST(insn->operands[0])) { ADD_INSNL(ret, cond, jump, then_label); // maybe unreachable return; } else { ADD_INSNL(ret, cond, jump, else_label); return; } } } PUSH_SEQ(ret, cond_seq); break; } } PUSH_INSNL(ret, location, branchunless, else_label); PUSH_INSNL(ret, location, jump, then_label); } /** * Compile an if or unless node. */ static void pm_compile_conditional(rb_iseq_t *iseq, const pm_node_location_t *node_location, pm_node_type_t type, const pm_node_t *node, const pm_statements_node_t *statements, const pm_node_t *subsequent, const pm_node_t *predicate, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; LABEL *then_label = NEW_LABEL(location.line); LABEL *else_label = NEW_LABEL(location.line); LABEL *end_label = NULL; DECL_ANCHOR(cond_seq); INIT_ANCHOR(cond_seq); pm_compile_branch_condition(iseq, cond_seq, predicate, then_label, else_label, false, scope_node); PUSH_SEQ(ret, cond_seq); rb_code_location_t conditional_location = { 0 }; VALUE branches = Qfalse; if (then_label->refcnt && else_label->refcnt && PM_BRANCH_COVERAGE_P(iseq)) { conditional_location = pm_code_location(scope_node, node); branches = decl_branch_base(iseq, PTR2NUM(node), &conditional_location, type == PM_IF_NODE ? "if" : "unless"); } if (then_label->refcnt) { PUSH_LABEL(ret, then_label); DECL_ANCHOR(then_seq); INIT_ANCHOR(then_seq); if (statements != NULL) { pm_compile_node(iseq, (const pm_node_t *) statements, then_seq, popped, scope_node); } else if (!popped) { PUSH_SYNTHETIC_PUTNIL(then_seq, iseq); } if (else_label->refcnt) { // Establish branch coverage for the then block. if (PM_BRANCH_COVERAGE_P(iseq)) { rb_code_location_t branch_location; if (statements != NULL) { branch_location = pm_code_location(scope_node, (const pm_node_t *) statements); } else if (type == PM_IF_NODE) { pm_line_column_t predicate_end = PM_NODE_END_LINE_COLUMN(scope_node->parser, predicate); branch_location = (rb_code_location_t) { .beg_pos = { .lineno = predicate_end.line, .column = predicate_end.column }, .end_pos = { .lineno = predicate_end.line, .column = predicate_end.column } }; } else { branch_location = conditional_location; } add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, 0, type == PM_IF_NODE ? "then" : "else", branches); } end_label = NEW_LABEL(location.line); PUSH_INSNL(then_seq, location, jump, end_label); if (!popped) PUSH_INSN(then_seq, location, pop); } PUSH_SEQ(ret, then_seq); } if (else_label->refcnt) { PUSH_LABEL(ret, else_label); DECL_ANCHOR(else_seq); INIT_ANCHOR(else_seq); if (subsequent != NULL) { pm_compile_node(iseq, subsequent, else_seq, popped, scope_node); } else if (!popped) { PUSH_SYNTHETIC_PUTNIL(else_seq, iseq); } // Establish branch coverage for the else block. if (then_label->refcnt && PM_BRANCH_COVERAGE_P(iseq)) { rb_code_location_t branch_location; if (subsequent == NULL) { branch_location = conditional_location; } else if (PM_NODE_TYPE_P(subsequent, PM_ELSE_NODE)) { const pm_else_node_t *else_node = (const pm_else_node_t *) subsequent; branch_location = pm_code_location(scope_node, else_node->statements != NULL ? ((const pm_node_t *) else_node->statements) : (const pm_node_t *) else_node); } else { branch_location = pm_code_location(scope_node, (const pm_node_t *) subsequent); } add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, 1, type == PM_IF_NODE ? "else" : "then", branches); } PUSH_SEQ(ret, else_seq); } if (end_label) { PUSH_LABEL(ret, end_label); } return; } /** * Compile a while or until loop. */ static void pm_compile_loop(rb_iseq_t *iseq, const pm_node_location_t *node_location, pm_node_flags_t flags, enum pm_node_type type, const pm_node_t *node, const pm_statements_node_t *statements, const pm_node_t *predicate, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; LABEL *prev_start_label = ISEQ_COMPILE_DATA(iseq)->start_label; LABEL *prev_end_label = ISEQ_COMPILE_DATA(iseq)->end_label; LABEL *prev_redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label; LABEL *next_label = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(location.line); /* next */ LABEL *redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label = NEW_LABEL(location.line); /* redo */ LABEL *break_label = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(location.line); /* break */ LABEL *end_label = NEW_LABEL(location.line); LABEL *adjust_label = NEW_LABEL(location.line); LABEL *next_catch_label = NEW_LABEL(location.line); LABEL *tmp_label = NULL; // We're pushing onto the ensure stack because breaks need to break out of // this loop and not break into the ensure statements within the same // lexical scope. struct iseq_compile_data_ensure_node_stack enl; push_ensure_entry(iseq, &enl, NULL, NULL); // begin; end while true if (flags & PM_LOOP_FLAGS_BEGIN_MODIFIER) { tmp_label = NEW_LABEL(location.line); PUSH_INSNL(ret, location, jump, tmp_label); } else { // while true; end PUSH_INSNL(ret, location, jump, next_label); } PUSH_LABEL(ret, adjust_label); PUSH_INSN(ret, location, putnil); PUSH_LABEL(ret, next_catch_label); PUSH_INSN(ret, location, pop); PUSH_INSNL(ret, location, jump, next_label); if (tmp_label) PUSH_LABEL(ret, tmp_label); PUSH_LABEL(ret, redo_label); // Establish branch coverage for the loop. if (PM_BRANCH_COVERAGE_P(iseq)) { rb_code_location_t loop_location = pm_code_location(scope_node, node); VALUE branches = decl_branch_base(iseq, PTR2NUM(node), &loop_location, type == PM_WHILE_NODE ? "while" : "until"); rb_code_location_t branch_location = statements != NULL ? pm_code_location(scope_node, (const pm_node_t *) statements) : loop_location; add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, 0, "body", branches); } if (statements != NULL) PM_COMPILE_POPPED((const pm_node_t *) statements); PUSH_LABEL(ret, next_label); if (type == PM_WHILE_NODE) { pm_compile_branch_condition(iseq, ret, predicate, redo_label, end_label, popped, scope_node); } else if (type == PM_UNTIL_NODE) { pm_compile_branch_condition(iseq, ret, predicate, end_label, redo_label, popped, scope_node); } PUSH_LABEL(ret, end_label); PUSH_ADJUST_RESTORE(ret, adjust_label); PUSH_INSN(ret, location, putnil); PUSH_LABEL(ret, break_label); if (popped) PUSH_INSN(ret, location, pop); PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, redo_label, break_label, NULL, break_label); PUSH_CATCH_ENTRY(CATCH_TYPE_NEXT, redo_label, break_label, NULL, next_catch_label); PUSH_CATCH_ENTRY(CATCH_TYPE_REDO, redo_label, break_label, NULL, ISEQ_COMPILE_DATA(iseq)->redo_label); ISEQ_COMPILE_DATA(iseq)->start_label = prev_start_label; ISEQ_COMPILE_DATA(iseq)->end_label = prev_end_label; ISEQ_COMPILE_DATA(iseq)->redo_label = prev_redo_label; ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack->prev; return; } // This recurses through scopes and finds the local index at any scope level // It also takes a pointer to depth, and increments depth appropriately // according to the depth of the local. static pm_local_index_t pm_lookup_local_index(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, pm_constant_id_t constant_id, int start_depth) { pm_local_index_t lindex = { 0 }; st_data_t local_index; int level; for (level = 0; level < start_depth; level++) { scope_node = scope_node->previous; } while (!st_lookup(scope_node->index_lookup_table, constant_id, &local_index)) { level++; if (scope_node->previous) { scope_node = scope_node->previous; } else { // We have recursed up all scope nodes // and have not found the local yet rb_bug("Local with constant_id %u does not exist", (unsigned int) constant_id); } } lindex.level = level; lindex.index = scope_node->local_table_for_iseq_size - (int) local_index; return lindex; } // This returns the CRuby ID which maps to the pm_constant_id_t // // Constant_ids in prism are indexes of the constants in prism's constant pool. // We add a constants mapping on the scope_node which is a mapping from // these constant_id indexes to the CRuby IDs that they represent. // This helper method allows easy access to those IDs static ID pm_constant_id_lookup(const pm_scope_node_t *scope_node, pm_constant_id_t constant_id) { if (constant_id < 1 || constant_id > scope_node->parser->constant_pool.size) { rb_bug("constant_id out of range: %u", (unsigned int)constant_id); } return scope_node->constants[constant_id - 1]; } static rb_iseq_t * pm_new_child_iseq(rb_iseq_t *iseq, pm_scope_node_t *node, VALUE name, const rb_iseq_t *parent, enum rb_iseq_type type, int line_no) { debugs("[new_child_iseq]> ---------------------------------------\n"); int isolated_depth = ISEQ_COMPILE_DATA(iseq)->isolated_depth; rb_iseq_t *ret_iseq = pm_iseq_new_with_opt(node, name, rb_iseq_path(iseq), rb_iseq_realpath(iseq), line_no, parent, isolated_depth ? isolated_depth + 1 : 0, type, ISEQ_COMPILE_DATA(iseq)->option); debugs("[new_child_iseq]< ---------------------------------------\n"); return ret_iseq; } static int pm_compile_class_path(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { if (PM_NODE_TYPE_P(node, PM_CONSTANT_PATH_NODE)) { const pm_node_t *parent = ((const pm_constant_path_node_t *) node)->parent; if (parent) { /* Bar::Foo */ PM_COMPILE(parent); return VM_DEFINECLASS_FLAG_SCOPED; } else { /* toplevel class ::Foo */ PUSH_INSN1(ret, *node_location, putobject, rb_cObject); return VM_DEFINECLASS_FLAG_SCOPED; } } else { /* class at cbase Foo */ PUSH_INSN1(ret, *node_location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); return 0; } } /** * Compile either a call and write node or a call or write node. These look like * method calls that are followed by a ||= or &&= operator. */ static void pm_compile_call_and_or_write_node(rb_iseq_t *iseq, bool and_node, const pm_node_t *receiver, const pm_node_t *value, pm_constant_id_t write_name, pm_constant_id_t read_name, bool safe_nav, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; LABEL *lfin = NEW_LABEL(location.line); LABEL *lcfin = NEW_LABEL(location.line); LABEL *lskip = NULL; int flag = PM_NODE_TYPE_P(receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0; ID id_read_name = pm_constant_id_lookup(scope_node, read_name); PM_COMPILE_NOT_POPPED(receiver); if (safe_nav) { lskip = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchnil, lskip); } PUSH_INSN(ret, location, dup); PUSH_SEND_WITH_FLAG(ret, location, id_read_name, INT2FIX(0), INT2FIX(flag)); if (!popped) PUSH_INSN(ret, location, dup); if (and_node) { PUSH_INSNL(ret, location, branchunless, lcfin); } else { PUSH_INSNL(ret, location, branchif, lcfin); } if (!popped) PUSH_INSN(ret, location, pop); PM_COMPILE_NOT_POPPED(value); if (!popped) { PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, topn, INT2FIX(1)); } ID id_write_name = pm_constant_id_lookup(scope_node, write_name); PUSH_SEND_WITH_FLAG(ret, location, id_write_name, INT2FIX(1), INT2FIX(flag)); PUSH_INSNL(ret, location, jump, lfin); PUSH_LABEL(ret, lcfin); if (!popped) PUSH_INSN(ret, location, swap); PUSH_LABEL(ret, lfin); if (lskip && popped) PUSH_LABEL(ret, lskip); PUSH_INSN(ret, location, pop); if (lskip && !popped) PUSH_LABEL(ret, lskip); } /** * This function compiles a hash onto the stack. It is used to compile hash * literals and keyword arguments. It is assumed that if we get here that the * contents of the hash are not popped. */ static void pm_compile_hash_elements(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_list_t *elements, bool argument, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); // If this element is not popped, then we need to create the hash on the // stack. Neighboring plain assoc nodes should be grouped together (either // by newhash or hash merge). Double splat nodes should be merged using the // merge_kwd method call. const int max_stack_length = 0x100; const unsigned int min_tmp_hash_length = 0x800; int stack_length = 0; bool first_chunk = true; // This is an optimization wherein we keep track of whether or not the // previous element was a static literal. If it was, then we do not attempt // to check if we have a subhash that can be optimized. If it was not, then // we do check. bool static_literal = false; DECL_ANCHOR(anchor); INIT_ANCHOR(anchor); // Convert pushed elements to a hash, and merge if needed. #define FLUSH_CHUNK \ if (stack_length) { \ if (first_chunk) { \ PUSH_SEQ(ret, anchor); \ PUSH_INSN1(ret, location, newhash, INT2FIX(stack_length)); \ first_chunk = false; \ } \ else { \ PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); \ PUSH_INSN(ret, location, swap); \ PUSH_SEQ(ret, anchor); \ PUSH_SEND(ret, location, id_core_hash_merge_ptr, INT2FIX(stack_length + 1)); \ } \ INIT_ANCHOR(anchor); \ stack_length = 0; \ } for (size_t index = 0; index < elements->size; index++) { const pm_node_t *element = elements->nodes[index]; switch (PM_NODE_TYPE(element)) { case PM_ASSOC_NODE: { // Pre-allocation check (this branch can be omitted). if (PM_NODE_FLAG_P(element, PM_NODE_FLAG_STATIC_LITERAL) && ( (!static_literal && ((index + min_tmp_hash_length) < elements->size)) || (first_chunk && stack_length == 0) )) { // Count the elements that are statically-known. size_t count = 1; while (index + count < elements->size && PM_NODE_FLAG_P(elements->nodes[index + count], PM_NODE_FLAG_STATIC_LITERAL)) count++; if ((first_chunk && stack_length == 0) || count >= min_tmp_hash_length) { // The subsequence of elements in this hash is long enough // to merit its own hash. VALUE ary = rb_ary_hidden_new(count); // Create a hidden hash. for (size_t tmp_end = index + count; index < tmp_end; index++) { const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[index]; VALUE elem[2] = { pm_static_literal_value(iseq, assoc->key, scope_node), pm_static_literal_value(iseq, assoc->value, scope_node) }; rb_ary_cat(ary, elem, 2); } index --; VALUE hash = rb_hash_new_with_size(RARRAY_LEN(ary) / 2); rb_hash_bulk_insert(RARRAY_LEN(ary), RARRAY_CONST_PTR(ary), hash); hash = rb_obj_hide(hash); OBJ_FREEZE(hash); // Emit optimized code. FLUSH_CHUNK; if (first_chunk) { PUSH_INSN1(ret, location, duphash, hash); first_chunk = false; } else { PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, putobject, hash); PUSH_SEND(ret, location, id_core_hash_merge_kwd, INT2FIX(2)); } break; } else { static_literal = true; } } else { static_literal = false; } // If this is a plain assoc node, then we can compile it directly // and then add the total number of values on the stack. pm_compile_node(iseq, element, anchor, false, scope_node); if ((stack_length += 2) >= max_stack_length) FLUSH_CHUNK; break; } case PM_ASSOC_SPLAT_NODE: { FLUSH_CHUNK; const pm_assoc_splat_node_t *assoc_splat = (const pm_assoc_splat_node_t *) element; bool empty_hash = assoc_splat->value != NULL && ( (PM_NODE_TYPE_P(assoc_splat->value, PM_HASH_NODE) && ((const pm_hash_node_t *) assoc_splat->value)->elements.size == 0) || PM_NODE_TYPE_P(assoc_splat->value, PM_NIL_NODE) ); bool first_element = first_chunk && stack_length == 0; bool last_element = index == elements->size - 1; bool only_element = first_element && last_element; if (empty_hash) { if (only_element && argument) { // **{} appears at the only keyword argument in method call, // so it won't be modified. // // This is only done for method calls and not for literal // hashes, because literal hashes should always result in a // new hash. PUSH_INSN(ret, location, putnil); } else if (first_element) { // **{} appears as the first keyword argument, so it may be // modified. We need to create a fresh hash object. PUSH_INSN1(ret, location, newhash, INT2FIX(0)); } // Any empty keyword splats that are not the first can be // ignored since merging an empty hash into the existing hash is // the same as not merging it. } else { if (only_element && argument) { // ** is only keyword argument in the method call. Use it // directly. This will be not be flagged as mutable. This is // only done for method calls and not for literal hashes, // because literal hashes should always result in a new // hash. PM_COMPILE_NOT_POPPED(element); } else { // There is more than one keyword argument, or this is not a // method call. In that case, we need to add an empty hash // (if first keyword), or merge the hash to the accumulated // hash (if not the first keyword). PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); if (first_element) { PUSH_INSN1(ret, location, newhash, INT2FIX(0)); } else { PUSH_INSN(ret, location, swap); } PM_COMPILE_NOT_POPPED(element); PUSH_SEND(ret, location, id_core_hash_merge_kwd, INT2FIX(2)); } } first_chunk = false; static_literal = false; break; } default: RUBY_ASSERT("Invalid node type for hash" && false); break; } } FLUSH_CHUNK; #undef FLUSH_CHUNK } // This is details. Users should call pm_setup_args() instead. static int pm_setup_args_core(const pm_arguments_node_t *arguments_node, const pm_node_t *block, int *flags, const bool has_regular_blockarg, struct rb_callinfo_kwarg **kw_arg, VALUE *dup_rest, rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, const pm_node_location_t *node_location) { const pm_node_location_t location = *node_location; int orig_argc = 0; bool has_splat = false; bool has_keyword_splat = false; if (arguments_node == NULL) { if (*flags & VM_CALL_FCALL) { *flags |= VM_CALL_VCALL; } } else { const pm_node_list_t *arguments = &arguments_node->arguments; has_keyword_splat = PM_NODE_FLAG_P(arguments_node, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_KEYWORD_SPLAT); // We count the number of elements post the splat node that are not keyword elements to // eventually pass as an argument to newarray int post_splat_counter = 0; const pm_node_t *argument; PM_NODE_LIST_FOREACH(arguments, index, argument) { switch (PM_NODE_TYPE(argument)) { // A keyword hash node contains all keyword arguments as AssocNodes and AssocSplatNodes case PM_KEYWORD_HASH_NODE: { const pm_keyword_hash_node_t *keyword_arg = (const pm_keyword_hash_node_t *) argument; const pm_node_list_t *elements = &keyword_arg->elements; if (has_keyword_splat || has_splat) { *flags |= VM_CALL_KW_SPLAT; has_keyword_splat = true; if (elements->size > 1 || !(elements->size == 1 && PM_NODE_TYPE_P(elements->nodes[0], PM_ASSOC_SPLAT_NODE))) { // A new hash will be created for the keyword arguments // in this case, so mark the method as passing mutable // keyword splat. *flags |= VM_CALL_KW_SPLAT_MUT; } pm_compile_hash_elements(iseq, argument, elements, true, ret, scope_node); } else { // We need to first figure out if all elements of the // KeywordHashNode are AssocNodes with symbol keys. if (PM_NODE_FLAG_P(keyword_arg, PM_KEYWORD_HASH_NODE_FLAGS_SYMBOL_KEYS)) { // If they are all symbol keys then we can pass them as // keyword arguments. The first thing we need to do is // deduplicate. We'll do this using the combination of a // Ruby hash and a Ruby array. VALUE stored_indices = rb_hash_new(); VALUE keyword_indices = rb_ary_new_capa(elements->size); size_t size = 0; for (size_t element_index = 0; element_index < elements->size; element_index++) { const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[element_index]; // Retrieve the stored index from the hash for this // keyword. VALUE keyword = pm_static_literal_value(iseq, assoc->key, scope_node); VALUE stored_index = rb_hash_aref(stored_indices, keyword); // If this keyword was already seen in the hash, // then mark the array at that index as false and // decrement the keyword size. if (!NIL_P(stored_index)) { rb_ary_store(keyword_indices, NUM2LONG(stored_index), Qfalse); size--; } // Store (and possibly overwrite) the index for this // keyword in the hash, mark the array at that index // as true, and increment the keyword size. rb_hash_aset(stored_indices, keyword, ULONG2NUM(element_index)); rb_ary_store(keyword_indices, (long) element_index, Qtrue); size++; } *kw_arg = rb_xmalloc_mul_add(size, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg)); *flags |= VM_CALL_KWARG; VALUE *keywords = (*kw_arg)->keywords; (*kw_arg)->references = 0; (*kw_arg)->keyword_len = (int) size; size_t keyword_index = 0; for (size_t element_index = 0; element_index < elements->size; element_index++) { const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[element_index]; bool popped = true; if (rb_ary_entry(keyword_indices, (long) element_index) == Qtrue) { keywords[keyword_index++] = pm_static_literal_value(iseq, assoc->key, scope_node); popped = false; } PM_COMPILE(assoc->value); } RUBY_ASSERT(keyword_index == size); } else { // If they aren't all symbol keys then we need to // construct a new hash and pass that as an argument. orig_argc++; *flags |= VM_CALL_KW_SPLAT; size_t size = elements->size; if (size > 1) { // A new hash will be created for the keyword // arguments in this case, so mark the method as // passing mutable keyword splat. *flags |= VM_CALL_KW_SPLAT_MUT; } for (size_t element_index = 0; element_index < size; element_index++) { const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[element_index]; PM_COMPILE_NOT_POPPED(assoc->key); PM_COMPILE_NOT_POPPED(assoc->value); } PUSH_INSN1(ret, location, newhash, INT2FIX(size * 2)); } } break; } case PM_SPLAT_NODE: { *flags |= VM_CALL_ARGS_SPLAT; const pm_splat_node_t *splat_node = (const pm_splat_node_t *) argument; if (splat_node->expression) { PM_COMPILE_NOT_POPPED(splat_node->expression); } else { pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0); PUSH_GETLOCAL(ret, location, index.index, index.level); } bool first_splat = !has_splat; if (first_splat) { // If this is the first splat array seen and it's not the // last parameter, we want splatarray to dup it. // // foo(a, *b, c) // ^^ if (index + 1 < arguments->size || has_regular_blockarg) { PUSH_INSN1(ret, location, splatarray, *dup_rest); if (*dup_rest == Qtrue) *dup_rest = Qfalse; } // If this is the first spalt array seen and it's the last // parameter, we don't want splatarray to dup it. // // foo(a, *b) // ^^ else { PUSH_INSN1(ret, location, splatarray, Qfalse); } } else { // If this is not the first splat array seen and it is also // the last parameter, we don't want splatarray to dup it // and we need to concat the array. // // foo(a, *b, *c) // ^^ PUSH_INSN(ret, location, concattoarray); } has_splat = true; post_splat_counter = 0; break; } case PM_FORWARDING_ARGUMENTS_NODE: { if (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->param.flags.forwardable) { *flags |= VM_CALL_FORWARDING; pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_DOT3, 0); PUSH_GETLOCAL(ret, location, mult_local.index, mult_local.level); break; } orig_argc += 2; *flags |= VM_CALL_ARGS_SPLAT | VM_CALL_ARGS_SPLAT_MUT | VM_CALL_ARGS_BLOCKARG | VM_CALL_KW_SPLAT; // Forwarding arguments nodes are treated as foo(*, **, &) // So foo(...) equals foo(*, **, &) and as such the local // table for this method is known in advance // // Push the * pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0); PUSH_GETLOCAL(ret, location, mult_local.index, mult_local.level); PUSH_INSN1(ret, location, splatarray, Qtrue); // Push the ** pm_local_index_t pow_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_POW, 0); PUSH_GETLOCAL(ret, location, pow_local.index, pow_local.level); // Push the & pm_local_index_t and_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_AND, 0); PUSH_INSN2(ret, location, getblockparamproxy, INT2FIX(and_local.index + VM_ENV_DATA_SIZE - 1), INT2FIX(and_local.level)); PUSH_INSN(ret, location, splatkw); break; } default: { post_splat_counter++; PM_COMPILE_NOT_POPPED(argument); // If we have a splat and we've seen a splat, we need to process // everything after the splat. if (has_splat) { // Stack items are turned into an array and concatenated in // the following cases: // // If the next node is a splat: // // foo(*a, b, *c) // // If the next node is a kwarg or kwarg splat: // // foo(*a, b, c: :d) // foo(*a, b, **c) // // If the next node is NULL (we have hit the end): // // foo(*a, b) if (index == arguments->size - 1) { RUBY_ASSERT(post_splat_counter > 0); PUSH_INSN1(ret, location, pushtoarray, INT2FIX(post_splat_counter)); } else { pm_node_t *next_arg = arguments->nodes[index + 1]; switch (PM_NODE_TYPE(next_arg)) { // A keyword hash node contains all keyword arguments as AssocNodes and AssocSplatNodes case PM_KEYWORD_HASH_NODE: { PUSH_INSN1(ret, location, newarray, INT2FIX(post_splat_counter)); PUSH_INSN(ret, location, concatarray); break; } case PM_SPLAT_NODE: { PUSH_INSN1(ret, location, newarray, INT2FIX(post_splat_counter)); PUSH_INSN(ret, location, concatarray); break; } default: break; } } } else { orig_argc++; } } } } } if (has_splat) orig_argc++; if (has_keyword_splat) orig_argc++; return orig_argc; } /** * True if the given kind of node could potentially mutate the array that is * being splatted in a set of call arguments. */ static inline bool pm_setup_args_dup_rest_p(const pm_node_t *node) { switch (PM_NODE_TYPE(node)) { case PM_BACK_REFERENCE_READ_NODE: case PM_CLASS_VARIABLE_READ_NODE: case PM_CONSTANT_PATH_NODE: case PM_CONSTANT_READ_NODE: case PM_FALSE_NODE: case PM_FLOAT_NODE: case PM_GLOBAL_VARIABLE_READ_NODE: case PM_IMAGINARY_NODE: case PM_INSTANCE_VARIABLE_READ_NODE: case PM_INTEGER_NODE: case PM_LAMBDA_NODE: case PM_LOCAL_VARIABLE_READ_NODE: case PM_NIL_NODE: case PM_NUMBERED_REFERENCE_READ_NODE: case PM_RATIONAL_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_SELF_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_TRUE_NODE: return false; case PM_IMPLICIT_NODE: return pm_setup_args_dup_rest_p(((const pm_implicit_node_t *) node)->value); default: return true; } } /** * Compile the argument parts of a call. */ static int pm_setup_args(const pm_arguments_node_t *arguments_node, const pm_node_t *block, int *flags, struct rb_callinfo_kwarg **kw_arg, rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, const pm_node_location_t *node_location) { VALUE dup_rest = Qtrue; const pm_node_list_t *arguments; size_t arguments_size; // Calls like foo(1, *f, **hash) that use splat and kwsplat could be // eligible for eliding duping the rest array (dup_reset=false). if ( arguments_node != NULL && (arguments = &arguments_node->arguments, arguments_size = arguments->size) >= 2 && PM_NODE_FLAG_P(arguments_node, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_SPLAT) && !PM_NODE_FLAG_P(arguments_node, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_MULTIPLE_SPLATS) && PM_NODE_TYPE_P(arguments->nodes[arguments_size - 1], PM_KEYWORD_HASH_NODE) ) { // Start by assuming that dup_rest=false, then check each element of the // hash to ensure we don't need to flip it back to true (in case one of // the elements could potentially mutate the array). dup_rest = Qfalse; const pm_keyword_hash_node_t *keyword_hash = (const pm_keyword_hash_node_t *) arguments->nodes[arguments_size - 1]; const pm_node_list_t *elements = &keyword_hash->elements; for (size_t index = 0; dup_rest == Qfalse && index < elements->size; index++) { const pm_node_t *element = elements->nodes[index]; switch (PM_NODE_TYPE(element)) { case PM_ASSOC_NODE: { const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element; if (pm_setup_args_dup_rest_p(assoc->key) || pm_setup_args_dup_rest_p(assoc->value)) dup_rest = Qtrue; break; } case PM_ASSOC_SPLAT_NODE: { const pm_assoc_splat_node_t *assoc = (const pm_assoc_splat_node_t *) element; if (assoc->value != NULL && pm_setup_args_dup_rest_p(assoc->value)) dup_rest = Qtrue; break; } default: break; } } } VALUE initial_dup_rest = dup_rest; int argc; if (block && PM_NODE_TYPE_P(block, PM_BLOCK_ARGUMENT_NODE)) { // We compile the `&block_arg` expression first and stitch it later // since the nature of the expression influences whether splat should // duplicate the array. bool regular_block_arg = true; DECL_ANCHOR(block_arg); INIT_ANCHOR(block_arg); pm_compile_node(iseq, block, block_arg, false, scope_node); *flags |= VM_CALL_ARGS_BLOCKARG; if (LIST_INSN_SIZE_ONE(block_arg)) { LINK_ELEMENT *elem = FIRST_ELEMENT(block_arg); if (IS_INSN(elem)) { INSN *iobj = (INSN *) elem; if (iobj->insn_id == BIN(getblockparam)) { iobj->insn_id = BIN(getblockparamproxy); } // Allow splat without duplication for simple one-instruction // block arguments like `&arg`. It is known that this // optimization can be too aggressive in some cases. See // [Bug #16504]. regular_block_arg = false; } } argc = pm_setup_args_core(arguments_node, block, flags, regular_block_arg, kw_arg, &dup_rest, iseq, ret, scope_node, node_location); PUSH_SEQ(ret, block_arg); } else { argc = pm_setup_args_core(arguments_node, block, flags, false, kw_arg, &dup_rest, iseq, ret, scope_node, node_location); } // If the dup_rest flag was consumed while compiling the arguments (which // effectively means we found the splat node), then it would have changed // during the call to pm_setup_args_core. In this case, we want to add the // VM_CALL_ARGS_SPLAT_MUT flag. if (*flags & VM_CALL_ARGS_SPLAT && dup_rest != initial_dup_rest) { *flags |= VM_CALL_ARGS_SPLAT_MUT; } return argc; } /** * Compile an index operator write node, which is a node that is writing a value * using the [] and []= methods. It looks like: * * foo[bar] += baz * * This breaks down to caching the receiver and arguments on the stack, calling * the [] method, calling the operator method with the result of the [] method, * and then calling the []= method with the result of the operator method. */ static void pm_compile_index_operator_write_node(rb_iseq_t *iseq, const pm_index_operator_write_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; if (!popped) PUSH_INSN(ret, location, putnil); PM_COMPILE_NOT_POPPED(node->receiver); int boff = (node->block == NULL ? 0 : 1); int flag = PM_NODE_TYPE_P(node->receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0; struct rb_callinfo_kwarg *keywords = NULL; int argc = pm_setup_args(node->arguments, node->block, &flag, &keywords, iseq, ret, scope_node, node_location); if ((argc > 0 || boff) && (flag & VM_CALL_KW_SPLAT)) { if (boff) { PUSH_INSN(ret, location, splatkw); } else { PUSH_INSN(ret, location, dup); PUSH_INSN(ret, location, splatkw); PUSH_INSN(ret, location, pop); } } int dup_argn = argc + 1 + boff; int keyword_len = 0; if (keywords) { keyword_len = keywords->keyword_len; dup_argn += keyword_len; } PUSH_INSN1(ret, location, dupn, INT2FIX(dup_argn)); PUSH_SEND_R(ret, location, idAREF, INT2FIX(argc), NULL, INT2FIX(flag & ~(VM_CALL_ARGS_SPLAT_MUT | VM_CALL_KW_SPLAT_MUT)), keywords); PM_COMPILE_NOT_POPPED(node->value); ID id_operator = pm_constant_id_lookup(scope_node, node->binary_operator); PUSH_SEND(ret, location, id_operator, INT2FIX(1)); if (!popped) { PUSH_INSN1(ret, location, setn, INT2FIX(dup_argn + 1)); } if (flag & VM_CALL_ARGS_SPLAT) { if (flag & VM_CALL_KW_SPLAT) { PUSH_INSN1(ret, location, topn, INT2FIX(2 + boff)); if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) { PUSH_INSN1(ret, location, splatarray, Qtrue); flag |= VM_CALL_ARGS_SPLAT_MUT; } PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1)); PUSH_INSN1(ret, location, setn, INT2FIX(2 + boff)); PUSH_INSN(ret, location, pop); } else { if (boff > 0) { PUSH_INSN1(ret, location, dupn, INT2FIX(3)); PUSH_INSN(ret, location, swap); PUSH_INSN(ret, location, pop); } if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) { PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, splatarray, Qtrue); PUSH_INSN(ret, location, swap); flag |= VM_CALL_ARGS_SPLAT_MUT; } PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1)); if (boff > 0) { PUSH_INSN1(ret, location, setn, INT2FIX(3)); PUSH_INSN(ret, location, pop); PUSH_INSN(ret, location, pop); } } PUSH_SEND_R(ret, location, idASET, INT2FIX(argc), NULL, INT2FIX(flag), keywords); } else if (flag & VM_CALL_KW_SPLAT) { if (boff > 0) { PUSH_INSN1(ret, location, topn, INT2FIX(2)); PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, setn, INT2FIX(3)); PUSH_INSN(ret, location, pop); } PUSH_INSN(ret, location, swap); PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } else if (keyword_len) { PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 2)); PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 1)); PUSH_INSN(ret, location, pop); PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } else { if (boff > 0) { PUSH_INSN(ret, location, swap); } PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } PUSH_INSN(ret, location, pop); } /** * Compile an index control flow write node, which is a node that is writing a * value using the [] and []= methods and the &&= and ||= operators. It looks * like: * * foo[bar] ||= baz * * This breaks down to caching the receiver and arguments on the stack, calling * the [] method, checking the result and then changing control flow based on * it. If the value would result in a write, then the value is written using the * []= method. */ static void pm_compile_index_control_flow_write_node(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_t *receiver, const pm_arguments_node_t *arguments, const pm_node_t *block, const pm_node_t *value, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; if (!popped) PUSH_INSN(ret, location, putnil); PM_COMPILE_NOT_POPPED(receiver); int boff = (block == NULL ? 0 : 1); int flag = PM_NODE_TYPE_P(receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0; struct rb_callinfo_kwarg *keywords = NULL; int argc = pm_setup_args(arguments, block, &flag, &keywords, iseq, ret, scope_node, node_location); if ((argc > 0 || boff) && (flag & VM_CALL_KW_SPLAT)) { if (boff) { PUSH_INSN(ret, location, splatkw); } else { PUSH_INSN(ret, location, dup); PUSH_INSN(ret, location, splatkw); PUSH_INSN(ret, location, pop); } } int dup_argn = argc + 1 + boff; int keyword_len = 0; if (keywords) { keyword_len = keywords->keyword_len; dup_argn += keyword_len; } PUSH_INSN1(ret, location, dupn, INT2FIX(dup_argn)); PUSH_SEND_R(ret, location, idAREF, INT2FIX(argc), NULL, INT2FIX(flag & ~(VM_CALL_ARGS_SPLAT_MUT | VM_CALL_KW_SPLAT_MUT)), keywords); LABEL *label = NEW_LABEL(location.line); LABEL *lfin = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); if (PM_NODE_TYPE_P(node, PM_INDEX_AND_WRITE_NODE)) { PUSH_INSNL(ret, location, branchunless, label); } else { PUSH_INSNL(ret, location, branchif, label); } PUSH_INSN(ret, location, pop); PM_COMPILE_NOT_POPPED(value); if (!popped) { PUSH_INSN1(ret, location, setn, INT2FIX(dup_argn + 1)); } if (flag & VM_CALL_ARGS_SPLAT) { if (flag & VM_CALL_KW_SPLAT) { PUSH_INSN1(ret, location, topn, INT2FIX(2 + boff)); if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) { PUSH_INSN1(ret, location, splatarray, Qtrue); flag |= VM_CALL_ARGS_SPLAT_MUT; } PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1)); PUSH_INSN1(ret, location, setn, INT2FIX(2 + boff)); PUSH_INSN(ret, location, pop); } else { if (boff > 0) { PUSH_INSN1(ret, location, dupn, INT2FIX(3)); PUSH_INSN(ret, location, swap); PUSH_INSN(ret, location, pop); } if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) { PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, splatarray, Qtrue); PUSH_INSN(ret, location, swap); flag |= VM_CALL_ARGS_SPLAT_MUT; } PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1)); if (boff > 0) { PUSH_INSN1(ret, location, setn, INT2FIX(3)); PUSH_INSN(ret, location, pop); PUSH_INSN(ret, location, pop); } } PUSH_SEND_R(ret, location, idASET, INT2FIX(argc), NULL, INT2FIX(flag), keywords); } else if (flag & VM_CALL_KW_SPLAT) { if (boff > 0) { PUSH_INSN1(ret, location, topn, INT2FIX(2)); PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, setn, INT2FIX(3)); PUSH_INSN(ret, location, pop); } PUSH_INSN(ret, location, swap); PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } else if (keyword_len) { PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 1)); PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 0)); PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } else { if (boff > 0) { PUSH_INSN(ret, location, swap); } PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords); } PUSH_INSN(ret, location, pop); PUSH_INSNL(ret, location, jump, lfin); PUSH_LABEL(ret, label); if (!popped) { PUSH_INSN1(ret, location, setn, INT2FIX(dup_argn + 1)); } PUSH_INSN1(ret, location, adjuststack, INT2FIX(dup_argn + 1)); PUSH_LABEL(ret, lfin); } // When we compile a pattern matching expression, we use the stack as a scratch // space to store lots of different values (consider it like we have a pattern // matching function and we need space for a bunch of different local // variables). The "base index" refers to the index on the stack where we // started compiling the pattern matching expression. These offsets from that // base index indicate the location of the various locals we need. #define PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE 0 #define PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING 1 #define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P 2 #define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE 3 #define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY 4 // A forward declaration because this is the recursive function that handles // compiling a pattern. It can be reentered by nesting patterns, as in the case // of arrays or hashes. static int pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index); /** * This function generates the code to set up the error string and error_p * locals depending on whether or not the pattern matched. */ static int pm_compile_pattern_generic_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, unsigned int base_index) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); LABEL *match_succeeded_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, match_succeeded_label); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, message); PUSH_INSN1(ret, location, topn, INT2FIX(3)); PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(2)); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); PUSH_INSN1(ret, location, putobject, Qfalse); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); PUSH_INSN(ret, location, pop); PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, match_succeeded_label); return COMPILE_OK; } /** * This function generates the code to set up the error string and error_p * locals depending on whether or not the pattern matched when the value needs * to match a specific deconstructed length. */ static int pm_compile_pattern_length_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, VALUE length, unsigned int base_index) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); LABEL *match_succeeded_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, match_succeeded_label); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, message); PUSH_INSN1(ret, location, topn, INT2FIX(3)); PUSH_INSN(ret, location, dup); PUSH_SEND(ret, location, idLength, INT2FIX(0)); PUSH_INSN1(ret, location, putobject, length); PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(4)); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); PUSH_INSN1(ret, location, putobject, Qfalse); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); PUSH_INSN(ret, location, pop); PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, match_succeeded_label); return COMPILE_OK; } /** * This function generates the code to set up the error string and error_p * locals depending on whether or not the pattern matched when the value needs * to pass a specific #=== method call. */ static int pm_compile_pattern_eqq_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, unsigned int base_index) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); LABEL *match_succeeded_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, match_succeeded_label); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, rb_fstring_lit("%p === %p does not return true")); PUSH_INSN1(ret, location, topn, INT2FIX(3)); PUSH_INSN1(ret, location, topn, INT2FIX(5)); PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(3)); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); PUSH_INSN1(ret, location, putobject, Qfalse); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); PUSH_INSN(ret, location, pop); PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, match_succeeded_label); PUSH_INSN1(ret, location, setn, INT2FIX(2)); PUSH_INSN(ret, location, pop); PUSH_INSN(ret, location, pop); return COMPILE_OK; } /** * This is a variation on compiling a pattern matching expression that is used * to have the pattern matching instructions fall through to immediately after * the pattern if it passes. Otherwise it jumps to the given unmatched_label * label. */ static int pm_compile_pattern_match(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index) { LABEL *matched_label = NEW_LABEL(pm_node_line_number(scope_node->parser, node)); CHECK(pm_compile_pattern(iseq, scope_node, node, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index)); PUSH_LABEL(ret, matched_label); return COMPILE_OK; } /** * This function compiles in the code necessary to call #deconstruct on the * value to match against. It raises appropriate errors if the method does not * exist or if it returns the wrong type. */ static int pm_compile_pattern_deconstruct(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *deconstruct_label, LABEL *match_failed_label, LABEL *deconstructed_label, LABEL *type_error_label, bool in_single_pattern, bool use_deconstructed_cache, unsigned int base_index) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); if (use_deconstructed_cache) { PUSH_INSN1(ret, location, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE)); PUSH_INSNL(ret, location, branchnil, deconstruct_label); PUSH_INSN1(ret, location, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE)); PUSH_INSNL(ret, location, branchunless, match_failed_label); PUSH_INSN(ret, location, pop); PUSH_INSN1(ret, location, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE - 1)); PUSH_INSNL(ret, location, jump, deconstructed_label); } else { PUSH_INSNL(ret, location, jump, deconstruct_label); } PUSH_LABEL(ret, deconstruct_label); PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, ID2SYM(rb_intern("deconstruct"))); PUSH_SEND(ret, location, idRespond_to, INT2FIX(1)); if (use_deconstructed_cache) { PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE + 1)); } if (in_single_pattern) { CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct"), base_index + 1)); } PUSH_INSNL(ret, location, branchunless, match_failed_label); PUSH_SEND(ret, location, rb_intern("deconstruct"), INT2FIX(0)); if (use_deconstructed_cache) { PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE)); } PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, checktype, INT2FIX(T_ARRAY)); PUSH_INSNL(ret, location, branchunless, type_error_label); PUSH_LABEL(ret, deconstructed_label); return COMPILE_OK; } /** * This function compiles in the code necessary to match against the optional * constant path that is attached to an array, find, or hash pattern. */ static int pm_compile_pattern_constant(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *match_failed_label, bool in_single_pattern, unsigned int base_index) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); PUSH_INSN(ret, location, dup); PM_COMPILE_NOT_POPPED(node); if (in_single_pattern) { PUSH_INSN1(ret, location, dupn, INT2FIX(2)); } PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE)); if (in_single_pattern) { CHECK(pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 3)); } PUSH_INSNL(ret, location, branchunless, match_failed_label); return COMPILE_OK; } /** * When matching fails, an appropriate error must be raised. This function is * responsible for compiling in those error raising instructions. */ static void pm_compile_pattern_error_handler(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *done_label, bool popped) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); LABEL *key_error_label = NEW_LABEL(location.line); LABEL *cleanup_label = NEW_LABEL(location.line); struct rb_callinfo_kwarg *kw_arg = rb_xmalloc_mul_add(2, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg)); kw_arg->references = 0; kw_arg->keyword_len = 2; kw_arg->keywords[0] = ID2SYM(rb_intern("matchee")); kw_arg->keywords[1] = ID2SYM(rb_intern("key")); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); PUSH_INSNL(ret, location, branchif, key_error_label); PUSH_INSN1(ret, location, putobject, rb_eNoMatchingPatternError); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, rb_fstring_lit("%p: %s")); PUSH_INSN1(ret, location, topn, INT2FIX(4)); PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6)); PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(3)); PUSH_SEND(ret, location, id_core_raise, INT2FIX(2)); PUSH_INSNL(ret, location, jump, cleanup_label); PUSH_LABEL(ret, key_error_label); PUSH_INSN1(ret, location, putobject, rb_eNoMatchingPatternKeyError); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, rb_fstring_lit("%p: %s")); PUSH_INSN1(ret, location, topn, INT2FIX(4)); PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6)); PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(3)); PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4)); PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5)); PUSH_SEND_R(ret, location, rb_intern("new"), INT2FIX(1), NULL, INT2FIX(VM_CALL_KWARG), kw_arg); PUSH_SEND(ret, location, id_core_raise, INT2FIX(1)); PUSH_LABEL(ret, cleanup_label); PUSH_INSN1(ret, location, adjuststack, INT2FIX(7)); if (!popped) PUSH_INSN(ret, location, putnil); PUSH_INSNL(ret, location, jump, done_label); PUSH_INSN1(ret, location, dupn, INT2FIX(5)); if (popped) PUSH_INSN(ret, location, putnil); } /** * Compile a pattern matching expression. */ static int pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); switch (PM_NODE_TYPE(node)) { case PM_ARRAY_PATTERN_NODE: { // Array patterns in pattern matching are triggered by using commas in // a pattern or wrapping it in braces. They are represented by a // ArrayPatternNode. This looks like: // // foo => [1, 2, 3] // // It can optionally have a splat in the middle of it, which can // optionally have a name attached. const pm_array_pattern_node_t *cast = (const pm_array_pattern_node_t *) node; const size_t requireds_size = cast->requireds.size; const size_t posts_size = cast->posts.size; const size_t minimum_size = requireds_size + posts_size; bool rest_named = false; bool use_rest_size = false; if (cast->rest != NULL) { rest_named = (PM_NODE_TYPE_P(cast->rest, PM_SPLAT_NODE) && ((const pm_splat_node_t *) cast->rest)->expression != NULL); use_rest_size = (rest_named || (!rest_named && posts_size > 0)); } LABEL *match_failed_label = NEW_LABEL(location.line); LABEL *type_error_label = NEW_LABEL(location.line); LABEL *deconstruct_label = NEW_LABEL(location.line); LABEL *deconstructed_label = NEW_LABEL(location.line); if (use_rest_size) { PUSH_INSN1(ret, location, putobject, INT2FIX(0)); PUSH_INSN(ret, location, swap); base_index++; } if (cast->constant != NULL) { CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index)); } CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index)); PUSH_INSN(ret, location, dup); PUSH_SEND(ret, location, idLength, INT2FIX(0)); PUSH_INSN1(ret, location, putobject, INT2FIX(minimum_size)); PUSH_SEND(ret, location, cast->rest == NULL ? idEq : idGE, INT2FIX(1)); if (in_single_pattern) { VALUE message = cast->rest == NULL ? rb_fstring_lit("%p length mismatch (given %p, expected %p)") : rb_fstring_lit("%p length mismatch (given %p, expected %p+)"); CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, message, INT2FIX(minimum_size), base_index + 1)); } PUSH_INSNL(ret, location, branchunless, match_failed_label); for (size_t index = 0; index < requireds_size; index++) { const pm_node_t *required = cast->requireds.nodes[index]; PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, INT2FIX(index)); PUSH_SEND(ret, location, idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, required, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } if (cast->rest != NULL) { if (rest_named) { PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, INT2FIX(requireds_size)); PUSH_INSN1(ret, location, topn, INT2FIX(1)); PUSH_SEND(ret, location, idLength, INT2FIX(0)); PUSH_INSN1(ret, location, putobject, INT2FIX(minimum_size)); PUSH_SEND(ret, location, idMINUS, INT2FIX(1)); PUSH_INSN1(ret, location, setn, INT2FIX(4)); PUSH_SEND(ret, location, idAREF, INT2FIX(2)); CHECK(pm_compile_pattern_match(iseq, scope_node, ((const pm_splat_node_t *) cast->rest)->expression, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } else if (posts_size > 0) { PUSH_INSN(ret, location, dup); PUSH_SEND(ret, location, idLength, INT2FIX(0)); PUSH_INSN1(ret, location, putobject, INT2FIX(minimum_size)); PUSH_SEND(ret, location, idMINUS, INT2FIX(1)); PUSH_INSN1(ret, location, setn, INT2FIX(2)); PUSH_INSN(ret, location, pop); } } for (size_t index = 0; index < posts_size; index++) { const pm_node_t *post = cast->posts.nodes[index]; PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, INT2FIX(requireds_size + index)); PUSH_INSN1(ret, location, topn, INT2FIX(3)); PUSH_SEND(ret, location, idPLUS, INT2FIX(1)); PUSH_SEND(ret, location, idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, post, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } PUSH_INSN(ret, location, pop); if (use_rest_size) { PUSH_INSN(ret, location, pop); } PUSH_INSNL(ret, location, jump, matched_label); PUSH_INSN(ret, location, putnil); if (use_rest_size) { PUSH_INSN(ret, location, putnil); } PUSH_LABEL(ret, type_error_label); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, rb_eTypeError); PUSH_INSN1(ret, location, putobject, rb_fstring_lit("deconstruct must return Array")); PUSH_SEND(ret, location, id_core_raise, INT2FIX(2)); PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, match_failed_label); PUSH_INSN(ret, location, pop); if (use_rest_size) { PUSH_INSN(ret, location, pop); } PUSH_INSNL(ret, location, jump, unmatched_label); break; } case PM_FIND_PATTERN_NODE: { // Find patterns in pattern matching are triggered by using commas in // a pattern or wrapping it in braces and using a splat on both the left // and right side of the pattern. This looks like: // // foo => [*, 1, 2, 3, *] // // There can be any number of requireds in the middle. The splats on // both sides can optionally have names attached. const pm_find_pattern_node_t *cast = (const pm_find_pattern_node_t *) node; const size_t size = cast->requireds.size; LABEL *match_failed_label = NEW_LABEL(location.line); LABEL *type_error_label = NEW_LABEL(location.line); LABEL *deconstruct_label = NEW_LABEL(location.line); LABEL *deconstructed_label = NEW_LABEL(location.line); if (cast->constant) { CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index)); } CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index)); PUSH_INSN(ret, location, dup); PUSH_SEND(ret, location, idLength, INT2FIX(0)); PUSH_INSN1(ret, location, putobject, INT2FIX(size)); PUSH_SEND(ret, location, idGE, INT2FIX(1)); if (in_single_pattern) { CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, rb_fstring_lit("%p length mismatch (given %p, expected %p+)"), INT2FIX(size), base_index + 1)); } PUSH_INSNL(ret, location, branchunless, match_failed_label); { LABEL *while_begin_label = NEW_LABEL(location.line); LABEL *next_loop_label = NEW_LABEL(location.line); LABEL *find_succeeded_label = NEW_LABEL(location.line); LABEL *find_failed_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); PUSH_SEND(ret, location, idLength, INT2FIX(0)); PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, INT2FIX(size)); PUSH_SEND(ret, location, idMINUS, INT2FIX(1)); PUSH_INSN1(ret, location, putobject, INT2FIX(0)); PUSH_LABEL(ret, while_begin_label); PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, topn, INT2FIX(2)); PUSH_SEND(ret, location, idLE, INT2FIX(1)); PUSH_INSNL(ret, location, branchunless, find_failed_label); for (size_t index = 0; index < size; index++) { PUSH_INSN1(ret, location, topn, INT2FIX(3)); PUSH_INSN1(ret, location, topn, INT2FIX(1)); if (index != 0) { PUSH_INSN1(ret, location, putobject, INT2FIX(index)); PUSH_SEND(ret, location, idPLUS, INT2FIX(1)); } PUSH_SEND(ret, location, idAREF, INT2FIX(1)); CHECK(pm_compile_pattern_match(iseq, scope_node, cast->requireds.nodes[index], ret, next_loop_label, in_single_pattern, in_alternation_pattern, false, base_index + 4)); } RUBY_ASSERT(PM_NODE_TYPE_P(cast->left, PM_SPLAT_NODE)); const pm_splat_node_t *left = (const pm_splat_node_t *) cast->left; if (left->expression != NULL) { PUSH_INSN1(ret, location, topn, INT2FIX(3)); PUSH_INSN1(ret, location, putobject, INT2FIX(0)); PUSH_INSN1(ret, location, topn, INT2FIX(2)); PUSH_SEND(ret, location, idAREF, INT2FIX(2)); CHECK(pm_compile_pattern_match(iseq, scope_node, left->expression, ret, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4)); } RUBY_ASSERT(PM_NODE_TYPE_P(cast->right, PM_SPLAT_NODE)); const pm_splat_node_t *right = (const pm_splat_node_t *) cast->right; if (right->expression != NULL) { PUSH_INSN1(ret, location, topn, INT2FIX(3)); PUSH_INSN1(ret, location, topn, INT2FIX(1)); PUSH_INSN1(ret, location, putobject, INT2FIX(size)); PUSH_SEND(ret, location, idPLUS, INT2FIX(1)); PUSH_INSN1(ret, location, topn, INT2FIX(3)); PUSH_SEND(ret, location, idAREF, INT2FIX(2)); pm_compile_pattern_match(iseq, scope_node, right->expression, ret, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4); } PUSH_INSNL(ret, location, jump, find_succeeded_label); PUSH_LABEL(ret, next_loop_label); PUSH_INSN1(ret, location, putobject, INT2FIX(1)); PUSH_SEND(ret, location, idPLUS, INT2FIX(1)); PUSH_INSNL(ret, location, jump, while_begin_label); PUSH_LABEL(ret, find_failed_label); PUSH_INSN1(ret, location, adjuststack, INT2FIX(3)); if (in_single_pattern) { PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, rb_fstring_lit("%p does not match to find pattern")); PUSH_INSN1(ret, location, topn, INT2FIX(2)); PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(2)); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); PUSH_INSN1(ret, location, putobject, Qfalse); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); PUSH_INSN(ret, location, pop); PUSH_INSN(ret, location, pop); } PUSH_INSNL(ret, location, jump, match_failed_label); PUSH_INSN1(ret, location, dupn, INT2FIX(3)); PUSH_LABEL(ret, find_succeeded_label); PUSH_INSN1(ret, location, adjuststack, INT2FIX(3)); } PUSH_INSN(ret, location, pop); PUSH_INSNL(ret, location, jump, matched_label); PUSH_INSN(ret, location, putnil); PUSH_LABEL(ret, type_error_label); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, rb_eTypeError); PUSH_INSN1(ret, location, putobject, rb_fstring_lit("deconstruct must return Array")); PUSH_SEND(ret, location, id_core_raise, INT2FIX(2)); PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, match_failed_label); PUSH_INSN(ret, location, pop); PUSH_INSNL(ret, location, jump, unmatched_label); break; } case PM_HASH_PATTERN_NODE: { // Hash patterns in pattern matching are triggered by using labels and // values in a pattern or by using the ** operator. They are represented // by the HashPatternNode. This looks like: // // foo => { a: 1, b: 2, **bar } // // It can optionally have an assoc splat in the middle of it, which can // optionally have a name. const pm_hash_pattern_node_t *cast = (const pm_hash_pattern_node_t *) node; // We don't consider it a "rest" parameter if it's a ** that is unnamed. bool has_rest = cast->rest != NULL && !(PM_NODE_TYPE_P(cast->rest, PM_ASSOC_SPLAT_NODE) && ((const pm_assoc_splat_node_t *) cast->rest)->value == NULL); bool has_keys = cast->elements.size > 0 || cast->rest != NULL; LABEL *match_failed_label = NEW_LABEL(location.line); LABEL *type_error_label = NEW_LABEL(location.line); VALUE keys = Qnil; if (has_keys && !has_rest) { keys = rb_ary_new_capa(cast->elements.size); for (size_t index = 0; index < cast->elements.size; index++) { const pm_node_t *element = cast->elements.nodes[index]; RUBY_ASSERT(PM_NODE_TYPE_P(element, PM_ASSOC_NODE)); const pm_node_t *key = ((const pm_assoc_node_t *) element)->key; RUBY_ASSERT(PM_NODE_TYPE_P(key, PM_SYMBOL_NODE)); VALUE symbol = ID2SYM(parse_string_symbol(scope_node, (const pm_symbol_node_t *) key)); rb_ary_push(keys, symbol); } } if (cast->constant) { CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index)); } PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, ID2SYM(rb_intern("deconstruct_keys"))); PUSH_SEND(ret, location, idRespond_to, INT2FIX(1)); if (in_single_pattern) { CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct_keys"), base_index + 1)); } PUSH_INSNL(ret, location, branchunless, match_failed_label); if (NIL_P(keys)) { PUSH_INSN(ret, location, putnil); } else { PUSH_INSN1(ret, location, duparray, keys); RB_OBJ_WRITTEN(iseq, Qundef, rb_obj_hide(keys)); } PUSH_SEND(ret, location, rb_intern("deconstruct_keys"), INT2FIX(1)); PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, checktype, INT2FIX(T_HASH)); PUSH_INSNL(ret, location, branchunless, type_error_label); if (has_rest) { PUSH_SEND(ret, location, rb_intern("dup"), INT2FIX(0)); } if (has_keys) { DECL_ANCHOR(match_values); INIT_ANCHOR(match_values); for (size_t index = 0; index < cast->elements.size; index++) { const pm_node_t *element = cast->elements.nodes[index]; RUBY_ASSERT(PM_NODE_TYPE_P(element, PM_ASSOC_NODE)); const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element; const pm_node_t *key = assoc->key; RUBY_ASSERT(PM_NODE_TYPE_P(key, PM_SYMBOL_NODE)); VALUE symbol = ID2SYM(parse_string_symbol(scope_node, (const pm_symbol_node_t *) key)); PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, symbol); PUSH_SEND(ret, location, rb_intern("key?"), INT2FIX(1)); if (in_single_pattern) { LABEL *match_succeeded_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, match_succeeded_label); PUSH_INSN1(ret, location, putobject, rb_str_freeze(rb_sprintf("key not found: %+"PRIsVALUE, symbol))); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 2)); PUSH_INSN1(ret, location, putobject, Qtrue); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 3)); PUSH_INSN1(ret, location, topn, INT2FIX(3)); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4)); PUSH_INSN1(ret, location, putobject, symbol); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5)); PUSH_INSN1(ret, location, adjuststack, INT2FIX(4)); PUSH_LABEL(ret, match_succeeded_label); } PUSH_INSNL(ret, location, branchunless, match_failed_label); PUSH_INSN(match_values, location, dup); PUSH_INSN1(match_values, location, putobject, symbol); PUSH_SEND(match_values, location, has_rest ? rb_intern("delete") : idAREF, INT2FIX(1)); const pm_node_t *value = assoc->value; if (PM_NODE_TYPE_P(value, PM_IMPLICIT_NODE)) { value = ((const pm_implicit_node_t *) value)->value; } CHECK(pm_compile_pattern_match(iseq, scope_node, value, match_values, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1)); } PUSH_SEQ(ret, match_values); } else { PUSH_INSN(ret, location, dup); PUSH_SEND(ret, location, idEmptyP, INT2FIX(0)); if (in_single_pattern) { CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p is not empty"), base_index + 1)); } PUSH_INSNL(ret, location, branchunless, match_failed_label); } if (has_rest) { switch (PM_NODE_TYPE(cast->rest)) { case PM_NO_KEYWORDS_PARAMETER_NODE: { PUSH_INSN(ret, location, dup); PUSH_SEND(ret, location, idEmptyP, INT2FIX(0)); if (in_single_pattern) { pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("rest of %p is not empty"), base_index + 1); } PUSH_INSNL(ret, location, branchunless, match_failed_label); break; } case PM_ASSOC_SPLAT_NODE: { const pm_assoc_splat_node_t *splat = (const pm_assoc_splat_node_t *) cast->rest; PUSH_INSN(ret, location, dup); pm_compile_pattern_match(iseq, scope_node, splat->value, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1); break; } default: rb_bug("unreachable"); break; } } PUSH_INSN(ret, location, pop); PUSH_INSNL(ret, location, jump, matched_label); PUSH_INSN(ret, location, putnil); PUSH_LABEL(ret, type_error_label); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putobject, rb_eTypeError); PUSH_INSN1(ret, location, putobject, rb_fstring_lit("deconstruct_keys must return Hash")); PUSH_SEND(ret, location, id_core_raise, INT2FIX(2)); PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, match_failed_label); PUSH_INSN(ret, location, pop); PUSH_INSNL(ret, location, jump, unmatched_label); break; } case PM_CAPTURE_PATTERN_NODE: { // Capture patterns allow you to pattern match against an element in a // pattern and also capture the value into a local variable. This looks // like: // // [1] => [Integer => foo] // // In this case the `Integer => foo` will be represented by a // CapturePatternNode, which has both a value (the pattern to match // against) and a target (the place to write the variable into). const pm_capture_pattern_node_t *cast = (const pm_capture_pattern_node_t *) node; LABEL *match_failed_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); CHECK(pm_compile_pattern_match(iseq, scope_node, cast->value, ret, match_failed_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index + 1)); CHECK(pm_compile_pattern(iseq, scope_node, cast->target, ret, matched_label, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index)); PUSH_INSN(ret, location, putnil); PUSH_LABEL(ret, match_failed_label); PUSH_INSN(ret, location, pop); PUSH_INSNL(ret, location, jump, unmatched_label); break; } case PM_LOCAL_VARIABLE_TARGET_NODE: { // Local variables can be targeted by placing identifiers in the place // of a pattern. For example, foo in bar. This results in the value // being matched being written to that local variable. const pm_local_variable_target_node_t *cast = (const pm_local_variable_target_node_t *) node; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth); // If this local variable is being written from within an alternation // pattern, then it cannot actually be added to the local table since // it's ambiguous which value should be used. So instead we indicate // this with a compile error. if (in_alternation_pattern) { ID id = pm_constant_id_lookup(scope_node, cast->name); const char *name = rb_id2name(id); if (name && strlen(name) > 0 && name[0] != '_') { COMPILE_ERROR(iseq, location.line, "illegal variable in alternative pattern (%"PRIsVALUE")", rb_id2str(id)); return COMPILE_NG; } } PUSH_SETLOCAL(ret, location, index.index, index.level); PUSH_INSNL(ret, location, jump, matched_label); break; } case PM_ALTERNATION_PATTERN_NODE: { // Alternation patterns allow you to specify multiple patterns in a // single expression using the | operator. const pm_alternation_pattern_node_t *cast = (const pm_alternation_pattern_node_t *) node; LABEL *matched_left_label = NEW_LABEL(location.line); LABEL *unmatched_left_label = NEW_LABEL(location.line); // First, we're going to attempt to match against the left pattern. If // that pattern matches, then we'll skip matching the right pattern. PUSH_INSN(ret, location, dup); CHECK(pm_compile_pattern(iseq, scope_node, cast->left, ret, matched_left_label, unmatched_left_label, in_single_pattern, true, true, base_index + 1)); // If we get here, then we matched on the left pattern. In this case we // should pop out the duplicate value that we preemptively added to // match against the right pattern and then jump to the match label. PUSH_LABEL(ret, matched_left_label); PUSH_INSN(ret, location, pop); PUSH_INSNL(ret, location, jump, matched_label); PUSH_INSN(ret, location, putnil); // If we get here, then we didn't match on the left pattern. In this // case we attempt to match against the right pattern. PUSH_LABEL(ret, unmatched_left_label); CHECK(pm_compile_pattern(iseq, scope_node, cast->right, ret, matched_label, unmatched_label, in_single_pattern, true, true, base_index)); break; } case PM_PARENTHESES_NODE: // Parentheses are allowed to wrap expressions in pattern matching and // they do nothing since they can only wrap individual expressions and // not groups. In this case we'll recurse back into this same function // with the body of the parentheses. return pm_compile_pattern(iseq, scope_node, ((const pm_parentheses_node_t *) node)->body, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index); case PM_PINNED_EXPRESSION_NODE: // Pinned expressions are a way to match against the value of an // expression that should be evaluated at runtime. This looks like: // foo in ^(bar). To compile these, we compile the expression as if it // were a literal value by falling through to the literal case. node = ((const pm_pinned_expression_node_t *) node)->expression; /* fallthrough */ case PM_ARRAY_NODE: case PM_CLASS_VARIABLE_READ_NODE: case PM_CONSTANT_PATH_NODE: case PM_CONSTANT_READ_NODE: case PM_FALSE_NODE: case PM_FLOAT_NODE: case PM_GLOBAL_VARIABLE_READ_NODE: case PM_IMAGINARY_NODE: case PM_INSTANCE_VARIABLE_READ_NODE: case PM_INTEGER_NODE: case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: case PM_INTERPOLATED_STRING_NODE: case PM_INTERPOLATED_SYMBOL_NODE: case PM_INTERPOLATED_X_STRING_NODE: case PM_LAMBDA_NODE: case PM_LOCAL_VARIABLE_READ_NODE: case PM_NIL_NODE: case PM_SOURCE_ENCODING_NODE: case PM_SOURCE_FILE_NODE: case PM_SOURCE_LINE_NODE: case PM_RANGE_NODE: case PM_RATIONAL_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_SELF_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_TRUE_NODE: case PM_X_STRING_NODE: { // These nodes are all simple patterns, which means we'll use the // checkmatch instruction to match against them, which is effectively a // VM-level === operator. PM_COMPILE_NOT_POPPED(node); if (in_single_pattern) { PUSH_INSN1(ret, location, dupn, INT2FIX(2)); } PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE)); if (in_single_pattern) { pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 2); } PUSH_INSNL(ret, location, branchif, matched_label); PUSH_INSNL(ret, location, jump, unmatched_label); break; } case PM_PINNED_VARIABLE_NODE: { // Pinned variables are a way to match against the value of a variable // without it looking like you're trying to write to the variable. This // looks like: foo in ^@bar. To compile these, we compile the variable // that they hold. const pm_pinned_variable_node_t *cast = (const pm_pinned_variable_node_t *) node; CHECK(pm_compile_pattern(iseq, scope_node, cast->variable, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, true, base_index)); break; } case PM_IF_NODE: case PM_UNLESS_NODE: { // If and unless nodes can show up here as guards on `in` clauses. This // looks like: // // case foo // in bar if baz? // qux // end // // Because we know they're in the modifier form and they can't have any // variation on this pattern, we compile them differently (more simply) // here than we would in the normal compilation path. const pm_node_t *predicate; const pm_node_t *statement; if (PM_NODE_TYPE_P(node, PM_IF_NODE)) { const pm_if_node_t *cast = (const pm_if_node_t *) node; predicate = cast->predicate; RUBY_ASSERT(cast->statements != NULL && cast->statements->body.size == 1); statement = cast->statements->body.nodes[0]; } else { const pm_unless_node_t *cast = (const pm_unless_node_t *) node; predicate = cast->predicate; RUBY_ASSERT(cast->statements != NULL && cast->statements->body.size == 1); statement = cast->statements->body.nodes[0]; } CHECK(pm_compile_pattern_match(iseq, scope_node, statement, ret, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index)); PM_COMPILE_NOT_POPPED(predicate); if (in_single_pattern) { LABEL *match_succeeded_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); if (PM_NODE_TYPE_P(node, PM_IF_NODE)) { PUSH_INSNL(ret, location, branchif, match_succeeded_label); } else { PUSH_INSNL(ret, location, branchunless, match_succeeded_label); } PUSH_INSN1(ret, location, putobject, rb_fstring_lit("guard clause does not return true")); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1)); PUSH_INSN1(ret, location, putobject, Qfalse); PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2)); PUSH_INSN(ret, location, pop); PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, match_succeeded_label); } if (PM_NODE_TYPE_P(node, PM_IF_NODE)) { PUSH_INSNL(ret, location, branchunless, unmatched_label); } else { PUSH_INSNL(ret, location, branchif, unmatched_label); } PUSH_INSNL(ret, location, jump, matched_label); break; } default: // If we get here, then we have a node type that should not be in this // position. This would be a bug in the parser, because a different node // type should never have been created in this position in the tree. rb_bug("Unexpected node type in pattern matching expression: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); break; } return COMPILE_OK; } #undef PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE #undef PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING #undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P #undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE #undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY // Generate a scope node from the given node. void pm_scope_node_init(const pm_node_t *node, pm_scope_node_t *scope, pm_scope_node_t *previous) { // This is very important, otherwise the scope node could be seen as having // certain flags set that _should not_ be set. memset(scope, 0, sizeof(pm_scope_node_t)); scope->base.type = PM_SCOPE_NODE; scope->base.location.start = node->location.start; scope->base.location.end = node->location.end; scope->previous = previous; scope->ast_node = (pm_node_t *) node; if (previous) { scope->parser = previous->parser; scope->encoding = previous->encoding; scope->filepath_encoding = previous->filepath_encoding; scope->constants = previous->constants; scope->coverage_enabled = previous->coverage_enabled; scope->script_lines = previous->script_lines; } switch (PM_NODE_TYPE(node)) { case PM_BLOCK_NODE: { const pm_block_node_t *cast = (const pm_block_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; scope->parameters = cast->parameters; break; } case PM_CLASS_NODE: { const pm_class_node_t *cast = (const pm_class_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_DEF_NODE: { const pm_def_node_t *cast = (const pm_def_node_t *) node; scope->parameters = (pm_node_t *) cast->parameters; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_ENSURE_NODE: { const pm_ensure_node_t *cast = (const pm_ensure_node_t *) node; scope->body = (pm_node_t *) node; if (cast->statements != NULL) { scope->base.location.start = cast->statements->base.location.start; scope->base.location.end = cast->statements->base.location.end; } break; } case PM_FOR_NODE: { const pm_for_node_t *cast = (const pm_for_node_t *) node; scope->body = (pm_node_t *) cast->statements; break; } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { RUBY_ASSERT(node->flags & PM_REGULAR_EXPRESSION_FLAGS_ONCE); scope->body = (pm_node_t *) node; break; } case PM_LAMBDA_NODE: { const pm_lambda_node_t *cast = (const pm_lambda_node_t *) node; scope->parameters = cast->parameters; scope->body = cast->body; scope->locals = cast->locals; if (cast->parameters != NULL) { scope->base.location.start = cast->parameters->location.start; } else { scope->base.location.start = cast->operator_loc.end; } break; } case PM_MODULE_NODE: { const pm_module_node_t *cast = (const pm_module_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_POST_EXECUTION_NODE: { const pm_post_execution_node_t *cast = (const pm_post_execution_node_t *) node; scope->body = (pm_node_t *) cast->statements; break; } case PM_PROGRAM_NODE: { const pm_program_node_t *cast = (const pm_program_node_t *) node; scope->body = (pm_node_t *) cast->statements; scope->locals = cast->locals; break; } case PM_RESCUE_NODE: { const pm_rescue_node_t *cast = (const pm_rescue_node_t *) node; scope->body = (pm_node_t *) cast->statements; break; } case PM_RESCUE_MODIFIER_NODE: { const pm_rescue_modifier_node_t *cast = (const pm_rescue_modifier_node_t *) node; scope->body = (pm_node_t *) cast->rescue_expression; break; } case PM_SINGLETON_CLASS_NODE: { const pm_singleton_class_node_t *cast = (const pm_singleton_class_node_t *) node; scope->body = cast->body; scope->locals = cast->locals; break; } case PM_STATEMENTS_NODE: { const pm_statements_node_t *cast = (const pm_statements_node_t *) node; scope->body = (pm_node_t *) cast; break; } default: rb_bug("unreachable"); break; } } void pm_scope_node_destroy(pm_scope_node_t *scope_node) { if (scope_node->index_lookup_table) { st_free_table(scope_node->index_lookup_table); } } /** * We need to put the label "retry_end_l" immediately after the last "send" * instruction. This because vm_throw checks if the break cont is equal to the * index of next insn of the "send". (Otherwise, it is considered * "break from proc-closure". See "TAG_BREAK" handling in "vm_throw_start".) * * Normally, "send" instruction is at the last. However, qcall under branch * coverage measurement adds some instructions after the "send". * * Note that "invokesuper" appears instead of "send". */ static void pm_compile_retry_end_label(rb_iseq_t *iseq, LINK_ANCHOR *const ret, LABEL *retry_end_l) { INSN *iobj; LINK_ELEMENT *last_elem = LAST_ELEMENT(ret); iobj = IS_INSN(last_elem) ? (INSN*) last_elem : (INSN*) get_prev_insn((INSN*) last_elem); while (!IS_INSN_ID(iobj, send) && !IS_INSN_ID(iobj, invokesuper) && !IS_INSN_ID(iobj, sendforward) && !IS_INSN_ID(iobj, invokesuperforward)) { iobj = (INSN*) get_prev_insn(iobj); } ELEM_INSERT_NEXT(&iobj->link, (LINK_ELEMENT*) retry_end_l); // LINK_ANCHOR has a pointer to the last element, but // ELEM_INSERT_NEXT does not update it even if we add an insn to the // last of LINK_ANCHOR. So this updates it manually. if (&iobj->link == LAST_ELEMENT(ret)) { ret->last = (LINK_ELEMENT*) retry_end_l; } } static const char * pm_iseq_builtin_function_name(const pm_scope_node_t *scope_node, const pm_node_t *receiver, ID method_id) { const char *name = rb_id2name(method_id); static const char prefix[] = "__builtin_"; const size_t prefix_len = sizeof(prefix) - 1; if (receiver == NULL) { if (UNLIKELY(strncmp(prefix, name, prefix_len) == 0)) { // __builtin_foo return &name[prefix_len]; } } else if (PM_NODE_TYPE_P(receiver, PM_CALL_NODE)) { if (PM_NODE_FLAG_P(receiver, PM_CALL_NODE_FLAGS_VARIABLE_CALL)) { const pm_call_node_t *cast = (const pm_call_node_t *) receiver; if (pm_constant_id_lookup(scope_node, cast->name) == rb_intern_const("__builtin")) { // __builtin.foo return name; } } } else if (PM_NODE_TYPE_P(receiver, PM_CONSTANT_READ_NODE)) { const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) receiver; if (pm_constant_id_lookup(scope_node, cast->name) == rb_intern_const("Primitive")) { // Primitive.foo return name; } } return NULL; } // Compile Primitive.attr! :leaf, ... static int pm_compile_builtin_attr(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_arguments_node_t *arguments, const pm_node_location_t *node_location) { if (arguments == NULL) { COMPILE_ERROR(iseq, node_location->line, "attr!: no argument"); return COMPILE_NG; } const pm_node_t *argument; PM_NODE_LIST_FOREACH(&arguments->arguments, index, argument) { if (!PM_NODE_TYPE_P(argument, PM_SYMBOL_NODE)) { COMPILE_ERROR(iseq, node_location->line, "non symbol argument to attr!: %s", pm_node_type_to_str(PM_NODE_TYPE(argument))); return COMPILE_NG; } VALUE symbol = pm_static_literal_value(iseq, argument, scope_node); VALUE string = rb_sym_to_s(symbol); if (strcmp(RSTRING_PTR(string), "leaf") == 0) { ISEQ_BODY(iseq)->builtin_attrs |= BUILTIN_ATTR_LEAF; } else if (strcmp(RSTRING_PTR(string), "inline_block") == 0) { ISEQ_BODY(iseq)->builtin_attrs |= BUILTIN_ATTR_INLINE_BLOCK; } else if (strcmp(RSTRING_PTR(string), "use_block") == 0) { iseq_set_use_block(iseq); } else { COMPILE_ERROR(iseq, node_location->line, "unknown argument to attr!: %s", RSTRING_PTR(string)); return COMPILE_NG; } } return COMPILE_OK; } static int pm_compile_builtin_arg(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node, const pm_arguments_node_t *arguments, const pm_node_location_t *node_location, int popped) { if (arguments == NULL) { COMPILE_ERROR(iseq, node_location->line, "arg!: no argument"); return COMPILE_NG; } if (arguments->arguments.size != 1) { COMPILE_ERROR(iseq, node_location->line, "arg!: too many argument"); return COMPILE_NG; } const pm_node_t *argument = arguments->arguments.nodes[0]; if (!PM_NODE_TYPE_P(argument, PM_SYMBOL_NODE)) { COMPILE_ERROR(iseq, node_location->line, "non symbol argument to arg!: %s", pm_node_type_to_str(PM_NODE_TYPE(argument))); return COMPILE_NG; } if (!popped) { ID name = parse_string_symbol(scope_node, ((const pm_symbol_node_t *) argument)); int index = ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->local_table_size - get_local_var_idx(iseq, name); debugs("id: %s idx: %d\n", rb_id2name(name), index); PUSH_GETLOCAL(ret, *node_location, index, get_lvar_level(iseq)); } return COMPILE_OK; } static int pm_compile_builtin_mandatory_only_method(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_call_node_t *call_node, const pm_node_location_t *node_location) { const pm_node_t *ast_node = scope_node->ast_node; if (!PM_NODE_TYPE_P(ast_node, PM_DEF_NODE)) { rb_bug("mandatory_only?: not in method definition"); return COMPILE_NG; } const pm_def_node_t *def_node = (const pm_def_node_t *) ast_node; const pm_parameters_node_t *parameters_node = def_node->parameters; if (parameters_node == NULL) { rb_bug("mandatory_only?: in method definition with no parameters"); return COMPILE_NG; } const pm_node_t *body_node = def_node->body; if (body_node == NULL || !PM_NODE_TYPE_P(body_node, PM_STATEMENTS_NODE) || (((const pm_statements_node_t *) body_node)->body.size != 1) || !PM_NODE_TYPE_P(((const pm_statements_node_t *) body_node)->body.nodes[0], PM_IF_NODE)) { rb_bug("mandatory_only?: not in method definition with plain statements"); return COMPILE_NG; } const pm_if_node_t *if_node = (const pm_if_node_t *) ((const pm_statements_node_t *) body_node)->body.nodes[0]; if (if_node->predicate != ((const pm_node_t *) call_node)) { rb_bug("mandatory_only?: can't find mandatory node"); return COMPILE_NG; } pm_parameters_node_t parameters = { .base = parameters_node->base, .requireds = parameters_node->requireds }; const pm_def_node_t def = { .base = def_node->base, .name = def_node->name, .receiver = def_node->receiver, .parameters = ¶meters, .body = (pm_node_t *) if_node->statements, .locals = { .ids = def_node->locals.ids, .size = parameters_node->requireds.size, .capacity = def_node->locals.capacity } }; pm_scope_node_t next_scope_node; pm_scope_node_init(&def.base, &next_scope_node, scope_node); ISEQ_BODY(iseq)->mandatory_only_iseq = pm_iseq_new_with_opt( &next_scope_node, rb_iseq_base_label(iseq), rb_iseq_path(iseq), rb_iseq_realpath(iseq), node_location->line, NULL, 0, ISEQ_TYPE_METHOD, ISEQ_COMPILE_DATA(iseq)->option ); pm_scope_node_destroy(&next_scope_node); return COMPILE_OK; } static int pm_compile_builtin_function_call(rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, const pm_call_node_t *call_node, const pm_node_location_t *node_location, int popped, const rb_iseq_t *parent_block, const char *builtin_func) { const pm_arguments_node_t *arguments = call_node->arguments; if (parent_block != NULL) { COMPILE_ERROR(iseq, node_location->line, "should not call builtins here."); return COMPILE_NG; } #define BUILTIN_INLINE_PREFIX "_bi" char inline_func[sizeof(BUILTIN_INLINE_PREFIX) + DECIMAL_SIZE_OF(int)]; bool cconst = false; retry:; const struct rb_builtin_function *bf = iseq_builtin_function_lookup(iseq, builtin_func); if (bf == NULL) { if (strcmp("cstmt!", builtin_func) == 0 || strcmp("cexpr!", builtin_func) == 0) { // ok } else if (strcmp("cconst!", builtin_func) == 0) { cconst = true; } else if (strcmp("cinit!", builtin_func) == 0) { // ignore return COMPILE_OK; } else if (strcmp("attr!", builtin_func) == 0) { return pm_compile_builtin_attr(iseq, scope_node, arguments, node_location); } else if (strcmp("arg!", builtin_func) == 0) { return pm_compile_builtin_arg(iseq, ret, scope_node, arguments, node_location, popped); } else if (strcmp("mandatory_only?", builtin_func) == 0) { if (popped) { rb_bug("mandatory_only? should be in if condition"); } else if (!LIST_INSN_SIZE_ZERO(ret)) { rb_bug("mandatory_only? should be put on top"); } PUSH_INSN1(ret, *node_location, putobject, Qfalse); return pm_compile_builtin_mandatory_only_method(iseq, scope_node, call_node, node_location); } else if (1) { rb_bug("can't find builtin function:%s", builtin_func); } else { COMPILE_ERROR(iseq, node_location->line, "can't find builtin function:%s", builtin_func); return COMPILE_NG; } int inline_index = node_location->line; snprintf(inline_func, sizeof(inline_func), BUILTIN_INLINE_PREFIX "%d", inline_index); builtin_func = inline_func; arguments = NULL; goto retry; } if (cconst) { typedef VALUE(*builtin_func0)(void *, VALUE); VALUE const_val = (*(builtin_func0)bf->func_ptr)(NULL, Qnil); PUSH_INSN1(ret, *node_location, putobject, const_val); return COMPILE_OK; } // fprintf(stderr, "func_name:%s -> %p\n", builtin_func, bf->func_ptr); DECL_ANCHOR(args_seq); INIT_ANCHOR(args_seq); int flags = 0; struct rb_callinfo_kwarg *keywords = NULL; int argc = pm_setup_args(arguments, call_node->block, &flags, &keywords, iseq, args_seq, scope_node, node_location); if (argc != bf->argc) { COMPILE_ERROR(iseq, node_location->line, "argc is not match for builtin function:%s (expect %d but %d)", builtin_func, bf->argc, argc); return COMPILE_NG; } unsigned int start_index; if (delegate_call_p(iseq, argc, args_seq, &start_index)) { PUSH_INSN2(ret, *node_location, opt_invokebuiltin_delegate, bf, INT2FIX(start_index)); } else { PUSH_SEQ(ret, args_seq); PUSH_INSN1(ret, *node_location, invokebuiltin, bf); } if (popped) PUSH_INSN(ret, *node_location, pop); return COMPILE_OK; } /** * Compile a call node into the given iseq. */ static void pm_compile_call(rb_iseq_t *iseq, const pm_call_node_t *call_node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, ID method_id, LABEL *start) { const pm_location_t *message_loc = &call_node->message_loc; if (message_loc->start == NULL) message_loc = &call_node->base.location; const pm_node_location_t location = PM_LOCATION_START_LOCATION(scope_node->parser, message_loc, call_node->base.node_id); LABEL *else_label = NEW_LABEL(location.line); LABEL *end_label = NEW_LABEL(location.line); LABEL *retry_end_l = NEW_LABEL(location.line); VALUE branches = Qfalse; rb_code_location_t code_location = { 0 }; int node_id = location.node_id; if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) { if (PM_BRANCH_COVERAGE_P(iseq)) { const uint8_t *cursors[3] = { call_node->closing_loc.end, call_node->arguments == NULL ? NULL : call_node->arguments->base.location.end, call_node->message_loc.end }; const uint8_t *end_cursor = cursors[0]; end_cursor = (end_cursor == NULL || cursors[1] == NULL) ? cursors[1] : (end_cursor > cursors[1] ? end_cursor : cursors[1]); end_cursor = (end_cursor == NULL || cursors[2] == NULL) ? cursors[2] : (end_cursor > cursors[2] ? end_cursor : cursors[2]); const pm_line_column_t start_location = PM_NODE_START_LINE_COLUMN(scope_node->parser, call_node); const pm_line_column_t end_location = pm_newline_list_line_column(&scope_node->parser->newline_list, end_cursor, scope_node->parser->start_line); code_location = (rb_code_location_t) { .beg_pos = { .lineno = start_location.line, .column = start_location.column }, .end_pos = { .lineno = end_location.line, .column = end_location.column } }; branches = decl_branch_base(iseq, PTR2NUM(call_node), &code_location, "&."); } PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchnil, else_label); add_trace_branch_coverage(iseq, ret, &code_location, node_id, 0, "then", branches); } int flags = 0; struct rb_callinfo_kwarg *kw_arg = NULL; int orig_argc = pm_setup_args(call_node->arguments, call_node->block, &flags, &kw_arg, iseq, ret, scope_node, &location); const rb_iseq_t *previous_block = ISEQ_COMPILE_DATA(iseq)->current_block; const rb_iseq_t *block_iseq = NULL; if (call_node->block != NULL && PM_NODE_TYPE_P(call_node->block, PM_BLOCK_NODE)) { // Scope associated with the block pm_scope_node_t next_scope_node; pm_scope_node_init(call_node->block, &next_scope_node, scope_node); block_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, pm_node_line_number(scope_node->parser, call_node->block)); pm_scope_node_destroy(&next_scope_node); ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq; } else { if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_VARIABLE_CALL)) { flags |= VM_CALL_VCALL; } if (!flags) { flags |= VM_CALL_ARGS_SIMPLE; } } if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) { flags |= VM_CALL_FCALL; } if (!popped && PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE)) { if (flags & VM_CALL_ARGS_BLOCKARG) { PUSH_INSN1(ret, location, topn, INT2FIX(1)); if (flags & VM_CALL_ARGS_SPLAT) { PUSH_INSN1(ret, location, putobject, INT2FIX(-1)); PUSH_SEND_WITH_FLAG(ret, location, idAREF, INT2FIX(1), INT2FIX(0)); } PUSH_INSN1(ret, location, setn, INT2FIX(orig_argc + 3)); PUSH_INSN(ret, location, pop); } else if (flags & VM_CALL_ARGS_SPLAT) { PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, INT2FIX(-1)); PUSH_SEND_WITH_FLAG(ret, location, idAREF, INT2FIX(1), INT2FIX(0)); PUSH_INSN1(ret, location, setn, INT2FIX(orig_argc + 2)); PUSH_INSN(ret, location, pop); } else { PUSH_INSN1(ret, location, setn, INT2FIX(orig_argc + 1)); } } if ((flags & VM_CALL_KW_SPLAT) && (flags & VM_CALL_ARGS_BLOCKARG) && !(flags & VM_CALL_KW_SPLAT_MUT)) { PUSH_INSN(ret, location, splatkw); } PUSH_SEND_R(ret, location, method_id, INT2FIX(orig_argc), block_iseq, INT2FIX(flags), kw_arg); if (block_iseq && ISEQ_BODY(block_iseq)->catch_table) { pm_compile_retry_end_label(iseq, ret, retry_end_l); PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, start, retry_end_l, block_iseq, retry_end_l); } if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) { PUSH_INSNL(ret, location, jump, end_label); PUSH_LABEL(ret, else_label); add_trace_branch_coverage(iseq, ret, &code_location, node_id, 1, "else", branches); PUSH_LABEL(ret, end_label); } if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE) && !popped) { PUSH_INSN(ret, location, pop); } if (popped) PUSH_INSN(ret, location, pop); ISEQ_COMPILE_DATA(iseq)->current_block = previous_block; } static void pm_compile_defined_expr0(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition, LABEL **lfinish, bool explicit_receiver) { // in_condition is the same as compile.c's needstr enum defined_type dtype = DEFINED_NOT_DEFINED; const pm_node_location_t location = *node_location; switch (PM_NODE_TYPE(node)) { case PM_ARGUMENTS_NODE: { const pm_arguments_node_t *cast = (const pm_arguments_node_t *) node; const pm_node_list_t *arguments = &cast->arguments; for (size_t idx = 0; idx < arguments->size; idx++) { const pm_node_t *argument = arguments->nodes[idx]; pm_compile_defined_expr0(iseq, argument, node_location, ret, popped, scope_node, in_condition, lfinish, explicit_receiver); if (!lfinish[1]) { lfinish[1] = NEW_LABEL(location.line); } PUSH_INSNL(ret, location, branchunless, lfinish[1]); } dtype = DEFINED_TRUE; break; } case PM_NIL_NODE: dtype = DEFINED_NIL; break; case PM_PARENTHESES_NODE: { const pm_parentheses_node_t *cast = (const pm_parentheses_node_t *) node; if (cast->body == NULL) { // If we have empty parentheses, then we want to return "nil". dtype = DEFINED_NIL; } else if (PM_NODE_TYPE_P(cast->body, PM_STATEMENTS_NODE) && ((const pm_statements_node_t *) cast->body)->body.size == 1) { // If we have a parentheses node that is wrapping a single statement // then we want to recurse down to that statement and compile it. pm_compile_defined_expr0(iseq, ((const pm_statements_node_t *) cast->body)->body.nodes[0], node_location, ret, popped, scope_node, in_condition, lfinish, explicit_receiver); return; } else { // Otherwise, we have parentheses wrapping multiple statements, in // which case this is defined as "expression". dtype = DEFINED_EXPR; } break; } case PM_SELF_NODE: dtype = DEFINED_SELF; break; case PM_TRUE_NODE: dtype = DEFINED_TRUE; break; case PM_FALSE_NODE: dtype = DEFINED_FALSE; break; case PM_ARRAY_NODE: { const pm_array_node_t *cast = (const pm_array_node_t *) node; if (cast->elements.size > 0 && !lfinish[1]) { lfinish[1] = NEW_LABEL(location.line); } for (size_t index = 0; index < cast->elements.size; index++) { pm_compile_defined_expr0(iseq, cast->elements.nodes[index], node_location, ret, popped, scope_node, true, lfinish, false); PUSH_INSNL(ret, location, branchunless, lfinish[1]); } dtype = DEFINED_EXPR; break; } case PM_HASH_NODE: case PM_KEYWORD_HASH_NODE: { const pm_node_list_t *elements; if (PM_NODE_TYPE_P(node, PM_HASH_NODE)) { elements = &((const pm_hash_node_t *) node)->elements; } else { elements = &((const pm_keyword_hash_node_t *) node)->elements; } if (elements->size > 0 && !lfinish[1]) { lfinish[1] = NEW_LABEL(location.line); } for (size_t index = 0; index < elements->size; index++) { const pm_node_t *element = elements->nodes[index]; switch (PM_NODE_TYPE(element)) { case PM_ASSOC_NODE: { const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element; pm_compile_defined_expr0(iseq, assoc->key, node_location, ret, popped, scope_node, true, lfinish, false); PUSH_INSNL(ret, location, branchunless, lfinish[1]); pm_compile_defined_expr0(iseq, assoc->value, node_location, ret, popped, scope_node, true, lfinish, false); PUSH_INSNL(ret, location, branchunless, lfinish[1]); break; } case PM_ASSOC_SPLAT_NODE: { const pm_assoc_splat_node_t *assoc_splat = (const pm_assoc_splat_node_t *) element; pm_compile_defined_expr0(iseq, assoc_splat->value, node_location, ret, popped, scope_node, true, lfinish, false); PUSH_INSNL(ret, location, branchunless, lfinish[1]); break; } default: rb_bug("unexpected node type in hash node: %s", pm_node_type_to_str(PM_NODE_TYPE(element))); break; } } dtype = DEFINED_EXPR; break; } case PM_SPLAT_NODE: { const pm_splat_node_t *cast = (const pm_splat_node_t *) node; pm_compile_defined_expr0(iseq, cast->expression, node_location, ret, popped, scope_node, in_condition, lfinish, false); if (!lfinish[1]) { lfinish[1] = NEW_LABEL(location.line); } PUSH_INSNL(ret, location, branchunless, lfinish[1]); dtype = DEFINED_EXPR; break; } case PM_IMPLICIT_NODE: { const pm_implicit_node_t *cast = (const pm_implicit_node_t *) node; pm_compile_defined_expr0(iseq, cast->value, node_location, ret, popped, scope_node, in_condition, lfinish, explicit_receiver); return; } case PM_AND_NODE: case PM_BEGIN_NODE: case PM_BREAK_NODE: case PM_CASE_NODE: case PM_CASE_MATCH_NODE: case PM_CLASS_NODE: case PM_DEF_NODE: case PM_DEFINED_NODE: case PM_FLOAT_NODE: case PM_FOR_NODE: case PM_IF_NODE: case PM_IMAGINARY_NODE: case PM_INTEGER_NODE: case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: case PM_INTERPOLATED_STRING_NODE: case PM_INTERPOLATED_SYMBOL_NODE: case PM_INTERPOLATED_X_STRING_NODE: case PM_LAMBDA_NODE: case PM_MATCH_PREDICATE_NODE: case PM_MATCH_REQUIRED_NODE: case PM_MATCH_WRITE_NODE: case PM_MODULE_NODE: case PM_NEXT_NODE: case PM_OR_NODE: case PM_RANGE_NODE: case PM_RATIONAL_NODE: case PM_REDO_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_RETRY_NODE: case PM_RETURN_NODE: case PM_SINGLETON_CLASS_NODE: case PM_SOURCE_ENCODING_NODE: case PM_SOURCE_FILE_NODE: case PM_SOURCE_LINE_NODE: case PM_STRING_NODE: case PM_SYMBOL_NODE: case PM_UNLESS_NODE: case PM_UNTIL_NODE: case PM_WHILE_NODE: case PM_X_STRING_NODE: dtype = DEFINED_EXPR; break; case PM_LOCAL_VARIABLE_READ_NODE: dtype = DEFINED_LVAR; break; #define PUSH_VAL(type) (in_condition ? Qtrue : rb_iseq_defined_string(type)) case PM_INSTANCE_VARIABLE_READ_NODE: { const pm_instance_variable_read_node_t *cast = (const pm_instance_variable_read_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN3(ret, location, definedivar, ID2SYM(name), get_ivar_ic_value(iseq, name), PUSH_VAL(DEFINED_IVAR)); return; } case PM_BACK_REFERENCE_READ_NODE: { const char *char_ptr = (const char *) (node->location.start + 1); ID backref_val = INT2FIX(rb_intern2(char_ptr, 1)) << 1 | 1; PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_REF), backref_val, PUSH_VAL(DEFINED_GVAR)); return; } case PM_NUMBERED_REFERENCE_READ_NODE: { uint32_t reference_number = ((const pm_numbered_reference_read_node_t *) node)->number; PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_REF), INT2FIX(reference_number << 1), PUSH_VAL(DEFINED_GVAR)); return; } case PM_GLOBAL_VARIABLE_READ_NODE: { const pm_global_variable_read_node_t *cast = (const pm_global_variable_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_GVAR), name, PUSH_VAL(DEFINED_GVAR)); return; } case PM_CLASS_VARIABLE_READ_NODE: { const pm_class_variable_read_node_t *cast = (const pm_class_variable_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CVAR), name, PUSH_VAL(DEFINED_CVAR)); return; } case PM_CONSTANT_READ_NODE: { const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST), name, PUSH_VAL(DEFINED_CONST)); return; } case PM_CONSTANT_PATH_NODE: { const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); if (cast->parent != NULL) { if (!lfinish[1]) lfinish[1] = NEW_LABEL(location.line); pm_compile_defined_expr0(iseq, cast->parent, node_location, ret, popped, scope_node, true, lfinish, false); PUSH_INSNL(ret, location, branchunless, lfinish[1]); PM_COMPILE(cast->parent); } else { PUSH_INSN1(ret, location, putobject, rb_cObject); } PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST_FROM), name, PUSH_VAL(DEFINED_CONST)); return; } case PM_CALL_NODE: { const pm_call_node_t *cast = ((const pm_call_node_t *) node); ID method_id = pm_constant_id_lookup(scope_node, cast->name); if (cast->receiver || cast->arguments) { if (!lfinish[1]) lfinish[1] = NEW_LABEL(location.line); if (!lfinish[2]) lfinish[2] = NEW_LABEL(location.line); } if (cast->arguments) { pm_compile_defined_expr0(iseq, (const pm_node_t *) cast->arguments, node_location, ret, popped, scope_node, true, lfinish, false); PUSH_INSNL(ret, location, branchunless, lfinish[1]); } if (cast->receiver) { pm_compile_defined_expr0(iseq, cast->receiver, node_location, ret, popped, scope_node, true, lfinish, true); if (PM_NODE_TYPE_P(cast->receiver, PM_CALL_NODE)) { PUSH_INSNL(ret, location, branchunless, lfinish[2]); const pm_call_node_t *receiver = (const pm_call_node_t *) cast->receiver; ID method_id = pm_constant_id_lookup(scope_node, receiver->name); pm_compile_call(iseq, receiver, ret, popped, scope_node, method_id, NULL); } else { PUSH_INSNL(ret, location, branchunless, lfinish[1]); PM_COMPILE(cast->receiver); } if (explicit_receiver) PUSH_INSN(ret, location, dup); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_METHOD), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD)); } else { PUSH_INSN(ret, location, putself); if (explicit_receiver) PUSH_INSN(ret, location, dup); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_FUNC), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD)); } return; } case PM_YIELD_NODE: PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_YIELD), 0, PUSH_VAL(DEFINED_YIELD)); iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq); return; case PM_SUPER_NODE: case PM_FORWARDING_SUPER_NODE: PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_ZSUPER), 0, PUSH_VAL(DEFINED_ZSUPER)); return; case PM_CALL_AND_WRITE_NODE: case PM_CALL_OPERATOR_WRITE_NODE: case PM_CALL_OR_WRITE_NODE: case PM_CONSTANT_WRITE_NODE: case PM_CONSTANT_OPERATOR_WRITE_NODE: case PM_CONSTANT_AND_WRITE_NODE: case PM_CONSTANT_OR_WRITE_NODE: case PM_CONSTANT_PATH_AND_WRITE_NODE: case PM_CONSTANT_PATH_OPERATOR_WRITE_NODE: case PM_CONSTANT_PATH_OR_WRITE_NODE: case PM_CONSTANT_PATH_WRITE_NODE: case PM_GLOBAL_VARIABLE_WRITE_NODE: case PM_GLOBAL_VARIABLE_OPERATOR_WRITE_NODE: case PM_GLOBAL_VARIABLE_AND_WRITE_NODE: case PM_GLOBAL_VARIABLE_OR_WRITE_NODE: case PM_CLASS_VARIABLE_WRITE_NODE: case PM_CLASS_VARIABLE_OPERATOR_WRITE_NODE: case PM_CLASS_VARIABLE_AND_WRITE_NODE: case PM_CLASS_VARIABLE_OR_WRITE_NODE: case PM_INDEX_AND_WRITE_NODE: case PM_INDEX_OPERATOR_WRITE_NODE: case PM_INDEX_OR_WRITE_NODE: case PM_INSTANCE_VARIABLE_WRITE_NODE: case PM_INSTANCE_VARIABLE_OPERATOR_WRITE_NODE: case PM_INSTANCE_VARIABLE_AND_WRITE_NODE: case PM_INSTANCE_VARIABLE_OR_WRITE_NODE: case PM_LOCAL_VARIABLE_WRITE_NODE: case PM_LOCAL_VARIABLE_OPERATOR_WRITE_NODE: case PM_LOCAL_VARIABLE_AND_WRITE_NODE: case PM_LOCAL_VARIABLE_OR_WRITE_NODE: case PM_MULTI_WRITE_NODE: dtype = DEFINED_ASGN; break; default: rb_bug("Unsupported node %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } RUBY_ASSERT(dtype != DEFINED_NOT_DEFINED); PUSH_INSN1(ret, location, putobject, PUSH_VAL(dtype)); #undef PUSH_VAL } static void pm_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition, LABEL **lfinish, bool explicit_receiver) { LINK_ELEMENT *lcur = ret->last; pm_compile_defined_expr0(iseq, node, node_location, ret, popped, scope_node, in_condition, lfinish, false); if (lfinish[1]) { LABEL *lstart = NEW_LABEL(node_location->line); LABEL *lend = NEW_LABEL(node_location->line); struct rb_iseq_new_with_callback_callback_func *ifunc = rb_iseq_new_with_callback_new_callback(build_defined_rescue_iseq, NULL); const rb_iseq_t *rescue = new_child_iseq_with_callback( iseq, ifunc, rb_str_concat(rb_str_new2("defined guard in "), ISEQ_BODY(iseq)->location.label), iseq, ISEQ_TYPE_RESCUE, 0 ); lstart->rescued = LABEL_RESCUE_BEG; lend->rescued = LABEL_RESCUE_END; APPEND_LABEL(ret, lcur, lstart); PUSH_LABEL(ret, lend); PUSH_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue, lfinish[1]); } } static void pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition) { LABEL *lfinish[3]; LINK_ELEMENT *last = ret->last; lfinish[0] = NEW_LABEL(node_location->line); lfinish[1] = 0; lfinish[2] = 0; if (!popped) { pm_defined_expr(iseq, node, node_location, ret, popped, scope_node, in_condition, lfinish, false); } if (lfinish[1]) { ELEM_INSERT_NEXT(last, &new_insn_body(iseq, node_location->line, node_location->node_id, BIN(putnil), 0)->link); PUSH_INSN(ret, *node_location, swap); if (lfinish[2]) PUSH_LABEL(ret, lfinish[2]); PUSH_INSN(ret, *node_location, pop); PUSH_LABEL(ret, lfinish[1]); } PUSH_LABEL(ret, lfinish[0]); } // This is exactly the same as add_ensure_iseq, except it compiled // the node as a Prism node, and not a CRuby node static void pm_add_ensure_iseq(LINK_ANCHOR *const ret, rb_iseq_t *iseq, int is_return, pm_scope_node_t *scope_node) { RUBY_ASSERT(can_add_ensure_iseq(iseq)); struct iseq_compile_data_ensure_node_stack *enlp = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack; struct iseq_compile_data_ensure_node_stack *prev_enlp = enlp; DECL_ANCHOR(ensure); INIT_ANCHOR(ensure); while (enlp) { if (enlp->erange != NULL) { DECL_ANCHOR(ensure_part); LABEL *lstart = NEW_LABEL(0); LABEL *lend = NEW_LABEL(0); INIT_ANCHOR(ensure_part); add_ensure_range(iseq, enlp->erange, lstart, lend); ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = enlp->prev; PUSH_LABEL(ensure_part, lstart); bool popped = true; PM_COMPILE_INTO_ANCHOR(ensure_part, (const pm_node_t *) enlp->ensure_node); PUSH_LABEL(ensure_part, lend); PUSH_SEQ(ensure, ensure_part); } else { if (!is_return) { break; } } enlp = enlp->prev; } ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = prev_enlp; PUSH_SEQ(ret, ensure); } struct pm_local_table_insert_ctx { pm_scope_node_t *scope_node; rb_ast_id_table_t *local_table_for_iseq; int local_index; }; static int pm_local_table_insert_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing) { if (!existing) { pm_constant_id_t constant_id = (pm_constant_id_t) *key; struct pm_local_table_insert_ctx * ctx = (struct pm_local_table_insert_ctx *) arg; pm_scope_node_t *scope_node = ctx->scope_node; rb_ast_id_table_t *local_table_for_iseq = ctx->local_table_for_iseq; int local_index = ctx->local_index; ID local = pm_constant_id_lookup(scope_node, constant_id); local_table_for_iseq->ids[local_index] = local; *value = (st_data_t)local_index; ctx->local_index++; } return ST_CONTINUE; } /** * Insert a local into the local table for the iseq. This is used to create the * local table in the correct order while compiling the scope. The locals being * inserted are regular named locals, as opposed to special forwarding locals. */ static void pm_insert_local_index(pm_constant_id_t constant_id, int local_index, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node) { RUBY_ASSERT((constant_id & PM_SPECIAL_CONSTANT_FLAG) == 0); ID local = pm_constant_id_lookup(scope_node, constant_id); local_table_for_iseq->ids[local_index] = local; st_insert(index_lookup_table, (st_data_t) constant_id, (st_data_t) local_index); } /** * Insert a local into the local table for the iseq that is a special forwarding * local variable. */ static void pm_insert_local_special(ID local_name, int local_index, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq) { local_table_for_iseq->ids[local_index] = local_name; st_insert(index_lookup_table, (st_data_t) (local_name | PM_SPECIAL_CONSTANT_FLAG), (st_data_t) local_index); } /** * Compile the locals of a multi target node that is used as a positional * parameter in a method, block, or lambda definition. Note that this doesn't * actually add any instructions to the iseq. Instead, it adds locals to the * local and index lookup tables and increments the local index as necessary. */ static int pm_compile_destructured_param_locals(const pm_multi_target_node_t *node, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node, int local_index) { for (size_t index = 0; index < node->lefts.size; index++) { const pm_node_t *left = node->lefts.nodes[index]; if (PM_NODE_TYPE_P(left, PM_REQUIRED_PARAMETER_NODE)) { if (!PM_NODE_FLAG_P(left, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { pm_insert_local_index(((const pm_required_parameter_node_t *) left)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; } } else { RUBY_ASSERT(PM_NODE_TYPE_P(left, PM_MULTI_TARGET_NODE)); local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) left, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } if (node->rest != NULL && PM_NODE_TYPE_P(node->rest, PM_SPLAT_NODE)) { const pm_splat_node_t *rest = (const pm_splat_node_t *) node->rest; if (rest->expression != NULL) { RUBY_ASSERT(PM_NODE_TYPE_P(rest->expression, PM_REQUIRED_PARAMETER_NODE)); if (!PM_NODE_FLAG_P(rest->expression, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { pm_insert_local_index(((const pm_required_parameter_node_t *) rest->expression)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; } } } for (size_t index = 0; index < node->rights.size; index++) { const pm_node_t *right = node->rights.nodes[index]; if (PM_NODE_TYPE_P(right, PM_REQUIRED_PARAMETER_NODE)) { if (!PM_NODE_FLAG_P(right, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { pm_insert_local_index(((const pm_required_parameter_node_t *) right)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); local_index++; } } else { RUBY_ASSERT(PM_NODE_TYPE_P(right, PM_MULTI_TARGET_NODE)); local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) right, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } return local_index; } /** * Compile a required parameter node that is part of a destructure that is used * as a positional parameter in a method, block, or lambda definition. */ static inline void pm_compile_destructured_param_write(rb_iseq_t *iseq, const pm_required_parameter_node_t *node, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, node->name, 0); PUSH_SETLOCAL(ret, location, index.index, index.level); } /** * Compile a multi target node that is used as a positional parameter in a * method, block, or lambda definition. Note that this is effectively the same * as a multi write, but with the added context that all of the targets * contained in the write are required parameter nodes. With this context, we * know they won't have any parent expressions so we build a separate code path * for this simplified case. */ static void pm_compile_destructured_param_writes(rb_iseq_t *iseq, const pm_multi_target_node_t *node, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); bool has_rest = (node->rest && PM_NODE_TYPE_P(node->rest, PM_SPLAT_NODE) && (((const pm_splat_node_t *) node->rest)->expression) != NULL); bool has_rights = node->rights.size > 0; int flag = (has_rest || has_rights) ? 1 : 0; PUSH_INSN2(ret, location, expandarray, INT2FIX(node->lefts.size), INT2FIX(flag)); for (size_t index = 0; index < node->lefts.size; index++) { const pm_node_t *left = node->lefts.nodes[index]; if (PM_NODE_TYPE_P(left, PM_REQUIRED_PARAMETER_NODE)) { pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) left, ret, scope_node); } else { RUBY_ASSERT(PM_NODE_TYPE_P(left, PM_MULTI_TARGET_NODE)); pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) left, ret, scope_node); } } if (has_rest) { if (has_rights) { PUSH_INSN2(ret, location, expandarray, INT2FIX(node->rights.size), INT2FIX(3)); } const pm_node_t *rest = ((const pm_splat_node_t *) node->rest)->expression; RUBY_ASSERT(PM_NODE_TYPE_P(rest, PM_REQUIRED_PARAMETER_NODE)); pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) rest, ret, scope_node); } if (has_rights) { if (!has_rest) { PUSH_INSN2(ret, location, expandarray, INT2FIX(node->rights.size), INT2FIX(2)); } for (size_t index = 0; index < node->rights.size; index++) { const pm_node_t *right = node->rights.nodes[index]; if (PM_NODE_TYPE_P(right, PM_REQUIRED_PARAMETER_NODE)) { pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) right, ret, scope_node); } else { RUBY_ASSERT(PM_NODE_TYPE_P(right, PM_MULTI_TARGET_NODE)); pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) right, ret, scope_node); } } } } /** * This is a node in the multi target state linked list. It tracks the * information for a particular target that necessarily has a parent expression. */ typedef struct pm_multi_target_state_node { // The pointer to the topn instruction that will need to be modified after // we know the total stack size of all of the targets. INSN *topn; // The index of the stack from the base of the entire multi target at which // the parent expression is located. size_t stack_index; // The number of slots in the stack that this node occupies. size_t stack_size; // The position of the node in the list of targets. size_t position; // A pointer to the next node in this linked list. struct pm_multi_target_state_node *next; } pm_multi_target_state_node_t; /** * As we're compiling a multi target, we need to track additional information * whenever there is a parent expression on the left hand side of the target. * This is because we need to go back and tell the expression where to fetch its * parent expression from the stack. We use a linked list of nodes to track this * information. */ typedef struct { // The total number of slots in the stack that this multi target occupies. size_t stack_size; // The position of the current node being compiled. This is forwarded to // nodes when they are allocated. size_t position; // A pointer to the head of this linked list. pm_multi_target_state_node_t *head; // A pointer to the tail of this linked list. pm_multi_target_state_node_t *tail; } pm_multi_target_state_t; /** * Push a new state node onto the multi target state. */ static void pm_multi_target_state_push(pm_multi_target_state_t *state, INSN *topn, size_t stack_size) { pm_multi_target_state_node_t *node = ALLOC(pm_multi_target_state_node_t); node->topn = topn; node->stack_index = state->stack_size + 1; node->stack_size = stack_size; node->position = state->position; node->next = NULL; if (state->head == NULL) { state->head = node; state->tail = node; } else { state->tail->next = node; state->tail = node; } state->stack_size += stack_size; } /** * Walk through a multi target state's linked list and update the topn * instructions that were inserted into the write sequence to make sure they can * correctly retrieve their parent expressions. */ static void pm_multi_target_state_update(pm_multi_target_state_t *state) { // If nothing was ever pushed onto the stack, then we don't need to do any // kind of updates. if (state->stack_size == 0) return; pm_multi_target_state_node_t *current = state->head; pm_multi_target_state_node_t *previous; while (current != NULL) { VALUE offset = INT2FIX(state->stack_size - current->stack_index + current->position); current->topn->operands[0] = offset; // stack_size will be > 1 in the case that we compiled an index target // and it had arguments. In this case, we use multiple topn instructions // to grab up all of the arguments as well, so those offsets need to be // updated as well. if (current->stack_size > 1) { INSN *insn = current->topn; for (size_t index = 1; index < current->stack_size; index += 1) { LINK_ELEMENT *element = get_next_insn(insn); RUBY_ASSERT(IS_INSN(element)); insn = (INSN *) element; RUBY_ASSERT(insn->insn_id == BIN(topn)); insn->operands[0] = offset; } } previous = current; current = current->next; xfree(previous); } } static void pm_compile_multi_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state); /** * A target node represents an indirect write to a variable or a method call to * a method ending in =. Compiling one of these nodes requires three sequences: * * * The first is to compile retrieving the parent expression if there is one. * This could be the object that owns a constant or the receiver of a method * call. * * The second is to compile the writes to the targets. This could be writing * to variables, or it could be performing method calls. * * The third is to compile any cleanup that needs to happen, i.e., popping the * appropriate number of values off the stack. * * When there is a parent expression and this target is part of a multi write, a * topn instruction will be inserted into the write sequence. This is to move * the parent expression to the top of the stack so that it can be used as the * receiver of the method call or the owner of the constant. To facilitate this, * we return a pointer to the topn instruction that was used to be later * modified with the correct offset. * * These nodes can appear in a couple of places, but most commonly: * * * For loops - the index variable is a target node * * Rescue clauses - the exception reference variable is a target node * * Multi writes - the left hand side contains a list of target nodes * * For the comments with examples within this function, we'll use for loops as * the containing node. */ static void pm_compile_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); switch (PM_NODE_TYPE(node)) { case PM_LOCAL_VARIABLE_TARGET_NODE: { // Local variable targets have no parent expression, so they only need // to compile the write. // // for i in []; end // const pm_local_variable_target_node_t *cast = (const pm_local_variable_target_node_t *) node; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth); PUSH_SETLOCAL(writes, location, index.index, index.level); break; } case PM_CLASS_VARIABLE_TARGET_NODE: { // Class variable targets have no parent expression, so they only need // to compile the write. // // for @@i in []; end // const pm_class_variable_target_node_t *cast = (const pm_class_variable_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN2(writes, location, setclassvariable, ID2SYM(name), get_cvar_ic_value(iseq, name)); break; } case PM_CONSTANT_TARGET_NODE: { // Constant targets have no parent expression, so they only need to // compile the write. // // for I in []; end // const pm_constant_target_node_t *cast = (const pm_constant_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN1(writes, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); PUSH_INSN1(writes, location, setconstant, ID2SYM(name)); break; } case PM_GLOBAL_VARIABLE_TARGET_NODE: { // Global variable targets have no parent expression, so they only need // to compile the write. // // for $i in []; end // const pm_global_variable_target_node_t *cast = (const pm_global_variable_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN1(writes, location, setglobal, ID2SYM(name)); break; } case PM_INSTANCE_VARIABLE_TARGET_NODE: { // Instance variable targets have no parent expression, so they only // need to compile the write. // // for @i in []; end // const pm_instance_variable_target_node_t *cast = (const pm_instance_variable_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN2(writes, location, setinstancevariable, ID2SYM(name), get_ivar_ic_value(iseq, name)); break; } case PM_CONSTANT_PATH_TARGET_NODE: { // Constant path targets have a parent expression that is the object // that owns the constant. This needs to be compiled first into the // parents sequence. If no parent is found, then it represents using the // unary :: operator to indicate a top-level constant. In that case we // need to push Object onto the stack. // // for I::J in []; end // const pm_constant_path_target_node_t *cast = (const pm_constant_path_target_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); if (cast->parent != NULL) { pm_compile_node(iseq, cast->parent, parents, false, scope_node); } else { PUSH_INSN1(parents, location, putobject, rb_cObject); } if (state == NULL) { PUSH_INSN(writes, location, swap); } else { PUSH_INSN1(writes, location, topn, INT2FIX(1)); pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), 1); } PUSH_INSN1(writes, location, setconstant, ID2SYM(name)); if (state != NULL) { PUSH_INSN(cleanup, location, pop); } break; } case PM_CALL_TARGET_NODE: { // Call targets have a parent expression that is the receiver of the // method being called. This needs to be compiled first into the parents // sequence. These nodes cannot have arguments, so the method call is // compiled with a single argument which represents the value being // written. // // for i.j in []; end // const pm_call_target_node_t *cast = (const pm_call_target_node_t *) node; ID method_id = pm_constant_id_lookup(scope_node, cast->name); pm_compile_node(iseq, cast->receiver, parents, false, scope_node); LABEL *safe_label = NULL; if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) { safe_label = NEW_LABEL(location.line); PUSH_INSN(parents, location, dup); PUSH_INSNL(parents, location, branchnil, safe_label); } if (state != NULL) { PUSH_INSN1(writes, location, topn, INT2FIX(1)); pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), 1); PUSH_INSN(writes, location, swap); } int flags = VM_CALL_ARGS_SIMPLE; if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) flags |= VM_CALL_FCALL; PUSH_SEND_WITH_FLAG(writes, location, method_id, INT2FIX(1), INT2FIX(flags)); if (safe_label != NULL && state == NULL) PUSH_LABEL(writes, safe_label); PUSH_INSN(writes, location, pop); if (safe_label != NULL && state != NULL) PUSH_LABEL(writes, safe_label); if (state != NULL) { PUSH_INSN(cleanup, location, pop); } break; } case PM_INDEX_TARGET_NODE: { // Index targets have a parent expression that is the receiver of the // method being called and any additional arguments that are being // passed along with the value being written. The receiver and arguments // both need to be on the stack. Note that this is even more complicated // by the fact that these nodes can hold a block using the unary & // operator. // // for i[:j] in []; end // const pm_index_target_node_t *cast = (const pm_index_target_node_t *) node; pm_compile_node(iseq, cast->receiver, parents, false, scope_node); int flags = 0; struct rb_callinfo_kwarg *kwargs = NULL; int argc = pm_setup_args(cast->arguments, cast->block, &flags, &kwargs, iseq, parents, scope_node, &location); if (state != NULL) { PUSH_INSN1(writes, location, topn, INT2FIX(argc + 1)); pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), argc + 1); if (argc == 0) { PUSH_INSN(writes, location, swap); } else { for (int index = 0; index < argc; index++) { PUSH_INSN1(writes, location, topn, INT2FIX(argc + 1)); } PUSH_INSN1(writes, location, topn, INT2FIX(argc + 1)); } } // The argc that we're going to pass to the send instruction is the // number of arguments + 1 for the value being written. If there's a // splat, then we need to insert newarray and concatarray instructions // after the arguments have been written. int ci_argc = argc + 1; if (flags & VM_CALL_ARGS_SPLAT) { ci_argc--; PUSH_INSN1(writes, location, newarray, INT2FIX(1)); PUSH_INSN(writes, location, concatarray); } PUSH_SEND_R(writes, location, idASET, INT2NUM(ci_argc), NULL, INT2FIX(flags), kwargs); PUSH_INSN(writes, location, pop); if (state != NULL) { if (argc != 0) { PUSH_INSN(writes, location, pop); } for (int index = 0; index < argc + 1; index++) { PUSH_INSN(cleanup, location, pop); } } break; } case PM_MULTI_TARGET_NODE: { // Multi target nodes represent a set of writes to multiple variables. // The parent expressions are the combined set of the parent expressions // of its inner target nodes. // // for i, j in []; end // size_t before_position; if (state != NULL) { before_position = state->position; state->position--; } pm_compile_multi_target_node(iseq, node, parents, writes, cleanup, scope_node, state); if (state != NULL) state->position = before_position; break; } default: rb_bug("Unexpected node type: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); break; } } /** * Compile a multi target or multi write node. It returns the number of values * on the stack that correspond to the parent expressions of the various * targets. */ static void pm_compile_multi_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); const pm_node_list_t *lefts; const pm_node_t *rest; const pm_node_list_t *rights; switch (PM_NODE_TYPE(node)) { case PM_MULTI_TARGET_NODE: { const pm_multi_target_node_t *cast = (const pm_multi_target_node_t *) node; lefts = &cast->lefts; rest = cast->rest; rights = &cast->rights; break; } case PM_MULTI_WRITE_NODE: { const pm_multi_write_node_t *cast = (const pm_multi_write_node_t *) node; lefts = &cast->lefts; rest = cast->rest; rights = &cast->rights; break; } default: rb_bug("Unsupported node %s", pm_node_type_to_str(PM_NODE_TYPE(node))); break; } bool has_rest = (rest != NULL) && PM_NODE_TYPE_P(rest, PM_SPLAT_NODE) && ((const pm_splat_node_t *) rest)->expression != NULL; bool has_posts = rights->size > 0; // The first instruction in the writes sequence is going to spread the // top value of the stack onto the number of values that we're going to // write. PUSH_INSN2(writes, location, expandarray, INT2FIX(lefts->size), INT2FIX((has_rest || has_posts) ? 1 : 0)); // We need to keep track of some additional state information as we're // going through the targets because we will need to revisit them once // we know how many values are being pushed onto the stack. pm_multi_target_state_t target_state = { 0 }; if (state == NULL) state = &target_state; size_t base_position = state->position; size_t splat_position = (has_rest || has_posts) ? 1 : 0; // Next, we'll iterate through all of the leading targets. for (size_t index = 0; index < lefts->size; index++) { const pm_node_t *target = lefts->nodes[index]; state->position = lefts->size - index + splat_position + base_position; pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, state); } // Next, we'll compile the rest target if there is one. if (has_rest) { const pm_node_t *target = ((const pm_splat_node_t *) rest)->expression; state->position = 1 + rights->size + base_position; if (has_posts) { PUSH_INSN2(writes, location, expandarray, INT2FIX(rights->size), INT2FIX(3)); } pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, state); } // Finally, we'll compile the trailing targets. if (has_posts) { if (!has_rest && rest != NULL) { PUSH_INSN2(writes, location, expandarray, INT2FIX(rights->size), INT2FIX(2)); } for (size_t index = 0; index < rights->size; index++) { const pm_node_t *target = rights->nodes[index]; state->position = rights->size - index + base_position; pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, state); } } } /** * When compiling a for loop, we need to write the iteration variable to * whatever expression exists in the index slot. This function performs that * compilation. */ static void pm_compile_for_node_index(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); switch (PM_NODE_TYPE(node)) { case PM_LOCAL_VARIABLE_TARGET_NODE: { // For local variables, all we have to do is retrieve the value and then // compile the index node. PUSH_GETLOCAL(ret, location, 1, 0); pm_compile_target_node(iseq, node, ret, ret, ret, scope_node, NULL); break; } case PM_CLASS_VARIABLE_TARGET_NODE: case PM_CONSTANT_TARGET_NODE: case PM_GLOBAL_VARIABLE_TARGET_NODE: case PM_INSTANCE_VARIABLE_TARGET_NODE: case PM_CONSTANT_PATH_TARGET_NODE: case PM_CALL_TARGET_NODE: case PM_INDEX_TARGET_NODE: { // For other targets, we need to potentially compile the parent or // owning expression of this target, then retrieve the value, expand it, // and then compile the necessary writes. DECL_ANCHOR(writes); INIT_ANCHOR(writes); DECL_ANCHOR(cleanup); INIT_ANCHOR(cleanup); pm_multi_target_state_t state = { 0 }; state.position = 1; pm_compile_target_node(iseq, node, ret, writes, cleanup, scope_node, &state); PUSH_GETLOCAL(ret, location, 1, 0); PUSH_INSN2(ret, location, expandarray, INT2FIX(1), INT2FIX(0)); PUSH_SEQ(ret, writes); PUSH_SEQ(ret, cleanup); pm_multi_target_state_update(&state); break; } case PM_MULTI_TARGET_NODE: { DECL_ANCHOR(writes); INIT_ANCHOR(writes); DECL_ANCHOR(cleanup); INIT_ANCHOR(cleanup); pm_compile_target_node(iseq, node, ret, writes, cleanup, scope_node, NULL); LABEL *not_single = NEW_LABEL(location.line); LABEL *not_ary = NEW_LABEL(location.line); // When there are multiple targets, we'll do a bunch of work to convert // the value into an array before we expand it. Effectively we're trying // to accomplish: // // (args.length == 1 && Array.try_convert(args[0])) || args // PUSH_GETLOCAL(ret, location, 1, 0); PUSH_INSN(ret, location, dup); PUSH_CALL(ret, location, idLength, INT2FIX(0)); PUSH_INSN1(ret, location, putobject, INT2FIX(1)); PUSH_CALL(ret, location, idEq, INT2FIX(1)); PUSH_INSNL(ret, location, branchunless, not_single); PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, INT2FIX(0)); PUSH_CALL(ret, location, idAREF, INT2FIX(1)); PUSH_INSN1(ret, location, putobject, rb_cArray); PUSH_INSN(ret, location, swap); PUSH_CALL(ret, location, rb_intern("try_convert"), INT2FIX(1)); PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, not_ary); PUSH_INSN(ret, location, swap); PUSH_LABEL(ret, not_ary); PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, not_single); PUSH_SEQ(ret, writes); PUSH_SEQ(ret, cleanup); break; } default: rb_bug("Unexpected node type for index in for node: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); break; } } static void pm_compile_rescue(rb_iseq_t *iseq, const pm_begin_node_t *cast, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_parser_t *parser = scope_node->parser; LABEL *lstart = NEW_LABEL(node_location->line); LABEL *lend = NEW_LABEL(node_location->line); LABEL *lcont = NEW_LABEL(node_location->line); pm_scope_node_t rescue_scope_node; pm_scope_node_init((const pm_node_t *) cast->rescue_clause, &rescue_scope_node, scope_node); rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ( &rescue_scope_node, rb_str_concat(rb_str_new2("rescue in "), ISEQ_BODY(iseq)->location.label), ISEQ_TYPE_RESCUE, pm_node_line_number(parser, (const pm_node_t *) cast->rescue_clause) ); pm_scope_node_destroy(&rescue_scope_node); lstart->rescued = LABEL_RESCUE_BEG; lend->rescued = LABEL_RESCUE_END; PUSH_LABEL(ret, lstart); bool prev_in_rescue = ISEQ_COMPILE_DATA(iseq)->in_rescue; ISEQ_COMPILE_DATA(iseq)->in_rescue = true; if (cast->statements != NULL) { PM_COMPILE_NOT_POPPED((const pm_node_t *) cast->statements); } else { const pm_node_location_t location = PM_NODE_START_LOCATION(parser, cast->rescue_clause); PUSH_INSN(ret, location, putnil); } ISEQ_COMPILE_DATA(iseq)->in_rescue = prev_in_rescue; PUSH_LABEL(ret, lend); if (cast->else_clause != NULL) { if (!popped) PUSH_INSN(ret, *node_location, pop); PM_COMPILE((const pm_node_t *) cast->else_clause); } PUSH_INSN(ret, *node_location, nop); PUSH_LABEL(ret, lcont); if (popped) PUSH_INSN(ret, *node_location, pop); PUSH_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont); PUSH_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart); } static void pm_compile_ensure(rb_iseq_t *iseq, const pm_begin_node_t *cast, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_parser_t *parser = scope_node->parser; const pm_statements_node_t *statements = cast->ensure_clause->statements; pm_node_location_t location; if (statements != NULL) { location = PM_NODE_START_LOCATION(parser, statements); } else { location = *node_location; } LABEL *lstart = NEW_LABEL(location.line); LABEL *lend = NEW_LABEL(location.line); LABEL *lcont = NEW_LABEL(location.line); struct ensure_range er; struct iseq_compile_data_ensure_node_stack enl; struct ensure_range *erange; DECL_ANCHOR(ensr); INIT_ANCHOR(ensr); if (statements != NULL) { pm_compile_node(iseq, (const pm_node_t *) statements, ensr, true, scope_node); } LINK_ELEMENT *last = ensr->last; bool last_leave = last && IS_INSN(last) && IS_INSN_ID(last, leave); er.begin = lstart; er.end = lend; er.next = 0; push_ensure_entry(iseq, &enl, &er, (void *) cast->ensure_clause); PUSH_LABEL(ret, lstart); if (cast->rescue_clause != NULL) { pm_compile_rescue(iseq, cast, node_location, ret, popped | last_leave, scope_node); } else if (cast->statements != NULL) { pm_compile_node(iseq, (const pm_node_t *) cast->statements, ret, popped | last_leave, scope_node); } else if (!(popped | last_leave)) { PUSH_SYNTHETIC_PUTNIL(ret, iseq); } PUSH_LABEL(ret, lend); PUSH_SEQ(ret, ensr); if (!popped && last_leave) PUSH_INSN(ret, *node_location, putnil); PUSH_LABEL(ret, lcont); if (last_leave) PUSH_INSN(ret, *node_location, pop); pm_scope_node_t next_scope_node; pm_scope_node_init((const pm_node_t *) cast->ensure_clause, &next_scope_node, scope_node); rb_iseq_t *child_iseq = NEW_CHILD_ISEQ( &next_scope_node, rb_str_concat(rb_str_new2("ensure in "), ISEQ_BODY(iseq)->location.label), ISEQ_TYPE_ENSURE, location.line ); pm_scope_node_destroy(&next_scope_node); erange = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack->erange; if (lstart->link.next != &lend->link) { while (erange) { PUSH_CATCH_ENTRY(CATCH_TYPE_ENSURE, erange->begin, erange->end, child_iseq, lcont); erange = erange->next; } } ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = enl.prev; } /** * Returns true if the given call node can use the opt_str_uminus or * opt_str_freeze instructions as an optimization with the current iseq options. */ static inline bool pm_opt_str_freeze_p(const rb_iseq_t *iseq, const pm_call_node_t *node) { return ( !PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) && node->receiver != NULL && PM_NODE_TYPE_P(node->receiver, PM_STRING_NODE) && node->arguments == NULL && node->block == NULL && ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction ); } /** * Returns true if the given call node can use the opt_aref_with optimization * with the current iseq options. */ static inline bool pm_opt_aref_with_p(const rb_iseq_t *iseq, const pm_call_node_t *node) { return ( !PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) && node->arguments != NULL && PM_NODE_TYPE_P((const pm_node_t *) node->arguments, PM_ARGUMENTS_NODE) && ((const pm_arguments_node_t *) node->arguments)->arguments.size == 1 && PM_NODE_TYPE_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_NODE) && node->block == NULL && !PM_NODE_FLAG_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_FLAGS_FROZEN) && ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction ); } /** * Returns true if the given call node can use the opt_aset_with optimization * with the current iseq options. */ static inline bool pm_opt_aset_with_p(const rb_iseq_t *iseq, const pm_call_node_t *node) { return ( !PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION) && node->arguments != NULL && PM_NODE_TYPE_P((const pm_node_t *) node->arguments, PM_ARGUMENTS_NODE) && ((const pm_arguments_node_t *) node->arguments)->arguments.size == 2 && PM_NODE_TYPE_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_NODE) && node->block == NULL && !PM_NODE_FLAG_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_FLAGS_FROZEN) && ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction ); } /** * Compile the instructions necessary to read a constant, based on the options * of the current iseq. */ static void pm_compile_constant_read(rb_iseq_t *iseq, VALUE name, const pm_location_t *name_loc, uint32_t node_id, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node) { const pm_node_location_t location = PM_LOCATION_START_LOCATION(scope_node->parser, name_loc, node_id); if (ISEQ_COMPILE_DATA(iseq)->option->inline_const_cache) { ISEQ_BODY(iseq)->ic_size++; VALUE segments = rb_ary_new_from_args(1, name); PUSH_INSN1(ret, location, opt_getconstant_path, segments); } else { PUSH_INSN(ret, location, putnil); PUSH_INSN1(ret, location, putobject, Qtrue); PUSH_INSN1(ret, location, getconstant, name); } } /** * Returns a Ruby array of the parts of the constant path node if it is constant * reads all of the way down. If it isn't, then Qnil is returned. */ static VALUE pm_constant_path_parts(const pm_node_t *node, const pm_scope_node_t *scope_node) { VALUE parts = rb_ary_new(); while (true) { switch (PM_NODE_TYPE(node)) { case PM_CONSTANT_READ_NODE: { const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); rb_ary_unshift(parts, name); return parts; } case PM_CONSTANT_PATH_NODE: { const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); rb_ary_unshift(parts, name); if (cast->parent == NULL) { rb_ary_unshift(parts, ID2SYM(idNULL)); return parts; } node = cast->parent; break; } default: return Qnil; } } } /** * Compile a constant path into two sequences of instructions, one for the * owning expression if there is one (prefix) and one for the constant reads * (body). */ static void pm_compile_constant_path(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const prefix, LINK_ANCHOR *const body, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); switch (PM_NODE_TYPE(node)) { case PM_CONSTANT_READ_NODE: { const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); PUSH_INSN1(body, location, putobject, Qtrue); PUSH_INSN1(body, location, getconstant, name); break; } case PM_CONSTANT_PATH_NODE: { const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); if (cast->parent == NULL) { PUSH_INSN(body, location, pop); PUSH_INSN1(body, location, putobject, rb_cObject); PUSH_INSN1(body, location, putobject, Qtrue); PUSH_INSN1(body, location, getconstant, name); } else { pm_compile_constant_path(iseq, cast->parent, prefix, body, false, scope_node); PUSH_INSN1(body, location, putobject, Qfalse); PUSH_INSN1(body, location, getconstant, name); } break; } default: PM_COMPILE_INTO_ANCHOR(prefix, node); break; } } /** * When we're compiling a case node, it's possible that we can speed it up using * a dispatch hash, which will allow us to jump directly to the correct when * clause body based on a hash lookup of the value. This can only happen when * the conditions are literals that can be compiled into a hash key. * * This function accepts a dispatch hash and the condition of a when clause. It * is responsible for compiling the condition into a hash key and then adding it * to the dispatch hash. * * If the value can be successfully compiled into the hash, then this function * returns the dispatch hash with the new key added. If the value cannot be * compiled into the hash, then this function returns Qundef. In the case of * Qundef, this function is signaling that the caller should abandon the * optimization entirely. */ static VALUE pm_compile_case_node_dispatch(rb_iseq_t *iseq, VALUE dispatch, const pm_node_t *node, LABEL *label, const pm_scope_node_t *scope_node) { VALUE key = Qundef; switch (PM_NODE_TYPE(node)) { case PM_FLOAT_NODE: { key = pm_static_literal_value(iseq, node, scope_node); double intptr; if (modf(RFLOAT_VALUE(key), &intptr) == 0.0) { key = (FIXABLE(intptr) ? LONG2FIX((long) intptr) : rb_dbl2big(intptr)); } break; } case PM_FALSE_NODE: case PM_INTEGER_NODE: case PM_NIL_NODE: case PM_SOURCE_FILE_NODE: case PM_SOURCE_LINE_NODE: case PM_SYMBOL_NODE: case PM_TRUE_NODE: key = pm_static_literal_value(iseq, node, scope_node); break; case PM_STRING_NODE: { const pm_string_node_t *cast = (const pm_string_node_t *) node; key = parse_static_literal_string(iseq, scope_node, node, &cast->unescaped); break; } default: return Qundef; } if (NIL_P(rb_hash_lookup(dispatch, key))) { rb_hash_aset(dispatch, key, ((VALUE) label) | 1); } return dispatch; } /** * Return the object that will be pushed onto the stack for the given node. */ static VALUE pm_compile_shareable_constant_literal(rb_iseq_t *iseq, const pm_node_t *node, const pm_scope_node_t *scope_node) { switch (PM_NODE_TYPE(node)) { case PM_TRUE_NODE: case PM_FALSE_NODE: case PM_NIL_NODE: case PM_SYMBOL_NODE: case PM_REGULAR_EXPRESSION_NODE: case PM_SOURCE_LINE_NODE: case PM_INTEGER_NODE: case PM_FLOAT_NODE: case PM_RATIONAL_NODE: case PM_IMAGINARY_NODE: case PM_SOURCE_ENCODING_NODE: return pm_static_literal_value(iseq, node, scope_node); case PM_STRING_NODE: return parse_static_literal_string(iseq, scope_node, node, &((const pm_string_node_t *) node)->unescaped); case PM_SOURCE_FILE_NODE: return pm_source_file_value((const pm_source_file_node_t *) node, scope_node); case PM_ARRAY_NODE: { const pm_array_node_t *cast = (const pm_array_node_t *) node; VALUE result = rb_ary_new_capa(cast->elements.size); for (size_t index = 0; index < cast->elements.size; index++) { VALUE element = pm_compile_shareable_constant_literal(iseq, cast->elements.nodes[index], scope_node); if (element == Qundef) return Qundef; rb_ary_push(result, element); } return rb_ractor_make_shareable(result); } case PM_HASH_NODE: { const pm_hash_node_t *cast = (const pm_hash_node_t *) node; VALUE result = rb_hash_new_capa(cast->elements.size); for (size_t index = 0; index < cast->elements.size; index++) { const pm_node_t *element = cast->elements.nodes[index]; if (!PM_NODE_TYPE_P(element, PM_ASSOC_NODE)) return Qundef; const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element; VALUE key = pm_compile_shareable_constant_literal(iseq, assoc->key, scope_node); if (key == Qundef) return Qundef; VALUE value = pm_compile_shareable_constant_literal(iseq, assoc->value, scope_node); if (value == Qundef) return Qundef; rb_hash_aset(result, key, value); } return rb_ractor_make_shareable(result); } default: return Qundef; } } /** * Compile the instructions for pushing the value that will be written to a * shared constant. */ static void pm_compile_shareable_constant_value(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_flags_t shareability, VALUE path, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, bool top) { VALUE literal = pm_compile_shareable_constant_literal(iseq, node, scope_node); if (literal != Qundef) { const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); PUSH_INSN1(ret, location, putobject, literal); return; } const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node); switch (PM_NODE_TYPE(node)) { case PM_ARRAY_NODE: { const pm_array_node_t *cast = (const pm_array_node_t *) node; if (top) { PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); } for (size_t index = 0; index < cast->elements.size; index++) { pm_compile_shareable_constant_value(iseq, cast->elements.nodes[index], shareability, path, ret, scope_node, false); } PUSH_INSN1(ret, location, newarray, INT2FIX(cast->elements.size)); if (top) { ID method_id = (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY) ? rb_intern("make_shareable_copy") : rb_intern("make_shareable"); PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE)); } return; } case PM_HASH_NODE: { const pm_hash_node_t *cast = (const pm_hash_node_t *) node; if (top) { PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); } for (size_t index = 0; index < cast->elements.size; index++) { const pm_node_t *element = cast->elements.nodes[index]; if (!PM_NODE_TYPE_P(element, PM_ASSOC_NODE)) { COMPILE_ERROR(iseq, location.line, "Ractor constant writes do not support **"); } const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element; pm_compile_shareable_constant_value(iseq, assoc->key, shareability, path, ret, scope_node, false); pm_compile_shareable_constant_value(iseq, assoc->value, shareability, path, ret, scope_node, false); } PUSH_INSN1(ret, location, newhash, INT2FIX(cast->elements.size * 2)); if (top) { ID method_id = (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY) ? rb_intern("make_shareable_copy") : rb_intern("make_shareable"); PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE)); } return; } default: { DECL_ANCHOR(value_seq); INIT_ANCHOR(value_seq); pm_compile_node(iseq, node, value_seq, false, scope_node); if (PM_NODE_TYPE_P(node, PM_INTERPOLATED_STRING_NODE)) { PUSH_SEND_WITH_FLAG(value_seq, location, idUMinus, INT2FIX(0), INT2FIX(VM_CALL_ARGS_SIMPLE)); } if (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_LITERAL) { PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_SEQ(ret, value_seq); PUSH_INSN1(ret, location, putobject, path); PUSH_SEND_WITH_FLAG(ret, location, rb_intern("ensure_shareable"), INT2FIX(2), INT2FIX(VM_CALL_ARGS_SIMPLE)); } else if (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY) { if (top) PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_SEQ(ret, value_seq); if (top) PUSH_SEND_WITH_FLAG(ret, location, rb_intern("make_shareable_copy"), INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE)); } else if (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_EVERYTHING) { if (top) PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_SEQ(ret, value_seq); if (top) PUSH_SEND_WITH_FLAG(ret, location, rb_intern("make_shareable"), INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE)); } break; } } } /** * Compile a constant write node, either in the context of a ractor pragma or * not. */ static void pm_compile_constant_write_node(rb_iseq_t *iseq, const pm_constant_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; ID name_id = pm_constant_id_lookup(scope_node, node->name); if (shareability != 0) { pm_compile_shareable_constant_value(iseq, node->value, shareability, rb_id2str(name_id), ret, scope_node, true); } else { PM_COMPILE_NOT_POPPED(node->value); } if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); PUSH_INSN1(ret, location, setconstant, ID2SYM(name_id)); } /** * Compile a constant and write node, either in the context of a ractor pragma * or not. */ static void pm_compile_constant_and_write_node(rb_iseq_t *iseq, const pm_constant_and_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, node->name)); LABEL *end_label = NEW_LABEL(location.line); pm_compile_constant_read(iseq, name, &node->name_loc, location.node_id, ret, scope_node); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, end_label); if (!popped) PUSH_INSN(ret, location, pop); if (shareability != 0) { pm_compile_shareable_constant_value(iseq, node->value, shareability, name, ret, scope_node, true); } else { PM_COMPILE_NOT_POPPED(node->value); } if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); PUSH_INSN1(ret, location, setconstant, name); PUSH_LABEL(ret, end_label); } /** * Compile a constant or write node, either in the context of a ractor pragma or * not. */ static void pm_compile_constant_or_write_node(rb_iseq_t *iseq, const pm_constant_or_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, node->name)); LABEL *set_label = NEW_LABEL(location.line); LABEL *end_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST), name, Qtrue); PUSH_INSNL(ret, location, branchunless, set_label); pm_compile_constant_read(iseq, name, &node->name_loc, location.node_id, ret, scope_node); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, end_label); if (!popped) PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, set_label); if (shareability != 0) { pm_compile_shareable_constant_value(iseq, node->value, shareability, name, ret, scope_node, true); } else { PM_COMPILE_NOT_POPPED(node->value); } if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); PUSH_INSN1(ret, location, setconstant, name); PUSH_LABEL(ret, end_label); } /** * Compile a constant operator write node, either in the context of a ractor * pragma or not. */ static void pm_compile_constant_operator_write_node(rb_iseq_t *iseq, const pm_constant_operator_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, node->name)); ID method_id = pm_constant_id_lookup(scope_node, node->binary_operator); pm_compile_constant_read(iseq, name, &node->name_loc, location.node_id, ret, scope_node); if (shareability != 0) { pm_compile_shareable_constant_value(iseq, node->value, shareability, name, ret, scope_node, true); } else { PM_COMPILE_NOT_POPPED(node->value); } PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(VM_CALL_ARGS_SIMPLE)); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE)); PUSH_INSN1(ret, location, setconstant, name); } /** * Creates a string that is used in ractor error messages to describe the * constant path being written. */ static VALUE pm_constant_path_path(const pm_constant_path_node_t *node, const pm_scope_node_t *scope_node) { VALUE parts = rb_ary_new(); rb_ary_push(parts, rb_id2str(pm_constant_id_lookup(scope_node, node->name))); const pm_node_t *current = node->parent; while (current != NULL && PM_NODE_TYPE_P(current, PM_CONSTANT_PATH_NODE)) { const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) current; rb_ary_unshift(parts, rb_id2str(pm_constant_id_lookup(scope_node, cast->name))); current = cast->parent; } if (current == NULL) { rb_ary_unshift(parts, rb_id2str(idNULL)); } else if (PM_NODE_TYPE_P(current, PM_CONSTANT_READ_NODE)) { rb_ary_unshift(parts, rb_id2str(pm_constant_id_lookup(scope_node, ((const pm_constant_read_node_t *) current)->name))); } else { rb_ary_unshift(parts, rb_str_new_cstr("...")); } return rb_ary_join(parts, rb_str_new_cstr("::")); } /** * Compile a constant path write node, either in the context of a ractor pragma * or not. */ static void pm_compile_constant_path_write_node(rb_iseq_t *iseq, const pm_constant_path_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; const pm_constant_path_node_t *target = node->target; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name)); if (target->parent) { PM_COMPILE_NOT_POPPED((const pm_node_t *) target->parent); } else { PUSH_INSN1(ret, location, putobject, rb_cObject); } if (shareability != 0) { pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true); } else { PM_COMPILE_NOT_POPPED(node->value); } if (!popped) { PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, topn, INT2FIX(1)); } PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, setconstant, name); } /** * Compile a constant path and write node, either in the context of a ractor * pragma or not. */ static void pm_compile_constant_path_and_write_node(rb_iseq_t *iseq, const pm_constant_path_and_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; const pm_constant_path_node_t *target = node->target; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name)); LABEL *lfin = NEW_LABEL(location.line); if (target->parent) { PM_COMPILE_NOT_POPPED(target->parent); } else { PUSH_INSN1(ret, location, putobject, rb_cObject); } PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, Qtrue); PUSH_INSN1(ret, location, getconstant, name); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, lfin); if (!popped) PUSH_INSN(ret, location, pop); if (shareability != 0) { pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true); } else { PM_COMPILE_NOT_POPPED(node->value); } if (popped) { PUSH_INSN1(ret, location, topn, INT2FIX(1)); } else { PUSH_INSN1(ret, location, dupn, INT2FIX(2)); PUSH_INSN(ret, location, swap); } PUSH_INSN1(ret, location, setconstant, name); PUSH_LABEL(ret, lfin); if (!popped) PUSH_INSN(ret, location, swap); PUSH_INSN(ret, location, pop); } /** * Compile a constant path or write node, either in the context of a ractor * pragma or not. */ static void pm_compile_constant_path_or_write_node(rb_iseq_t *iseq, const pm_constant_path_or_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; const pm_constant_path_node_t *target = node->target; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name)); LABEL *lassign = NEW_LABEL(location.line); LABEL *lfin = NEW_LABEL(location.line); if (target->parent) { PM_COMPILE_NOT_POPPED(target->parent); } else { PUSH_INSN1(ret, location, putobject, rb_cObject); } PUSH_INSN(ret, location, dup); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST_FROM), name, Qtrue); PUSH_INSNL(ret, location, branchunless, lassign); PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, Qtrue); PUSH_INSN1(ret, location, getconstant, name); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, lfin); if (!popped) PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, lassign); if (shareability != 0) { pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true); } else { PM_COMPILE_NOT_POPPED(node->value); } if (popped) { PUSH_INSN1(ret, location, topn, INT2FIX(1)); } else { PUSH_INSN1(ret, location, dupn, INT2FIX(2)); PUSH_INSN(ret, location, swap); } PUSH_INSN1(ret, location, setconstant, name); PUSH_LABEL(ret, lfin); if (!popped) PUSH_INSN(ret, location, swap); PUSH_INSN(ret, location, pop); } /** * Compile a constant path operator write node, either in the context of a * ractor pragma or not. */ static void pm_compile_constant_path_operator_write_node(rb_iseq_t *iseq, const pm_constant_path_operator_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_node_location_t location = *node_location; const pm_constant_path_node_t *target = node->target; ID method_id = pm_constant_id_lookup(scope_node, node->binary_operator); VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name)); if (target->parent) { PM_COMPILE_NOT_POPPED(target->parent); } else { PUSH_INSN1(ret, location, putobject, rb_cObject); } PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, putobject, Qtrue); PUSH_INSN1(ret, location, getconstant, name); if (shareability != 0) { pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true); } else { PM_COMPILE_NOT_POPPED(node->value); } PUSH_CALL(ret, location, method_id, INT2FIX(1)); PUSH_INSN(ret, location, swap); if (!popped) { PUSH_INSN1(ret, location, topn, INT2FIX(1)); PUSH_INSN(ret, location, swap); } PUSH_INSN1(ret, location, setconstant, name); } /** * Compiles a prism node into instruction sequences. * * iseq - The current instruction sequence object (used for locals) * node - The prism node to compile * ret - The linked list of instructions to append instructions onto * popped - True if compiling something with no side effects, so instructions don't * need to be added * scope_node - Stores parser and local information */ static void pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node) { const pm_parser_t *parser = scope_node->parser; const pm_node_location_t location = PM_NODE_START_LOCATION(parser, node); int lineno = (int) location.line; if (PM_NODE_TYPE_P(node, PM_BEGIN_NODE) && (((const pm_begin_node_t *) node)->statements == NULL) && (((const pm_begin_node_t *) node)->rescue_clause != NULL)) { // If this node is a begin node and it has empty statements and also // has a rescue clause, then the other parser considers it as // starting on the same line as the rescue, as opposed to the // location of the begin keyword. We replicate that behavior here. lineno = (int) PM_NODE_START_LINE_COLUMN(parser, ((const pm_begin_node_t *) node)->rescue_clause).line; } if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_NEWLINE) && ISEQ_COMPILE_DATA(iseq)->last_line != lineno) { // If this node has the newline flag set and it is on a new line // from the previous nodes that have been compiled for this ISEQ, // then we need to emit a newline event. int event = RUBY_EVENT_LINE; ISEQ_COMPILE_DATA(iseq)->last_line = lineno; if (ISEQ_COVERAGE(iseq) && ISEQ_LINE_COVERAGE(iseq)) { event |= RUBY_EVENT_COVERAGE_LINE; } PUSH_TRACE(ret, event); } switch (PM_NODE_TYPE(node)) { case PM_ALIAS_GLOBAL_VARIABLE_NODE: { // alias $foo $bar // ^^^^^^^^^^^^^^^ const pm_alias_global_variable_node_t *cast = (const pm_alias_global_variable_node_t *) node; PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); const pm_location_t *new_name_loc = &cast->new_name->location; PUSH_INSN1(ret, location, putobject, ID2SYM(rb_intern3((const char *) new_name_loc->start, new_name_loc->end - new_name_loc->start, scope_node->encoding))); const pm_location_t *old_name_loc = &cast->old_name->location; PUSH_INSN1(ret, location, putobject, ID2SYM(rb_intern3((const char *) old_name_loc->start, old_name_loc->end - old_name_loc->start, scope_node->encoding))); PUSH_SEND(ret, location, id_core_set_variable_alias, INT2FIX(2)); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_ALIAS_METHOD_NODE: { // alias foo bar // ^^^^^^^^^^^^^ const pm_alias_method_node_t *cast = (const pm_alias_method_node_t *) node; PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE)); PM_COMPILE_NOT_POPPED(cast->new_name); PM_COMPILE_NOT_POPPED(cast->old_name); PUSH_SEND(ret, location, id_core_set_method_alias, INT2FIX(3)); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_AND_NODE: { // a and b // ^^^^^^^ const pm_and_node_t *cast = (const pm_and_node_t *) node; LABEL *end_label = NEW_LABEL(lineno); PM_COMPILE_NOT_POPPED(cast->left); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, end_label); if (!popped) PUSH_INSN(ret, location, pop); PM_COMPILE(cast->right); PUSH_LABEL(ret, end_label); return; } case PM_ARGUMENTS_NODE: // These are ArgumentsNodes that are not compiled directly by their // parent call nodes, used in the cases of NextNodes, ReturnNodes, and // BreakNodes. They can create an array like ArrayNode. case PM_ARRAY_NODE: { const pm_node_list_t *elements; if (PM_NODE_TYPE(node) == PM_ARGUMENTS_NODE) { // break foo // ^^^ const pm_arguments_node_t *cast = (const pm_arguments_node_t *) node; elements = &cast->arguments; // If we are only returning a single element through one of the jump // nodes, then we will only compile that node directly. if (elements->size == 1) { PM_COMPILE(elements->nodes[0]); return; } } else { // [foo, bar, baz] // ^^^^^^^^^^^^^^^ const pm_array_node_t *cast = (const pm_array_node_t *) node; elements = &cast->elements; } // If every node in the array is static, then we can compile the entire // array now instead of later. if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) { // We're only going to compile this node if it's not popped. If it // is popped, then we know we don't need to do anything since it's // statically known. if (!popped) { if (elements->size) { VALUE value = pm_static_literal_value(iseq, node, scope_node); PUSH_INSN1(ret, location, duparray, value); } else { PUSH_INSN1(ret, location, newarray, INT2FIX(0)); } } } else { // Here since we know there are possible side-effects inside the // array contents, we're going to build it entirely at runtime. // We'll do this by pushing all of the elements onto the stack and // then combining them with newarray. // // If this array is popped, then this serves only to ensure we enact // all side-effects (like method calls) that are contained within // the array contents. // // We treat all sequences of non-splat elements as their // own arrays, followed by a newarray, and then continually // concat the arrays with the SplatNode nodes. const int max_new_array_size = 0x100; const unsigned int min_tmp_array_size = 0x40; int new_array_size = 0; bool first_chunk = true; // This is an optimization wherein we keep track of whether or not // the previous element was a static literal. If it was, then we do // not attempt to check if we have a subarray that can be optimized. // If it was not, then we do check. bool static_literal = false; // Either create a new array, or push to the existing array. #define FLUSH_CHUNK \ if (new_array_size) { \ if (first_chunk) PUSH_INSN1(ret, location, newarray, INT2FIX(new_array_size)); \ else PUSH_INSN1(ret, location, pushtoarray, INT2FIX(new_array_size)); \ first_chunk = false; \ new_array_size = 0; \ } for (size_t index = 0; index < elements->size; index++) { const pm_node_t *element = elements->nodes[index]; if (PM_NODE_TYPE_P(element, PM_SPLAT_NODE)) { FLUSH_CHUNK; const pm_splat_node_t *splat_element = (const pm_splat_node_t *) element; if (splat_element->expression) { PM_COMPILE_NOT_POPPED(splat_element->expression); } else { pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0); PUSH_GETLOCAL(ret, location, index.index, index.level); } if (first_chunk) { // If this is the first element of the array then we // need to splatarray the elements into the list. PUSH_INSN1(ret, location, splatarray, Qtrue); first_chunk = false; } else { PUSH_INSN(ret, location, concattoarray); } static_literal = false; } else if (PM_NODE_TYPE_P(element, PM_KEYWORD_HASH_NODE)) { if (new_array_size == 0 && first_chunk) { PUSH_INSN1(ret, location, newarray, INT2FIX(0)); first_chunk = false; } else { FLUSH_CHUNK; } // If we get here, then this is the last element of the // array/arguments, because it cannot be followed by // anything else without a syntax error. This looks like: // // [foo, bar, baz: qux] // ^^^^^^^^ // // [foo, bar, **baz] // ^^^^^ // const pm_keyword_hash_node_t *keyword_hash = (const pm_keyword_hash_node_t *) element; pm_compile_hash_elements(iseq, element, &keyword_hash->elements, false, ret, scope_node); // This boolean controls the manner in which we push the // hash onto the array. If it's all keyword splats, then we // can use the very specialized pushtoarraykwsplat // instruction to check if it's empty before we push it. size_t splats = 0; while (splats < keyword_hash->elements.size && PM_NODE_TYPE_P(keyword_hash->elements.nodes[splats], PM_ASSOC_SPLAT_NODE)) splats++; if (keyword_hash->elements.size == splats) { PUSH_INSN(ret, location, pushtoarraykwsplat); } else { new_array_size++; } } else if (PM_NODE_FLAG_P(element, PM_NODE_FLAG_STATIC_LITERAL) && !static_literal && ((index + min_tmp_array_size) < elements->size)) { // If we have a static literal, then there's the potential // to group a bunch of them together with a literal array // and then concat them together. size_t right_index = index + 1; while (right_index < elements->size && PM_NODE_FLAG_P(elements->nodes[right_index], PM_NODE_FLAG_STATIC_LITERAL)) right_index++; size_t tmp_array_size = right_index - index; if (tmp_array_size >= min_tmp_array_size) { VALUE tmp_array = rb_ary_hidden_new(tmp_array_size); // Create the temporary array. for (; tmp_array_size; tmp_array_size--) rb_ary_push(tmp_array, pm_static_literal_value(iseq, elements->nodes[index++], scope_node)); OBJ_FREEZE(tmp_array); // Emit the optimized code. FLUSH_CHUNK; if (first_chunk) { PUSH_INSN1(ret, location, duparray, tmp_array); first_chunk = false; } else { PUSH_INSN1(ret, location, putobject, tmp_array); PUSH_INSN(ret, location, concattoarray); } } else { PM_COMPILE_NOT_POPPED(element); if (++new_array_size >= max_new_array_size) FLUSH_CHUNK; static_literal = true; } } else { PM_COMPILE_NOT_POPPED(element); if (++new_array_size >= max_new_array_size) FLUSH_CHUNK; static_literal = false; } } FLUSH_CHUNK; if (popped) PUSH_INSN(ret, location, pop); } #undef FLUSH_CHUNK return; } case PM_ASSOC_NODE: { // { foo: 1 } // ^^^^^^ // // foo(bar: 1) // ^^^^^^ const pm_assoc_node_t *cast = (const pm_assoc_node_t *) node; PM_COMPILE(cast->key); PM_COMPILE(cast->value); return; } case PM_ASSOC_SPLAT_NODE: { // { **foo } // ^^^^^ // // def foo(**); bar(**); end // ^^ const pm_assoc_splat_node_t *cast = (const pm_assoc_splat_node_t *) node; if (cast->value != NULL) { PM_COMPILE(cast->value); } else if (!popped) { pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_POW, 0); PUSH_GETLOCAL(ret, location, index.index, index.level); } return; } case PM_BACK_REFERENCE_READ_NODE: { // $+ // ^^ if (!popped) { // Since a back reference is `$`, ruby represents the ID as the // an rb_intern on the value after the `$`. char *char_ptr = (char *)(node->location.start) + 1; ID backref_val = INT2FIX(rb_intern2(char_ptr, 1)) << 1 | 1; PUSH_INSN2(ret, location, getspecial, INT2FIX(1), backref_val); } return; } case PM_BEGIN_NODE: { // begin end // ^^^^^^^^^ const pm_begin_node_t *cast = (const pm_begin_node_t *) node; if (cast->ensure_clause) { // Compiling the ensure clause will compile the rescue clause (if // there is one), which will compile the begin statements. pm_compile_ensure(iseq, cast, &location, ret, popped, scope_node); } else if (cast->rescue_clause) { // Compiling rescue will compile begin statements (if applicable). pm_compile_rescue(iseq, cast, &location, ret, popped, scope_node); } else { // If there is neither ensure or rescue, the just compile the // statements. if (cast->statements != NULL) { PM_COMPILE((const pm_node_t *) cast->statements); } else if (!popped) { PUSH_SYNTHETIC_PUTNIL(ret, iseq); } } return; } case PM_BLOCK_ARGUMENT_NODE: { // foo(&bar) // ^^^^ const pm_block_argument_node_t *cast = (const pm_block_argument_node_t *) node; if (cast->expression != NULL) { PM_COMPILE(cast->expression); } else { // If there's no expression, this must be block forwarding. pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_AND, 0); PUSH_INSN2(ret, location, getblockparamproxy, INT2FIX(local_index.index + VM_ENV_DATA_SIZE - 1), INT2FIX(local_index.level)); } return; } case PM_BREAK_NODE: { // break // ^^^^^ // // break foo // ^^^^^^^^^ const pm_break_node_t *cast = (const pm_break_node_t *) node; unsigned long throw_flag = 0; if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) { /* while/until */ LABEL *splabel = NEW_LABEL(0); PUSH_LABEL(ret, splabel); PUSH_ADJUST(ret, location, ISEQ_COMPILE_DATA(iseq)->redo_label); if (cast->arguments != NULL) { PM_COMPILE_NOT_POPPED((const pm_node_t *) cast->arguments); } else { PUSH_INSN(ret, location, putnil); } pm_add_ensure_iseq(ret, iseq, 0, scope_node); PUSH_INSNL(ret, location, jump, ISEQ_COMPILE_DATA(iseq)->end_label); PUSH_ADJUST_RESTORE(ret, splabel); if (!popped) PUSH_INSN(ret, location, putnil); } else { const rb_iseq_t *ip = iseq; while (ip) { if (!ISEQ_COMPILE_DATA(ip)) { ip = 0; break; } if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) { throw_flag = VM_THROW_NO_ESCAPE_FLAG; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) { throw_flag = 0; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) { COMPILE_ERROR(iseq, location.line, "Can't escape from eval with break"); return; } else { ip = ISEQ_BODY(ip)->parent_iseq; continue; } /* escape from block */ if (cast->arguments != NULL) { PM_COMPILE_NOT_POPPED((const pm_node_t *) cast->arguments); } else { PUSH_INSN(ret, location, putnil); } PUSH_INSN1(ret, location, throw, INT2FIX(throw_flag | TAG_BREAK)); if (popped) PUSH_INSN(ret, location, pop); return; } COMPILE_ERROR(iseq, location.line, "Invalid break"); } return; } case PM_CALL_NODE: { // foo // ^^^ // // foo.bar // ^^^^^^^ // // foo.bar() {} // ^^^^^^^^^^^^ const pm_call_node_t *cast = (const pm_call_node_t *) node; ID method_id = pm_constant_id_lookup(scope_node, cast->name); const pm_location_t *message_loc = &cast->message_loc; if (message_loc->start == NULL) message_loc = &cast->base.location; const pm_node_location_t location = PM_LOCATION_START_LOCATION(scope_node->parser, message_loc, cast->base.node_id); const char *builtin_func; if (UNLIKELY(iseq_has_builtin_function_table(iseq)) && (builtin_func = pm_iseq_builtin_function_name(scope_node, cast->receiver, method_id)) != NULL) { pm_compile_builtin_function_call(iseq, ret, scope_node, cast, &location, popped, ISEQ_COMPILE_DATA(iseq)->current_block, builtin_func); return; } LABEL *start = NEW_LABEL(location.line); if (cast->block) PUSH_LABEL(ret, start); switch (method_id) { case idUMinus: { if (pm_opt_str_freeze_p(iseq, cast)) { VALUE value = parse_static_literal_string(iseq, scope_node, cast->receiver, &((const pm_string_node_t * ) cast->receiver)->unescaped); PUSH_INSN2(ret, location, opt_str_uminus, value, new_callinfo(iseq, idUMinus, 0, 0, NULL, FALSE)); return; } break; } case idFreeze: { if (pm_opt_str_freeze_p(iseq, cast)) { VALUE value = parse_static_literal_string(iseq, scope_node, cast->receiver, &((const pm_string_node_t * ) cast->receiver)->unescaped); PUSH_INSN2(ret, location, opt_str_freeze, value, new_callinfo(iseq, idFreeze, 0, 0, NULL, FALSE)); return; } break; } case idAREF: { if (pm_opt_aref_with_p(iseq, cast)) { const pm_string_node_t *string = (const pm_string_node_t *) ((const pm_arguments_node_t *) cast->arguments)->arguments.nodes[0]; VALUE value = parse_static_literal_string(iseq, scope_node, (const pm_node_t *) string, &string->unescaped); PM_COMPILE_NOT_POPPED(cast->receiver); PUSH_INSN2(ret, location, opt_aref_with, value, new_callinfo(iseq, idAREF, 1, 0, NULL, FALSE)); if (popped) { PUSH_INSN(ret, location, pop); } return; } break; } case idASET: { if (pm_opt_aset_with_p(iseq, cast)) { const pm_string_node_t *string = (const pm_string_node_t *) ((const pm_arguments_node_t *) cast->arguments)->arguments.nodes[0]; VALUE value = parse_static_literal_string(iseq, scope_node, (const pm_node_t *) string, &string->unescaped); PM_COMPILE_NOT_POPPED(cast->receiver); PM_COMPILE_NOT_POPPED(((const pm_arguments_node_t *) cast->arguments)->arguments.nodes[1]); if (!popped) { PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, topn, INT2FIX(1)); } PUSH_INSN2(ret, location, opt_aset_with, value, new_callinfo(iseq, idASET, 2, 0, NULL, FALSE)); PUSH_INSN(ret, location, pop); return; } break; } } if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE) && !popped) { PUSH_INSN(ret, location, putnil); } if (cast->receiver == NULL) { PUSH_INSN(ret, location, putself); } else { if (method_id == idCall && PM_NODE_TYPE_P(cast->receiver, PM_LOCAL_VARIABLE_READ_NODE)) { const pm_local_variable_read_node_t *read_node_cast = (const pm_local_variable_read_node_t *) cast->receiver; uint32_t node_id = cast->receiver->node_id; int idx, level; if (iseq_block_param_id_p(iseq, pm_constant_id_lookup(scope_node, read_node_cast->name), &idx, &level)) { ADD_ELEM(ret, (LINK_ELEMENT *) new_insn_body(iseq, location.line, node_id, BIN(getblockparamproxy), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level))); } else { PM_COMPILE_NOT_POPPED(cast->receiver); } } else { PM_COMPILE_NOT_POPPED(cast->receiver); } } pm_compile_call(iseq, cast, ret, popped, scope_node, method_id, start); return; } case PM_CALL_AND_WRITE_NODE: { // foo.bar &&= baz // ^^^^^^^^^^^^^^^ const pm_call_and_write_node_t *cast = (const pm_call_and_write_node_t *) node; pm_compile_call_and_or_write_node(iseq, true, cast->receiver, cast->value, cast->write_name, cast->read_name, PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION), &location, ret, popped, scope_node); return; } case PM_CALL_OR_WRITE_NODE: { // foo.bar ||= baz // ^^^^^^^^^^^^^^^ const pm_call_or_write_node_t *cast = (const pm_call_or_write_node_t *) node; pm_compile_call_and_or_write_node(iseq, false, cast->receiver, cast->value, cast->write_name, cast->read_name, PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION), &location, ret, popped, scope_node); return; } case PM_CALL_OPERATOR_WRITE_NODE: { // foo.bar += baz // ^^^^^^^^^^^^^^^ // // Call operator writes occur when you have a call node on the left-hand // side of a write operator that is not `=`. As an example, // `foo.bar *= 1`. This breaks down to caching the receiver on the // stack and then performing three method calls, one to read the value, // one to compute the result, and one to write the result back to the // receiver. const pm_call_operator_write_node_t *cast = (const pm_call_operator_write_node_t *) node; int flag = 0; if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) { flag = VM_CALL_FCALL; } PM_COMPILE_NOT_POPPED(cast->receiver); LABEL *safe_label = NULL; if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION)) { safe_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchnil, safe_label); } PUSH_INSN(ret, location, dup); ID id_read_name = pm_constant_id_lookup(scope_node, cast->read_name); PUSH_SEND_WITH_FLAG(ret, location, id_read_name, INT2FIX(0), INT2FIX(flag)); PM_COMPILE_NOT_POPPED(cast->value); ID id_operator = pm_constant_id_lookup(scope_node, cast->binary_operator); PUSH_SEND(ret, location, id_operator, INT2FIX(1)); if (!popped) { PUSH_INSN(ret, location, swap); PUSH_INSN1(ret, location, topn, INT2FIX(1)); } ID id_write_name = pm_constant_id_lookup(scope_node, cast->write_name); PUSH_SEND_WITH_FLAG(ret, location, id_write_name, INT2FIX(1), INT2FIX(flag)); if (safe_label != NULL && popped) PUSH_LABEL(ret, safe_label); PUSH_INSN(ret, location, pop); if (safe_label != NULL && !popped) PUSH_LABEL(ret, safe_label); return; } case PM_CASE_NODE: { // case foo; when bar; end // ^^^^^^^^^^^^^^^^^^^^^^^ const pm_case_node_t *cast = (const pm_case_node_t *) node; const pm_node_list_t *conditions = &cast->conditions; // This is the anchor that we will compile the conditions of the various // `when` nodes into. If a match is found, they will need to jump into // the body_seq anchor to the correct spot. DECL_ANCHOR(cond_seq); INIT_ANCHOR(cond_seq); // This is the anchor that we will compile the bodies of the various // `when` nodes into. We'll make sure that the clauses that are compiled // jump into the correct spots within this anchor. DECL_ANCHOR(body_seq); INIT_ANCHOR(body_seq); // This is the label where all of the when clauses will jump to if they // have matched and are done executing their bodies. LABEL *end_label = NEW_LABEL(location.line); // If we have a predicate on this case statement, then it's going to // compare all of the various when clauses to the predicate. If we // don't, then it's basically an if-elsif-else chain. if (cast->predicate == NULL) { // Establish branch coverage for the case node. VALUE branches = Qfalse; rb_code_location_t case_location = { 0 }; int branch_id = 0; if (PM_BRANCH_COVERAGE_P(iseq)) { case_location = pm_code_location(scope_node, (const pm_node_t *) cast); branches = decl_branch_base(iseq, PTR2NUM(cast), &case_location, "case"); } // Loop through each clauses in the case node and compile each of // the conditions within them into cond_seq. If they match, they // should jump into their respective bodies in body_seq. for (size_t clause_index = 0; clause_index < conditions->size; clause_index++) { const pm_when_node_t *clause = (const pm_when_node_t *) conditions->nodes[clause_index]; const pm_node_list_t *conditions = &clause->conditions; int clause_lineno = pm_node_line_number(parser, (const pm_node_t *) clause); LABEL *label = NEW_LABEL(clause_lineno); PUSH_LABEL(body_seq, label); // Establish branch coverage for the when clause. if (PM_BRANCH_COVERAGE_P(iseq)) { rb_code_location_t branch_location = pm_code_location(scope_node, clause->statements != NULL ? ((const pm_node_t *) clause->statements) : ((const pm_node_t *) clause)); add_trace_branch_coverage(iseq, body_seq, &branch_location, branch_location.beg_pos.column, branch_id++, "when", branches); } if (clause->statements != NULL) { pm_compile_node(iseq, (const pm_node_t *) clause->statements, body_seq, popped, scope_node); } else if (!popped) { PUSH_SYNTHETIC_PUTNIL(body_seq, iseq); } PUSH_INSNL(body_seq, location, jump, end_label); // Compile each of the conditions for the when clause into the // cond_seq. Each one should have a unique condition and should // jump to the subsequent one if it doesn't match. for (size_t condition_index = 0; condition_index < conditions->size; condition_index++) { const pm_node_t *condition = conditions->nodes[condition_index]; if (PM_NODE_TYPE_P(condition, PM_SPLAT_NODE)) { pm_node_location_t cond_location = PM_NODE_START_LOCATION(parser, condition); PUSH_INSN(cond_seq, cond_location, putnil); pm_compile_node(iseq, condition, cond_seq, false, scope_node); PUSH_INSN1(cond_seq, cond_location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_WHEN | VM_CHECKMATCH_ARRAY)); PUSH_INSNL(cond_seq, cond_location, branchif, label); } else { LABEL *next_label = NEW_LABEL(pm_node_line_number(parser, condition)); pm_compile_branch_condition(iseq, cond_seq, condition, label, next_label, false, scope_node); PUSH_LABEL(cond_seq, next_label); } } } // Establish branch coverage for the else clause (implicit or // explicit). if (PM_BRANCH_COVERAGE_P(iseq)) { rb_code_location_t branch_location; if (cast->else_clause == NULL) { branch_location = case_location; } else if (cast->else_clause->statements == NULL) { branch_location = pm_code_location(scope_node, (const pm_node_t *) cast->else_clause); } else { branch_location = pm_code_location(scope_node, (const pm_node_t *) cast->else_clause->statements); } add_trace_branch_coverage(iseq, cond_seq, &branch_location, branch_location.beg_pos.column, branch_id, "else", branches); } // Compile the else clause if there is one. if (cast->else_clause != NULL) { pm_compile_node(iseq, (const pm_node_t *) cast->else_clause, cond_seq, popped, scope_node); } else if (!popped) { PUSH_SYNTHETIC_PUTNIL(cond_seq, iseq); } // Finally, jump to the end label if none of the other conditions // have matched. PUSH_INSNL(cond_seq, location, jump, end_label); PUSH_SEQ(ret, cond_seq); } else { // Establish branch coverage for the case node. VALUE branches = Qfalse; rb_code_location_t case_location = { 0 }; int branch_id = 0; if (PM_BRANCH_COVERAGE_P(iseq)) { case_location = pm_code_location(scope_node, (const pm_node_t *) cast); branches = decl_branch_base(iseq, PTR2NUM(cast), &case_location, "case"); } // This is the label where everything will fall into if none of the // conditions matched. LABEL *else_label = NEW_LABEL(location.line); // It's possible for us to speed up the case node by using a // dispatch hash. This is a hash that maps the conditions of the // various when clauses to the labels of their bodies. If we can // compile the conditions into a hash key, then we can use a hash // lookup to jump directly to the correct when clause body. VALUE dispatch = Qundef; if (ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction) { dispatch = rb_hash_new(); RHASH_TBL_RAW(dispatch)->type = &cdhash_type; } // We're going to loop through each of the conditions in the case // node and compile each of their contents into both the cond_seq // and the body_seq. Each condition will use its own label to jump // from its conditions into its body. // // Note that none of the code in the loop below should be adding // anything to ret, as we're going to be laying out the entire case // node instructions later. for (size_t clause_index = 0; clause_index < conditions->size; clause_index++) { const pm_when_node_t *clause = (const pm_when_node_t *) conditions->nodes[clause_index]; pm_node_location_t clause_location = PM_NODE_START_LOCATION(parser, (const pm_node_t *) clause); const pm_node_list_t *conditions = &clause->conditions; LABEL *label = NEW_LABEL(clause_location.line); // Compile each of the conditions for the when clause into the // cond_seq. Each one should have a unique comparison that then // jumps into the body if it matches. for (size_t condition_index = 0; condition_index < conditions->size; condition_index++) { const pm_node_t *condition = conditions->nodes[condition_index]; const pm_node_location_t condition_location = PM_NODE_START_LOCATION(parser, condition); // If we haven't already abandoned the optimization, then // we're going to try to compile the condition into the // dispatch hash. if (dispatch != Qundef) { dispatch = pm_compile_case_node_dispatch(iseq, dispatch, condition, label, scope_node); } if (PM_NODE_TYPE_P(condition, PM_SPLAT_NODE)) { PUSH_INSN(cond_seq, condition_location, dup); pm_compile_node(iseq, condition, cond_seq, false, scope_node); PUSH_INSN1(cond_seq, condition_location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE | VM_CHECKMATCH_ARRAY)); } else { if (PM_NODE_TYPE_P(condition, PM_STRING_NODE)) { const pm_string_node_t *string = (const pm_string_node_t *) condition; VALUE value = parse_static_literal_string(iseq, scope_node, condition, &string->unescaped); PUSH_INSN1(cond_seq, condition_location, putobject, value); } else { pm_compile_node(iseq, condition, cond_seq, false, scope_node); } PUSH_INSN1(cond_seq, condition_location, topn, INT2FIX(1)); PUSH_SEND_WITH_FLAG(cond_seq, condition_location, idEqq, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE)); } PUSH_INSNL(cond_seq, condition_location, branchif, label); } // Now, add the label to the body and compile the body of the // when clause. This involves popping the predicate, compiling // the statements to be executed, and then compiling a jump to // the end of the case node. PUSH_LABEL(body_seq, label); PUSH_INSN(body_seq, clause_location, pop); // Establish branch coverage for the when clause. if (PM_BRANCH_COVERAGE_P(iseq)) { rb_code_location_t branch_location = pm_code_location(scope_node, clause->statements != NULL ? ((const pm_node_t *) clause->statements) : ((const pm_node_t *) clause)); add_trace_branch_coverage(iseq, body_seq, &branch_location, branch_location.beg_pos.column, branch_id++, "when", branches); } if (clause->statements != NULL) { pm_compile_node(iseq, (const pm_node_t *) clause->statements, body_seq, popped, scope_node); } else if (!popped) { PUSH_SYNTHETIC_PUTNIL(body_seq, iseq); } PUSH_INSNL(body_seq, clause_location, jump, end_label); } // Now that we have compiled the conditions and the bodies of the // various when clauses, we can compile the predicate, lay out the // conditions, compile the fallback subsequent if there is one, and // finally put in the bodies of the when clauses. PM_COMPILE_NOT_POPPED(cast->predicate); // If we have a dispatch hash, then we'll use it here to create the // optimization. if (dispatch != Qundef) { PUSH_INSN(ret, location, dup); PUSH_INSN2(ret, location, opt_case_dispatch, dispatch, else_label); LABEL_REF(else_label); } PUSH_SEQ(ret, cond_seq); // Compile either the explicit else clause or an implicit else // clause. PUSH_LABEL(ret, else_label); if (cast->else_clause != NULL) { pm_node_location_t else_location = PM_NODE_START_LOCATION(parser, cast->else_clause->statements != NULL ? ((const pm_node_t *) cast->else_clause->statements) : ((const pm_node_t *) cast->else_clause)); PUSH_INSN(ret, else_location, pop); // Establish branch coverage for the else clause. if (PM_BRANCH_COVERAGE_P(iseq)) { rb_code_location_t branch_location = pm_code_location(scope_node, cast->else_clause->statements != NULL ? ((const pm_node_t *) cast->else_clause->statements) : ((const pm_node_t *) cast->else_clause)); add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, branch_id, "else", branches); } PM_COMPILE((const pm_node_t *) cast->else_clause); PUSH_INSNL(ret, else_location, jump, end_label); } else { PUSH_INSN(ret, location, pop); // Establish branch coverage for the implicit else clause. if (PM_BRANCH_COVERAGE_P(iseq)) { add_trace_branch_coverage(iseq, ret, &case_location, case_location.beg_pos.column, branch_id, "else", branches); } if (!popped) PUSH_INSN(ret, location, putnil); PUSH_INSNL(ret, location, jump, end_label); } } PUSH_SEQ(ret, body_seq); PUSH_LABEL(ret, end_label); return; } case PM_CASE_MATCH_NODE: { // case foo; in bar; end // ^^^^^^^^^^^^^^^^^^^^^ // // If you use the `case` keyword to create a case match node, it will // match against all of the `in` clauses until it finds one that // matches. If it doesn't find one, it can optionally fall back to an // `else` clause. If none is present and a match wasn't found, it will // raise an appropriate error. const pm_case_match_node_t *cast = (const pm_case_match_node_t *) node; // This is the anchor that we will compile the bodies of the various // `in` nodes into. We'll make sure that the patterns that are compiled // jump into the correct spots within this anchor. DECL_ANCHOR(body_seq); INIT_ANCHOR(body_seq); // This is the anchor that we will compile the patterns of the various // `in` nodes into. If a match is found, they will need to jump into the // body_seq anchor to the correct spot. DECL_ANCHOR(cond_seq); INIT_ANCHOR(cond_seq); // This label is used to indicate the end of the entire node. It is // jumped to after the entire stack is cleaned up. LABEL *end_label = NEW_LABEL(location.line); // This label is used as the fallback for the case match. If no match is // found, then we jump to this label. This is either an `else` clause or // an error handler. LABEL *else_label = NEW_LABEL(location.line); // We're going to use this to uniquely identify each branch so that we // can track coverage information. rb_code_location_t case_location = { 0 }; VALUE branches = Qfalse; int branch_id = 0; if (PM_BRANCH_COVERAGE_P(iseq)) { case_location = pm_code_location(scope_node, (const pm_node_t *) cast); branches = decl_branch_base(iseq, PTR2NUM(cast), &case_location, "case"); } // If there is only one pattern, then the behavior changes a bit. It // effectively gets treated as a match required node (this is how it is // represented in the other parser). bool in_single_pattern = cast->else_clause == NULL && cast->conditions.size == 1; // First, we're going to push a bunch of stuff onto the stack that is // going to serve as our scratch space. if (in_single_pattern) { PUSH_INSN(ret, location, putnil); // key error key PUSH_INSN(ret, location, putnil); // key error matchee PUSH_INSN1(ret, location, putobject, Qfalse); // key error? PUSH_INSN(ret, location, putnil); // error string } // Now we're going to compile the value to match against. PUSH_INSN(ret, location, putnil); // deconstruct cache PM_COMPILE_NOT_POPPED(cast->predicate); // Next, we'll loop through every in clause and compile its body into // the body_seq anchor and its pattern into the cond_seq anchor. We'll // make sure the pattern knows how to jump correctly into the body if it // finds a match. for (size_t index = 0; index < cast->conditions.size; index++) { const pm_node_t *condition = cast->conditions.nodes[index]; RUBY_ASSERT(PM_NODE_TYPE_P(condition, PM_IN_NODE)); const pm_in_node_t *in_node = (const pm_in_node_t *) condition; const pm_node_location_t in_location = PM_NODE_START_LOCATION(parser, in_node); const pm_node_location_t pattern_location = PM_NODE_START_LOCATION(parser, in_node->pattern); if (branch_id) { PUSH_INSN(body_seq, in_location, putnil); } LABEL *body_label = NEW_LABEL(in_location.line); PUSH_LABEL(body_seq, body_label); PUSH_INSN1(body_seq, in_location, adjuststack, INT2FIX(in_single_pattern ? 6 : 2)); // Establish branch coverage for the in clause. if (PM_BRANCH_COVERAGE_P(iseq)) { rb_code_location_t branch_location = pm_code_location(scope_node, in_node->statements != NULL ? ((const pm_node_t *) in_node->statements) : ((const pm_node_t *) in_node)); add_trace_branch_coverage(iseq, body_seq, &branch_location, branch_location.beg_pos.column, branch_id++, "in", branches); } if (in_node->statements != NULL) { PM_COMPILE_INTO_ANCHOR(body_seq, (const pm_node_t *) in_node->statements); } else if (!popped) { PUSH_SYNTHETIC_PUTNIL(body_seq, iseq); } PUSH_INSNL(body_seq, in_location, jump, end_label); LABEL *next_pattern_label = NEW_LABEL(pattern_location.line); PUSH_INSN(cond_seq, pattern_location, dup); pm_compile_pattern(iseq, scope_node, in_node->pattern, cond_seq, body_label, next_pattern_label, in_single_pattern, false, true, 2); PUSH_LABEL(cond_seq, next_pattern_label); LABEL_UNREMOVABLE(next_pattern_label); } if (cast->else_clause != NULL) { // If we have an `else` clause, then this becomes our fallback (and // there is no need to compile in code to potentially raise an // error). const pm_else_node_t *else_node = cast->else_clause; PUSH_LABEL(cond_seq, else_label); PUSH_INSN(cond_seq, location, pop); PUSH_INSN(cond_seq, location, pop); // Establish branch coverage for the else clause. if (PM_BRANCH_COVERAGE_P(iseq)) { rb_code_location_t branch_location = pm_code_location(scope_node, else_node->statements != NULL ? ((const pm_node_t *) else_node->statements) : ((const pm_node_t *) else_node)); add_trace_branch_coverage(iseq, cond_seq, &branch_location, branch_location.beg_pos.column, branch_id, "else", branches); } PM_COMPILE_INTO_ANCHOR(cond_seq, (const pm_node_t *) else_node); PUSH_INSNL(cond_seq, location, jump, end_label); PUSH_INSN(cond_seq, location, putnil); if (popped) PUSH_INSN(cond_seq, location, putnil); } else { // Otherwise, if we do not have an `else` clause, we will compile in // the code to handle raising an appropriate error. PUSH_LABEL(cond_seq, else_label); // Establish branch coverage for the implicit else clause. add_trace_branch_coverage(iseq, cond_seq, &case_location, case_location.beg_pos.column, branch_id, "else", branches); if (in_single_pattern) { pm_compile_pattern_error_handler(iseq, scope_node, node, cond_seq, end_label, popped); } else { PUSH_INSN1(cond_seq, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(cond_seq, location, putobject, rb_eNoMatchingPatternError); PUSH_INSN1(cond_seq, location, topn, INT2FIX(2)); PUSH_SEND(cond_seq, location, id_core_raise, INT2FIX(2)); PUSH_INSN1(cond_seq, location, adjuststack, INT2FIX(3)); if (!popped) PUSH_INSN(cond_seq, location, putnil); PUSH_INSNL(cond_seq, location, jump, end_label); PUSH_INSN1(cond_seq, location, dupn, INT2FIX(1)); if (popped) PUSH_INSN(cond_seq, location, putnil); } } // At the end of all of this compilation, we will add the code for the // conditions first, then the various bodies, then mark the end of the // entire sequence with the end label. PUSH_SEQ(ret, cond_seq); PUSH_SEQ(ret, body_seq); PUSH_LABEL(ret, end_label); return; } case PM_CLASS_NODE: { // class Foo; end // ^^^^^^^^^^^^^^ const pm_class_node_t *cast = (const pm_class_node_t *) node; ID class_id = pm_constant_id_lookup(scope_node, cast->name); VALUE class_name = rb_str_freeze(rb_sprintf("", rb_id2str(class_id))); pm_scope_node_t next_scope_node; pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node); const rb_iseq_t *class_iseq = NEW_CHILD_ISEQ(&next_scope_node, class_name, ISEQ_TYPE_CLASS, location.line); pm_scope_node_destroy(&next_scope_node); // TODO: Once we merge constant path nodes correctly, fix this flag const int flags = VM_DEFINECLASS_TYPE_CLASS | (cast->superclass ? VM_DEFINECLASS_FLAG_HAS_SUPERCLASS : 0) | pm_compile_class_path(iseq, cast->constant_path, &location, ret, false, scope_node); if (cast->superclass) { PM_COMPILE_NOT_POPPED(cast->superclass); } else { PUSH_INSN(ret, location, putnil); } PUSH_INSN3(ret, location, defineclass, ID2SYM(class_id), class_iseq, INT2FIX(flags)); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)class_iseq); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_CLASS_VARIABLE_AND_WRITE_NODE: { // @@foo &&= bar // ^^^^^^^^^^^^^ const pm_class_variable_and_write_node_t *cast = (const pm_class_variable_and_write_node_t *) node; LABEL *end_label = NEW_LABEL(location.line); ID name_id = pm_constant_id_lookup(scope_node, cast->name); VALUE name = ID2SYM(name_id); PUSH_INSN2(ret, location, getclassvariable, name, get_cvar_ic_value(iseq, name_id)); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, end_label); if (!popped) PUSH_INSN(ret, location, pop); PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN2(ret, location, setclassvariable, name, get_cvar_ic_value(iseq, name_id)); PUSH_LABEL(ret, end_label); return; } case PM_CLASS_VARIABLE_OPERATOR_WRITE_NODE: { // @@foo += bar // ^^^^^^^^^^^^ const pm_class_variable_operator_write_node_t *cast = (const pm_class_variable_operator_write_node_t *) node; ID name_id = pm_constant_id_lookup(scope_node, cast->name); VALUE name = ID2SYM(name_id); PUSH_INSN2(ret, location, getclassvariable, name, get_cvar_ic_value(iseq, name_id)); PM_COMPILE_NOT_POPPED(cast->value); ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator); int flags = VM_CALL_ARGS_SIMPLE; PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(flags)); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN2(ret, location, setclassvariable, name, get_cvar_ic_value(iseq, name_id)); return; } case PM_CLASS_VARIABLE_OR_WRITE_NODE: { // @@foo ||= bar // ^^^^^^^^^^^^^ const pm_class_variable_or_write_node_t *cast = (const pm_class_variable_or_write_node_t *) node; LABEL *end_label = NEW_LABEL(location.line); LABEL *start_label = NEW_LABEL(location.line); ID name_id = pm_constant_id_lookup(scope_node, cast->name); VALUE name = ID2SYM(name_id); PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CVAR), name, Qtrue); PUSH_INSNL(ret, location, branchunless, start_label); PUSH_INSN2(ret, location, getclassvariable, name, get_cvar_ic_value(iseq, name_id)); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, end_label); if (!popped) PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, start_label); PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN2(ret, location, setclassvariable, name, get_cvar_ic_value(iseq, name_id)); PUSH_LABEL(ret, end_label); return; } case PM_CLASS_VARIABLE_READ_NODE: { // @@foo // ^^^^^ if (!popped) { const pm_class_variable_read_node_t *cast = (const pm_class_variable_read_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN2(ret, location, getclassvariable, ID2SYM(name), get_cvar_ic_value(iseq, name)); } return; } case PM_CLASS_VARIABLE_WRITE_NODE: { // @@foo = 1 // ^^^^^^^^^ const pm_class_variable_write_node_t *cast = (const pm_class_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN2(ret, location, setclassvariable, ID2SYM(name), get_cvar_ic_value(iseq, name)); return; } case PM_CONSTANT_PATH_NODE: { // Foo::Bar // ^^^^^^^^ VALUE parts; if (ISEQ_COMPILE_DATA(iseq)->option->inline_const_cache && ((parts = pm_constant_path_parts(node, scope_node)) != Qnil)) { ISEQ_BODY(iseq)->ic_size++; PUSH_INSN1(ret, location, opt_getconstant_path, parts); } else { DECL_ANCHOR(prefix); INIT_ANCHOR(prefix); DECL_ANCHOR(body); INIT_ANCHOR(body); pm_compile_constant_path(iseq, node, prefix, body, popped, scope_node); if (LIST_INSN_SIZE_ZERO(prefix)) { PUSH_INSN(ret, location, putnil); } else { PUSH_SEQ(ret, prefix); } PUSH_SEQ(ret, body); } if (popped) PUSH_INSN(ret, location, pop); return; } case PM_CONSTANT_PATH_AND_WRITE_NODE: { // Foo::Bar &&= baz // ^^^^^^^^^^^^^^^^ const pm_constant_path_and_write_node_t *cast = (const pm_constant_path_and_write_node_t *) node; pm_compile_constant_path_and_write_node(iseq, cast, 0, &location, ret, popped, scope_node); return; } case PM_CONSTANT_PATH_OR_WRITE_NODE: { // Foo::Bar ||= baz // ^^^^^^^^^^^^^^^^ const pm_constant_path_or_write_node_t *cast = (const pm_constant_path_or_write_node_t *) node; pm_compile_constant_path_or_write_node(iseq, cast, 0, &location, ret, popped, scope_node); return; } case PM_CONSTANT_PATH_OPERATOR_WRITE_NODE: { // Foo::Bar += baz // ^^^^^^^^^^^^^^^ const pm_constant_path_operator_write_node_t *cast = (const pm_constant_path_operator_write_node_t *) node; pm_compile_constant_path_operator_write_node(iseq, cast, 0, &location, ret, popped, scope_node); return; } case PM_CONSTANT_PATH_WRITE_NODE: { // Foo::Bar = 1 // ^^^^^^^^^^^^ const pm_constant_path_write_node_t *cast = (const pm_constant_path_write_node_t *) node; pm_compile_constant_path_write_node(iseq, cast, 0, &location, ret, popped, scope_node); return; } case PM_CONSTANT_READ_NODE: { // Foo // ^^^ const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); pm_compile_constant_read(iseq, name, &cast->base.location, location.node_id, ret, scope_node); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_CONSTANT_AND_WRITE_NODE: { // Foo &&= bar // ^^^^^^^^^^^ const pm_constant_and_write_node_t *cast = (const pm_constant_and_write_node_t *) node; pm_compile_constant_and_write_node(iseq, cast, 0, &location, ret, popped, scope_node); return; } case PM_CONSTANT_OR_WRITE_NODE: { // Foo ||= bar // ^^^^^^^^^^^ const pm_constant_or_write_node_t *cast = (const pm_constant_or_write_node_t *) node; pm_compile_constant_or_write_node(iseq, cast, 0, &location, ret, popped, scope_node); return; } case PM_CONSTANT_OPERATOR_WRITE_NODE: { // Foo += bar // ^^^^^^^^^^ const pm_constant_operator_write_node_t *cast = (const pm_constant_operator_write_node_t *) node; pm_compile_constant_operator_write_node(iseq, cast, 0, &location, ret, popped, scope_node); return; } case PM_CONSTANT_WRITE_NODE: { // Foo = 1 // ^^^^^^^ const pm_constant_write_node_t *cast = (const pm_constant_write_node_t *) node; pm_compile_constant_write_node(iseq, cast, 0, &location, ret, popped, scope_node); return; } case PM_DEF_NODE: { // def foo; end // ^^^^^^^^^^^^ // // def self.foo; end // ^^^^^^^^^^^^^^^^^ const pm_def_node_t *cast = (const pm_def_node_t *) node; ID method_name = pm_constant_id_lookup(scope_node, cast->name); pm_scope_node_t next_scope_node; pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node); rb_iseq_t *method_iseq = NEW_ISEQ(&next_scope_node, rb_id2str(method_name), ISEQ_TYPE_METHOD, location.line); pm_scope_node_destroy(&next_scope_node); if (cast->receiver) { PM_COMPILE_NOT_POPPED(cast->receiver); PUSH_INSN2(ret, location, definesmethod, ID2SYM(method_name), method_iseq); } else { PUSH_INSN2(ret, location, definemethod, ID2SYM(method_name), method_iseq); } RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) method_iseq); if (!popped) { PUSH_INSN1(ret, location, putobject, ID2SYM(method_name)); } return; } case PM_DEFINED_NODE: { // defined?(a) // ^^^^^^^^^^^ const pm_defined_node_t *cast = (const pm_defined_node_t *) node; pm_compile_defined_expr(iseq, cast->value, &location, ret, popped, scope_node, false); return; } case PM_EMBEDDED_STATEMENTS_NODE: { // "foo #{bar}" // ^^^^^^ const pm_embedded_statements_node_t *cast = (const pm_embedded_statements_node_t *) node; if (cast->statements != NULL) { PM_COMPILE((const pm_node_t *) (cast->statements)); } else { PUSH_SYNTHETIC_PUTNIL(ret, iseq); } if (popped) PUSH_INSN(ret, location, pop); return; } case PM_EMBEDDED_VARIABLE_NODE: { // "foo #@bar" // ^^^^^ const pm_embedded_variable_node_t *cast = (const pm_embedded_variable_node_t *) node; PM_COMPILE(cast->variable); return; } case PM_FALSE_NODE: { // false // ^^^^^ if (!popped) { PUSH_INSN1(ret, location, putobject, Qfalse); } return; } case PM_ENSURE_NODE: { const pm_ensure_node_t *cast = (const pm_ensure_node_t *) node; if (cast->statements != NULL) { LABEL *start = NEW_LABEL(location.line); LABEL *end = NEW_LABEL(location.line); PUSH_LABEL(ret, start); LABEL *prev_end_label = ISEQ_COMPILE_DATA(iseq)->end_label; ISEQ_COMPILE_DATA(iseq)->end_label = end; PM_COMPILE((const pm_node_t *) cast->statements); ISEQ_COMPILE_DATA(iseq)->end_label = prev_end_label; PUSH_LABEL(ret, end); } return; } case PM_ELSE_NODE: { // if foo then bar else baz end // ^^^^^^^^^^^^ const pm_else_node_t *cast = (const pm_else_node_t *) node; if (cast->statements != NULL) { PM_COMPILE((const pm_node_t *) cast->statements); } else if (!popped) { PUSH_SYNTHETIC_PUTNIL(ret, iseq); } return; } case PM_FLIP_FLOP_NODE: { // if foo .. bar; end // ^^^^^^^^^^ const pm_flip_flop_node_t *cast = (const pm_flip_flop_node_t *) node; LABEL *final_label = NEW_LABEL(location.line); LABEL *then_label = NEW_LABEL(location.line); LABEL *else_label = NEW_LABEL(location.line); pm_compile_flip_flop(cast, else_label, then_label, iseq, location.line, ret, popped, scope_node); PUSH_LABEL(ret, then_label); PUSH_INSN1(ret, location, putobject, Qtrue); PUSH_INSNL(ret, location, jump, final_label); PUSH_LABEL(ret, else_label); PUSH_INSN1(ret, location, putobject, Qfalse); PUSH_LABEL(ret, final_label); return; } case PM_FLOAT_NODE: { // 1.0 // ^^^ if (!popped) { PUSH_INSN1(ret, location, putobject, parse_float((const pm_float_node_t *) node)); } return; } case PM_FOR_NODE: { // for foo in bar do end // ^^^^^^^^^^^^^^^^^^^^^ const pm_for_node_t *cast = (const pm_for_node_t *) node; LABEL *retry_label = NEW_LABEL(location.line); LABEL *retry_end_l = NEW_LABEL(location.line); // First, compile the collection that we're going to be iterating over. PUSH_LABEL(ret, retry_label); PM_COMPILE_NOT_POPPED(cast->collection); // Next, create the new scope that is going to contain the block that // will be passed to the each method. pm_scope_node_t next_scope_node; pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node); const rb_iseq_t *child_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, location.line); pm_scope_node_destroy(&next_scope_node); const rb_iseq_t *prev_block = ISEQ_COMPILE_DATA(iseq)->current_block; ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq; // Now, create the method call to each that will be used to iterate over // the collection, and pass the newly created iseq as the block. PUSH_SEND_WITH_BLOCK(ret, location, idEach, INT2FIX(0), child_iseq); pm_compile_retry_end_label(iseq, ret, retry_end_l); if (popped) PUSH_INSN(ret, location, pop); ISEQ_COMPILE_DATA(iseq)->current_block = prev_block; PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, child_iseq, retry_end_l); return; } case PM_FORWARDING_ARGUMENTS_NODE: { rb_bug("Cannot compile a ForwardingArgumentsNode directly\n"); return; } case PM_FORWARDING_SUPER_NODE: { // super // ^^^^^ // // super {} // ^^^^^^^^ const pm_forwarding_super_node_t *cast = (const pm_forwarding_super_node_t *) node; const rb_iseq_t *block = NULL; const rb_iseq_t *previous_block = NULL; LABEL *retry_label = NULL; LABEL *retry_end_l = NULL; if (cast->block != NULL) { previous_block = ISEQ_COMPILE_DATA(iseq)->current_block; ISEQ_COMPILE_DATA(iseq)->current_block = NULL; retry_label = NEW_LABEL(location.line); retry_end_l = NEW_LABEL(location.line); PUSH_LABEL(ret, retry_label); } else { iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq); } PUSH_INSN(ret, location, putself); int flag = VM_CALL_ZSUPER | VM_CALL_SUPER | VM_CALL_FCALL; if (cast->block != NULL) { pm_scope_node_t next_scope_node; pm_scope_node_init((const pm_node_t *) cast->block, &next_scope_node, scope_node); ISEQ_COMPILE_DATA(iseq)->current_block = block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, location.line); pm_scope_node_destroy(&next_scope_node); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) block); } DECL_ANCHOR(args); INIT_ANCHOR(args); struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq); const rb_iseq_t *local_iseq = body->local_iseq; const struct rb_iseq_constant_body *const local_body = ISEQ_BODY(local_iseq); int argc = 0; int depth = get_lvar_level(iseq); if (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->param.flags.forwardable) { flag |= VM_CALL_FORWARDING; pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_DOT3, 0); PUSH_GETLOCAL(ret, location, mult_local.index, mult_local.level); PUSH_INSN2(ret, location, invokesuperforward, new_callinfo(iseq, 0, 0, flag, NULL, block != NULL), block); if (popped) PUSH_INSN(ret, location, pop); return; } if (local_body->param.flags.has_lead) { /* required arguments */ for (int i = 0; i < local_body->param.lead_num; i++) { int idx = local_body->local_table_size - i; PUSH_GETLOCAL(args, location, idx, depth); } argc += local_body->param.lead_num; } if (local_body->param.flags.has_opt) { /* optional arguments */ for (int j = 0; j < local_body->param.opt_num; j++) { int idx = local_body->local_table_size - (argc + j); PUSH_GETLOCAL(args, location, idx, depth); } argc += local_body->param.opt_num; } if (local_body->param.flags.has_rest) { /* rest argument */ int idx = local_body->local_table_size - local_body->param.rest_start; PUSH_GETLOCAL(args, location, idx, depth); PUSH_INSN1(args, location, splatarray, Qfalse); argc = local_body->param.rest_start + 1; flag |= VM_CALL_ARGS_SPLAT; } if (local_body->param.flags.has_post) { /* post arguments */ int post_len = local_body->param.post_num; int post_start = local_body->param.post_start; int j = 0; for (; j < post_len; j++) { int idx = local_body->local_table_size - (post_start + j); PUSH_GETLOCAL(args, location, idx, depth); } if (local_body->param.flags.has_rest) { // argc remains unchanged from rest branch PUSH_INSN1(args, location, newarray, INT2FIX(j)); PUSH_INSN(args, location, concatarray); } else { argc = post_len + post_start; } } const struct rb_iseq_param_keyword *const local_keyword = local_body->param.keyword; if (local_body->param.flags.has_kw) { int local_size = local_body->local_table_size; argc++; PUSH_INSN1(args, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); if (local_body->param.flags.has_kwrest) { int idx = local_body->local_table_size - local_keyword->rest_start; PUSH_GETLOCAL(args, location, idx, depth); RUBY_ASSERT(local_keyword->num > 0); PUSH_SEND(args, location, rb_intern("dup"), INT2FIX(0)); } else { PUSH_INSN1(args, location, newhash, INT2FIX(0)); } int i = 0; for (; i < local_keyword->num; ++i) { ID id = local_keyword->table[i]; int idx = local_size - get_local_var_idx(local_iseq, id); PUSH_INSN1(args, location, putobject, ID2SYM(id)); PUSH_GETLOCAL(args, location, idx, depth); } PUSH_SEND(args, location, id_core_hash_merge_ptr, INT2FIX(i * 2 + 1)); flag |= VM_CALL_KW_SPLAT| VM_CALL_KW_SPLAT_MUT; } else if (local_body->param.flags.has_kwrest) { int idx = local_body->local_table_size - local_keyword->rest_start; PUSH_GETLOCAL(args, location, idx, depth); argc++; flag |= VM_CALL_KW_SPLAT; } PUSH_SEQ(ret, args); PUSH_INSN2(ret, location, invokesuper, new_callinfo(iseq, 0, argc, flag, NULL, block != NULL), block); if (cast->block != NULL) { pm_compile_retry_end_label(iseq, ret, retry_end_l); PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, block, retry_end_l); ISEQ_COMPILE_DATA(iseq)->current_block = previous_block; } if (popped) PUSH_INSN(ret, location, pop); return; } case PM_GLOBAL_VARIABLE_AND_WRITE_NODE: { // $foo &&= bar // ^^^^^^^^^^^^ const pm_global_variable_and_write_node_t *cast = (const pm_global_variable_and_write_node_t *) node; LABEL *end_label = NEW_LABEL(location.line); VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); PUSH_INSN1(ret, location, getglobal, name); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, end_label); if (!popped) PUSH_INSN(ret, location, pop); PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, setglobal, name); PUSH_LABEL(ret, end_label); return; } case PM_GLOBAL_VARIABLE_OPERATOR_WRITE_NODE: { // $foo += bar // ^^^^^^^^^^^ const pm_global_variable_operator_write_node_t *cast = (const pm_global_variable_operator_write_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); PUSH_INSN1(ret, location, getglobal, name); PM_COMPILE_NOT_POPPED(cast->value); ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator); int flags = VM_CALL_ARGS_SIMPLE; PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(flags)); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, setglobal, name); return; } case PM_GLOBAL_VARIABLE_OR_WRITE_NODE: { // $foo ||= bar // ^^^^^^^^^^^^ const pm_global_variable_or_write_node_t *cast = (const pm_global_variable_or_write_node_t *) node; LABEL *set_label = NEW_LABEL(location.line); LABEL *end_label = NEW_LABEL(location.line); PUSH_INSN(ret, location, putnil); VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_GVAR), name, Qtrue); PUSH_INSNL(ret, location, branchunless, set_label); PUSH_INSN1(ret, location, getglobal, name); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, end_label); if (!popped) PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, set_label); PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN1(ret, location, setglobal, name); PUSH_LABEL(ret, end_label); return; } case PM_GLOBAL_VARIABLE_READ_NODE: { // $foo // ^^^^ const pm_global_variable_read_node_t *cast = (const pm_global_variable_read_node_t *) node; VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name)); PUSH_INSN1(ret, location, getglobal, name); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_GLOBAL_VARIABLE_WRITE_NODE: { // $foo = 1 // ^^^^^^^^ const pm_global_variable_write_node_t *cast = (const pm_global_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN1(ret, location, setglobal, ID2SYM(name)); return; } case PM_HASH_NODE: { // {} // ^^ // // If every node in the hash is static, then we can compile the entire // hash now instead of later. if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) { // We're only going to compile this node if it's not popped. If it // is popped, then we know we don't need to do anything since it's // statically known. if (!popped) { const pm_hash_node_t *cast = (const pm_hash_node_t *) node; if (cast->elements.size == 0) { PUSH_INSN1(ret, location, newhash, INT2FIX(0)); } else { VALUE value = pm_static_literal_value(iseq, node, scope_node); PUSH_INSN1(ret, location, duphash, value); RB_OBJ_WRITTEN(iseq, Qundef, value); } } } else { // Here since we know there are possible side-effects inside the // hash contents, we're going to build it entirely at runtime. We'll // do this by pushing all of the key-value pairs onto the stack and // then combining them with newhash. // // If this hash is popped, then this serves only to ensure we enact // all side-effects (like method calls) that are contained within // the hash contents. const pm_hash_node_t *cast = (const pm_hash_node_t *) node; const pm_node_list_t *elements = &cast->elements; if (popped) { // If this hash is popped, then we can iterate through each // element and compile it. The result of each compilation will // only include the side effects of the element itself. for (size_t index = 0; index < elements->size; index++) { PM_COMPILE_POPPED(elements->nodes[index]); } } else { pm_compile_hash_elements(iseq, node, elements, false, ret, scope_node); } } return; } case PM_IF_NODE: { // if foo then bar end // ^^^^^^^^^^^^^^^^^^^ // // bar if foo // ^^^^^^^^^^ // // foo ? bar : baz // ^^^^^^^^^^^^^^^ const pm_if_node_t *cast = (const pm_if_node_t *) node; pm_compile_conditional(iseq, &location, PM_IF_NODE, (const pm_node_t *) cast, cast->statements, cast->subsequent, cast->predicate, ret, popped, scope_node); return; } case PM_IMAGINARY_NODE: { // 1i // ^^ if (!popped) { PUSH_INSN1(ret, location, putobject, parse_imaginary((const pm_imaginary_node_t *) node)); } return; } case PM_IMPLICIT_NODE: { // Implicit nodes mark places in the syntax tree where explicit syntax // was omitted, but implied. For example, // // { foo: } // // In this case a method call/local variable read is implied by virtue // of the missing value. To compile these nodes, we simply compile the // value that is implied, which is helpfully supplied by the parser. const pm_implicit_node_t *cast = (const pm_implicit_node_t *) node; PM_COMPILE(cast->value); return; } case PM_IN_NODE: { // In nodes are handled by the case match node directly, so we should // never end up hitting them through this path. rb_bug("Should not ever enter an in node directly"); return; } case PM_INDEX_OPERATOR_WRITE_NODE: { // foo[bar] += baz // ^^^^^^^^^^^^^^^ const pm_index_operator_write_node_t *cast = (const pm_index_operator_write_node_t *) node; pm_compile_index_operator_write_node(iseq, cast, &location, ret, popped, scope_node); return; } case PM_INDEX_AND_WRITE_NODE: { // foo[bar] &&= baz // ^^^^^^^^^^^^^^^^ const pm_index_and_write_node_t *cast = (const pm_index_and_write_node_t *) node; pm_compile_index_control_flow_write_node(iseq, node, cast->receiver, cast->arguments, cast->block, cast->value, &location, ret, popped, scope_node); return; } case PM_INDEX_OR_WRITE_NODE: { // foo[bar] ||= baz // ^^^^^^^^^^^^^^^^ const pm_index_or_write_node_t *cast = (const pm_index_or_write_node_t *) node; pm_compile_index_control_flow_write_node(iseq, node, cast->receiver, cast->arguments, cast->block, cast->value, &location, ret, popped, scope_node); return; } case PM_INSTANCE_VARIABLE_AND_WRITE_NODE: { // @foo &&= bar // ^^^^^^^^^^^^ const pm_instance_variable_and_write_node_t *cast = (const pm_instance_variable_and_write_node_t *) node; LABEL *end_label = NEW_LABEL(location.line); ID name_id = pm_constant_id_lookup(scope_node, cast->name); VALUE name = ID2SYM(name_id); PUSH_INSN2(ret, location, getinstancevariable, name, get_ivar_ic_value(iseq, name_id)); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, end_label); if (!popped) PUSH_INSN(ret, location, pop); PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN2(ret, location, setinstancevariable, name, get_ivar_ic_value(iseq, name_id)); PUSH_LABEL(ret, end_label); return; } case PM_INSTANCE_VARIABLE_OPERATOR_WRITE_NODE: { // @foo += bar // ^^^^^^^^^^^ const pm_instance_variable_operator_write_node_t *cast = (const pm_instance_variable_operator_write_node_t *) node; ID name_id = pm_constant_id_lookup(scope_node, cast->name); VALUE name = ID2SYM(name_id); PUSH_INSN2(ret, location, getinstancevariable, name, get_ivar_ic_value(iseq, name_id)); PM_COMPILE_NOT_POPPED(cast->value); ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator); int flags = VM_CALL_ARGS_SIMPLE; PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(flags)); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN2(ret, location, setinstancevariable, name, get_ivar_ic_value(iseq, name_id)); return; } case PM_INSTANCE_VARIABLE_OR_WRITE_NODE: { // @foo ||= bar // ^^^^^^^^^^^^ const pm_instance_variable_or_write_node_t *cast = (const pm_instance_variable_or_write_node_t *) node; LABEL *end_label = NEW_LABEL(location.line); ID name_id = pm_constant_id_lookup(scope_node, cast->name); VALUE name = ID2SYM(name_id); PUSH_INSN2(ret, location, getinstancevariable, name, get_ivar_ic_value(iseq, name_id)); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, end_label); if (!popped) PUSH_INSN(ret, location, pop); PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSN2(ret, location, setinstancevariable, name, get_ivar_ic_value(iseq, name_id)); PUSH_LABEL(ret, end_label); return; } case PM_INSTANCE_VARIABLE_READ_NODE: { // @foo // ^^^^ if (!popped) { const pm_instance_variable_read_node_t *cast = (const pm_instance_variable_read_node_t *) node; ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN2(ret, location, getinstancevariable, ID2SYM(name), get_ivar_ic_value(iseq, name)); } return; } case PM_INSTANCE_VARIABLE_WRITE_NODE: { // @foo = 1 // ^^^^^^^^ const pm_instance_variable_write_node_t *cast = (const pm_instance_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); ID name = pm_constant_id_lookup(scope_node, cast->name); PUSH_INSN2(ret, location, setinstancevariable, ID2SYM(name), get_ivar_ic_value(iseq, name)); return; } case PM_INTEGER_NODE: { // 1 // ^ if (!popped) { PUSH_INSN1(ret, location, putobject, parse_integer((const pm_integer_node_t *) node)); } return; } case PM_INTERPOLATED_MATCH_LAST_LINE_NODE: { // if /foo #{bar}/ then end // ^^^^^^^^^^^^ if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) { if (!popped) { VALUE regexp = pm_static_literal_value(iseq, node, scope_node); PUSH_INSN1(ret, location, putobject, regexp); } } else { pm_compile_regexp_dynamic(iseq, node, &((const pm_interpolated_match_last_line_node_t *) node)->parts, &location, ret, popped, scope_node); } PUSH_INSN1(ret, location, getglobal, rb_id2sym(idLASTLINE)); PUSH_SEND(ret, location, idEqTilde, INT2NUM(1)); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { // /foo #{bar}/ // ^^^^^^^^^^^^ if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_ONCE)) { const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block; const rb_iseq_t *block_iseq = NULL; int ise_index = ISEQ_BODY(iseq)->ise_size++; pm_scope_node_t next_scope_node; pm_scope_node_init(node, &next_scope_node, scope_node); block_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, location.line); pm_scope_node_destroy(&next_scope_node); ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq; PUSH_INSN2(ret, location, once, block_iseq, INT2FIX(ise_index)); ISEQ_COMPILE_DATA(iseq)->current_block = prevblock; if (popped) PUSH_INSN(ret, location, pop); return; } if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) { if (!popped) { VALUE regexp = pm_static_literal_value(iseq, node, scope_node); PUSH_INSN1(ret, location, putobject, regexp); } } else { pm_compile_regexp_dynamic(iseq, node, &((const pm_interpolated_regular_expression_node_t *) node)->parts, &location, ret, popped, scope_node); if (popped) PUSH_INSN(ret, location, pop); } return; } case PM_INTERPOLATED_STRING_NODE: { // "foo #{bar}" // ^^^^^^^^^^^^ if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) { if (!popped) { VALUE string = pm_static_literal_value(iseq, node, scope_node); if (PM_NODE_FLAG_P(node, PM_INTERPOLATED_STRING_NODE_FLAGS_FROZEN)) { PUSH_INSN1(ret, location, putobject, string); } else if (PM_NODE_FLAG_P(node, PM_INTERPOLATED_STRING_NODE_FLAGS_MUTABLE)) { PUSH_INSN1(ret, location, putstring, string); } else { PUSH_INSN1(ret, location, putchilledstring, string); } } } else { const pm_interpolated_string_node_t *cast = (const pm_interpolated_string_node_t *) node; int length = pm_interpolated_node_compile(iseq, &cast->parts, &location, ret, popped, scope_node, NULL, NULL); if (length > 1) PUSH_INSN1(ret, location, concatstrings, INT2FIX(length)); if (popped) PUSH_INSN(ret, location, pop); } return; } case PM_INTERPOLATED_SYMBOL_NODE: { // :"foo #{bar}" // ^^^^^^^^^^^^^ const pm_interpolated_symbol_node_t *cast = (const pm_interpolated_symbol_node_t *) node; int length = pm_interpolated_node_compile(iseq, &cast->parts, &location, ret, popped, scope_node, NULL, NULL); if (length > 1) { PUSH_INSN1(ret, location, concatstrings, INT2FIX(length)); } if (!popped) { PUSH_INSN(ret, location, intern); } else { PUSH_INSN(ret, location, pop); } return; } case PM_INTERPOLATED_X_STRING_NODE: { // `foo #{bar}` // ^^^^^^^^^^^^ const pm_interpolated_x_string_node_t *cast = (const pm_interpolated_x_string_node_t *) node; PUSH_INSN(ret, location, putself); int length = pm_interpolated_node_compile(iseq, &cast->parts, &location, ret, false, scope_node, NULL, NULL); if (length > 1) PUSH_INSN1(ret, location, concatstrings, INT2FIX(length)); PUSH_SEND_WITH_FLAG(ret, location, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE)); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_IT_LOCAL_VARIABLE_READ_NODE: { // -> { it } // ^^ if (!popped) { PUSH_GETLOCAL(ret, location, scope_node->local_table_for_iseq_size, 0); } return; } case PM_KEYWORD_HASH_NODE: { // foo(bar: baz) // ^^^^^^^^ const pm_keyword_hash_node_t *cast = (const pm_keyword_hash_node_t *) node; const pm_node_list_t *elements = &cast->elements; const pm_node_t *element; PM_NODE_LIST_FOREACH(elements, index, element) { PM_COMPILE(element); } if (!popped) PUSH_INSN1(ret, location, newhash, INT2FIX(elements->size * 2)); return; } case PM_LAMBDA_NODE: { // -> {} // ^^^^^ const pm_lambda_node_t *cast = (const pm_lambda_node_t *) node; pm_scope_node_t next_scope_node; pm_scope_node_init(node, &next_scope_node, scope_node); int opening_lineno = pm_location_line_number(parser, &cast->opening_loc); const rb_iseq_t *block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, opening_lineno); pm_scope_node_destroy(&next_scope_node); VALUE argc = INT2FIX(0); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_CALL_WITH_BLOCK(ret, location, idLambda, argc, block); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) block); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_LOCAL_VARIABLE_AND_WRITE_NODE: { // foo &&= bar // ^^^^^^^^^^^ const pm_local_variable_and_write_node_t *cast = (const pm_local_variable_and_write_node_t *) node; LABEL *end_label = NEW_LABEL(location.line); pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth); PUSH_GETLOCAL(ret, location, local_index.index, local_index.level); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, end_label); if (!popped) PUSH_INSN(ret, location, pop); PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); PUSH_SETLOCAL(ret, location, local_index.index, local_index.level); PUSH_LABEL(ret, end_label); return; } case PM_LOCAL_VARIABLE_OPERATOR_WRITE_NODE: { // foo += bar // ^^^^^^^^^^ const pm_local_variable_operator_write_node_t *cast = (const pm_local_variable_operator_write_node_t *) node; pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth); PUSH_GETLOCAL(ret, location, local_index.index, local_index.level); PM_COMPILE_NOT_POPPED(cast->value); ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator); PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(VM_CALL_ARGS_SIMPLE)); if (!popped) PUSH_INSN(ret, location, dup); PUSH_SETLOCAL(ret, location, local_index.index, local_index.level); return; } case PM_LOCAL_VARIABLE_OR_WRITE_NODE: { // foo ||= bar // ^^^^^^^^^^^ const pm_local_variable_or_write_node_t *cast = (const pm_local_variable_or_write_node_t *) node; LABEL *set_label = NEW_LABEL(location.line); LABEL *end_label = NEW_LABEL(location.line); PUSH_INSN1(ret, location, putobject, Qtrue); PUSH_INSNL(ret, location, branchunless, set_label); pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth); PUSH_GETLOCAL(ret, location, local_index.index, local_index.level); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, end_label); if (!popped) PUSH_INSN(ret, location, pop); PUSH_LABEL(ret, set_label); PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); PUSH_SETLOCAL(ret, location, local_index.index, local_index.level); PUSH_LABEL(ret, end_label); return; } case PM_LOCAL_VARIABLE_READ_NODE: { // foo // ^^^ if (!popped) { const pm_local_variable_read_node_t *cast = (const pm_local_variable_read_node_t *) node; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth); PUSH_GETLOCAL(ret, location, index.index, index.level); } return; } case PM_LOCAL_VARIABLE_WRITE_NODE: { // foo = 1 // ^^^^^^^ const pm_local_variable_write_node_t *cast = (const pm_local_variable_write_node_t *) node; PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth); PUSH_SETLOCAL(ret, location, index.index, index.level); return; } case PM_MATCH_LAST_LINE_NODE: { // if /foo/ then end // ^^^^^ VALUE regexp = pm_static_literal_value(iseq, node, scope_node); PUSH_INSN1(ret, location, putobject, regexp); PUSH_INSN2(ret, location, getspecial, INT2FIX(0), INT2FIX(0)); PUSH_SEND(ret, location, idEqTilde, INT2NUM(1)); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_MATCH_PREDICATE_NODE: { // foo in bar // ^^^^^^^^^^ const pm_match_predicate_node_t *cast = (const pm_match_predicate_node_t *) node; // First, allocate some stack space for the cached return value of any // calls to #deconstruct. PUSH_INSN(ret, location, putnil); // Next, compile the expression that we're going to match against. PM_COMPILE_NOT_POPPED(cast->value); PUSH_INSN(ret, location, dup); // Now compile the pattern that is going to be used to match against the // expression. LABEL *matched_label = NEW_LABEL(location.line); LABEL *unmatched_label = NEW_LABEL(location.line); LABEL *done_label = NEW_LABEL(location.line); pm_compile_pattern(iseq, scope_node, cast->pattern, ret, matched_label, unmatched_label, false, false, true, 2); // If the pattern did not match, then compile the necessary instructions // to handle pushing false onto the stack, then jump to the end. PUSH_LABEL(ret, unmatched_label); PUSH_INSN(ret, location, pop); PUSH_INSN(ret, location, pop); if (!popped) PUSH_INSN1(ret, location, putobject, Qfalse); PUSH_INSNL(ret, location, jump, done_label); PUSH_INSN(ret, location, putnil); // If the pattern did match, then compile the necessary instructions to // handle pushing true onto the stack, then jump to the end. PUSH_LABEL(ret, matched_label); PUSH_INSN1(ret, location, adjuststack, INT2FIX(2)); if (!popped) PUSH_INSN1(ret, location, putobject, Qtrue); PUSH_INSNL(ret, location, jump, done_label); PUSH_LABEL(ret, done_label); return; } case PM_MATCH_REQUIRED_NODE: { // foo => bar // ^^^^^^^^^^ // // A match required node represents pattern matching against a single // pattern using the => operator. For example, // // foo => bar // // This is somewhat analogous to compiling a case match statement with a // single pattern. In both cases, if the pattern fails it should // immediately raise an error. const pm_match_required_node_t *cast = (const pm_match_required_node_t *) node; LABEL *matched_label = NEW_LABEL(location.line); LABEL *unmatched_label = NEW_LABEL(location.line); LABEL *done_label = NEW_LABEL(location.line); // First, we're going to push a bunch of stuff onto the stack that is // going to serve as our scratch space. PUSH_INSN(ret, location, putnil); // key error key PUSH_INSN(ret, location, putnil); // key error matchee PUSH_INSN1(ret, location, putobject, Qfalse); // key error? PUSH_INSN(ret, location, putnil); // error string PUSH_INSN(ret, location, putnil); // deconstruct cache // Next we're going to compile the value expression such that it's on // the stack. PM_COMPILE_NOT_POPPED(cast->value); // Here we'll dup it so that it can be used for comparison, but also be // used for error handling. PUSH_INSN(ret, location, dup); // Next we'll compile the pattern. We indicate to the pm_compile_pattern // function that this is the only pattern that will be matched against // through the in_single_pattern parameter. We also indicate that the // value to compare against is 2 slots from the top of the stack (the // base_index parameter). pm_compile_pattern(iseq, scope_node, cast->pattern, ret, matched_label, unmatched_label, true, false, true, 2); // If the pattern did not match the value, then we're going to compile // in our error handler code. This will determine which error to raise // and raise it. PUSH_LABEL(ret, unmatched_label); pm_compile_pattern_error_handler(iseq, scope_node, node, ret, done_label, popped); // If the pattern did match, we'll clean up the values we've pushed onto // the stack and then push nil onto the stack if it's not popped. PUSH_LABEL(ret, matched_label); PUSH_INSN1(ret, location, adjuststack, INT2FIX(6)); if (!popped) PUSH_INSN(ret, location, putnil); PUSH_INSNL(ret, location, jump, done_label); PUSH_LABEL(ret, done_label); return; } case PM_MATCH_WRITE_NODE: { // /(?foo)/ =~ bar // ^^^^^^^^^^^^^^^^^^^^ // // Match write nodes are specialized call nodes that have a regular // expression with valid named capture groups on the left, the =~ // operator, and some value on the right. The nodes themselves simply // wrap the call with the local variable targets that will be written // when the call is executed. const pm_match_write_node_t *cast = (const pm_match_write_node_t *) node; LABEL *fail_label = NEW_LABEL(location.line); LABEL *end_label = NEW_LABEL(location.line); // First, we'll compile the call so that all of its instructions are // present. Then we'll compile all of the local variable targets. PM_COMPILE_NOT_POPPED((const pm_node_t *) cast->call); // Now, check if the match was successful. If it was, then we'll // continue on and assign local variables. Otherwise we'll skip over the // assignment code. PUSH_INSN1(ret, location, getglobal, rb_id2sym(idBACKREF)); PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchunless, fail_label); // If there's only a single local variable target, we can skip some of // the bookkeeping, so we'll put a special branch here. size_t targets_count = cast->targets.size; if (targets_count == 1) { const pm_node_t *target = cast->targets.nodes[0]; RUBY_ASSERT(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE)); const pm_local_variable_target_node_t *local_target = (const pm_local_variable_target_node_t *) target; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_target->name, local_target->depth); PUSH_INSN1(ret, location, putobject, rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name))); PUSH_SEND(ret, location, idAREF, INT2FIX(1)); PUSH_LABEL(ret, fail_label); PUSH_SETLOCAL(ret, location, index.index, index.level); if (popped) PUSH_INSN(ret, location, pop); return; } DECL_ANCHOR(fail_anchor); INIT_ANCHOR(fail_anchor); // Otherwise there is more than one local variable target, so we'll need // to do some bookkeeping. for (size_t targets_index = 0; targets_index < targets_count; targets_index++) { const pm_node_t *target = cast->targets.nodes[targets_index]; RUBY_ASSERT(PM_NODE_TYPE_P(target, PM_LOCAL_VARIABLE_TARGET_NODE)); const pm_local_variable_target_node_t *local_target = (const pm_local_variable_target_node_t *) target; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_target->name, local_target->depth); if (((size_t) targets_index) < (targets_count - 1)) { PUSH_INSN(ret, location, dup); } PUSH_INSN1(ret, location, putobject, rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name))); PUSH_SEND(ret, location, idAREF, INT2FIX(1)); PUSH_SETLOCAL(ret, location, index.index, index.level); PUSH_INSN(fail_anchor, location, putnil); PUSH_SETLOCAL(fail_anchor, location, index.index, index.level); } // Since we matched successfully, now we'll jump to the end. PUSH_INSNL(ret, location, jump, end_label); // In the case that the match failed, we'll loop through each local // variable target and set all of them to `nil`. PUSH_LABEL(ret, fail_label); PUSH_INSN(ret, location, pop); PUSH_SEQ(ret, fail_anchor); // Finally, we can push the end label for either case. PUSH_LABEL(ret, end_label); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_MISSING_NODE: { rb_bug("A pm_missing_node_t should not exist in prism's AST."); return; } case PM_MODULE_NODE: { // module Foo; end // ^^^^^^^^^^^^^^^ const pm_module_node_t *cast = (const pm_module_node_t *) node; ID module_id = pm_constant_id_lookup(scope_node, cast->name); VALUE module_name = rb_str_freeze(rb_sprintf("", rb_id2str(module_id))); pm_scope_node_t next_scope_node; pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node); const rb_iseq_t *module_iseq = NEW_CHILD_ISEQ(&next_scope_node, module_name, ISEQ_TYPE_CLASS, location.line); pm_scope_node_destroy(&next_scope_node); const int flags = VM_DEFINECLASS_TYPE_MODULE | pm_compile_class_path(iseq, cast->constant_path, &location, ret, false, scope_node); PUSH_INSN(ret, location, putnil); PUSH_INSN3(ret, location, defineclass, ID2SYM(module_id), module_iseq, INT2FIX(flags)); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) module_iseq); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_REQUIRED_PARAMETER_NODE: { // def foo(bar); end // ^^^ const pm_required_parameter_node_t *cast = (const pm_required_parameter_node_t *) node; pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, 0); PUSH_SETLOCAL(ret, location, index.index, index.level); return; } case PM_MULTI_WRITE_NODE: { // foo, bar = baz // ^^^^^^^^^^^^^^ // // A multi write node represents writing to multiple values using an = // operator. Importantly these nodes are only parsed when the left-hand // side of the operator has multiple targets. The right-hand side of the // operator having multiple targets represents an implicit array // instead. const pm_multi_write_node_t *cast = (const pm_multi_write_node_t *) node; DECL_ANCHOR(writes); INIT_ANCHOR(writes); DECL_ANCHOR(cleanup); INIT_ANCHOR(cleanup); pm_multi_target_state_t state = { 0 }; state.position = popped ? 0 : 1; pm_compile_multi_target_node(iseq, node, ret, writes, cleanup, scope_node, &state); PM_COMPILE_NOT_POPPED(cast->value); if (!popped) PUSH_INSN(ret, location, dup); PUSH_SEQ(ret, writes); if (!popped && state.stack_size >= 1) { // Make sure the value on the right-hand side of the = operator is // being returned before we pop the parent expressions. PUSH_INSN1(ret, location, setn, INT2FIX(state.stack_size)); } // Now, we need to go back and modify the topn instructions in order to // ensure they can correctly retrieve the parent expressions. pm_multi_target_state_update(&state); PUSH_SEQ(ret, cleanup); return; } case PM_NEXT_NODE: { // next // ^^^^ // // next foo // ^^^^^^^^ const pm_next_node_t *cast = (const pm_next_node_t *) node; if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); PUSH_LABEL(ret, splabel); if (cast->arguments) { PM_COMPILE_NOT_POPPED((const pm_node_t *) cast->arguments); } else { PUSH_INSN(ret, location, putnil); } pm_add_ensure_iseq(ret, iseq, 0, scope_node); PUSH_ADJUST(ret, location, ISEQ_COMPILE_DATA(iseq)->redo_label); PUSH_INSNL(ret, location, jump, ISEQ_COMPILE_DATA(iseq)->start_label); PUSH_ADJUST_RESTORE(ret, splabel); if (!popped) PUSH_INSN(ret, location, putnil); } else if (ISEQ_COMPILE_DATA(iseq)->end_label && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); PUSH_LABEL(ret, splabel); PUSH_ADJUST(ret, location, ISEQ_COMPILE_DATA(iseq)->start_label); if (cast->arguments != NULL) { PM_COMPILE_NOT_POPPED((const pm_node_t *) cast->arguments); } else { PUSH_INSN(ret, location, putnil); } pm_add_ensure_iseq(ret, iseq, 0, scope_node); PUSH_INSNL(ret, location, jump, ISEQ_COMPILE_DATA(iseq)->end_label); PUSH_ADJUST_RESTORE(ret, splabel); splabel->unremovable = FALSE; if (!popped) PUSH_INSN(ret, location, putnil); } else { const rb_iseq_t *ip = iseq; unsigned long throw_flag = 0; while (ip) { if (!ISEQ_COMPILE_DATA(ip)) { ip = 0; break; } throw_flag = VM_THROW_NO_ESCAPE_FLAG; if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) { /* while loop */ break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) { break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) { COMPILE_ERROR(iseq, location.line, "Can't escape from eval with next"); return; } ip = ISEQ_BODY(ip)->parent_iseq; } if (ip != 0) { if (cast->arguments) { PM_COMPILE_NOT_POPPED((const pm_node_t *) cast->arguments); } else { PUSH_INSN(ret, location, putnil); } PUSH_INSN1(ret, location, throw, INT2FIX(throw_flag | TAG_NEXT)); if (popped) PUSH_INSN(ret, location, pop); } else { COMPILE_ERROR(iseq, location.line, "Invalid next"); return; } } return; } case PM_NIL_NODE: { // nil // ^^^ if (!popped) { PUSH_INSN(ret, location, putnil); } return; } case PM_NO_KEYWORDS_PARAMETER_NODE: { // def foo(**nil); end // ^^^^^ ISEQ_BODY(iseq)->param.flags.accepts_no_kwarg = TRUE; return; } case PM_NUMBERED_REFERENCE_READ_NODE: { // $1 // ^^ if (!popped) { uint32_t reference_number = ((const pm_numbered_reference_read_node_t *) node)->number; if (reference_number > 0) { PUSH_INSN2(ret, location, getspecial, INT2FIX(1), INT2FIX(reference_number << 1)); } else { PUSH_INSN(ret, location, putnil); } } return; } case PM_OR_NODE: { // a or b // ^^^^^^ const pm_or_node_t *cast = (const pm_or_node_t *) node; LABEL *end_label = NEW_LABEL(location.line); PM_COMPILE_NOT_POPPED(cast->left); if (!popped) PUSH_INSN(ret, location, dup); PUSH_INSNL(ret, location, branchif, end_label); if (!popped) PUSH_INSN(ret, location, pop); PM_COMPILE(cast->right); PUSH_LABEL(ret, end_label); return; } case PM_OPTIONAL_PARAMETER_NODE: { // def foo(bar = 1); end // ^^^^^^^ const pm_optional_parameter_node_t *cast = (const pm_optional_parameter_node_t *) node; PM_COMPILE_NOT_POPPED(cast->value); pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, 0); PUSH_SETLOCAL(ret, location, index.index, index.level); return; } case PM_PARENTHESES_NODE: { // () // ^^ // // (1) // ^^^ const pm_parentheses_node_t *cast = (const pm_parentheses_node_t *) node; if (cast->body != NULL) { PM_COMPILE(cast->body); } else if (!popped) { PUSH_INSN(ret, location, putnil); } return; } case PM_PRE_EXECUTION_NODE: { // BEGIN {} // ^^^^^^^^ const pm_pre_execution_node_t *cast = (const pm_pre_execution_node_t *) node; LINK_ANCHOR *outer_pre = scope_node->pre_execution_anchor; RUBY_ASSERT(outer_pre != NULL); // BEGIN{} nodes can be nested, so here we're going to do the same thing // that we did for the top-level compilation where we create two // anchors and then join them in the correct order into the resulting // anchor. DECL_ANCHOR(inner_pre); INIT_ANCHOR(inner_pre); scope_node->pre_execution_anchor = inner_pre; DECL_ANCHOR(inner_body); INIT_ANCHOR(inner_body); if (cast->statements != NULL) { const pm_node_list_t *body = &cast->statements->body; for (size_t index = 0; index < body->size; index++) { pm_compile_node(iseq, body->nodes[index], inner_body, true, scope_node); } } if (!popped) { PUSH_INSN(inner_body, location, putnil); } // Now that everything has been compiled, join both anchors together // into the correct outer pre execution anchor, and reset the value so // that subsequent BEGIN{} nodes can be compiled correctly. PUSH_SEQ(outer_pre, inner_pre); PUSH_SEQ(outer_pre, inner_body); scope_node->pre_execution_anchor = outer_pre; return; } case PM_POST_EXECUTION_NODE: { // END {} // ^^^^^^ const rb_iseq_t *child_iseq; const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block; pm_scope_node_t next_scope_node; pm_scope_node_init(node, &next_scope_node, scope_node); child_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); pm_scope_node_destroy(&next_scope_node); ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq; int is_index = ISEQ_BODY(iseq)->ise_size++; PUSH_INSN2(ret, location, once, child_iseq, INT2FIX(is_index)); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) child_iseq); if (popped) PUSH_INSN(ret, location, pop); ISEQ_COMPILE_DATA(iseq)->current_block = prevblock; return; } case PM_RANGE_NODE: { // 0..5 // ^^^^ const pm_range_node_t *cast = (const pm_range_node_t *) node; bool exclude_end = PM_NODE_FLAG_P(cast, PM_RANGE_FLAGS_EXCLUDE_END); if (pm_optimizable_range_item_p(cast->left) && pm_optimizable_range_item_p(cast->right)) { if (!popped) { const pm_node_t *left = cast->left; const pm_node_t *right = cast->right; VALUE val = rb_range_new( (left && PM_NODE_TYPE_P(left, PM_INTEGER_NODE)) ? parse_integer((const pm_integer_node_t *) left) : Qnil, (right && PM_NODE_TYPE_P(right, PM_INTEGER_NODE)) ? parse_integer((const pm_integer_node_t *) right) : Qnil, exclude_end ); PUSH_INSN1(ret, location, putobject, val); } } else { if (cast->left == NULL) { PUSH_INSN(ret, location, putnil); } else { PM_COMPILE(cast->left); } if (cast->right == NULL) { PUSH_INSN(ret, location, putnil); } else { PM_COMPILE(cast->right); } if (!popped) { PUSH_INSN1(ret, location, newrange, INT2FIX(exclude_end ? 1 : 0)); } } return; } case PM_RATIONAL_NODE: { // 1r // ^^ if (!popped) { PUSH_INSN1(ret, location, putobject, parse_rational((const pm_rational_node_t *) node)); } return; } case PM_REDO_NODE: { // redo // ^^^^ if (ISEQ_COMPILE_DATA(iseq)->redo_label && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); PUSH_LABEL(ret, splabel); PUSH_ADJUST(ret, location, ISEQ_COMPILE_DATA(iseq)->redo_label); pm_add_ensure_iseq(ret, iseq, 0, scope_node); PUSH_INSNL(ret, location, jump, ISEQ_COMPILE_DATA(iseq)->redo_label); PUSH_ADJUST_RESTORE(ret, splabel); if (!popped) PUSH_INSN(ret, location, putnil); } else if (ISEQ_BODY(iseq)->type != ISEQ_TYPE_EVAL && ISEQ_COMPILE_DATA(iseq)->start_label && can_add_ensure_iseq(iseq)) { LABEL *splabel = NEW_LABEL(0); PUSH_LABEL(ret, splabel); pm_add_ensure_iseq(ret, iseq, 0, scope_node); PUSH_ADJUST(ret, location, ISEQ_COMPILE_DATA(iseq)->start_label); PUSH_INSNL(ret, location, jump, ISEQ_COMPILE_DATA(iseq)->start_label); PUSH_ADJUST_RESTORE(ret, splabel); if (!popped) PUSH_INSN(ret, location, putnil); } else { const rb_iseq_t *ip = iseq; while (ip) { if (!ISEQ_COMPILE_DATA(ip)) { ip = 0; break; } if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) { break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) { break; } else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) { COMPILE_ERROR(iseq, location.line, "Can't escape from eval with redo"); return; } ip = ISEQ_BODY(ip)->parent_iseq; } if (ip != 0) { PUSH_INSN(ret, location, putnil); PUSH_INSN1(ret, location, throw, INT2FIX(VM_THROW_NO_ESCAPE_FLAG | TAG_REDO)); if (popped) PUSH_INSN(ret, location, pop); } else { COMPILE_ERROR(iseq, location.line, "Invalid redo"); return; } } return; } case PM_REGULAR_EXPRESSION_NODE: { // /foo/ // ^^^^^ if (!popped) { VALUE regexp = pm_static_literal_value(iseq, node, scope_node); PUSH_INSN1(ret, location, putobject, regexp); } return; } case PM_RESCUE_NODE: { // begin; rescue; end // ^^^^^^^ const pm_rescue_node_t *cast = (const pm_rescue_node_t *) node; iseq_set_exception_local_table(iseq); // First, establish the labels that we need to be able to jump to within // this compilation block. LABEL *exception_match_label = NEW_LABEL(location.line); LABEL *rescue_end_label = NEW_LABEL(location.line); // Next, compile each of the exceptions that we're going to be // handling. For each one, we'll add instructions to check if the // exception matches the raised one, and if it does then jump to the // exception_match_label label. Otherwise it will fall through to the // subsequent check. If there are no exceptions, we'll only check // StandardError. const pm_node_list_t *exceptions = &cast->exceptions; if (exceptions->size > 0) { for (size_t index = 0; index < exceptions->size; index++) { PUSH_GETLOCAL(ret, location, LVAR_ERRINFO, 0); PM_COMPILE(exceptions->nodes[index]); int checkmatch_flags = VM_CHECKMATCH_TYPE_RESCUE; if (PM_NODE_TYPE_P(exceptions->nodes[index], PM_SPLAT_NODE)) { checkmatch_flags |= VM_CHECKMATCH_ARRAY; } PUSH_INSN1(ret, location, checkmatch, INT2FIX(checkmatch_flags)); PUSH_INSNL(ret, location, branchif, exception_match_label); } } else { PUSH_GETLOCAL(ret, location, LVAR_ERRINFO, 0); PUSH_INSN1(ret, location, putobject, rb_eStandardError); PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE)); PUSH_INSNL(ret, location, branchif, exception_match_label); } // If none of the exceptions that we are matching against matched, then // we'll jump straight to the rescue_end_label label. PUSH_INSNL(ret, location, jump, rescue_end_label); // Here we have the exception_match_label, which is where the // control-flow goes in the case that one of the exceptions matched. // Here we will compile the instructions to handle the exception. PUSH_LABEL(ret, exception_match_label); PUSH_TRACE(ret, RUBY_EVENT_RESCUE); // If we have a reference to the exception, then we'll compile the write // into the instruction sequence. This can look quite different // depending on the kind of write being performed. if (cast->reference) { DECL_ANCHOR(writes); INIT_ANCHOR(writes); DECL_ANCHOR(cleanup); INIT_ANCHOR(cleanup); pm_compile_target_node(iseq, cast->reference, ret, writes, cleanup, scope_node, NULL); PUSH_GETLOCAL(ret, location, LVAR_ERRINFO, 0); PUSH_SEQ(ret, writes); PUSH_SEQ(ret, cleanup); } // If we have statements to execute, we'll compile them here. Otherwise // we'll push nil onto the stack. if (cast->statements) { // We'll temporarily remove the end_label location from the iseq // when compiling the statements so that next/redo statements // inside the body will throw to the correct place instead of // jumping straight to the end of this iseq LABEL *prev_end = ISEQ_COMPILE_DATA(iseq)->end_label; ISEQ_COMPILE_DATA(iseq)->end_label = NULL; PM_COMPILE((const pm_node_t *) cast->statements); // Now restore the end_label ISEQ_COMPILE_DATA(iseq)->end_label = prev_end; } else { PUSH_INSN(ret, location, putnil); } PUSH_INSN(ret, location, leave); // Here we'll insert the rescue_end_label label, which is jumped to if // none of the exceptions matched. It will cause the control-flow to // either jump to the next rescue clause or it will fall through to the // subsequent instruction returning the raised error. PUSH_LABEL(ret, rescue_end_label); if (cast->subsequent) { PM_COMPILE((const pm_node_t *) cast->subsequent); } else { PUSH_GETLOCAL(ret, location, 1, 0); } return; } case PM_RESCUE_MODIFIER_NODE: { // foo rescue bar // ^^^^^^^^^^^^^^ const pm_rescue_modifier_node_t *cast = (const pm_rescue_modifier_node_t *) node; pm_scope_node_t rescue_scope_node; pm_scope_node_init((const pm_node_t *) cast, &rescue_scope_node, scope_node); rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ( &rescue_scope_node, rb_str_concat(rb_str_new2("rescue in "), ISEQ_BODY(iseq)->location.label), ISEQ_TYPE_RESCUE, pm_node_line_number(parser, cast->rescue_expression) ); pm_scope_node_destroy(&rescue_scope_node); LABEL *lstart = NEW_LABEL(location.line); LABEL *lend = NEW_LABEL(location.line); LABEL *lcont = NEW_LABEL(location.line); lstart->rescued = LABEL_RESCUE_BEG; lend->rescued = LABEL_RESCUE_END; PUSH_LABEL(ret, lstart); PM_COMPILE_NOT_POPPED(cast->expression); PUSH_LABEL(ret, lend); PUSH_INSN(ret, location, nop); PUSH_LABEL(ret, lcont); if (popped) PUSH_INSN(ret, location, pop); PUSH_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont); PUSH_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart); return; } case PM_RETURN_NODE: { // return // ^^^^^^ // // return 1 // ^^^^^^^^ const pm_return_node_t *cast = (const pm_return_node_t *) node; const pm_arguments_node_t *arguments = cast->arguments; enum rb_iseq_type type = ISEQ_BODY(iseq)->type; LABEL *splabel = 0; const rb_iseq_t *parent_iseq = iseq; enum rb_iseq_type parent_type = ISEQ_BODY(parent_iseq)->type; while (parent_type == ISEQ_TYPE_RESCUE || parent_type == ISEQ_TYPE_ENSURE) { if (!(parent_iseq = ISEQ_BODY(parent_iseq)->parent_iseq)) break; parent_type = ISEQ_BODY(parent_iseq)->type; } switch (parent_type) { case ISEQ_TYPE_TOP: case ISEQ_TYPE_MAIN: if (arguments) { rb_warn("argument of top-level return is ignored"); } if (parent_iseq == iseq) { type = ISEQ_TYPE_METHOD; } break; default: break; } if (type == ISEQ_TYPE_METHOD) { splabel = NEW_LABEL(0); PUSH_LABEL(ret, splabel); PUSH_ADJUST(ret, location, 0); } if (arguments) { PM_COMPILE_NOT_POPPED((const pm_node_t *) arguments); } else { PUSH_INSN(ret, location, putnil); } if (type == ISEQ_TYPE_METHOD && can_add_ensure_iseq(iseq)) { pm_add_ensure_iseq(ret, iseq, 1, scope_node); PUSH_TRACE(ret, RUBY_EVENT_RETURN); PUSH_INSN(ret, location, leave); PUSH_ADJUST_RESTORE(ret, splabel); if (!popped) PUSH_INSN(ret, location, putnil); } else { PUSH_INSN1(ret, location, throw, INT2FIX(TAG_RETURN)); if (popped) PUSH_INSN(ret, location, pop); } return; } case PM_RETRY_NODE: { // retry // ^^^^^ if (ISEQ_BODY(iseq)->type == ISEQ_TYPE_RESCUE) { PUSH_INSN(ret, location, putnil); PUSH_INSN1(ret, location, throw, INT2FIX(TAG_RETRY)); if (popped) PUSH_INSN(ret, location, pop); } else { COMPILE_ERROR(iseq, location.line, "Invalid retry"); return; } return; } case PM_SCOPE_NODE: { pm_scope_node_t *scope_node = (pm_scope_node_t *) node; pm_constant_id_list_t *locals = &scope_node->locals; pm_parameters_node_t *parameters_node = NULL; pm_node_list_t *keywords_list = NULL; pm_node_list_t *optionals_list = NULL; pm_node_list_t *posts_list = NULL; pm_node_list_t *requireds_list = NULL; pm_node_list_t *block_locals = NULL; bool trailing_comma = false; struct rb_iseq_constant_body *body = ISEQ_BODY(iseq); if (PM_NODE_TYPE_P(scope_node->ast_node, PM_CLASS_NODE) || PM_NODE_TYPE_P(scope_node->ast_node, PM_MODULE_NODE)) { ADD_TRACE(ret, RUBY_EVENT_CLASS); } if (scope_node->parameters) { switch (PM_NODE_TYPE(scope_node->parameters)) { case PM_BLOCK_PARAMETERS_NODE: { pm_block_parameters_node_t *cast = (pm_block_parameters_node_t *) scope_node->parameters; parameters_node = cast->parameters; block_locals = &cast->locals; if (parameters_node) { if (parameters_node->rest && PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE)) { trailing_comma = true; } } break; } case PM_PARAMETERS_NODE: { parameters_node = (pm_parameters_node_t *) scope_node->parameters; break; } case PM_NUMBERED_PARAMETERS_NODE: { uint32_t maximum = ((const pm_numbered_parameters_node_t *) scope_node->parameters)->maximum; body->param.lead_num = maximum; body->param.flags.ambiguous_param0 = maximum == 1; break; } case PM_IT_PARAMETERS_NODE: body->param.lead_num = 1; body->param.flags.ambiguous_param0 = true; break; default: rb_bug("Unexpected node type for parameters: %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } } struct rb_iseq_param_keyword *keyword = NULL; if (parameters_node) { optionals_list = ¶meters_node->optionals; requireds_list = ¶meters_node->requireds; keywords_list = ¶meters_node->keywords; posts_list = ¶meters_node->posts; } else if (scope_node->parameters && (PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE) || PM_NODE_TYPE_P(scope_node->parameters, PM_IT_PARAMETERS_NODE))) { body->param.opt_num = 0; } else { body->param.lead_num = 0; body->param.opt_num = 0; } //********STEP 1********** // Goal: calculate the table size for the locals, accounting for // hidden variables and multi target nodes size_t locals_size = locals->size; // Index lookup table buffer size is only the number of the locals st_table *index_lookup_table = st_init_numtable(); int table_size = (int) locals_size; // For nodes have a hidden iteration variable. We add that to the local // table size here. if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) table_size++; if (keywords_list && keywords_list->size) { table_size++; } if (requireds_list) { for (size_t i = 0; i < requireds_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *required = requireds_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { table_size++; } else if (PM_NODE_TYPE_P(required, PM_REQUIRED_PARAMETER_NODE)) { if (PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } } // If we have the `it` implicit local variable, we need to account for // it in the local table size. if (scope_node->parameters != NULL && PM_NODE_TYPE_P(scope_node->parameters, PM_IT_PARAMETERS_NODE)) { table_size++; } // Ensure there is enough room in the local table for any // parameters that have been repeated // ex: def underscore_parameters(_, _ = 1, _ = 2); _; end // ^^^^^^^^^^^^ if (optionals_list && optionals_list->size) { for (size_t i = 0; i < optionals_list->size; i++) { pm_node_t * node = optionals_list->nodes[i]; if (PM_NODE_FLAG_P(node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } // If we have an anonymous "rest" node, we'll need to increase the local // table size to take it in to account. // def m(foo, *, bar) // ^ if (parameters_node) { if (parameters_node->rest) { if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) { if (!((const pm_rest_parameter_node_t *) parameters_node->rest)->name || PM_NODE_FLAG_P(parameters_node->rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } // def foo(_, **_); _; end // ^^^ if (parameters_node->keyword_rest) { // def foo(...); end // ^^^ // When we have a `...` as the keyword_rest, it's a forwarding_parameter_node and // we need to leave space for 4 locals: *, **, &, ... if (PM_NODE_TYPE_P(parameters_node->keyword_rest, PM_FORWARDING_PARAMETER_NODE)) { // Only optimize specifically methods like this: `foo(...)` if (requireds_list->size == 0 && optionals_list->size == 0 && keywords_list->size == 0) { ISEQ_BODY(iseq)->param.flags.use_block = TRUE; ISEQ_BODY(iseq)->param.flags.forwardable = TRUE; table_size += 1; } else { table_size += 4; } } else { const pm_keyword_rest_parameter_node_t *kw_rest = (const pm_keyword_rest_parameter_node_t *) parameters_node->keyword_rest; // If it's anonymous or repeated, then we need to allocate stack space if (!kw_rest->name || PM_NODE_FLAG_P(kw_rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } } if (posts_list) { for (size_t i = 0; i < posts_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size pm_node_t *required = posts_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE) || PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } if (keywords_list && keywords_list->size) { for (size_t i = 0; i < keywords_list->size; i++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { table_size++; } } } if (parameters_node && parameters_node->block) { const pm_block_parameter_node_t *block_node = (const pm_block_parameter_node_t *) parameters_node->block; if (PM_NODE_FLAG_P(block_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER) || !block_node->name) { table_size++; } } // We can create local_table_for_iseq with the correct size VALUE idtmp = 0; rb_ast_id_table_t *local_table_for_iseq = ALLOCV(idtmp, sizeof(rb_ast_id_table_t) + table_size * sizeof(ID)); local_table_for_iseq->size = table_size; //********END OF STEP 1********** //********STEP 2********** // Goal: populate iv index table as well as local table, keeping the // layout of the local table consistent with the layout of the // stack when calling the method // // Do a first pass on all of the parameters, setting their values in // the local_table_for_iseq, _except_ for Multis who get a hidden // variable in this step, and will get their names inserted in step 3 // local_index is a cursor that keeps track of the current // index into local_table_for_iseq. The local table is actually a list, // and the order of that list must match the order of the items pushed // on the stack. We need to take in to account things pushed on the // stack that _might not have a name_ (for example array destructuring). // This index helps us know which item we're dealing with and also give // those anonymous items temporary names (as below) int local_index = 0; // Here we figure out local table indices and insert them in to the // index lookup table and local tables. // // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^^^^ if (requireds_list && requireds_list->size) { for (size_t i = 0; i < requireds_list->size; i++, local_index++) { ID local; // For each MultiTargetNode, we're going to have one additional // anonymous local not represented in the locals table. We want // to account for this in our table size. pm_node_t *required = requireds_list->nodes[i]; switch (PM_NODE_TYPE(required)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^ case PM_MULTI_TARGET_NODE: { local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^ case PM_REQUIRED_PARAMETER_NODE: { const pm_required_parameter_node_t *param = (const pm_required_parameter_node_t *) required; if (PM_NODE_FLAG_P(required, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, param->name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } break; } default: { rb_bug("Unsupported node in requireds in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } } } body->param.lead_num = (int) requireds_list->size; body->param.flags.has_lead = true; } if (scope_node->parameters != NULL && PM_NODE_TYPE_P(scope_node->parameters, PM_IT_PARAMETERS_NODE)) { ID local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index++] = local; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^ if (optionals_list && optionals_list->size) { body->param.opt_num = (int) optionals_list->size; body->param.flags.has_opt = true; for (size_t i = 0; i < optionals_list->size; i++, local_index++) { pm_node_t * node = optionals_list->nodes[i]; pm_constant_id_t name = ((const pm_optional_parameter_node_t *) node)->name; if (PM_NODE_FLAG_P(node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (parameters_node && parameters_node->rest) { body->param.rest_start = local_index; // If there's a trailing comma, we'll have an implicit rest node, // and we don't want it to impact the rest variables on param if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) { body->param.flags.has_rest = true; RUBY_ASSERT(body->param.rest_start != -1); pm_constant_id_t name = ((const pm_rest_parameter_node_t *) parameters_node->rest)->name; if (name) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (PM_NODE_FLAG_P(parameters_node->rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } else { // def foo(a, (b, *c, d), e = 1, *, g, (h, *i, j), k:, l: 1, **m, &n) // ^ body->param.flags.anon_rest = true; pm_insert_local_special(idMULT, local_index, index_lookup_table, local_table_for_iseq); } local_index++; } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^^^^ if (posts_list && posts_list->size) { body->param.post_num = (int) posts_list->size; body->param.post_start = local_index; body->param.flags.has_post = true; for (size_t i = 0; i < posts_list->size; i++, local_index++) { ID local; // For each MultiTargetNode, we're going to have one additional // anonymous local not represented in the locals table. We want // to account for this in our table size. const pm_node_t *post_node = posts_list->nodes[i]; switch (PM_NODE_TYPE(post_node)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^^^ case PM_MULTI_TARGET_NODE: { local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^ case PM_REQUIRED_PARAMETER_NODE: { const pm_required_parameter_node_t *param = (const pm_required_parameter_node_t *) post_node; if (PM_NODE_FLAG_P(param, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, param->name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } break; } default: { rb_bug("Unsupported node in posts in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(node))); } } } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^^^^^ // Keywords create an internal variable on the parse tree if (keywords_list && keywords_list->size) { body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1); keyword->num = (int) keywords_list->size; body->param.flags.has_kw = true; const VALUE default_values = rb_ary_hidden_new(1); const VALUE complex_mark = rb_str_tmp_new(0); ID *ids = xcalloc(keywords_list->size, sizeof(ID)); size_t kw_index = 0; for (size_t i = 0; i < keywords_list->size; i++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; pm_constant_id_t name; // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (PM_NODE_TYPE_P(keyword_parameter_node, PM_REQUIRED_KEYWORD_PARAMETER_NODE)) { name = ((const pm_required_keyword_parameter_node_t *) keyword_parameter_node)->name; keyword->required_num++; ID local = pm_constant_id_lookup(scope_node, name); if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } local_index++; ids[kw_index++] = local; } } for (size_t i = 0; i < keywords_list->size; i++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; pm_constant_id_t name; // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^ if (PM_NODE_TYPE_P(keyword_parameter_node, PM_OPTIONAL_KEYWORD_PARAMETER_NODE)) { const pm_optional_keyword_parameter_node_t *cast = ((const pm_optional_keyword_parameter_node_t *) keyword_parameter_node); pm_node_t *value = cast->value; name = cast->name; if (PM_NODE_FLAG_P(value, PM_NODE_FLAG_STATIC_LITERAL) && !(PM_NODE_TYPE_P(value, PM_ARRAY_NODE) || PM_NODE_TYPE_P(value, PM_HASH_NODE) || PM_NODE_TYPE_P(value, PM_RANGE_NODE))) { rb_ary_push(default_values, pm_static_literal_value(iseq, value, scope_node)); } else { rb_ary_push(default_values, complex_mark); } ID local = pm_constant_id_lookup(scope_node, name); if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } ids[kw_index++] = local; local_index++; } } keyword->bits_start = local_index; keyword->table = ids; if (RARRAY_LEN(default_values)) { VALUE *dvs = ALLOC_N(VALUE, RARRAY_LEN(default_values)); for (int i = 0; i < RARRAY_LEN(default_values); i++) { VALUE dv = RARRAY_AREF(default_values, i); if (dv == complex_mark) dv = Qundef; if (!SPECIAL_CONST_P(dv)) { RB_OBJ_WRITTEN(iseq, Qundef, dv); } dvs[i] = dv; } keyword->default_values = dvs; } // Hidden local for keyword arguments ID local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; local_index++; } if (body->type == ISEQ_TYPE_BLOCK && local_index == 1 && requireds_list && requireds_list->size == 1 && !trailing_comma) { body->param.flags.ambiguous_param0 = true; } if (parameters_node) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^ if (parameters_node->keyword_rest) { switch (PM_NODE_TYPE(parameters_node->keyword_rest)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **nil, &n) // ^^^^^ case PM_NO_KEYWORDS_PARAMETER_NODE: { body->param.flags.accepts_no_kwarg = true; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^ case PM_KEYWORD_REST_PARAMETER_NODE: { const pm_keyword_rest_parameter_node_t *kw_rest_node = (const pm_keyword_rest_parameter_node_t *) parameters_node->keyword_rest; if (!body->param.flags.has_kw) { body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1); } keyword->rest_start = local_index; body->param.flags.has_kwrest = true; pm_constant_id_t constant_id = kw_rest_node->name; if (constant_id) { if (PM_NODE_FLAG_P(kw_rest_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, constant_id); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } else { body->param.flags.anon_kwrest = true; pm_insert_local_special(idPow, local_index, index_lookup_table, local_table_for_iseq); } local_index++; break; } // def foo(...) // ^^^ case PM_FORWARDING_PARAMETER_NODE: { if (!ISEQ_BODY(iseq)->param.flags.forwardable) { // Add the anonymous * body->param.rest_start = local_index; body->param.flags.has_rest = true; body->param.flags.anon_rest = true; pm_insert_local_special(idMULT, local_index++, index_lookup_table, local_table_for_iseq); // Add the anonymous ** RUBY_ASSERT(!body->param.flags.has_kw); body->param.flags.has_kw = false; body->param.flags.has_kwrest = true; body->param.flags.anon_kwrest = true; body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1); keyword->rest_start = local_index; pm_insert_local_special(idPow, local_index++, index_lookup_table, local_table_for_iseq); // Add the anonymous & body->param.block_start = local_index; body->param.flags.has_block = true; pm_insert_local_special(idAnd, local_index++, index_lookup_table, local_table_for_iseq); } // Add the ... pm_insert_local_special(idDot3, local_index++, index_lookup_table, local_table_for_iseq); break; } default: { rb_bug("node type %s not expected as keyword_rest", pm_node_type_to_str(PM_NODE_TYPE(parameters_node->keyword_rest))); } } } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ if (parameters_node->block) { body->param.block_start = local_index; body->param.flags.has_block = true; iseq_set_use_block(iseq); pm_constant_id_t name = ((const pm_block_parameter_node_t *) parameters_node->block)->name; if (name) { if (PM_NODE_FLAG_P(parameters_node->block, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) { ID local = pm_constant_id_lookup(scope_node, name); local_table_for_iseq->ids[local_index] = local; } else { pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } else { pm_insert_local_special(idAnd, local_index, index_lookup_table, local_table_for_iseq); } local_index++; } } //********END OF STEP 2********** // The local table is now consistent with expected // stack layout // If there's only one required element in the parameters // CRuby needs to recognize it as an ambiguous parameter //********STEP 3********** // Goal: fill in the names of the parameters in MultiTargetNodes // // Go through requireds again to set the multis if (requireds_list && requireds_list->size) { for (size_t i = 0; i < requireds_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size const pm_node_t *required = requireds_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) required, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } } // Go through posts again to set the multis if (posts_list && posts_list->size) { for (size_t i = 0; i < posts_list->size; i++) { // For each MultiTargetNode, we're going to have one // additional anonymous local not represented in the locals table // We want to account for this in our table size const pm_node_t *post = posts_list->nodes[i]; if (PM_NODE_TYPE_P(post, PM_MULTI_TARGET_NODE)) { local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) post, index_lookup_table, local_table_for_iseq, scope_node, local_index); } } } // Set any anonymous locals for the for node if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) { if (PM_NODE_TYPE_P(((const pm_for_node_t *) scope_node->ast_node)->index, PM_LOCAL_VARIABLE_TARGET_NODE)) { body->param.lead_num++; } else { body->param.rest_start = local_index; body->param.flags.has_rest = true; } ID local = rb_make_temporary_id(local_index); local_table_for_iseq->ids[local_index] = local; local_index++; } // Fill in any NumberedParameters, if they exist if (scope_node->parameters && PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE)) { int maximum = ((const pm_numbered_parameters_node_t *) scope_node->parameters)->maximum; RUBY_ASSERT(0 < maximum && maximum <= 9); for (int i = 0; i < maximum; i++, local_index++) { const uint8_t param_name[] = { '_', '1' + i }; pm_constant_id_t constant_id = pm_constant_pool_find(&parser->constant_pool, param_name, 2); RUBY_ASSERT(constant_id && "parser should fill in any gaps in numbered parameters"); pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); } body->param.lead_num = maximum; body->param.flags.has_lead = true; } //********END OF STEP 3********** //********STEP 4********** // Goal: fill in the method body locals // To be explicit, these are the non-parameter locals // We fill in the block_locals, if they exist // lambda { |x; y| y } // ^ if (block_locals && block_locals->size) { for (size_t i = 0; i < block_locals->size; i++, local_index++) { pm_constant_id_t constant_id = ((const pm_block_local_variable_node_t *) block_locals->nodes[i])->name; pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node); } } // Fill in any locals we missed if (scope_node->locals.size) { for (size_t i = 0; i < scope_node->locals.size; i++) { pm_constant_id_t constant_id = locals->ids[i]; if (constant_id) { struct pm_local_table_insert_ctx ctx; ctx.scope_node = scope_node; ctx.local_table_for_iseq = local_table_for_iseq; ctx.local_index = local_index; st_update(index_lookup_table, (st_data_t)constant_id, pm_local_table_insert_func, (st_data_t)&ctx); local_index = ctx.local_index; } } } //********END OF STEP 4********** // We set the index_lookup_table on the scope node so we can // refer to the parameters correctly if (scope_node->index_lookup_table) { st_free_table(scope_node->index_lookup_table); } scope_node->index_lookup_table = index_lookup_table; iseq_calc_param_size(iseq); if (ISEQ_BODY(iseq)->param.flags.forwardable) { // We're treating `...` as a parameter so that frame // pushing won't clobber it. ISEQ_BODY(iseq)->param.size += 1; } // FIXME: args? iseq_set_local_table(iseq, local_table_for_iseq, 0); scope_node->local_table_for_iseq_size = local_table_for_iseq->size; //********STEP 5************ // Goal: compile anything that needed to be compiled if (optionals_list && optionals_list->size) { LABEL **opt_table = (LABEL **) ALLOC_N(VALUE, optionals_list->size + 1); LABEL *label; // TODO: Should we make an api for NEW_LABEL where you can pass // a pointer to the label it should fill out? We already // have a list of labels allocated above so it seems wasteful // to do the copies. for (size_t i = 0; i < optionals_list->size; i++) { label = NEW_LABEL(lineno); opt_table[i] = label; PUSH_LABEL(ret, label); pm_node_t *optional_node = optionals_list->nodes[i]; PM_COMPILE_NOT_POPPED(optional_node); } // Set the last label label = NEW_LABEL(lineno); opt_table[optionals_list->size] = label; PUSH_LABEL(ret, label); body->param.opt_table = (const VALUE *) opt_table; } if (keywords_list && keywords_list->size) { size_t optional_index = 0; for (size_t i = 0; i < keywords_list->size; i++) { pm_node_t *keyword_parameter_node = keywords_list->nodes[i]; pm_constant_id_t name; switch (PM_NODE_TYPE(keyword_parameter_node)) { // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^^^ case PM_OPTIONAL_KEYWORD_PARAMETER_NODE: { const pm_optional_keyword_parameter_node_t *cast = ((const pm_optional_keyword_parameter_node_t *) keyword_parameter_node); pm_node_t *value = cast->value; name = cast->name; if (!PM_NODE_FLAG_P(value, PM_NODE_FLAG_STATIC_LITERAL) || PM_NODE_TYPE_P(value, PM_ARRAY_NODE) || PM_NODE_TYPE_P(value, PM_HASH_NODE) || PM_NODE_TYPE_P(value, PM_RANGE_NODE)) { LABEL *end_label = NEW_LABEL(location.line); pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, name, 0); int kw_bits_idx = table_size - body->param.keyword->bits_start; PUSH_INSN2(ret, location, checkkeyword, INT2FIX(kw_bits_idx + VM_ENV_DATA_SIZE - 1), INT2FIX(optional_index)); PUSH_INSNL(ret, location, branchif, end_label); PM_COMPILE(value); PUSH_SETLOCAL(ret, location, index.index, index.level); PUSH_LABEL(ret, end_label); } optional_index++; break; } // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n) // ^^ case PM_REQUIRED_KEYWORD_PARAMETER_NODE: { break; } default: { rb_bug("Unexpected keyword parameter node type %s", pm_node_type_to_str(PM_NODE_TYPE(keyword_parameter_node))); } } } } if (requireds_list && requireds_list->size) { for (size_t i = 0; i < requireds_list->size; i++) { // For each MultiTargetNode, we're going to have one additional // anonymous local not represented in the locals table. We want // to account for this in our table size. const pm_node_t *required = requireds_list->nodes[i]; if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) { PUSH_GETLOCAL(ret, location, table_size - (int)i, 0); pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) required, ret, scope_node); } } } if (posts_list && posts_list->size) { for (size_t i = 0; i < posts_list->size; i++) { // For each MultiTargetNode, we're going to have one additional // anonymous local not represented in the locals table. We want // to account for this in our table size. const pm_node_t *post = posts_list->nodes[i]; if (PM_NODE_TYPE_P(post, PM_MULTI_TARGET_NODE)) { PUSH_GETLOCAL(ret, location, table_size - body->param.post_start - (int) i, 0); pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) post, ret, scope_node); } } } switch (body->type) { case ISEQ_TYPE_BLOCK: { LABEL *start = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(0); LABEL *end = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(0); const pm_node_location_t block_location = { .line = body->location.first_lineno, .node_id = -1 }; start->rescued = LABEL_RESCUE_BEG; end->rescued = LABEL_RESCUE_END; // For nodes automatically assign the iteration variable to whatever // index variable. We need to handle that write here because it has // to happen in the context of the block. Note that this happens // before the B_CALL tracepoint event. if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) { pm_compile_for_node_index(iseq, ((const pm_for_node_t *) scope_node->ast_node)->index, ret, scope_node); } PUSH_TRACE(ret, RUBY_EVENT_B_CALL); PUSH_INSN(ret, block_location, nop); PUSH_LABEL(ret, start); if (scope_node->body != NULL) { switch (PM_NODE_TYPE(scope_node->ast_node)) { case PM_POST_EXECUTION_NODE: { const pm_post_execution_node_t *cast = (const pm_post_execution_node_t *) scope_node->ast_node; PUSH_INSN1(ret, block_location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); // We create another ScopeNode from the statements within the PostExecutionNode pm_scope_node_t next_scope_node; pm_scope_node_init((const pm_node_t *) cast->statements, &next_scope_node, scope_node); const rb_iseq_t *block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(body->parent_iseq), ISEQ_TYPE_BLOCK, location.line); pm_scope_node_destroy(&next_scope_node); PUSH_CALL_WITH_BLOCK(ret, block_location, id_core_set_postexe, INT2FIX(0), block); break; } case PM_INTERPOLATED_REGULAR_EXPRESSION_NODE: { const pm_interpolated_regular_expression_node_t *cast = (const pm_interpolated_regular_expression_node_t *) scope_node->ast_node; pm_compile_regexp_dynamic(iseq, (const pm_node_t *) cast, &cast->parts, &location, ret, popped, scope_node); break; } default: pm_compile_node(iseq, scope_node->body, ret, popped, scope_node); break; } } else { PUSH_INSN(ret, block_location, putnil); } PUSH_LABEL(ret, end); PUSH_TRACE(ret, RUBY_EVENT_B_RETURN); ISEQ_COMPILE_DATA(iseq)->last_line = body->location.code_location.end_pos.lineno; /* wide range catch handler must put at last */ PUSH_CATCH_ENTRY(CATCH_TYPE_REDO, start, end, NULL, start); PUSH_CATCH_ENTRY(CATCH_TYPE_NEXT, start, end, NULL, end); break; } case ISEQ_TYPE_ENSURE: { const pm_node_location_t statements_location = (scope_node->body != NULL ? PM_NODE_START_LOCATION(scope_node->parser, scope_node->body) : location); iseq_set_exception_local_table(iseq); if (scope_node->body != NULL) { PM_COMPILE_POPPED((const pm_node_t *) scope_node->body); } PUSH_GETLOCAL(ret, statements_location, 1, 0); PUSH_INSN1(ret, statements_location, throw, INT2FIX(0)); return; } case ISEQ_TYPE_METHOD: { ISEQ_COMPILE_DATA(iseq)->root_node = (const void *) scope_node->body; PUSH_TRACE(ret, RUBY_EVENT_CALL); if (scope_node->body) { PM_COMPILE((const pm_node_t *) scope_node->body); } else { PUSH_INSN(ret, location, putnil); } ISEQ_COMPILE_DATA(iseq)->root_node = (const void *) scope_node->body; PUSH_TRACE(ret, RUBY_EVENT_RETURN); ISEQ_COMPILE_DATA(iseq)->last_line = body->location.code_location.end_pos.lineno; break; } case ISEQ_TYPE_RESCUE: { iseq_set_exception_local_table(iseq); if (PM_NODE_TYPE_P(scope_node->ast_node, PM_RESCUE_MODIFIER_NODE)) { LABEL *lab = NEW_LABEL(lineno); LABEL *rescue_end = NEW_LABEL(lineno); PUSH_GETLOCAL(ret, location, LVAR_ERRINFO, 0); PUSH_INSN1(ret, location, putobject, rb_eStandardError); PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE)); PUSH_INSNL(ret, location, branchif, lab); PUSH_INSNL(ret, location, jump, rescue_end); PUSH_LABEL(ret, lab); PUSH_TRACE(ret, RUBY_EVENT_RESCUE); PM_COMPILE((const pm_node_t *) scope_node->body); PUSH_INSN(ret, location, leave); PUSH_LABEL(ret, rescue_end); PUSH_GETLOCAL(ret, location, LVAR_ERRINFO, 0); } else { PM_COMPILE((const pm_node_t *) scope_node->ast_node); } PUSH_INSN1(ret, location, throw, INT2FIX(0)); return; } default: if (scope_node->body) { PM_COMPILE((const pm_node_t *) scope_node->body); } else { PUSH_INSN(ret, location, putnil); } break; } if (PM_NODE_TYPE_P(scope_node->ast_node, PM_CLASS_NODE) || PM_NODE_TYPE_P(scope_node->ast_node, PM_MODULE_NODE)) { const pm_node_location_t end_location = PM_NODE_END_LOCATION(scope_node->parser, scope_node->ast_node); ADD_TRACE(ret, RUBY_EVENT_END); ISEQ_COMPILE_DATA(iseq)->last_line = end_location.line; } if (!PM_NODE_TYPE_P(scope_node->ast_node, PM_ENSURE_NODE)) { const pm_node_location_t location = { .line = ISEQ_COMPILE_DATA(iseq)->last_line, .node_id = -1 }; PUSH_INSN(ret, location, leave); } return; } case PM_SELF_NODE: { // self // ^^^^ if (!popped) { PUSH_INSN(ret, location, putself); } return; } case PM_SHAREABLE_CONSTANT_NODE: { // A value that is being written to a constant that is being marked as // shared depending on the current lexical context. const pm_shareable_constant_node_t *cast = (const pm_shareable_constant_node_t *) node; pm_node_flags_t shareability = (cast->base.flags & (PM_SHAREABLE_CONSTANT_NODE_FLAGS_LITERAL | PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_EVERYTHING | PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY)); switch (PM_NODE_TYPE(cast->write)) { case PM_CONSTANT_WRITE_NODE: pm_compile_constant_write_node(iseq, (const pm_constant_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node); break; case PM_CONSTANT_AND_WRITE_NODE: pm_compile_constant_and_write_node(iseq, (const pm_constant_and_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node); break; case PM_CONSTANT_OR_WRITE_NODE: pm_compile_constant_or_write_node(iseq, (const pm_constant_or_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node); break; case PM_CONSTANT_OPERATOR_WRITE_NODE: pm_compile_constant_operator_write_node(iseq, (const pm_constant_operator_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node); break; case PM_CONSTANT_PATH_WRITE_NODE: pm_compile_constant_path_write_node(iseq, (const pm_constant_path_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node); break; case PM_CONSTANT_PATH_AND_WRITE_NODE: pm_compile_constant_path_and_write_node(iseq, (const pm_constant_path_and_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node); break; case PM_CONSTANT_PATH_OR_WRITE_NODE: pm_compile_constant_path_or_write_node(iseq, (const pm_constant_path_or_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node); break; case PM_CONSTANT_PATH_OPERATOR_WRITE_NODE: pm_compile_constant_path_operator_write_node(iseq, (const pm_constant_path_operator_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node); break; default: rb_bug("Unexpected node type for shareable constant write: %s", pm_node_type_to_str(PM_NODE_TYPE(cast->write))); break; } return; } case PM_SINGLETON_CLASS_NODE: { // class << self; end // ^^^^^^^^^^^^^^^^^^ const pm_singleton_class_node_t *cast = (const pm_singleton_class_node_t *) node; pm_scope_node_t next_scope_node; pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node); const rb_iseq_t *child_iseq = NEW_ISEQ(&next_scope_node, rb_fstring_lit("singleton class"), ISEQ_TYPE_CLASS, location.line); pm_scope_node_destroy(&next_scope_node); PM_COMPILE_NOT_POPPED(cast->expression); PUSH_INSN(ret, location, putnil); ID singletonclass; CONST_ID(singletonclass, "singletonclass"); PUSH_INSN3(ret, location, defineclass, ID2SYM(singletonclass), child_iseq, INT2FIX(VM_DEFINECLASS_TYPE_SINGLETON_CLASS)); if (popped) PUSH_INSN(ret, location, pop); RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) child_iseq); return; } case PM_SOURCE_ENCODING_NODE: { // __ENCODING__ // ^^^^^^^^^^^^ if (!popped) { VALUE value = pm_static_literal_value(iseq, node, scope_node); PUSH_INSN1(ret, location, putobject, value); } return; } case PM_SOURCE_FILE_NODE: { // __FILE__ // ^^^^^^^^ if (!popped) { const pm_source_file_node_t *cast = (const pm_source_file_node_t *) node; VALUE string = pm_source_file_value(cast, scope_node); if (PM_NODE_FLAG_P(cast, PM_STRING_FLAGS_FROZEN)) { PUSH_INSN1(ret, location, putobject, string); } else if (PM_NODE_FLAG_P(cast, PM_STRING_FLAGS_MUTABLE)) { PUSH_INSN1(ret, location, putstring, string); } else { PUSH_INSN1(ret, location, putchilledstring, string); } } return; } case PM_SOURCE_LINE_NODE: { // __LINE__ // ^^^^^^^^ if (!popped) { VALUE value = pm_static_literal_value(iseq, node, scope_node); PUSH_INSN1(ret, location, putobject, value); } return; } case PM_SPLAT_NODE: { // foo(*bar) // ^^^^ const pm_splat_node_t *cast = (const pm_splat_node_t *) node; if (cast->expression) { PM_COMPILE(cast->expression); } if (!popped) { PUSH_INSN1(ret, location, splatarray, Qtrue); } return; } case PM_STATEMENTS_NODE: { // A list of statements. const pm_statements_node_t *cast = (const pm_statements_node_t *) node; const pm_node_list_t *body = &cast->body; if (body->size > 0) { for (size_t index = 0; index < body->size - 1; index++) { PM_COMPILE_POPPED(body->nodes[index]); } PM_COMPILE(body->nodes[body->size - 1]); } else { PUSH_INSN(ret, location, putnil); } return; } case PM_STRING_NODE: { // "foo" // ^^^^^ if (!popped) { const pm_string_node_t *cast = (const pm_string_node_t *) node; VALUE value = parse_static_literal_string(iseq, scope_node, node, &cast->unescaped); if (PM_NODE_FLAG_P(node, PM_STRING_FLAGS_FROZEN)) { PUSH_INSN1(ret, location, putobject, value); } else if (PM_NODE_FLAG_P(node, PM_STRING_FLAGS_MUTABLE)) { PUSH_INSN1(ret, location, putstring, value); } else { PUSH_INSN1(ret, location, putchilledstring, value); } } return; } case PM_SUPER_NODE: { // super(foo) // ^^^^^^^^^^ const pm_super_node_t *cast = (const pm_super_node_t *) node; DECL_ANCHOR(args); INIT_ANCHOR(args); LABEL *retry_label = NEW_LABEL(location.line); LABEL *retry_end_l = NEW_LABEL(location.line); const rb_iseq_t *previous_block = ISEQ_COMPILE_DATA(iseq)->current_block; const rb_iseq_t *current_block; ISEQ_COMPILE_DATA(iseq)->current_block = current_block = NULL; PUSH_LABEL(ret, retry_label); PUSH_INSN(ret, location, putself); int flags = 0; struct rb_callinfo_kwarg *keywords = NULL; int argc = pm_setup_args(cast->arguments, cast->block, &flags, &keywords, iseq, ret, scope_node, &location); flags |= VM_CALL_SUPER | VM_CALL_FCALL; if (cast->block && PM_NODE_TYPE_P(cast->block, PM_BLOCK_NODE)) { pm_scope_node_t next_scope_node; pm_scope_node_init(cast->block, &next_scope_node, scope_node); ISEQ_COMPILE_DATA(iseq)->current_block = current_block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno); pm_scope_node_destroy(&next_scope_node); } if (!cast->block) { iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq); } if ((flags & VM_CALL_ARGS_BLOCKARG) && (flags & VM_CALL_KW_SPLAT) && !(flags & VM_CALL_KW_SPLAT_MUT)) { PUSH_INSN(args, location, splatkw); } PUSH_SEQ(ret, args); if (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->param.flags.forwardable) { flags |= VM_CALL_FORWARDING; PUSH_INSN2(ret, location, invokesuperforward, new_callinfo(iseq, 0, argc, flags, keywords, current_block != NULL), current_block); } else { PUSH_INSN2(ret, location, invokesuper, new_callinfo(iseq, 0, argc, flags, keywords, current_block != NULL), current_block); pm_compile_retry_end_label(iseq, ret, retry_end_l); } if (popped) PUSH_INSN(ret, location, pop); ISEQ_COMPILE_DATA(iseq)->current_block = previous_block; PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, current_block, retry_end_l); return; } case PM_SYMBOL_NODE: { // :foo // ^^^^ if (!popped) { VALUE value = pm_static_literal_value(iseq, node, scope_node); PUSH_INSN1(ret, location, putobject, value); } return; } case PM_TRUE_NODE: { // true // ^^^^ if (!popped) { PUSH_INSN1(ret, location, putobject, Qtrue); } return; } case PM_UNDEF_NODE: { // undef foo // ^^^^^^^^^ const pm_undef_node_t *cast = (const pm_undef_node_t *) node; const pm_node_list_t *names = &cast->names; for (size_t index = 0; index < names->size; index++) { PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE)); PM_COMPILE_NOT_POPPED(names->nodes[index]); PUSH_SEND(ret, location, id_core_undef_method, INT2NUM(2)); if (index < names->size - 1) { PUSH_INSN(ret, location, pop); } } if (popped) PUSH_INSN(ret, location, pop); return; } case PM_UNLESS_NODE: { // unless foo; bar end // ^^^^^^^^^^^^^^^^^^^ // // bar unless foo // ^^^^^^^^^^^^^^ const pm_unless_node_t *cast = (const pm_unless_node_t *) node; const pm_statements_node_t *statements = NULL; if (cast->else_clause != NULL) { statements = ((const pm_else_node_t *) cast->else_clause)->statements; } pm_compile_conditional(iseq, &location, PM_UNLESS_NODE, (const pm_node_t *) cast, statements, (const pm_node_t *) cast->statements, cast->predicate, ret, popped, scope_node); return; } case PM_UNTIL_NODE: { // until foo; bar end // ^^^^^^^^^^^^^^^^^ // // bar until foo // ^^^^^^^^^^^^^ const pm_until_node_t *cast = (const pm_until_node_t *) node; pm_compile_loop(iseq, &location, cast->base.flags, PM_UNTIL_NODE, (const pm_node_t *) cast, cast->statements, cast->predicate, ret, popped, scope_node); return; } case PM_WHILE_NODE: { // while foo; bar end // ^^^^^^^^^^^^^^^^^^ // // bar while foo // ^^^^^^^^^^^^^ const pm_while_node_t *cast = (const pm_while_node_t *) node; pm_compile_loop(iseq, &location, cast->base.flags, PM_WHILE_NODE, (const pm_node_t *) cast, cast->statements, cast->predicate, ret, popped, scope_node); return; } case PM_X_STRING_NODE: { // `foo` // ^^^^^ const pm_x_string_node_t *cast = (const pm_x_string_node_t *) node; VALUE value = parse_static_literal_string(iseq, scope_node, node, &cast->unescaped); PUSH_INSN(ret, location, putself); PUSH_INSN1(ret, location, putobject, value); PUSH_SEND_WITH_FLAG(ret, location, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE)); if (popped) PUSH_INSN(ret, location, pop); return; } case PM_YIELD_NODE: { // yield // ^^^^^ // // yield 1 // ^^^^^^^ const pm_yield_node_t *cast = (const pm_yield_node_t *) node; switch (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->type) { case ISEQ_TYPE_TOP: case ISEQ_TYPE_MAIN: case ISEQ_TYPE_CLASS: COMPILE_ERROR(iseq, location.line, "Invalid yield"); return; default: /* valid */; } int argc = 0; int flags = 0; struct rb_callinfo_kwarg *keywords = NULL; if (cast->arguments) { argc = pm_setup_args(cast->arguments, NULL, &flags, &keywords, iseq, ret, scope_node, &location); } PUSH_INSN1(ret, location, invokeblock, new_callinfo(iseq, 0, argc, flags, keywords, FALSE)); iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq); if (popped) PUSH_INSN(ret, location, pop); int level = 0; for (const rb_iseq_t *tmp_iseq = iseq; tmp_iseq != ISEQ_BODY(iseq)->local_iseq; level++) { tmp_iseq = ISEQ_BODY(tmp_iseq)->parent_iseq; } if (level > 0) access_outer_variables(iseq, level, rb_intern("yield"), true); return; } default: { rb_raise(rb_eNotImpError, "node type %s not implemented", pm_node_type_to_str(PM_NODE_TYPE(node))); return; } } } /** True if the given iseq can have pre execution blocks. */ static inline bool pm_iseq_pre_execution_p(rb_iseq_t *iseq) { switch (ISEQ_BODY(iseq)->type) { case ISEQ_TYPE_TOP: case ISEQ_TYPE_EVAL: case ISEQ_TYPE_MAIN: return true; default: return false; } } /** * This is the main entry-point into the prism compiler. It accepts the iseq * that it should be compiling instruction into and a pointer to the scope node * that it should be compiling. It returns the established instruction sequence. * Note that this function could raise Ruby errors if it encounters compilation * errors or if there is a bug in the compiler. */ VALUE pm_iseq_compile_node(rb_iseq_t *iseq, pm_scope_node_t *node) { DECL_ANCHOR(ret); INIT_ANCHOR(ret); if (pm_iseq_pre_execution_p(iseq)) { // Because these ISEQs can have BEGIN{}, we're going to create two // anchors to compile them, a "pre" and a "body". We'll mark the "pre" // on the scope node so that when BEGIN{} is found, its contents will be // added to the "pre" anchor. DECL_ANCHOR(pre); INIT_ANCHOR(pre); node->pre_execution_anchor = pre; // Now we'll compile the body as normal. We won't compile directly into // the "ret" anchor yet because we want to add the "pre" anchor to the // beginning of the "ret" anchor first. DECL_ANCHOR(body); INIT_ANCHOR(body); pm_compile_node(iseq, (const pm_node_t *) node, body, false, node); // Now we'll join both anchors together so that the content is in the // correct order. PUSH_SEQ(ret, pre); PUSH_SEQ(ret, body); } else { // In other circumstances, we can just compile the node directly into // the "ret" anchor. pm_compile_node(iseq, (const pm_node_t *) node, ret, false, node); } CHECK(iseq_setup_insn(iseq, ret)); return iseq_setup(iseq, ret); } /** * Free the internal memory associated with a pm_parse_result_t struct. * Importantly this does not free the struct itself. */ void pm_parse_result_free(pm_parse_result_t *result) { if (result->parsed) { pm_node_destroy(&result->parser, result->node.ast_node); xfree(result->node.constants); pm_scope_node_destroy(&result->node); } pm_parser_free(&result->parser); pm_string_free(&result->input); pm_options_free(&result->options); } /** An error that is going to be formatted into the output. */ typedef struct { /** A pointer to the diagnostic that was generated during parsing. */ pm_diagnostic_t *error; /** The start line of the diagnostic message. */ int32_t line; /** The column start of the diagnostic message. */ uint32_t column_start; /** The column end of the diagnostic message. */ uint32_t column_end; } pm_parse_error_t; /** The format that will be used to format the errors into the output. */ typedef struct { /** The prefix that will be used for line numbers. */ const char *number_prefix; /** The prefix that will be used for blank lines. */ const char *blank_prefix; /** The divider that will be used between sections of source code. */ const char *divider; /** The length of the blank prefix. */ size_t blank_prefix_length; /** The length of the divider. */ size_t divider_length; } pm_parse_error_format_t; #define PM_COLOR_GRAY "\033[38;5;102m" #define PM_COLOR_RED "\033[1;31m" #define PM_COLOR_RESET "\033[m" #define PM_ERROR_TRUNCATE 30 static inline pm_parse_error_t * pm_parse_errors_format_sort(const pm_parser_t *parser, const pm_list_t *error_list, const pm_newline_list_t *newline_list) { pm_parse_error_t *errors = xcalloc(error_list->size, sizeof(pm_parse_error_t)); if (errors == NULL) return NULL; int32_t start_line = parser->start_line; for (pm_diagnostic_t *error = (pm_diagnostic_t *) error_list->head; error != NULL; error = (pm_diagnostic_t *) error->node.next) { pm_line_column_t start = pm_newline_list_line_column(newline_list, error->location.start, start_line); pm_line_column_t end = pm_newline_list_line_column(newline_list, error->location.end, start_line); // We're going to insert this error into the array in sorted order. We // do this by finding the first error that has a line number greater // than the current error and then inserting the current error before // that one. size_t index = 0; while ( (index < error_list->size) && (errors[index].error != NULL) && ( (errors[index].line < start.line) || ((errors[index].line == start.line) && (errors[index].column_start < start.column)) ) ) index++; // Now we're going to shift all of the errors after this one down one // index to make room for the new error. if (index + 1 < error_list->size) { memmove(&errors[index + 1], &errors[index], sizeof(pm_parse_error_t) * (error_list->size - index - 1)); } // Finally, we'll insert the error into the array. uint32_t column_end; if (start.line == end.line) { column_end = end.column; } else { column_end = (uint32_t) (newline_list->offsets[start.line - start_line + 1] - newline_list->offsets[start.line - start_line] - 1); } // Ensure we have at least one column of error. if (start.column == column_end) column_end++; errors[index] = (pm_parse_error_t) { .error = error, .line = start.line, .column_start = start.column, .column_end = column_end }; } return errors; } static inline void pm_parse_errors_format_line(const pm_parser_t *parser, const pm_newline_list_t *newline_list, const char *number_prefix, int32_t line, uint32_t column_start, uint32_t column_end, pm_buffer_t *buffer) { int32_t line_delta = line - parser->start_line; assert(line_delta >= 0); size_t index = (size_t) line_delta; assert(index < newline_list->size); const uint8_t *start = &parser->start[newline_list->offsets[index]]; const uint8_t *end; if (index >= newline_list->size - 1) { end = parser->end; } else { end = &parser->start[newline_list->offsets[index + 1]]; } pm_buffer_append_format(buffer, number_prefix, line); // Here we determine if we should truncate the end of the line. bool truncate_end = false; if ((column_end != 0) && ((end - (start + column_end)) >= PM_ERROR_TRUNCATE)) { end = start + column_end + PM_ERROR_TRUNCATE; truncate_end = true; } // Here we determine if we should truncate the start of the line. if (column_start >= PM_ERROR_TRUNCATE) { pm_buffer_append_string(buffer, "... ", 4); start += column_start; } pm_buffer_append_string(buffer, (const char *) start, (size_t) (end - start)); if (truncate_end) { pm_buffer_append_string(buffer, " ...\n", 5); } else if (end == parser->end && end[-1] != '\n') { pm_buffer_append_string(buffer, "\n", 1); } } /** * Format the errors on the parser into the given buffer. */ static void pm_parse_errors_format(const pm_parser_t *parser, const pm_list_t *error_list, pm_buffer_t *buffer, bool colorize, bool inline_messages) { assert(error_list->size != 0); // First, we're going to sort all of the errors by line number using an // insertion sort into a newly allocated array. const int32_t start_line = parser->start_line; const pm_newline_list_t *newline_list = &parser->newline_list; pm_parse_error_t *errors = pm_parse_errors_format_sort(parser, error_list, newline_list); if (errors == NULL) return; // Now we're going to determine how we're going to format line numbers and // blank lines based on the maximum number of digits in the line numbers // that are going to be displaid. pm_parse_error_format_t error_format; int32_t first_line_number = errors[0].line; int32_t last_line_number = errors[error_list->size - 1].line; // If we have a maximum line number that is negative, then we're going to // use the absolute value for comparison but multiple by 10 to additionally // have a column for the negative sign. if (first_line_number < 0) first_line_number = (-first_line_number) * 10; if (last_line_number < 0) last_line_number = (-last_line_number) * 10; int32_t max_line_number = first_line_number > last_line_number ? first_line_number : last_line_number; if (max_line_number < 10) { if (colorize) { error_format = (pm_parse_error_format_t) { .number_prefix = PM_COLOR_GRAY "%1" PRIi32 " | " PM_COLOR_RESET, .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET, .divider = PM_COLOR_GRAY " ~~~~~" PM_COLOR_RESET "\n" }; } else { error_format = (pm_parse_error_format_t) { .number_prefix = "%1" PRIi32 " | ", .blank_prefix = " | ", .divider = " ~~~~~\n" }; } } else if (max_line_number < 100) { if (colorize) { error_format = (pm_parse_error_format_t) { .number_prefix = PM_COLOR_GRAY "%2" PRIi32 " | " PM_COLOR_RESET, .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET, .divider = PM_COLOR_GRAY " ~~~~~~" PM_COLOR_RESET "\n" }; } else { error_format = (pm_parse_error_format_t) { .number_prefix = "%2" PRIi32 " | ", .blank_prefix = " | ", .divider = " ~~~~~~\n" }; } } else if (max_line_number < 1000) { if (colorize) { error_format = (pm_parse_error_format_t) { .number_prefix = PM_COLOR_GRAY "%3" PRIi32 " | " PM_COLOR_RESET, .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET, .divider = PM_COLOR_GRAY " ~~~~~~~" PM_COLOR_RESET "\n" }; } else { error_format = (pm_parse_error_format_t) { .number_prefix = "%3" PRIi32 " | ", .blank_prefix = " | ", .divider = " ~~~~~~~\n" }; } } else if (max_line_number < 10000) { if (colorize) { error_format = (pm_parse_error_format_t) { .number_prefix = PM_COLOR_GRAY "%4" PRIi32 " | " PM_COLOR_RESET, .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET, .divider = PM_COLOR_GRAY " ~~~~~~~~" PM_COLOR_RESET "\n" }; } else { error_format = (pm_parse_error_format_t) { .number_prefix = "%4" PRIi32 " | ", .blank_prefix = " | ", .divider = " ~~~~~~~~\n" }; } } else { if (colorize) { error_format = (pm_parse_error_format_t) { .number_prefix = PM_COLOR_GRAY "%5" PRIi32 " | " PM_COLOR_RESET, .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET, .divider = PM_COLOR_GRAY " ~~~~~~~~" PM_COLOR_RESET "\n" }; } else { error_format = (pm_parse_error_format_t) { .number_prefix = "%5" PRIi32 " | ", .blank_prefix = " | ", .divider = " ~~~~~~~~\n" }; } } error_format.blank_prefix_length = strlen(error_format.blank_prefix); error_format.divider_length = strlen(error_format.divider); // Now we're going to iterate through every error in our error list and // display it. While we're iterating, we will display some padding lines of // the source before the error to give some context. We'll be careful not to // display the same line twice in case the errors are close enough in the // source. int32_t last_line = parser->start_line - 1; uint32_t last_column_start = 0; const pm_encoding_t *encoding = parser->encoding; for (size_t index = 0; index < error_list->size; index++) { pm_parse_error_t *error = &errors[index]; // Here we determine how many lines of padding of the source to display, // based on the difference from the last line that was displaid. if (error->line - last_line > 1) { if (error->line - last_line > 2) { if ((index != 0) && (error->line - last_line > 3)) { pm_buffer_append_string(buffer, error_format.divider, error_format.divider_length); } pm_buffer_append_string(buffer, " ", 2); pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, error->line - 2, 0, 0, buffer); } pm_buffer_append_string(buffer, " ", 2); pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, error->line - 1, 0, 0, buffer); } // If this is the first error or we're on a new line, then we'll display // the line that has the error in it. if ((index == 0) || (error->line != last_line)) { if (colorize) { pm_buffer_append_string(buffer, PM_COLOR_RED "> " PM_COLOR_RESET, 12); } else { pm_buffer_append_string(buffer, "> ", 2); } last_column_start = error->column_start; // Find the maximum column end of all the errors on this line. uint32_t column_end = error->column_end; for (size_t next_index = index + 1; next_index < error_list->size; next_index++) { if (errors[next_index].line != error->line) break; if (errors[next_index].column_end > column_end) column_end = errors[next_index].column_end; } pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, error->line, error->column_start, column_end, buffer); } const uint8_t *start = &parser->start[newline_list->offsets[error->line - start_line]]; if (start == parser->end) pm_buffer_append_byte(buffer, '\n'); // Now we'll display the actual error message. We'll do this by first // putting the prefix to the line, then a bunch of blank spaces // depending on the column, then as many carets as we need to display // the width of the error, then the error message itself. // // Note that this doesn't take into account the width of the actual // character when displaid in the terminal. For some east-asian // languages or emoji, this means it can be thrown off pretty badly. We // will need to solve this eventually. pm_buffer_append_string(buffer, " ", 2); pm_buffer_append_string(buffer, error_format.blank_prefix, error_format.blank_prefix_length); size_t column = 0; if (last_column_start >= PM_ERROR_TRUNCATE) { pm_buffer_append_string(buffer, " ", 4); column = last_column_start; } while (column < error->column_start) { pm_buffer_append_byte(buffer, ' '); size_t char_width = encoding->char_width(start + column, parser->end - (start + column)); column += (char_width == 0 ? 1 : char_width); } if (colorize) pm_buffer_append_string(buffer, PM_COLOR_RED, 7); pm_buffer_append_byte(buffer, '^'); size_t char_width = encoding->char_width(start + column, parser->end - (start + column)); column += (char_width == 0 ? 1 : char_width); while (column < error->column_end) { pm_buffer_append_byte(buffer, '~'); size_t char_width = encoding->char_width(start + column, parser->end - (start + column)); column += (char_width == 0 ? 1 : char_width); } if (colorize) pm_buffer_append_string(buffer, PM_COLOR_RESET, 3); if (inline_messages) { pm_buffer_append_byte(buffer, ' '); assert(error->error != NULL); const char *message = error->error->message; pm_buffer_append_string(buffer, message, strlen(message)); } pm_buffer_append_byte(buffer, '\n'); // Here we determine how many lines of padding to display after the // error, depending on where the next error is in source. last_line = error->line; int32_t next_line = (index == error_list->size - 1) ? (((int32_t) newline_list->size) + parser->start_line) : errors[index + 1].line; if (next_line - last_line > 1) { pm_buffer_append_string(buffer, " ", 2); pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, ++last_line, 0, 0, buffer); } if (next_line - last_line > 1) { pm_buffer_append_string(buffer, " ", 2); pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, ++last_line, 0, 0, buffer); } } // Finally, we'll free the array of errors that we allocated. xfree(errors); } #undef PM_ERROR_TRUNCATE #undef PM_COLOR_GRAY #undef PM_COLOR_RED #undef PM_COLOR_RESET /** * Check if the given source slice is valid UTF-8. The location represents the * location of the error, but the slice of the source will include the content * of all of the lines that the error touches, so we need to check those parts * as well. */ static bool pm_parse_process_error_utf8_p(const pm_parser_t *parser, const pm_location_t *location) { const size_t start_line = pm_newline_list_line_column(&parser->newline_list, location->start, 1).line; const size_t end_line = pm_newline_list_line_column(&parser->newline_list, location->end, 1).line; const uint8_t *start = parser->start + parser->newline_list.offsets[start_line - 1]; const uint8_t *end = ((end_line == parser->newline_list.size) ? parser->end : (parser->start + parser->newline_list.offsets[end_line])); size_t width; while (start < end) { if ((width = pm_encoding_utf_8_char_width(start, end - start)) == 0) return false; start += width; } return true; } /** * Generate an error object from the given parser that contains as much * information as possible about the errors that were encountered. */ static VALUE pm_parse_process_error(const pm_parse_result_t *result) { const pm_parser_t *parser = &result->parser; const pm_diagnostic_t *head = (const pm_diagnostic_t *) parser->error_list.head; bool valid_utf8 = true; pm_buffer_t buffer = { 0 }; const pm_string_t *filepath = &parser->filepath; for (const pm_diagnostic_t *error = head; error != NULL; error = (const pm_diagnostic_t *) error->node.next) { switch (error->level) { case PM_ERROR_LEVEL_SYNTAX: // It is implicitly assumed that the error messages will be // encodeable as UTF-8. Because of this, we can't include source // examples that contain invalid byte sequences. So if any source // examples include invalid UTF-8 byte sequences, we will skip // showing source examples entirely. if (valid_utf8 && !pm_parse_process_error_utf8_p(parser, &error->location)) { valid_utf8 = false; } break; case PM_ERROR_LEVEL_ARGUMENT: { // Any errors with the level PM_ERROR_LEVEL_ARGUMENT take over as // the only argument that gets raised. This is to allow priority // messages that should be handled before anything else. int32_t line_number = (int32_t) pm_location_line_number(parser, &error->location); pm_buffer_append_format( &buffer, "%.*s:%" PRIi32 ": %s", (int) pm_string_length(filepath), pm_string_source(filepath), line_number, error->message ); if (pm_parse_process_error_utf8_p(parser, &error->location)) { pm_buffer_append_byte(&buffer, '\n'); pm_list_node_t *list_node = (pm_list_node_t *) error; pm_list_t error_list = { .size = 1, .head = list_node, .tail = list_node }; pm_parse_errors_format(parser, &error_list, &buffer, rb_stderr_tty_p(), false); } VALUE value = rb_exc_new(rb_eArgError, pm_buffer_value(&buffer), pm_buffer_length(&buffer)); pm_buffer_free(&buffer); return value; } case PM_ERROR_LEVEL_LOAD: { // Load errors are much simpler, because they don't include any of // the source in them. We create the error directly from the // message. VALUE message = rb_enc_str_new_cstr(error->message, rb_locale_encoding()); VALUE value = rb_exc_new3(rb_eLoadError, message); rb_ivar_set(value, rb_intern_const("@path"), Qnil); return value; } } } pm_buffer_append_format( &buffer, "%.*s:%" PRIi32 ": syntax error%s found\n", (int) pm_string_length(filepath), pm_string_source(filepath), (int32_t) pm_location_line_number(parser, &head->location), (parser->error_list.size > 1) ? "s" : "" ); if (valid_utf8) { pm_parse_errors_format(parser, &parser->error_list, &buffer, rb_stderr_tty_p(), true); } else { for (const pm_diagnostic_t *error = head; error != NULL; error = (const pm_diagnostic_t *) error->node.next) { if (error != head) pm_buffer_append_byte(&buffer, '\n'); pm_buffer_append_format(&buffer, "%.*s:%" PRIi32 ": %s", (int) pm_string_length(filepath), pm_string_source(filepath), (int32_t) pm_location_line_number(parser, &error->location), error->message); } } VALUE message = rb_enc_str_new(pm_buffer_value(&buffer), pm_buffer_length(&buffer), result->node.encoding); VALUE error = rb_exc_new_str(rb_eSyntaxError, message); rb_encoding *filepath_encoding = result->node.filepath_encoding != NULL ? result->node.filepath_encoding : rb_utf8_encoding(); VALUE path = rb_enc_str_new((const char *) pm_string_source(filepath), pm_string_length(filepath), filepath_encoding); rb_ivar_set(error, rb_intern_const("@path"), path); pm_buffer_free(&buffer); return error; } /** * Parse the parse result and raise a Ruby error if there are any syntax errors. * It returns an error if one should be raised. It is assumed that the parse * result object is zeroed out. */ static VALUE pm_parse_process(pm_parse_result_t *result, pm_node_t *node, VALUE *script_lines) { pm_parser_t *parser = &result->parser; // First, set up the scope node so that the AST node is attached and can be // freed regardless of whether or we return an error. pm_scope_node_t *scope_node = &result->node; rb_encoding *filepath_encoding = scope_node->filepath_encoding; int coverage_enabled = scope_node->coverage_enabled; pm_scope_node_init(node, scope_node, NULL); scope_node->filepath_encoding = filepath_encoding; scope_node->encoding = rb_enc_find(parser->encoding->name); if (!scope_node->encoding) rb_bug("Encoding not found %s!", parser->encoding->name); scope_node->coverage_enabled = coverage_enabled; // If RubyVM.keep_script_lines is set to true, then we need to create that // array of script lines here. if (script_lines != NULL) { *script_lines = rb_ary_new_capa(parser->newline_list.size); for (size_t index = 0; index < parser->newline_list.size; index++) { size_t offset = parser->newline_list.offsets[index]; size_t length = index == parser->newline_list.size - 1 ? ((size_t) (parser->end - (parser->start + offset))) : (parser->newline_list.offsets[index + 1] - offset); rb_ary_push(*script_lines, rb_enc_str_new((const char *) parser->start + offset, length, scope_node->encoding)); } scope_node->script_lines = script_lines; } // Emit all of the various warnings from the parse. const pm_diagnostic_t *warning; const char *warning_filepath = (const char *) pm_string_source(&parser->filepath); for (warning = (const pm_diagnostic_t *) parser->warning_list.head; warning != NULL; warning = (const pm_diagnostic_t *) warning->node.next) { int line = pm_location_line_number(parser, &warning->location); if (warning->level == PM_WARNING_LEVEL_VERBOSE) { rb_enc_compile_warning(scope_node->encoding, warning_filepath, line, "%s", warning->message); } else { rb_enc_compile_warn(scope_node->encoding, warning_filepath, line, "%s", warning->message); } } // If there are errors, raise an appropriate error and free the result. if (parser->error_list.size > 0) { VALUE error = pm_parse_process_error(result); // TODO: We need to set the backtrace. // rb_funcallv(error, rb_intern("set_backtrace"), 1, &path); return error; } // Now set up the constant pool and intern all of the various constants into // their corresponding IDs. scope_node->parser = parser; scope_node->constants = xcalloc(parser->constant_pool.size, sizeof(ID)); for (uint32_t index = 0; index < parser->constant_pool.size; index++) { pm_constant_t *constant = &parser->constant_pool.constants[index]; scope_node->constants[index] = rb_intern3((const char *) constant->start, constant->length, scope_node->encoding); } scope_node->index_lookup_table = st_init_numtable(); pm_constant_id_list_t *locals = &scope_node->locals; for (size_t index = 0; index < locals->size; index++) { st_insert(scope_node->index_lookup_table, locals->ids[index], index); } // If we got here, this is a success and we can return Qnil to indicate that // no error should be raised. result->parsed = true; return Qnil; } /** * Set the frozen_string_literal option based on the default value used by the * CRuby compiler. */ static void pm_options_frozen_string_literal_init(pm_options_t *options) { int frozen_string_literal = rb_iseq_opt_frozen_string_literal(); switch (frozen_string_literal) { case ISEQ_FROZEN_STRING_LITERAL_UNSET: break; case ISEQ_FROZEN_STRING_LITERAL_DISABLED: pm_options_frozen_string_literal_set(options, false); break; case ISEQ_FROZEN_STRING_LITERAL_ENABLED: pm_options_frozen_string_literal_set(options, true); break; default: rb_bug("pm_options_frozen_string_literal_init: invalid frozen_string_literal=%d", frozen_string_literal); break; } } /** * Returns an array of ruby String objects that represent the lines of the * source file that the given parser parsed. */ static inline VALUE pm_parse_file_script_lines(const pm_scope_node_t *scope_node, const pm_parser_t *parser) { const pm_newline_list_t *newline_list = &parser->newline_list; const char *start = (const char *) parser->start; const char *end = (const char *) parser->end; // If we end exactly on a newline, then there's no need to push on a final // segment. If we don't, then we need to push on the last offset up to the // end of the string. size_t last_offset = newline_list->offsets[newline_list->size - 1]; bool last_push = start + last_offset != end; // Create the ruby strings that represent the lines of the source. VALUE lines = rb_ary_new_capa(newline_list->size - (last_push ? 0 : 1)); for (size_t index = 0; index < newline_list->size - 1; index++) { size_t offset = newline_list->offsets[index]; size_t length = newline_list->offsets[index + 1] - offset; rb_ary_push(lines, rb_enc_str_new(start + offset, length, scope_node->encoding)); } // Push on the last line if we need to. if (last_push) { rb_ary_push(lines, rb_enc_str_new(start + last_offset, end - (start + last_offset), scope_node->encoding)); } return lines; } // This is essentially pm_string_mapped_init(), preferring to memory map the // file, with additional handling for files that require blocking to properly // read (e.g. pipes). static bool read_entire_file(pm_string_t *string, const char *filepath) { #ifdef _WIN32 // Open the file for reading. HANDLE file = CreateFile(filepath, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (file == INVALID_HANDLE_VALUE) { return false; } // Get the file size. DWORD file_size = GetFileSize(file, NULL); if (file_size == INVALID_FILE_SIZE) { CloseHandle(file); return false; } // If the file is empty, then we don't need to do anything else, we'll set // the source to a constant empty string and return. if (file_size == 0) { CloseHandle(file); const uint8_t source[] = ""; *string = (pm_string_t) { .type = PM_STRING_CONSTANT, .source = source, .length = 0 }; return true; } // Create a mapping of the file. HANDLE mapping = CreateFileMapping(file, NULL, PAGE_READONLY, 0, 0, NULL); if (mapping == NULL) { CloseHandle(file); return false; } // Map the file into memory. uint8_t *source = (uint8_t *) MapViewOfFile(mapping, FILE_MAP_READ, 0, 0, 0); CloseHandle(mapping); CloseHandle(file); if (source == NULL) { return false; } *string = (pm_string_t) { .type = PM_STRING_MAPPED, .source = source, .length = (size_t) file_size }; return true; #elif defined(_POSIX_MAPPED_FILES) // Open the file for reading const int open_mode = O_RDONLY | O_NONBLOCK; int fd = open(filepath, open_mode); if (fd == -1) { return false; } // Stat the file to get the file size struct stat sb; if (fstat(fd, &sb) == -1) { close(fd); return false; } // Ensure it is a file and not a directory if (S_ISDIR(sb.st_mode)) { close(fd); errno = EISDIR; return false; } // We need to wait for data first before reading from pipes and character // devices. To not block the entire VM, we need to release the GVL while // reading. Use IO#read to do this and let the GC handle closing the FD. if (S_ISFIFO(sb.st_mode) || S_ISCHR(sb.st_mode)) { VALUE io = rb_io_fdopen((int) fd, open_mode, filepath); rb_io_wait(io, RB_INT2NUM(RUBY_IO_READABLE), Qnil); VALUE contents = rb_funcall(io, rb_intern("read"), 0); if (!RB_TYPE_P(contents, T_STRING)) { return false; } long len = RSTRING_LEN(contents); if (len < 0) { return false; } size_t length = (size_t) len; uint8_t *source = xmalloc(length); memcpy(source, RSTRING_PTR(contents), length); *string = (pm_string_t) { .type = PM_STRING_OWNED, .source = source, .length = length }; return true; } // mmap the file descriptor to virtually get the contents size_t size = (size_t) sb.st_size; uint8_t *source = NULL; if (size == 0) { close(fd); const uint8_t source[] = ""; *string = (pm_string_t) { .type = PM_STRING_CONSTANT, .source = source, .length = 0 }; return true; } source = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0); if (source == MAP_FAILED) { return false; } close(fd); *string = (pm_string_t) { .type = PM_STRING_MAPPED, .source = source, .length = size }; return true; #else return pm_string_file_init(string, filepath); #endif } /** * Attempt to load the file into memory. Return a Ruby error if the file cannot * be read. */ VALUE pm_load_file(pm_parse_result_t *result, VALUE filepath, bool load_error) { if (!read_entire_file(&result->input, RSTRING_PTR(filepath))) { #ifdef _WIN32 int e = rb_w32_map_errno(GetLastError()); #else int e = errno; #endif VALUE error; if (load_error) { VALUE message = rb_str_buf_new_cstr(strerror(e)); rb_str_cat2(message, " -- "); rb_str_append(message, filepath); error = rb_exc_new3(rb_eLoadError, message); rb_ivar_set(error, rb_intern_const("@path"), filepath); } else { error = rb_syserr_new(e, RSTRING_PTR(filepath)); RB_GC_GUARD(filepath); } return error; } pm_options_frozen_string_literal_init(&result->options); return Qnil; } /** * Parse the given filepath and store the resulting scope node in the given * parse result struct. It returns a Ruby error if the file cannot be read or * if it cannot be parsed properly. It is assumed that the parse result object * is zeroed out. */ VALUE pm_parse_file(pm_parse_result_t *result, VALUE filepath, VALUE *script_lines) { result->node.filepath_encoding = rb_enc_get(filepath); pm_options_filepath_set(&result->options, RSTRING_PTR(filepath)); RB_GC_GUARD(filepath); pm_parser_init(&result->parser, pm_string_source(&result->input), pm_string_length(&result->input), &result->options); pm_node_t *node = pm_parse(&result->parser); VALUE error = pm_parse_process(result, node, script_lines); // If we're parsing a filepath, then we need to potentially support the // SCRIPT_LINES__ constant, which can be a hash that has an array of lines // of every read file. ID id_script_lines = rb_intern("SCRIPT_LINES__"); if (rb_const_defined_at(rb_cObject, id_script_lines)) { VALUE constant_script_lines = rb_const_get_at(rb_cObject, id_script_lines); if (RB_TYPE_P(constant_script_lines, T_HASH)) { rb_hash_aset(constant_script_lines, filepath, pm_parse_file_script_lines(&result->node, &result->parser)); } } return error; } /** * Load and then parse the given filepath. It returns a Ruby error if the file * cannot be read or if it cannot be parsed properly. */ VALUE pm_load_parse_file(pm_parse_result_t *result, VALUE filepath, VALUE *script_lines) { VALUE error = pm_load_file(result, filepath, false); if (NIL_P(error)) { error = pm_parse_file(result, filepath, script_lines); } return error; } /** * Parse the given source that corresponds to the given filepath and store the * resulting scope node in the given parse result struct. It is assumed that the * parse result object is zeroed out. If the string fails to parse, then a Ruby * error is returned. */ VALUE pm_parse_string(pm_parse_result_t *result, VALUE source, VALUE filepath, VALUE *script_lines) { rb_encoding *encoding = rb_enc_get(source); if (!rb_enc_asciicompat(encoding)) { return rb_exc_new_cstr(rb_eArgError, "invalid source encoding"); } pm_options_frozen_string_literal_init(&result->options); pm_string_constant_init(&result->input, RSTRING_PTR(source), RSTRING_LEN(source)); pm_options_encoding_set(&result->options, rb_enc_name(encoding)); result->node.filepath_encoding = rb_enc_get(filepath); pm_options_filepath_set(&result->options, RSTRING_PTR(filepath)); RB_GC_GUARD(filepath); pm_parser_init(&result->parser, pm_string_source(&result->input), pm_string_length(&result->input), &result->options); pm_node_t *node = pm_parse(&result->parser); return pm_parse_process(result, node, script_lines); } /** * An implementation of fgets that is suitable for use with Ruby IO objects. */ static char * pm_parse_stdin_fgets(char *string, int size, void *stream) { RUBY_ASSERT(size > 0); VALUE line = rb_funcall((VALUE) stream, rb_intern("gets"), 1, INT2FIX(size - 1)); if (NIL_P(line)) { return NULL; } const char *cstr = RSTRING_PTR(line); long length = RSTRING_LEN(line); memcpy(string, cstr, length); string[length] = '\0'; return string; } // We need access to this function when we're done parsing stdin. void rb_reset_argf_lineno(long n); /** * Parse the source off STDIN and store the resulting scope node in the given * parse result struct. It is assumed that the parse result object is zeroed * out. If the stream fails to parse, then a Ruby error is returned. */ VALUE pm_parse_stdin(pm_parse_result_t *result) { pm_options_frozen_string_literal_init(&result->options); pm_buffer_t buffer; pm_node_t *node = pm_parse_stream(&result->parser, &buffer, (void *) rb_stdin, pm_parse_stdin_fgets, &result->options); // Copy the allocated buffer contents into the input string so that it gets // freed. At this point we've handed over ownership, so we don't need to // free the buffer itself. pm_string_owned_init(&result->input, (uint8_t *) pm_buffer_value(&buffer), pm_buffer_length(&buffer)); // When we're done parsing, we reset $. because we don't want the fact that // we went through an IO object to be visible to the user. rb_reset_argf_lineno(0); return pm_parse_process(result, node, NULL); } #undef NEW_ISEQ #define NEW_ISEQ OLD_ISEQ #undef NEW_CHILD_ISEQ #define NEW_CHILD_ISEQ OLD_CHILD_ISEQ