зеркало из https://github.com/github/ruby.git
2340 строки
67 KiB
C
2340 строки
67 KiB
C
/* This is a public domain general purpose hash table package
|
|
originally written by Peter Moore @ UCB.
|
|
|
|
The hash table data structures were redesigned and the package was
|
|
rewritten by Vladimir Makarov <vmakarov@redhat.com>. */
|
|
|
|
/* The original package implemented classic bucket-based hash tables
|
|
with entries doubly linked for an access by their insertion order.
|
|
To decrease pointer chasing and as a consequence to improve a data
|
|
locality the current implementation is based on storing entries in
|
|
an array and using hash tables with open addressing. The current
|
|
entries are more compact in comparison with the original ones and
|
|
this also improves the data locality.
|
|
|
|
The hash table has two arrays called *bins* and *entries*.
|
|
|
|
bins:
|
|
-------
|
|
| | entries array:
|
|
|-------| --------------------------------
|
|
| index | | | entry: | | |
|
|
|-------| | | | | |
|
|
| ... | | ... | hash | ... | ... |
|
|
|-------| | | key | | |
|
|
| empty | | | record | | |
|
|
|-------| --------------------------------
|
|
| ... | ^ ^
|
|
|-------| |_ entries start |_ entries bound
|
|
|deleted|
|
|
-------
|
|
|
|
o The entry array contains table entries in the same order as they
|
|
were inserted.
|
|
|
|
When the first entry is deleted, a variable containing index of
|
|
the current first entry (*entries start*) is changed. In all
|
|
other cases of the deletion, we just mark the entry as deleted by
|
|
using a reserved hash value.
|
|
|
|
Such organization of the entry storage makes operations of the
|
|
table shift and the entries traversal very fast.
|
|
|
|
o The bins provide access to the entries by their keys. The
|
|
key hash is mapped to a bin containing *index* of the
|
|
corresponding entry in the entry array.
|
|
|
|
The bin array size is always power of two, it makes mapping very
|
|
fast by using the corresponding lower bits of the hash.
|
|
Generally it is not a good idea to ignore some part of the hash.
|
|
But alternative approach is worse. For example, we could use a
|
|
modulo operation for mapping and a prime number for the size of
|
|
the bin array. Unfortunately, the modulo operation for big
|
|
64-bit numbers are extremely slow (it takes more than 100 cycles
|
|
on modern Intel CPUs).
|
|
|
|
Still other bits of the hash value are used when the mapping
|
|
results in a collision. In this case we use a secondary hash
|
|
value which is a result of a function of the collision bin
|
|
index and the original hash value. The function choice
|
|
guarantees that we can traverse all bins and finally find the
|
|
corresponding bin as after several iterations the function
|
|
becomes a full cycle linear congruential generator because it
|
|
satisfies requirements of the Hull-Dobell theorem.
|
|
|
|
When an entry is removed from the table besides marking the
|
|
hash in the corresponding entry described above, we also mark
|
|
the bin by a special value in order to find entries which had
|
|
a collision with the removed entries.
|
|
|
|
There are two reserved values for the bins. One denotes an
|
|
empty bin, another one denotes a bin for a deleted entry.
|
|
|
|
o The length of the bin array is at least two times more than the
|
|
entry array length. This keeps the table load factor healthy.
|
|
The trigger of rebuilding the table is always a case when we can
|
|
not insert an entry anymore at the entries bound. We could
|
|
change the entries bound too in case of deletion but than we need
|
|
a special code to count bins with corresponding deleted entries
|
|
and reset the bin values when there are too many bins
|
|
corresponding deleted entries
|
|
|
|
Table rebuilding is done by creation of a new entry array and
|
|
bins of an appropriate size. We also try to reuse the arrays
|
|
in some cases by compacting the array and removing deleted
|
|
entries.
|
|
|
|
o To save memory very small tables have no allocated arrays
|
|
bins. We use a linear search for an access by a key.
|
|
|
|
o To save more memory we use 8-, 16-, 32- and 64- bit indexes in
|
|
bins depending on the current hash table size.
|
|
|
|
o The implementation takes into account that the table can be
|
|
rebuilt during hashing or comparison functions. It can happen if
|
|
the functions are implemented in Ruby and a thread switch occurs
|
|
during their execution.
|
|
|
|
This implementation speeds up the Ruby hash table benchmarks in
|
|
average by more 40% on Intel Haswell CPU.
|
|
|
|
*/
|
|
|
|
#ifdef NOT_RUBY
|
|
#include "regint.h"
|
|
#include "st.h"
|
|
#elif defined RUBY_EXPORT
|
|
#include "internal.h"
|
|
#include "internal/bits.h"
|
|
#include "internal/hash.h"
|
|
#include "internal/sanitizers.h"
|
|
#include "internal/st.h"
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#ifdef HAVE_STDLIB_H
|
|
#include <stdlib.h>
|
|
#endif
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#ifdef __GNUC__
|
|
#define PREFETCH(addr, write_p) __builtin_prefetch(addr, write_p)
|
|
#define EXPECT(expr, val) __builtin_expect(expr, val)
|
|
#define ATTRIBUTE_UNUSED __attribute__((unused))
|
|
#else
|
|
#define PREFETCH(addr, write_p)
|
|
#define EXPECT(expr, val) (expr)
|
|
#define ATTRIBUTE_UNUSED
|
|
#endif
|
|
|
|
/* The type of hashes. */
|
|
typedef st_index_t st_hash_t;
|
|
|
|
struct st_table_entry {
|
|
st_hash_t hash;
|
|
st_data_t key;
|
|
st_data_t record;
|
|
};
|
|
|
|
#define type_numhash st_hashtype_num
|
|
static const struct st_hash_type st_hashtype_num = {
|
|
st_numcmp,
|
|
st_numhash,
|
|
};
|
|
|
|
static int st_strcmp(st_data_t, st_data_t);
|
|
static st_index_t strhash(st_data_t);
|
|
static const struct st_hash_type type_strhash = {
|
|
st_strcmp,
|
|
strhash,
|
|
};
|
|
|
|
static int st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs);
|
|
static st_index_t strcasehash(st_data_t);
|
|
static const struct st_hash_type type_strcasehash = {
|
|
st_locale_insensitive_strcasecmp_i,
|
|
strcasehash,
|
|
};
|
|
|
|
/* Value used to catch uninitialized entries/bins during debugging.
|
|
There is a possibility for a false alarm, but its probability is
|
|
extremely small. */
|
|
#define ST_INIT_VAL 0xafafafafafafafaf
|
|
#define ST_INIT_VAL_BYTE 0xafa
|
|
|
|
#ifdef RUBY
|
|
#undef malloc
|
|
#undef realloc
|
|
#undef calloc
|
|
#undef free
|
|
#define malloc ruby_xmalloc
|
|
#define calloc ruby_xcalloc
|
|
#define realloc ruby_xrealloc
|
|
#define free ruby_xfree
|
|
#endif
|
|
|
|
#define EQUAL(tab,x,y) ((x) == (y) || (*(tab)->type->compare)((x),(y)) == 0)
|
|
#define PTR_EQUAL(tab, ptr, hash_val, key_) \
|
|
((ptr)->hash == (hash_val) && EQUAL((tab), (key_), (ptr)->key))
|
|
|
|
/* As PTR_EQUAL only its result is returned in RES. REBUILT_P is set
|
|
up to TRUE if the table is rebuilt during the comparison. */
|
|
#define DO_PTR_EQUAL_CHECK(tab, ptr, hash_val, key, res, rebuilt_p) \
|
|
do { \
|
|
unsigned int _old_rebuilds_num = (tab)->rebuilds_num; \
|
|
res = PTR_EQUAL(tab, ptr, hash_val, key); \
|
|
rebuilt_p = _old_rebuilds_num != (tab)->rebuilds_num; \
|
|
} while (FALSE)
|
|
|
|
/* Features of a table. */
|
|
struct st_features {
|
|
/* Power of 2 used for number of allocated entries. */
|
|
unsigned char entry_power;
|
|
/* Power of 2 used for number of allocated bins. Depending on the
|
|
table size, the number of bins is 2-4 times more than the
|
|
number of entries. */
|
|
unsigned char bin_power;
|
|
/* Enumeration of sizes of bins (8-bit, 16-bit etc). */
|
|
unsigned char size_ind;
|
|
/* Bins are packed in words of type st_index_t. The following is
|
|
a size of bins counted by words. */
|
|
st_index_t bins_words;
|
|
};
|
|
|
|
/* Features of all possible size tables. */
|
|
#if SIZEOF_ST_INDEX_T == 8
|
|
#define MAX_POWER2 62
|
|
static const struct st_features features[] = {
|
|
{0, 1, 0, 0x0},
|
|
{1, 2, 0, 0x1},
|
|
{2, 3, 0, 0x1},
|
|
{3, 4, 0, 0x2},
|
|
{4, 5, 0, 0x4},
|
|
{5, 6, 0, 0x8},
|
|
{6, 7, 0, 0x10},
|
|
{7, 8, 0, 0x20},
|
|
{8, 9, 1, 0x80},
|
|
{9, 10, 1, 0x100},
|
|
{10, 11, 1, 0x200},
|
|
{11, 12, 1, 0x400},
|
|
{12, 13, 1, 0x800},
|
|
{13, 14, 1, 0x1000},
|
|
{14, 15, 1, 0x2000},
|
|
{15, 16, 1, 0x4000},
|
|
{16, 17, 2, 0x10000},
|
|
{17, 18, 2, 0x20000},
|
|
{18, 19, 2, 0x40000},
|
|
{19, 20, 2, 0x80000},
|
|
{20, 21, 2, 0x100000},
|
|
{21, 22, 2, 0x200000},
|
|
{22, 23, 2, 0x400000},
|
|
{23, 24, 2, 0x800000},
|
|
{24, 25, 2, 0x1000000},
|
|
{25, 26, 2, 0x2000000},
|
|
{26, 27, 2, 0x4000000},
|
|
{27, 28, 2, 0x8000000},
|
|
{28, 29, 2, 0x10000000},
|
|
{29, 30, 2, 0x20000000},
|
|
{30, 31, 2, 0x40000000},
|
|
{31, 32, 2, 0x80000000},
|
|
{32, 33, 3, 0x200000000},
|
|
{33, 34, 3, 0x400000000},
|
|
{34, 35, 3, 0x800000000},
|
|
{35, 36, 3, 0x1000000000},
|
|
{36, 37, 3, 0x2000000000},
|
|
{37, 38, 3, 0x4000000000},
|
|
{38, 39, 3, 0x8000000000},
|
|
{39, 40, 3, 0x10000000000},
|
|
{40, 41, 3, 0x20000000000},
|
|
{41, 42, 3, 0x40000000000},
|
|
{42, 43, 3, 0x80000000000},
|
|
{43, 44, 3, 0x100000000000},
|
|
{44, 45, 3, 0x200000000000},
|
|
{45, 46, 3, 0x400000000000},
|
|
{46, 47, 3, 0x800000000000},
|
|
{47, 48, 3, 0x1000000000000},
|
|
{48, 49, 3, 0x2000000000000},
|
|
{49, 50, 3, 0x4000000000000},
|
|
{50, 51, 3, 0x8000000000000},
|
|
{51, 52, 3, 0x10000000000000},
|
|
{52, 53, 3, 0x20000000000000},
|
|
{53, 54, 3, 0x40000000000000},
|
|
{54, 55, 3, 0x80000000000000},
|
|
{55, 56, 3, 0x100000000000000},
|
|
{56, 57, 3, 0x200000000000000},
|
|
{57, 58, 3, 0x400000000000000},
|
|
{58, 59, 3, 0x800000000000000},
|
|
{59, 60, 3, 0x1000000000000000},
|
|
{60, 61, 3, 0x2000000000000000},
|
|
{61, 62, 3, 0x4000000000000000},
|
|
{62, 63, 3, 0x8000000000000000},
|
|
};
|
|
|
|
#else
|
|
#define MAX_POWER2 30
|
|
|
|
static const struct st_features features[] = {
|
|
{0, 1, 0, 0x1},
|
|
{1, 2, 0, 0x1},
|
|
{2, 3, 0, 0x2},
|
|
{3, 4, 0, 0x4},
|
|
{4, 5, 0, 0x8},
|
|
{5, 6, 0, 0x10},
|
|
{6, 7, 0, 0x20},
|
|
{7, 8, 0, 0x40},
|
|
{8, 9, 1, 0x100},
|
|
{9, 10, 1, 0x200},
|
|
{10, 11, 1, 0x400},
|
|
{11, 12, 1, 0x800},
|
|
{12, 13, 1, 0x1000},
|
|
{13, 14, 1, 0x2000},
|
|
{14, 15, 1, 0x4000},
|
|
{15, 16, 1, 0x8000},
|
|
{16, 17, 2, 0x20000},
|
|
{17, 18, 2, 0x40000},
|
|
{18, 19, 2, 0x80000},
|
|
{19, 20, 2, 0x100000},
|
|
{20, 21, 2, 0x200000},
|
|
{21, 22, 2, 0x400000},
|
|
{22, 23, 2, 0x800000},
|
|
{23, 24, 2, 0x1000000},
|
|
{24, 25, 2, 0x2000000},
|
|
{25, 26, 2, 0x4000000},
|
|
{26, 27, 2, 0x8000000},
|
|
{27, 28, 2, 0x10000000},
|
|
{28, 29, 2, 0x20000000},
|
|
{29, 30, 2, 0x40000000},
|
|
{30, 31, 2, 0x80000000},
|
|
};
|
|
|
|
#endif
|
|
|
|
/* The reserved hash value and its substitution. */
|
|
#define RESERVED_HASH_VAL (~(st_hash_t) 0)
|
|
#define RESERVED_HASH_SUBSTITUTION_VAL ((st_hash_t) 0)
|
|
|
|
/* Return hash value of KEY for table TAB. */
|
|
static inline st_hash_t
|
|
do_hash(st_data_t key, st_table *tab)
|
|
{
|
|
st_hash_t hash = (st_hash_t)(tab->type->hash)(key);
|
|
|
|
/* RESERVED_HASH_VAL is used for a deleted entry. Map it into
|
|
another value. Such mapping should be extremely rare. */
|
|
return hash == RESERVED_HASH_VAL ? RESERVED_HASH_SUBSTITUTION_VAL : hash;
|
|
}
|
|
|
|
/* Power of 2 defining the minimal number of allocated entries. */
|
|
#define MINIMAL_POWER2 2
|
|
|
|
#if MINIMAL_POWER2 < 2
|
|
#error "MINIMAL_POWER2 should be >= 2"
|
|
#endif
|
|
|
|
/* If the power2 of the allocated `entries` is less than the following
|
|
value, don't allocate bins and use a linear search. */
|
|
#define MAX_POWER2_FOR_TABLES_WITHOUT_BINS 4
|
|
|
|
/* Return smallest n >= MINIMAL_POWER2 such 2^n > SIZE. */
|
|
static int
|
|
get_power2(st_index_t size)
|
|
{
|
|
unsigned int n = ST_INDEX_BITS - nlz_intptr(size);
|
|
if (n <= MAX_POWER2)
|
|
return n < MINIMAL_POWER2 ? MINIMAL_POWER2 : n;
|
|
#ifdef RUBY
|
|
/* Ran out of the table entries */
|
|
rb_raise(rb_eRuntimeError, "st_table too big");
|
|
#endif
|
|
/* should raise exception */
|
|
return -1;
|
|
}
|
|
|
|
/* Return value of N-th bin in array BINS of table with bins size
|
|
index S. */
|
|
static inline st_index_t
|
|
get_bin(st_index_t *bins, int s, st_index_t n)
|
|
{
|
|
return (s == 0 ? ((unsigned char *) bins)[n]
|
|
: s == 1 ? ((unsigned short *) bins)[n]
|
|
: s == 2 ? ((unsigned int *) bins)[n]
|
|
: ((st_index_t *) bins)[n]);
|
|
}
|
|
|
|
/* Set up N-th bin in array BINS of table with bins size index S to
|
|
value V. */
|
|
static inline void
|
|
set_bin(st_index_t *bins, int s, st_index_t n, st_index_t v)
|
|
{
|
|
if (s == 0) ((unsigned char *) bins)[n] = (unsigned char) v;
|
|
else if (s == 1) ((unsigned short *) bins)[n] = (unsigned short) v;
|
|
else if (s == 2) ((unsigned int *) bins)[n] = (unsigned int) v;
|
|
else ((st_index_t *) bins)[n] = v;
|
|
}
|
|
|
|
/* These macros define reserved values for empty table bin and table
|
|
bin which contains a deleted entry. We will never use such values
|
|
for an entry index in bins. */
|
|
#define EMPTY_BIN 0
|
|
#define DELETED_BIN 1
|
|
/* Base of a real entry index in the bins. */
|
|
#define ENTRY_BASE 2
|
|
|
|
/* Mark I-th bin of table TAB as empty, in other words not
|
|
corresponding to any entry. */
|
|
#define MARK_BIN_EMPTY(tab, i) (set_bin((tab)->bins, get_size_ind(tab), i, EMPTY_BIN))
|
|
|
|
/* Values used for not found entry and bin with given
|
|
characteristics. */
|
|
#define UNDEFINED_ENTRY_IND (~(st_index_t) 0)
|
|
#define UNDEFINED_BIN_IND (~(st_index_t) 0)
|
|
|
|
/* Entry and bin values returned when we found a table rebuild during
|
|
the search. */
|
|
#define REBUILT_TABLE_ENTRY_IND (~(st_index_t) 1)
|
|
#define REBUILT_TABLE_BIN_IND (~(st_index_t) 1)
|
|
|
|
/* Mark I-th bin of table TAB as corresponding to a deleted table
|
|
entry. Update number of entries in the table and number of bins
|
|
corresponding to deleted entries. */
|
|
#define MARK_BIN_DELETED(tab, i) \
|
|
do { \
|
|
set_bin((tab)->bins, get_size_ind(tab), i, DELETED_BIN); \
|
|
} while (0)
|
|
|
|
/* Macros to check that value B is used empty bins and bins
|
|
corresponding deleted entries. */
|
|
#define EMPTY_BIN_P(b) ((b) == EMPTY_BIN)
|
|
#define DELETED_BIN_P(b) ((b) == DELETED_BIN)
|
|
#define EMPTY_OR_DELETED_BIN_P(b) ((b) <= DELETED_BIN)
|
|
|
|
/* Macros to check empty bins and bins corresponding to deleted
|
|
entries. Bins are given by their index I in table TAB. */
|
|
#define IND_EMPTY_BIN_P(tab, i) (EMPTY_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
|
|
#define IND_DELETED_BIN_P(tab, i) (DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
|
|
#define IND_EMPTY_OR_DELETED_BIN_P(tab, i) (EMPTY_OR_DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
|
|
|
|
/* Macros for marking and checking deleted entries given by their
|
|
pointer E_PTR. */
|
|
#define MARK_ENTRY_DELETED(e_ptr) ((e_ptr)->hash = RESERVED_HASH_VAL)
|
|
#define DELETED_ENTRY_P(e_ptr) ((e_ptr)->hash == RESERVED_HASH_VAL)
|
|
|
|
/* Return bin size index of table TAB. */
|
|
static inline unsigned int
|
|
get_size_ind(const st_table *tab)
|
|
{
|
|
return tab->size_ind;
|
|
}
|
|
|
|
/* Return the number of allocated bins of table TAB. */
|
|
static inline st_index_t
|
|
get_bins_num(const st_table *tab)
|
|
{
|
|
return ((st_index_t) 1)<<tab->bin_power;
|
|
}
|
|
|
|
/* Return mask for a bin index in table TAB. */
|
|
static inline st_index_t
|
|
bins_mask(const st_table *tab)
|
|
{
|
|
return get_bins_num(tab) - 1;
|
|
}
|
|
|
|
/* Return the index of table TAB bin corresponding to
|
|
HASH_VALUE. */
|
|
static inline st_index_t
|
|
hash_bin(st_hash_t hash_value, st_table *tab)
|
|
{
|
|
return hash_value & bins_mask(tab);
|
|
}
|
|
|
|
/* Return the number of allocated entries of table TAB. */
|
|
static inline st_index_t
|
|
get_allocated_entries(const st_table *tab)
|
|
{
|
|
return ((st_index_t) 1)<<tab->entry_power;
|
|
}
|
|
|
|
/* Return size of the allocated bins of table TAB. */
|
|
static inline st_index_t
|
|
bins_size(const st_table *tab)
|
|
{
|
|
return features[tab->entry_power].bins_words * sizeof (st_index_t);
|
|
}
|
|
|
|
/* Mark all bins of table TAB as empty. */
|
|
static void
|
|
initialize_bins(st_table *tab)
|
|
{
|
|
memset(tab->bins, 0, bins_size(tab));
|
|
}
|
|
|
|
/* Make table TAB empty. */
|
|
static void
|
|
make_tab_empty(st_table *tab)
|
|
{
|
|
tab->num_entries = 0;
|
|
tab->entries_start = tab->entries_bound = 0;
|
|
if (tab->bins != NULL)
|
|
initialize_bins(tab);
|
|
}
|
|
|
|
#ifdef HASH_LOG
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
static struct {
|
|
int all, total, num, str, strcase;
|
|
} collision;
|
|
|
|
/* Flag switching off output of package statistics at the end of
|
|
program. */
|
|
static int init_st = 0;
|
|
|
|
/* Output overall number of table searches and collisions into a
|
|
temporary file. */
|
|
static void
|
|
stat_col(void)
|
|
{
|
|
char fname[10+sizeof(long)*3];
|
|
FILE *f;
|
|
if (!collision.total) return;
|
|
f = fopen((snprintf(fname, sizeof(fname), "/tmp/col%ld", (long)getpid()), fname), "w");
|
|
if (f == NULL)
|
|
return;
|
|
fprintf(f, "collision: %d / %d (%6.2f)\n", collision.all, collision.total,
|
|
((double)collision.all / (collision.total)) * 100);
|
|
fprintf(f, "num: %d, str: %d, strcase: %d\n", collision.num, collision.str, collision.strcase);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
st_table *
|
|
st_init_existing_table_with_size(st_table *tab, const struct st_hash_type *type, st_index_t size)
|
|
{
|
|
int n;
|
|
|
|
#ifdef HASH_LOG
|
|
#if HASH_LOG+0 < 0
|
|
{
|
|
const char *e = getenv("ST_HASH_LOG");
|
|
if (!e || !*e) init_st = 1;
|
|
}
|
|
#endif
|
|
if (init_st == 0) {
|
|
init_st = 1;
|
|
atexit(stat_col);
|
|
}
|
|
#endif
|
|
|
|
n = get_power2(size);
|
|
#ifndef RUBY
|
|
if (n < 0)
|
|
return NULL;
|
|
#endif
|
|
|
|
tab->type = type;
|
|
tab->entry_power = n;
|
|
tab->bin_power = features[n].bin_power;
|
|
tab->size_ind = features[n].size_ind;
|
|
if (n <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
|
|
tab->bins = NULL;
|
|
else {
|
|
tab->bins = (st_index_t *) malloc(bins_size(tab));
|
|
#ifndef RUBY
|
|
if (tab->bins == NULL) {
|
|
free(tab);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
}
|
|
tab->entries = (st_table_entry *) malloc(get_allocated_entries(tab)
|
|
* sizeof(st_table_entry));
|
|
#ifndef RUBY
|
|
if (tab->entries == NULL) {
|
|
st_free_table(tab);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
make_tab_empty(tab);
|
|
tab->rebuilds_num = 0;
|
|
return tab;
|
|
}
|
|
|
|
/* Create and return table with TYPE which can hold at least SIZE
|
|
entries. The real number of entries which the table can hold is
|
|
the nearest power of two for SIZE. */
|
|
st_table *
|
|
st_init_table_with_size(const struct st_hash_type *type, st_index_t size)
|
|
{
|
|
st_table *tab = malloc(sizeof(st_table));
|
|
#ifndef RUBY
|
|
if (tab == NULL)
|
|
return NULL;
|
|
#endif
|
|
|
|
#ifdef RUBY
|
|
st_init_existing_table_with_size(tab, type, size);
|
|
#else
|
|
if (st_init_existing_table_with_size(tab, type, size) == NULL) {
|
|
free(tab);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
return tab;
|
|
}
|
|
|
|
size_t
|
|
st_table_size(const struct st_table *tbl)
|
|
{
|
|
return tbl->num_entries;
|
|
}
|
|
|
|
/* Create and return table with TYPE which can hold a minimal number
|
|
of entries (see comments for get_power2). */
|
|
st_table *
|
|
st_init_table(const struct st_hash_type *type)
|
|
{
|
|
return st_init_table_with_size(type, 0);
|
|
}
|
|
|
|
/* Create and return table which can hold a minimal number of
|
|
numbers. */
|
|
st_table *
|
|
st_init_numtable(void)
|
|
{
|
|
return st_init_table(&type_numhash);
|
|
}
|
|
|
|
/* Create and return table which can hold SIZE numbers. */
|
|
st_table *
|
|
st_init_numtable_with_size(st_index_t size)
|
|
{
|
|
return st_init_table_with_size(&type_numhash, size);
|
|
}
|
|
|
|
/* Create and return table which can hold a minimal number of
|
|
strings. */
|
|
st_table *
|
|
st_init_strtable(void)
|
|
{
|
|
return st_init_table(&type_strhash);
|
|
}
|
|
|
|
/* Create and return table which can hold SIZE strings. */
|
|
st_table *
|
|
st_init_strtable_with_size(st_index_t size)
|
|
{
|
|
return st_init_table_with_size(&type_strhash, size);
|
|
}
|
|
|
|
/* Create and return table which can hold a minimal number of strings
|
|
whose character case is ignored. */
|
|
st_table *
|
|
st_init_strcasetable(void)
|
|
{
|
|
return st_init_table(&type_strcasehash);
|
|
}
|
|
|
|
/* Create and return table which can hold SIZE strings whose character
|
|
case is ignored. */
|
|
st_table *
|
|
st_init_strcasetable_with_size(st_index_t size)
|
|
{
|
|
return st_init_table_with_size(&type_strcasehash, size);
|
|
}
|
|
|
|
/* Make table TAB empty. */
|
|
void
|
|
st_clear(st_table *tab)
|
|
{
|
|
make_tab_empty(tab);
|
|
tab->rebuilds_num++;
|
|
}
|
|
|
|
/* Free table TAB space. */
|
|
void
|
|
st_free_table(st_table *tab)
|
|
{
|
|
free(tab->bins);
|
|
free(tab->entries);
|
|
free(tab);
|
|
}
|
|
|
|
/* Return byte size of memory allocated for table TAB. */
|
|
size_t
|
|
st_memsize(const st_table *tab)
|
|
{
|
|
return(sizeof(st_table)
|
|
+ (tab->bins == NULL ? 0 : bins_size(tab))
|
|
+ get_allocated_entries(tab) * sizeof(st_table_entry));
|
|
}
|
|
|
|
static st_index_t
|
|
find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key);
|
|
|
|
static st_index_t
|
|
find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key);
|
|
|
|
static st_index_t
|
|
find_table_bin_ind_direct(st_table *table, st_hash_t hash_value, st_data_t key);
|
|
|
|
static st_index_t
|
|
find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value,
|
|
st_data_t key, st_index_t *bin_ind);
|
|
|
|
#ifdef HASH_LOG
|
|
static void
|
|
count_collision(const struct st_hash_type *type)
|
|
{
|
|
collision.all++;
|
|
if (type == &type_numhash) {
|
|
collision.num++;
|
|
}
|
|
else if (type == &type_strhash) {
|
|
collision.strcase++;
|
|
}
|
|
else if (type == &type_strcasehash) {
|
|
collision.str++;
|
|
}
|
|
}
|
|
|
|
#define COLLISION (collision_check ? count_collision(tab->type) : (void)0)
|
|
#define FOUND_BIN (collision_check ? collision.total++ : (void)0)
|
|
#define collision_check 0
|
|
#else
|
|
#define COLLISION
|
|
#define FOUND_BIN
|
|
#endif
|
|
|
|
/* If the number of entries in the table is at least REBUILD_THRESHOLD
|
|
times less than the entry array length, decrease the table
|
|
size. */
|
|
#define REBUILD_THRESHOLD 4
|
|
|
|
#if REBUILD_THRESHOLD < 2
|
|
#error "REBUILD_THRESHOLD should be >= 2"
|
|
#endif
|
|
|
|
static void rebuild_table_with(st_table *const new_tab, st_table *const tab);
|
|
static void rebuild_move_table(st_table *const new_tab, st_table *const tab);
|
|
static void rebuild_cleanup(st_table *const tab);
|
|
|
|
/* Rebuild table TAB. Rebuilding removes all deleted bins and entries
|
|
and can change size of the table entries and bins arrays.
|
|
Rebuilding is implemented by creation of a new table or by
|
|
compaction of the existing one. */
|
|
static void
|
|
rebuild_table(st_table *tab)
|
|
{
|
|
if ((2 * tab->num_entries <= get_allocated_entries(tab)
|
|
&& REBUILD_THRESHOLD * tab->num_entries > get_allocated_entries(tab))
|
|
|| tab->num_entries < (1 << MINIMAL_POWER2)) {
|
|
/* Compaction: */
|
|
tab->num_entries = 0;
|
|
if (tab->bins != NULL)
|
|
initialize_bins(tab);
|
|
rebuild_table_with(tab, tab);
|
|
}
|
|
else {
|
|
st_table *new_tab;
|
|
/* This allocation could trigger GC and compaction. If tab is the
|
|
* gen_iv_tbl, then tab could have changed in size due to objects being
|
|
* freed and/or moved. Do not store attributes of tab before this line. */
|
|
new_tab = st_init_table_with_size(tab->type,
|
|
2 * tab->num_entries - 1);
|
|
rebuild_table_with(new_tab, tab);
|
|
rebuild_move_table(new_tab, tab);
|
|
}
|
|
rebuild_cleanup(tab);
|
|
}
|
|
|
|
static void
|
|
rebuild_table_with(st_table *const new_tab, st_table *const tab)
|
|
{
|
|
st_index_t i, ni;
|
|
unsigned int size_ind;
|
|
st_table_entry *new_entries;
|
|
st_table_entry *curr_entry_ptr;
|
|
st_index_t *bins;
|
|
st_index_t bin_ind;
|
|
|
|
new_entries = new_tab->entries;
|
|
|
|
ni = 0;
|
|
bins = new_tab->bins;
|
|
size_ind = get_size_ind(new_tab);
|
|
st_index_t bound = tab->entries_bound;
|
|
st_table_entry *entries = tab->entries;
|
|
|
|
for (i = tab->entries_start; i < bound; i++) {
|
|
curr_entry_ptr = &entries[i];
|
|
PREFETCH(entries + i + 1, 0);
|
|
if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0))
|
|
continue;
|
|
if (&new_entries[ni] != curr_entry_ptr)
|
|
new_entries[ni] = *curr_entry_ptr;
|
|
if (EXPECT(bins != NULL, 1)) {
|
|
bin_ind = find_table_bin_ind_direct(new_tab, curr_entry_ptr->hash,
|
|
curr_entry_ptr->key);
|
|
set_bin(bins, size_ind, bin_ind, ni + ENTRY_BASE);
|
|
}
|
|
new_tab->num_entries++;
|
|
ni++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
rebuild_move_table(st_table *const new_tab, st_table *const tab)
|
|
{
|
|
tab->entry_power = new_tab->entry_power;
|
|
tab->bin_power = new_tab->bin_power;
|
|
tab->size_ind = new_tab->size_ind;
|
|
free(tab->bins);
|
|
tab->bins = new_tab->bins;
|
|
free(tab->entries);
|
|
tab->entries = new_tab->entries;
|
|
free(new_tab);
|
|
}
|
|
|
|
static void
|
|
rebuild_cleanup(st_table *const tab)
|
|
{
|
|
tab->entries_start = 0;
|
|
tab->entries_bound = tab->num_entries;
|
|
tab->rebuilds_num++;
|
|
}
|
|
|
|
/* Return the next secondary hash index for table TAB using previous
|
|
index IND and PERTURB. Finally modulo of the function becomes a
|
|
full *cycle linear congruential generator*, in other words it
|
|
guarantees traversing all table bins in extreme case.
|
|
|
|
According the Hull-Dobell theorem a generator
|
|
"Xnext = (a*Xprev + c) mod m" is a full cycle generator if and only if
|
|
o m and c are relatively prime
|
|
o a-1 is divisible by all prime factors of m
|
|
o a-1 is divisible by 4 if m is divisible by 4.
|
|
|
|
For our case a is 5, c is 1, and m is a power of two. */
|
|
static inline st_index_t
|
|
secondary_hash(st_index_t ind, st_table *tab, st_index_t *perturb)
|
|
{
|
|
*perturb >>= 11;
|
|
ind = (ind << 2) + ind + *perturb + 1;
|
|
return hash_bin(ind, tab);
|
|
}
|
|
|
|
/* Find an entry with HASH_VALUE and KEY in TABLE using a linear
|
|
search. Return the index of the found entry in array `entries`.
|
|
If it is not found, return UNDEFINED_ENTRY_IND. If the table was
|
|
rebuilt during the search, return REBUILT_TABLE_ENTRY_IND. */
|
|
static inline st_index_t
|
|
find_entry(st_table *tab, st_hash_t hash_value, st_data_t key)
|
|
{
|
|
int eq_p, rebuilt_p;
|
|
st_index_t i, bound;
|
|
st_table_entry *entries;
|
|
|
|
bound = tab->entries_bound;
|
|
entries = tab->entries;
|
|
for (i = tab->entries_start; i < bound; i++) {
|
|
DO_PTR_EQUAL_CHECK(tab, &entries[i], hash_value, key, eq_p, rebuilt_p);
|
|
if (EXPECT(rebuilt_p, 0))
|
|
return REBUILT_TABLE_ENTRY_IND;
|
|
if (eq_p)
|
|
return i;
|
|
}
|
|
return UNDEFINED_ENTRY_IND;
|
|
}
|
|
|
|
/* Use the quadratic probing. The method has a better data locality
|
|
but more collisions than the current approach. In average it
|
|
results in a bit slower search. */
|
|
/*#define QUADRATIC_PROBE*/
|
|
|
|
/* Return index of entry with HASH_VALUE and KEY in table TAB. If
|
|
there is no such entry, return UNDEFINED_ENTRY_IND. If the table
|
|
was rebuilt during the search, return REBUILT_TABLE_ENTRY_IND. */
|
|
static st_index_t
|
|
find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key)
|
|
{
|
|
int eq_p, rebuilt_p;
|
|
st_index_t ind;
|
|
#ifdef QUADRATIC_PROBE
|
|
st_index_t d;
|
|
#else
|
|
st_index_t perturb;
|
|
#endif
|
|
st_index_t bin;
|
|
st_table_entry *entries = tab->entries;
|
|
|
|
ind = hash_bin(hash_value, tab);
|
|
#ifdef QUADRATIC_PROBE
|
|
d = 1;
|
|
#else
|
|
perturb = hash_value;
|
|
#endif
|
|
FOUND_BIN;
|
|
for (;;) {
|
|
bin = get_bin(tab->bins, get_size_ind(tab), ind);
|
|
if (! EMPTY_OR_DELETED_BIN_P(bin)) {
|
|
DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p);
|
|
if (EXPECT(rebuilt_p, 0))
|
|
return REBUILT_TABLE_ENTRY_IND;
|
|
if (eq_p)
|
|
break;
|
|
}
|
|
else if (EMPTY_BIN_P(bin))
|
|
return UNDEFINED_ENTRY_IND;
|
|
#ifdef QUADRATIC_PROBE
|
|
ind = hash_bin(ind + d, tab);
|
|
d++;
|
|
#else
|
|
ind = secondary_hash(ind, tab, &perturb);
|
|
#endif
|
|
COLLISION;
|
|
}
|
|
return bin;
|
|
}
|
|
|
|
/* Find and return index of table TAB bin corresponding to an entry
|
|
with HASH_VALUE and KEY. If there is no such bin, return
|
|
UNDEFINED_BIN_IND. If the table was rebuilt during the search,
|
|
return REBUILT_TABLE_BIN_IND. */
|
|
static st_index_t
|
|
find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key)
|
|
{
|
|
int eq_p, rebuilt_p;
|
|
st_index_t ind;
|
|
#ifdef QUADRATIC_PROBE
|
|
st_index_t d;
|
|
#else
|
|
st_index_t perturb;
|
|
#endif
|
|
st_index_t bin;
|
|
st_table_entry *entries = tab->entries;
|
|
|
|
ind = hash_bin(hash_value, tab);
|
|
#ifdef QUADRATIC_PROBE
|
|
d = 1;
|
|
#else
|
|
perturb = hash_value;
|
|
#endif
|
|
FOUND_BIN;
|
|
for (;;) {
|
|
bin = get_bin(tab->bins, get_size_ind(tab), ind);
|
|
if (! EMPTY_OR_DELETED_BIN_P(bin)) {
|
|
DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p);
|
|
if (EXPECT(rebuilt_p, 0))
|
|
return REBUILT_TABLE_BIN_IND;
|
|
if (eq_p)
|
|
break;
|
|
}
|
|
else if (EMPTY_BIN_P(bin))
|
|
return UNDEFINED_BIN_IND;
|
|
#ifdef QUADRATIC_PROBE
|
|
ind = hash_bin(ind + d, tab);
|
|
d++;
|
|
#else
|
|
ind = secondary_hash(ind, tab, &perturb);
|
|
#endif
|
|
COLLISION;
|
|
}
|
|
return ind;
|
|
}
|
|
|
|
/* Find and return index of table TAB bin corresponding to an entry
|
|
with HASH_VALUE and KEY. The entry should be in the table
|
|
already. */
|
|
static st_index_t
|
|
find_table_bin_ind_direct(st_table *tab, st_hash_t hash_value, st_data_t key)
|
|
{
|
|
st_index_t ind;
|
|
#ifdef QUADRATIC_PROBE
|
|
st_index_t d;
|
|
#else
|
|
st_index_t perturb;
|
|
#endif
|
|
st_index_t bin;
|
|
|
|
ind = hash_bin(hash_value, tab);
|
|
#ifdef QUADRATIC_PROBE
|
|
d = 1;
|
|
#else
|
|
perturb = hash_value;
|
|
#endif
|
|
FOUND_BIN;
|
|
for (;;) {
|
|
bin = get_bin(tab->bins, get_size_ind(tab), ind);
|
|
if (EMPTY_OR_DELETED_BIN_P(bin))
|
|
return ind;
|
|
#ifdef QUADRATIC_PROBE
|
|
ind = hash_bin(ind + d, tab);
|
|
d++;
|
|
#else
|
|
ind = secondary_hash(ind, tab, &perturb);
|
|
#endif
|
|
COLLISION;
|
|
}
|
|
}
|
|
|
|
/* Return index of table TAB bin for HASH_VALUE and KEY through
|
|
BIN_IND and the pointed value as the function result. Reserve the
|
|
bin for inclusion of the corresponding entry into the table if it
|
|
is not there yet. We always find such bin as bins array length is
|
|
bigger entries array. Although we can reuse a deleted bin, the
|
|
result bin value is always empty if the table has no entry with
|
|
KEY. Return the entries array index of the found entry or
|
|
UNDEFINED_ENTRY_IND if it is not found. If the table was rebuilt
|
|
during the search, return REBUILT_TABLE_ENTRY_IND. */
|
|
static st_index_t
|
|
find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value,
|
|
st_data_t key, st_index_t *bin_ind)
|
|
{
|
|
int eq_p, rebuilt_p;
|
|
st_index_t ind;
|
|
st_hash_t curr_hash_value = *hash_value;
|
|
#ifdef QUADRATIC_PROBE
|
|
st_index_t d;
|
|
#else
|
|
st_index_t perturb;
|
|
#endif
|
|
st_index_t entry_index;
|
|
st_index_t first_deleted_bin_ind;
|
|
st_table_entry *entries;
|
|
|
|
ind = hash_bin(curr_hash_value, tab);
|
|
#ifdef QUADRATIC_PROBE
|
|
d = 1;
|
|
#else
|
|
perturb = curr_hash_value;
|
|
#endif
|
|
FOUND_BIN;
|
|
first_deleted_bin_ind = UNDEFINED_BIN_IND;
|
|
entries = tab->entries;
|
|
for (;;) {
|
|
entry_index = get_bin(tab->bins, get_size_ind(tab), ind);
|
|
if (EMPTY_BIN_P(entry_index)) {
|
|
tab->num_entries++;
|
|
entry_index = UNDEFINED_ENTRY_IND;
|
|
if (first_deleted_bin_ind != UNDEFINED_BIN_IND) {
|
|
/* We can reuse bin of a deleted entry. */
|
|
ind = first_deleted_bin_ind;
|
|
MARK_BIN_EMPTY(tab, ind);
|
|
}
|
|
break;
|
|
}
|
|
else if (! DELETED_BIN_P(entry_index)) {
|
|
DO_PTR_EQUAL_CHECK(tab, &entries[entry_index - ENTRY_BASE], curr_hash_value, key, eq_p, rebuilt_p);
|
|
if (EXPECT(rebuilt_p, 0))
|
|
return REBUILT_TABLE_ENTRY_IND;
|
|
if (eq_p)
|
|
break;
|
|
}
|
|
else if (first_deleted_bin_ind == UNDEFINED_BIN_IND)
|
|
first_deleted_bin_ind = ind;
|
|
#ifdef QUADRATIC_PROBE
|
|
ind = hash_bin(ind + d, tab);
|
|
d++;
|
|
#else
|
|
ind = secondary_hash(ind, tab, &perturb);
|
|
#endif
|
|
COLLISION;
|
|
}
|
|
*bin_ind = ind;
|
|
return entry_index;
|
|
}
|
|
|
|
/* Find an entry with KEY in table TAB. Return non-zero if we found
|
|
it. Set up *RECORD to the found entry record. */
|
|
int
|
|
st_lookup(st_table *tab, st_data_t key, st_data_t *value)
|
|
{
|
|
st_index_t bin;
|
|
st_hash_t hash = do_hash(key, tab);
|
|
|
|
retry:
|
|
if (tab->bins == NULL) {
|
|
bin = find_entry(tab, hash, key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
if (bin == UNDEFINED_ENTRY_IND)
|
|
return 0;
|
|
}
|
|
else {
|
|
bin = find_table_entry_ind(tab, hash, key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
if (bin == UNDEFINED_ENTRY_IND)
|
|
return 0;
|
|
bin -= ENTRY_BASE;
|
|
}
|
|
if (value != 0)
|
|
*value = tab->entries[bin].record;
|
|
return 1;
|
|
}
|
|
|
|
/* Find an entry with KEY in table TAB. Return non-zero if we found
|
|
it. Set up *RESULT to the found table entry key. */
|
|
int
|
|
st_get_key(st_table *tab, st_data_t key, st_data_t *result)
|
|
{
|
|
st_index_t bin;
|
|
st_hash_t hash = do_hash(key, tab);
|
|
|
|
retry:
|
|
if (tab->bins == NULL) {
|
|
bin = find_entry(tab, hash, key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
if (bin == UNDEFINED_ENTRY_IND)
|
|
return 0;
|
|
}
|
|
else {
|
|
bin = find_table_entry_ind(tab, hash, key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
if (bin == UNDEFINED_ENTRY_IND)
|
|
return 0;
|
|
bin -= ENTRY_BASE;
|
|
}
|
|
if (result != 0)
|
|
*result = tab->entries[bin].key;
|
|
return 1;
|
|
}
|
|
|
|
/* Check the table and rebuild it if it is necessary. */
|
|
static inline void
|
|
rebuild_table_if_necessary (st_table *tab)
|
|
{
|
|
st_index_t bound = tab->entries_bound;
|
|
|
|
if (bound == get_allocated_entries(tab))
|
|
rebuild_table(tab);
|
|
}
|
|
|
|
/* Insert (KEY, VALUE) into table TAB and return zero. If there is
|
|
already entry with KEY in the table, return nonzero and update
|
|
the value of the found entry. */
|
|
int
|
|
st_insert(st_table *tab, st_data_t key, st_data_t value)
|
|
{
|
|
st_table_entry *entry;
|
|
st_index_t bin;
|
|
st_index_t ind;
|
|
st_hash_t hash_value;
|
|
st_index_t bin_ind;
|
|
int new_p;
|
|
|
|
hash_value = do_hash(key, tab);
|
|
retry:
|
|
rebuild_table_if_necessary(tab);
|
|
if (tab->bins == NULL) {
|
|
bin = find_entry(tab, hash_value, key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
new_p = bin == UNDEFINED_ENTRY_IND;
|
|
if (new_p)
|
|
tab->num_entries++;
|
|
bin_ind = UNDEFINED_BIN_IND;
|
|
}
|
|
else {
|
|
bin = find_table_bin_ptr_and_reserve(tab, &hash_value,
|
|
key, &bin_ind);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
new_p = bin == UNDEFINED_ENTRY_IND;
|
|
bin -= ENTRY_BASE;
|
|
}
|
|
if (new_p) {
|
|
ind = tab->entries_bound++;
|
|
entry = &tab->entries[ind];
|
|
entry->hash = hash_value;
|
|
entry->key = key;
|
|
entry->record = value;
|
|
if (bin_ind != UNDEFINED_BIN_IND)
|
|
set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
|
|
return 0;
|
|
}
|
|
tab->entries[bin].record = value;
|
|
return 1;
|
|
}
|
|
|
|
/* Insert (KEY, VALUE, HASH) into table TAB. The table should not have
|
|
entry with KEY before the insertion. */
|
|
static inline void
|
|
st_add_direct_with_hash(st_table *tab,
|
|
st_data_t key, st_data_t value, st_hash_t hash)
|
|
{
|
|
st_table_entry *entry;
|
|
st_index_t ind;
|
|
st_index_t bin_ind;
|
|
|
|
rebuild_table_if_necessary(tab);
|
|
ind = tab->entries_bound++;
|
|
entry = &tab->entries[ind];
|
|
entry->hash = hash;
|
|
entry->key = key;
|
|
entry->record = value;
|
|
tab->num_entries++;
|
|
if (tab->bins != NULL) {
|
|
bin_ind = find_table_bin_ind_direct(tab, hash, key);
|
|
set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_st_add_direct_with_hash(st_table *tab,
|
|
st_data_t key, st_data_t value, st_hash_t hash)
|
|
{
|
|
st_add_direct_with_hash(tab, key, value, hash);
|
|
}
|
|
|
|
/* Insert (KEY, VALUE) into table TAB. The table should not have
|
|
entry with KEY before the insertion. */
|
|
void
|
|
st_add_direct(st_table *tab, st_data_t key, st_data_t value)
|
|
{
|
|
st_hash_t hash_value;
|
|
|
|
hash_value = do_hash(key, tab);
|
|
st_add_direct_with_hash(tab, key, value, hash_value);
|
|
}
|
|
|
|
/* Insert (FUNC(KEY), VALUE) into table TAB and return zero. If
|
|
there is already entry with KEY in the table, return nonzero and
|
|
update the value of the found entry. */
|
|
int
|
|
st_insert2(st_table *tab, st_data_t key, st_data_t value,
|
|
st_data_t (*func)(st_data_t))
|
|
{
|
|
st_table_entry *entry;
|
|
st_index_t bin;
|
|
st_index_t ind;
|
|
st_hash_t hash_value;
|
|
st_index_t bin_ind;
|
|
int new_p;
|
|
|
|
hash_value = do_hash(key, tab);
|
|
retry:
|
|
rebuild_table_if_necessary (tab);
|
|
if (tab->bins == NULL) {
|
|
bin = find_entry(tab, hash_value, key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
new_p = bin == UNDEFINED_ENTRY_IND;
|
|
if (new_p)
|
|
tab->num_entries++;
|
|
bin_ind = UNDEFINED_BIN_IND;
|
|
}
|
|
else {
|
|
bin = find_table_bin_ptr_and_reserve(tab, &hash_value,
|
|
key, &bin_ind);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
new_p = bin == UNDEFINED_ENTRY_IND;
|
|
bin -= ENTRY_BASE;
|
|
}
|
|
if (new_p) {
|
|
key = (*func)(key);
|
|
ind = tab->entries_bound++;
|
|
entry = &tab->entries[ind];
|
|
entry->hash = hash_value;
|
|
entry->key = key;
|
|
entry->record = value;
|
|
if (bin_ind != UNDEFINED_BIN_IND)
|
|
set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
|
|
return 0;
|
|
}
|
|
tab->entries[bin].record = value;
|
|
return 1;
|
|
}
|
|
|
|
/* Create a copy of old_tab into new_tab. */
|
|
st_table *
|
|
st_replace(st_table *new_tab, st_table *old_tab)
|
|
{
|
|
*new_tab = *old_tab;
|
|
if (old_tab->bins == NULL)
|
|
new_tab->bins = NULL;
|
|
else {
|
|
new_tab->bins = (st_index_t *) malloc(bins_size(old_tab));
|
|
#ifndef RUBY
|
|
if (new_tab->bins == NULL) {
|
|
return NULL;
|
|
}
|
|
#endif
|
|
}
|
|
new_tab->entries = (st_table_entry *) malloc(get_allocated_entries(old_tab)
|
|
* sizeof(st_table_entry));
|
|
#ifndef RUBY
|
|
if (new_tab->entries == NULL) {
|
|
return NULL;
|
|
}
|
|
#endif
|
|
MEMCPY(new_tab->entries, old_tab->entries, st_table_entry,
|
|
get_allocated_entries(old_tab));
|
|
if (old_tab->bins != NULL)
|
|
MEMCPY(new_tab->bins, old_tab->bins, char, bins_size(old_tab));
|
|
|
|
return new_tab;
|
|
}
|
|
|
|
/* Create and return a copy of table OLD_TAB. */
|
|
st_table *
|
|
st_copy(st_table *old_tab)
|
|
{
|
|
st_table *new_tab;
|
|
|
|
new_tab = (st_table *) malloc(sizeof(st_table));
|
|
#ifndef RUBY
|
|
if (new_tab == NULL)
|
|
return NULL;
|
|
#endif
|
|
|
|
if (st_replace(new_tab, old_tab) == NULL) {
|
|
st_free_table(new_tab);
|
|
return NULL;
|
|
}
|
|
|
|
return new_tab;
|
|
}
|
|
|
|
/* Update the entries start of table TAB after removing an entry
|
|
with index N in the array entries. */
|
|
static inline void
|
|
update_range_for_deleted(st_table *tab, st_index_t n)
|
|
{
|
|
/* Do not update entries_bound here. Otherwise, we can fill all
|
|
bins by deleted entry value before rebuilding the table. */
|
|
if (tab->entries_start == n) {
|
|
st_index_t start = n + 1;
|
|
st_index_t bound = tab->entries_bound;
|
|
st_table_entry *entries = tab->entries;
|
|
while (start < bound && DELETED_ENTRY_P(&entries[start])) start++;
|
|
tab->entries_start = start;
|
|
}
|
|
}
|
|
|
|
/* Delete entry with KEY from table TAB, set up *VALUE (unless
|
|
VALUE is zero) from deleted table entry, and return non-zero. If
|
|
there is no entry with KEY in the table, clear *VALUE (unless VALUE
|
|
is zero), and return zero. */
|
|
static int
|
|
st_general_delete(st_table *tab, st_data_t *key, st_data_t *value)
|
|
{
|
|
st_table_entry *entry;
|
|
st_index_t bin;
|
|
st_index_t bin_ind;
|
|
st_hash_t hash;
|
|
|
|
hash = do_hash(*key, tab);
|
|
retry:
|
|
if (tab->bins == NULL) {
|
|
bin = find_entry(tab, hash, *key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
if (bin == UNDEFINED_ENTRY_IND) {
|
|
if (value != 0) *value = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
bin_ind = find_table_bin_ind(tab, hash, *key);
|
|
if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0))
|
|
goto retry;
|
|
if (bin_ind == UNDEFINED_BIN_IND) {
|
|
if (value != 0) *value = 0;
|
|
return 0;
|
|
}
|
|
bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
|
|
MARK_BIN_DELETED(tab, bin_ind);
|
|
}
|
|
entry = &tab->entries[bin];
|
|
*key = entry->key;
|
|
if (value != 0) *value = entry->record;
|
|
MARK_ENTRY_DELETED(entry);
|
|
tab->num_entries--;
|
|
update_range_for_deleted(tab, bin);
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
st_delete(st_table *tab, st_data_t *key, st_data_t *value)
|
|
{
|
|
return st_general_delete(tab, key, value);
|
|
}
|
|
|
|
/* The function and other functions with suffix '_safe' or '_check'
|
|
are originated from the previous implementation of the hash tables.
|
|
It was necessary for correct deleting entries during traversing
|
|
tables. The current implementation permits deletion during
|
|
traversing without a specific way to do this. */
|
|
int
|
|
st_delete_safe(st_table *tab, st_data_t *key, st_data_t *value,
|
|
st_data_t never ATTRIBUTE_UNUSED)
|
|
{
|
|
return st_general_delete(tab, key, value);
|
|
}
|
|
|
|
/* If table TAB is empty, clear *VALUE (unless VALUE is zero), and
|
|
return zero. Otherwise, remove the first entry in the table.
|
|
Return its key through KEY and its record through VALUE (unless
|
|
VALUE is zero). */
|
|
int
|
|
st_shift(st_table *tab, st_data_t *key, st_data_t *value)
|
|
{
|
|
st_index_t i, bound;
|
|
st_index_t bin;
|
|
st_table_entry *entries, *curr_entry_ptr;
|
|
st_index_t bin_ind;
|
|
|
|
entries = tab->entries;
|
|
bound = tab->entries_bound;
|
|
for (i = tab->entries_start; i < bound; i++) {
|
|
curr_entry_ptr = &entries[i];
|
|
if (! DELETED_ENTRY_P(curr_entry_ptr)) {
|
|
st_hash_t entry_hash = curr_entry_ptr->hash;
|
|
st_data_t entry_key = curr_entry_ptr->key;
|
|
|
|
if (value != 0) *value = curr_entry_ptr->record;
|
|
*key = entry_key;
|
|
retry:
|
|
if (tab->bins == NULL) {
|
|
bin = find_entry(tab, entry_hash, entry_key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) {
|
|
entries = tab->entries;
|
|
goto retry;
|
|
}
|
|
curr_entry_ptr = &entries[bin];
|
|
}
|
|
else {
|
|
bin_ind = find_table_bin_ind(tab, entry_hash, entry_key);
|
|
if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) {
|
|
entries = tab->entries;
|
|
goto retry;
|
|
}
|
|
curr_entry_ptr = &entries[get_bin(tab->bins, get_size_ind(tab), bin_ind)
|
|
- ENTRY_BASE];
|
|
MARK_BIN_DELETED(tab, bin_ind);
|
|
}
|
|
MARK_ENTRY_DELETED(curr_entry_ptr);
|
|
tab->num_entries--;
|
|
update_range_for_deleted(tab, i);
|
|
return 1;
|
|
}
|
|
}
|
|
if (value != 0) *value = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* See comments for function st_delete_safe. */
|
|
void
|
|
st_cleanup_safe(st_table *tab ATTRIBUTE_UNUSED,
|
|
st_data_t never ATTRIBUTE_UNUSED)
|
|
{
|
|
}
|
|
|
|
/* Find entry with KEY in table TAB, call FUNC with pointers to copies
|
|
of the key and the value of the found entry, and non-zero as the
|
|
3rd argument. If the entry is not found, call FUNC with a pointer
|
|
to KEY, a pointer to zero, and a zero argument. If the call
|
|
returns ST_CONTINUE, the table will have an entry with key and
|
|
value returned by FUNC through the 1st and 2nd parameters. If the
|
|
call of FUNC returns ST_DELETE, the table will not have entry with
|
|
KEY. The function returns flag of that the entry with KEY was in
|
|
the table before the call. */
|
|
int
|
|
st_update(st_table *tab, st_data_t key,
|
|
st_update_callback_func *func, st_data_t arg)
|
|
{
|
|
st_table_entry *entry = NULL; /* to avoid uninitialized value warning */
|
|
st_index_t bin = 0; /* Ditto */
|
|
st_table_entry *entries;
|
|
st_index_t bin_ind;
|
|
st_data_t value = 0, old_key;
|
|
int retval, existing;
|
|
st_hash_t hash = do_hash(key, tab);
|
|
|
|
retry:
|
|
entries = tab->entries;
|
|
if (tab->bins == NULL) {
|
|
bin = find_entry(tab, hash, key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
existing = bin != UNDEFINED_ENTRY_IND;
|
|
entry = &entries[bin];
|
|
bin_ind = UNDEFINED_BIN_IND;
|
|
}
|
|
else {
|
|
bin_ind = find_table_bin_ind(tab, hash, key);
|
|
if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0))
|
|
goto retry;
|
|
existing = bin_ind != UNDEFINED_BIN_IND;
|
|
if (existing) {
|
|
bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
|
|
entry = &entries[bin];
|
|
}
|
|
}
|
|
if (existing) {
|
|
key = entry->key;
|
|
value = entry->record;
|
|
}
|
|
old_key = key;
|
|
retval = (*func)(&key, &value, arg, existing);
|
|
switch (retval) {
|
|
case ST_CONTINUE:
|
|
if (! existing) {
|
|
st_add_direct_with_hash(tab, key, value, hash);
|
|
break;
|
|
}
|
|
if (old_key != key) {
|
|
entry->key = key;
|
|
}
|
|
entry->record = value;
|
|
break;
|
|
case ST_DELETE:
|
|
if (existing) {
|
|
if (bin_ind != UNDEFINED_BIN_IND)
|
|
MARK_BIN_DELETED(tab, bin_ind);
|
|
MARK_ENTRY_DELETED(entry);
|
|
tab->num_entries--;
|
|
update_range_for_deleted(tab, bin);
|
|
}
|
|
break;
|
|
}
|
|
return existing;
|
|
}
|
|
|
|
/* Traverse all entries in table TAB calling FUNC with current entry
|
|
key and value and zero. If the call returns ST_STOP, stop
|
|
traversing. If the call returns ST_DELETE, delete the current
|
|
entry from the table. In case of ST_CHECK or ST_CONTINUE, continue
|
|
traversing. The function returns zero unless an error is found.
|
|
CHECK_P is flag of st_foreach_check call. The behavior is a bit
|
|
different for ST_CHECK and when the current element is removed
|
|
during traversing. */
|
|
static inline int
|
|
st_general_foreach(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg,
|
|
int check_p)
|
|
{
|
|
st_index_t bin;
|
|
st_index_t bin_ind;
|
|
st_table_entry *entries, *curr_entry_ptr;
|
|
enum st_retval retval;
|
|
st_index_t i, rebuilds_num;
|
|
st_hash_t hash;
|
|
st_data_t key;
|
|
int error_p, packed_p = tab->bins == NULL;
|
|
|
|
entries = tab->entries;
|
|
/* The bound can change inside the loop even without rebuilding
|
|
the table, e.g. by an entry insertion. */
|
|
for (i = tab->entries_start; i < tab->entries_bound; i++) {
|
|
curr_entry_ptr = &entries[i];
|
|
if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0))
|
|
continue;
|
|
key = curr_entry_ptr->key;
|
|
rebuilds_num = tab->rebuilds_num;
|
|
hash = curr_entry_ptr->hash;
|
|
retval = (*func)(key, curr_entry_ptr->record, arg, 0);
|
|
|
|
if (retval == ST_REPLACE && replace) {
|
|
st_data_t value;
|
|
value = curr_entry_ptr->record;
|
|
retval = (*replace)(&key, &value, arg, TRUE);
|
|
curr_entry_ptr->key = key;
|
|
curr_entry_ptr->record = value;
|
|
}
|
|
|
|
if (rebuilds_num != tab->rebuilds_num) {
|
|
retry:
|
|
entries = tab->entries;
|
|
packed_p = tab->bins == NULL;
|
|
if (packed_p) {
|
|
i = find_entry(tab, hash, key);
|
|
if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
error_p = i == UNDEFINED_ENTRY_IND;
|
|
}
|
|
else {
|
|
i = find_table_entry_ind(tab, hash, key);
|
|
if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto retry;
|
|
error_p = i == UNDEFINED_ENTRY_IND;
|
|
i -= ENTRY_BASE;
|
|
}
|
|
if (error_p && check_p) {
|
|
/* call func with error notice */
|
|
retval = (*func)(0, 0, arg, 1);
|
|
return 1;
|
|
}
|
|
curr_entry_ptr = &entries[i];
|
|
}
|
|
switch (retval) {
|
|
case ST_REPLACE:
|
|
break;
|
|
case ST_CONTINUE:
|
|
break;
|
|
case ST_CHECK:
|
|
if (check_p)
|
|
break;
|
|
case ST_STOP:
|
|
return 0;
|
|
case ST_DELETE: {
|
|
st_data_t key = curr_entry_ptr->key;
|
|
|
|
again:
|
|
if (packed_p) {
|
|
bin = find_entry(tab, hash, key);
|
|
if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
|
|
goto again;
|
|
if (bin == UNDEFINED_ENTRY_IND)
|
|
break;
|
|
}
|
|
else {
|
|
bin_ind = find_table_bin_ind(tab, hash, key);
|
|
if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0))
|
|
goto again;
|
|
if (bin_ind == UNDEFINED_BIN_IND)
|
|
break;
|
|
bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
|
|
MARK_BIN_DELETED(tab, bin_ind);
|
|
}
|
|
curr_entry_ptr = &entries[bin];
|
|
MARK_ENTRY_DELETED(curr_entry_ptr);
|
|
tab->num_entries--;
|
|
update_range_for_deleted(tab, bin);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
st_foreach_with_replace(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg)
|
|
{
|
|
return st_general_foreach(tab, func, replace, arg, TRUE);
|
|
}
|
|
|
|
struct functor {
|
|
st_foreach_callback_func *func;
|
|
st_data_t arg;
|
|
};
|
|
|
|
static int
|
|
apply_functor(st_data_t k, st_data_t v, st_data_t d, int _)
|
|
{
|
|
const struct functor *f = (void *)d;
|
|
return f->func(k, v, f->arg);
|
|
}
|
|
|
|
int
|
|
st_foreach(st_table *tab, st_foreach_callback_func *func, st_data_t arg)
|
|
{
|
|
const struct functor f = { func, arg };
|
|
return st_general_foreach(tab, apply_functor, 0, (st_data_t)&f, FALSE);
|
|
}
|
|
|
|
/* See comments for function st_delete_safe. */
|
|
int
|
|
st_foreach_check(st_table *tab, st_foreach_check_callback_func *func, st_data_t arg,
|
|
st_data_t never ATTRIBUTE_UNUSED)
|
|
{
|
|
return st_general_foreach(tab, func, 0, arg, TRUE);
|
|
}
|
|
|
|
/* Set up array KEYS by at most SIZE keys of head table TAB entries.
|
|
Return the number of keys set up in array KEYS. */
|
|
static inline st_index_t
|
|
st_general_keys(st_table *tab, st_data_t *keys, st_index_t size)
|
|
{
|
|
st_index_t i, bound;
|
|
st_data_t key, *keys_start, *keys_end;
|
|
st_table_entry *curr_entry_ptr, *entries = tab->entries;
|
|
|
|
bound = tab->entries_bound;
|
|
keys_start = keys;
|
|
keys_end = keys + size;
|
|
for (i = tab->entries_start; i < bound; i++) {
|
|
if (keys == keys_end)
|
|
break;
|
|
curr_entry_ptr = &entries[i];
|
|
key = curr_entry_ptr->key;
|
|
if (! DELETED_ENTRY_P(curr_entry_ptr))
|
|
*keys++ = key;
|
|
}
|
|
|
|
return keys - keys_start;
|
|
}
|
|
|
|
st_index_t
|
|
st_keys(st_table *tab, st_data_t *keys, st_index_t size)
|
|
{
|
|
return st_general_keys(tab, keys, size);
|
|
}
|
|
|
|
/* See comments for function st_delete_safe. */
|
|
st_index_t
|
|
st_keys_check(st_table *tab, st_data_t *keys, st_index_t size,
|
|
st_data_t never ATTRIBUTE_UNUSED)
|
|
{
|
|
return st_general_keys(tab, keys, size);
|
|
}
|
|
|
|
/* Set up array VALUES by at most SIZE values of head table TAB
|
|
entries. Return the number of values set up in array VALUES. */
|
|
static inline st_index_t
|
|
st_general_values(st_table *tab, st_data_t *values, st_index_t size)
|
|
{
|
|
st_index_t i, bound;
|
|
st_data_t *values_start, *values_end;
|
|
st_table_entry *curr_entry_ptr, *entries = tab->entries;
|
|
|
|
values_start = values;
|
|
values_end = values + size;
|
|
bound = tab->entries_bound;
|
|
for (i = tab->entries_start; i < bound; i++) {
|
|
if (values == values_end)
|
|
break;
|
|
curr_entry_ptr = &entries[i];
|
|
if (! DELETED_ENTRY_P(curr_entry_ptr))
|
|
*values++ = curr_entry_ptr->record;
|
|
}
|
|
|
|
return values - values_start;
|
|
}
|
|
|
|
st_index_t
|
|
st_values(st_table *tab, st_data_t *values, st_index_t size)
|
|
{
|
|
return st_general_values(tab, values, size);
|
|
}
|
|
|
|
/* See comments for function st_delete_safe. */
|
|
st_index_t
|
|
st_values_check(st_table *tab, st_data_t *values, st_index_t size,
|
|
st_data_t never ATTRIBUTE_UNUSED)
|
|
{
|
|
return st_general_values(tab, values, size);
|
|
}
|
|
|
|
#define FNV1_32A_INIT 0x811c9dc5
|
|
|
|
/*
|
|
* 32 bit magic FNV-1a prime
|
|
*/
|
|
#define FNV_32_PRIME 0x01000193
|
|
|
|
/* __POWERPC__ added to accommodate Darwin case. */
|
|
#ifndef UNALIGNED_WORD_ACCESS
|
|
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
|
|
defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || \
|
|
defined(__powerpc64__) || defined(__POWERPC__) || defined(__aarch64__) || \
|
|
defined(__mc68020__)
|
|
# define UNALIGNED_WORD_ACCESS 1
|
|
# endif
|
|
#endif
|
|
#ifndef UNALIGNED_WORD_ACCESS
|
|
# define UNALIGNED_WORD_ACCESS 0
|
|
#endif
|
|
|
|
/* This hash function is quite simplified MurmurHash3
|
|
* Simplification is legal, cause most of magic still happens in finalizator.
|
|
* And finalizator is almost the same as in MurmurHash3 */
|
|
#define BIG_CONSTANT(x,y) ((st_index_t)(x)<<32|(st_index_t)(y))
|
|
#define ROTL(x,n) ((x)<<(n)|(x)>>(SIZEOF_ST_INDEX_T*CHAR_BIT-(n)))
|
|
|
|
#if ST_INDEX_BITS <= 32
|
|
#define C1 (st_index_t)0xcc9e2d51
|
|
#define C2 (st_index_t)0x1b873593
|
|
#else
|
|
#define C1 BIG_CONSTANT(0x87c37b91,0x114253d5);
|
|
#define C2 BIG_CONSTANT(0x4cf5ad43,0x2745937f);
|
|
#endif
|
|
NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_step(st_index_t h, st_index_t k));
|
|
NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_finish(st_index_t h));
|
|
NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash(const void *ptr, size_t len, st_index_t h));
|
|
|
|
static inline st_index_t
|
|
murmur_step(st_index_t h, st_index_t k)
|
|
{
|
|
#if ST_INDEX_BITS <= 32
|
|
#define r1 (17)
|
|
#define r2 (11)
|
|
#else
|
|
#define r1 (33)
|
|
#define r2 (24)
|
|
#endif
|
|
k *= C1;
|
|
h ^= ROTL(k, r1);
|
|
h *= C2;
|
|
h = ROTL(h, r2);
|
|
return h;
|
|
}
|
|
#undef r1
|
|
#undef r2
|
|
|
|
static inline st_index_t
|
|
murmur_finish(st_index_t h)
|
|
{
|
|
#if ST_INDEX_BITS <= 32
|
|
#define r1 (16)
|
|
#define r2 (13)
|
|
#define r3 (16)
|
|
const st_index_t c1 = 0x85ebca6b;
|
|
const st_index_t c2 = 0xc2b2ae35;
|
|
#else
|
|
/* values are taken from Mix13 on http://zimbry.blogspot.ru/2011/09/better-bit-mixing-improving-on.html */
|
|
#define r1 (30)
|
|
#define r2 (27)
|
|
#define r3 (31)
|
|
const st_index_t c1 = BIG_CONSTANT(0xbf58476d,0x1ce4e5b9);
|
|
const st_index_t c2 = BIG_CONSTANT(0x94d049bb,0x133111eb);
|
|
#endif
|
|
#if ST_INDEX_BITS > 64
|
|
h ^= h >> 64;
|
|
h *= c2;
|
|
h ^= h >> 65;
|
|
#endif
|
|
h ^= h >> r1;
|
|
h *= c1;
|
|
h ^= h >> r2;
|
|
h *= c2;
|
|
h ^= h >> r3;
|
|
return h;
|
|
}
|
|
#undef r1
|
|
#undef r2
|
|
#undef r3
|
|
|
|
st_index_t
|
|
st_hash(const void *ptr, size_t len, st_index_t h)
|
|
{
|
|
const char *data = ptr;
|
|
st_index_t t = 0;
|
|
size_t l = len;
|
|
|
|
#define data_at(n) (st_index_t)((unsigned char)data[(n)])
|
|
#define UNALIGNED_ADD_4 UNALIGNED_ADD(2); UNALIGNED_ADD(1); UNALIGNED_ADD(0)
|
|
#if SIZEOF_ST_INDEX_T > 4
|
|
#define UNALIGNED_ADD_8 UNALIGNED_ADD(6); UNALIGNED_ADD(5); UNALIGNED_ADD(4); UNALIGNED_ADD(3); UNALIGNED_ADD_4
|
|
#if SIZEOF_ST_INDEX_T > 8
|
|
#define UNALIGNED_ADD_16 UNALIGNED_ADD(14); UNALIGNED_ADD(13); UNALIGNED_ADD(12); UNALIGNED_ADD(11); \
|
|
UNALIGNED_ADD(10); UNALIGNED_ADD(9); UNALIGNED_ADD(8); UNALIGNED_ADD(7); UNALIGNED_ADD_8
|
|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_16
|
|
#endif
|
|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_8
|
|
#else
|
|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_4
|
|
#endif
|
|
#undef SKIP_TAIL
|
|
if (len >= sizeof(st_index_t)) {
|
|
#if !UNALIGNED_WORD_ACCESS
|
|
int align = (int)((st_data_t)data % sizeof(st_index_t));
|
|
if (align) {
|
|
st_index_t d = 0;
|
|
int sl, sr, pack;
|
|
|
|
switch (align) {
|
|
#ifdef WORDS_BIGENDIAN
|
|
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \
|
|
t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 2)
|
|
#else
|
|
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \
|
|
t |= data_at(n) << CHAR_BIT*(n)
|
|
#endif
|
|
UNALIGNED_ADD_ALL;
|
|
#undef UNALIGNED_ADD
|
|
}
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
t >>= (CHAR_BIT * align) - CHAR_BIT;
|
|
#else
|
|
t <<= (CHAR_BIT * align);
|
|
#endif
|
|
|
|
data += sizeof(st_index_t)-align;
|
|
len -= sizeof(st_index_t)-align;
|
|
|
|
sl = CHAR_BIT * (SIZEOF_ST_INDEX_T-align);
|
|
sr = CHAR_BIT * align;
|
|
|
|
while (len >= sizeof(st_index_t)) {
|
|
d = *(st_index_t *)data;
|
|
#ifdef WORDS_BIGENDIAN
|
|
t = (t << sr) | (d >> sl);
|
|
#else
|
|
t = (t >> sr) | (d << sl);
|
|
#endif
|
|
h = murmur_step(h, t);
|
|
t = d;
|
|
data += sizeof(st_index_t);
|
|
len -= sizeof(st_index_t);
|
|
}
|
|
|
|
pack = len < (size_t)align ? (int)len : align;
|
|
d = 0;
|
|
switch (pack) {
|
|
#ifdef WORDS_BIGENDIAN
|
|
# define UNALIGNED_ADD(n) case (n) + 1: \
|
|
d |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
|
|
#else
|
|
# define UNALIGNED_ADD(n) case (n) + 1: \
|
|
d |= data_at(n) << CHAR_BIT*(n)
|
|
#endif
|
|
UNALIGNED_ADD_ALL;
|
|
#undef UNALIGNED_ADD
|
|
}
|
|
#ifdef WORDS_BIGENDIAN
|
|
t = (t << sr) | (d >> sl);
|
|
#else
|
|
t = (t >> sr) | (d << sl);
|
|
#endif
|
|
|
|
if (len < (size_t)align) goto skip_tail;
|
|
# define SKIP_TAIL 1
|
|
h = murmur_step(h, t);
|
|
data += pack;
|
|
len -= pack;
|
|
}
|
|
else
|
|
#endif
|
|
#ifdef HAVE_BUILTIN___BUILTIN_ASSUME_ALIGNED
|
|
#define aligned_data __builtin_assume_aligned(data, sizeof(st_index_t))
|
|
#else
|
|
#define aligned_data data
|
|
#endif
|
|
{
|
|
do {
|
|
h = murmur_step(h, *(st_index_t *)aligned_data);
|
|
data += sizeof(st_index_t);
|
|
len -= sizeof(st_index_t);
|
|
} while (len >= sizeof(st_index_t));
|
|
}
|
|
}
|
|
|
|
t = 0;
|
|
switch (len) {
|
|
#if UNALIGNED_WORD_ACCESS && SIZEOF_ST_INDEX_T <= 8 && CHAR_BIT == 8
|
|
/* in this case byteorder doesn't really matter */
|
|
#if SIZEOF_ST_INDEX_T > 4
|
|
case 7: t |= data_at(6) << 48;
|
|
case 6: t |= data_at(5) << 40;
|
|
case 5: t |= data_at(4) << 32;
|
|
case 4:
|
|
t |= (st_index_t)*(uint32_t*)aligned_data;
|
|
goto skip_tail;
|
|
# define SKIP_TAIL 1
|
|
#endif
|
|
case 3: t |= data_at(2) << 16;
|
|
case 2: t |= data_at(1) << 8;
|
|
case 1: t |= data_at(0);
|
|
#else
|
|
#ifdef WORDS_BIGENDIAN
|
|
# define UNALIGNED_ADD(n) case (n) + 1: \
|
|
t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
|
|
#else
|
|
# define UNALIGNED_ADD(n) case (n) + 1: \
|
|
t |= data_at(n) << CHAR_BIT*(n)
|
|
#endif
|
|
UNALIGNED_ADD_ALL;
|
|
#undef UNALIGNED_ADD
|
|
#endif
|
|
#ifdef SKIP_TAIL
|
|
skip_tail:
|
|
#endif
|
|
h ^= t; h -= ROTL(t, 7);
|
|
h *= C2;
|
|
}
|
|
h ^= l;
|
|
#undef aligned_data
|
|
|
|
return murmur_finish(h);
|
|
}
|
|
|
|
st_index_t
|
|
st_hash_uint32(st_index_t h, uint32_t i)
|
|
{
|
|
return murmur_step(h, i);
|
|
}
|
|
|
|
NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash_uint(st_index_t h, st_index_t i));
|
|
st_index_t
|
|
st_hash_uint(st_index_t h, st_index_t i)
|
|
{
|
|
i += h;
|
|
/* no matter if it is BigEndian or LittleEndian,
|
|
* we hash just integers */
|
|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
|
|
h = murmur_step(h, i >> 8*8);
|
|
#endif
|
|
h = murmur_step(h, i);
|
|
return h;
|
|
}
|
|
|
|
st_index_t
|
|
st_hash_end(st_index_t h)
|
|
{
|
|
h = murmur_finish(h);
|
|
return h;
|
|
}
|
|
|
|
#undef st_hash_start
|
|
st_index_t
|
|
rb_st_hash_start(st_index_t h)
|
|
{
|
|
return h;
|
|
}
|
|
|
|
static st_index_t
|
|
strhash(st_data_t arg)
|
|
{
|
|
register const char *string = (const char *)arg;
|
|
return st_hash(string, strlen(string), FNV1_32A_INIT);
|
|
}
|
|
|
|
int
|
|
st_locale_insensitive_strcasecmp(const char *s1, const char *s2)
|
|
{
|
|
char c1, c2;
|
|
|
|
while (1) {
|
|
c1 = *s1++;
|
|
c2 = *s2++;
|
|
if (c1 == '\0' || c2 == '\0') {
|
|
if (c1 != '\0') return 1;
|
|
if (c2 != '\0') return -1;
|
|
return 0;
|
|
}
|
|
if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A';
|
|
if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A';
|
|
if (c1 != c2) {
|
|
if (c1 > c2)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
st_locale_insensitive_strncasecmp(const char *s1, const char *s2, size_t n)
|
|
{
|
|
char c1, c2;
|
|
size_t i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
c1 = *s1++;
|
|
c2 = *s2++;
|
|
if (c1 == '\0' || c2 == '\0') {
|
|
if (c1 != '\0') return 1;
|
|
if (c2 != '\0') return -1;
|
|
return 0;
|
|
}
|
|
if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A';
|
|
if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A';
|
|
if (c1 != c2) {
|
|
if (c1 > c2)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
st_strcmp(st_data_t lhs, st_data_t rhs)
|
|
{
|
|
const char *s1 = (char *)lhs;
|
|
const char *s2 = (char *)rhs;
|
|
return strcmp(s1, s2);
|
|
}
|
|
|
|
static int
|
|
st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs)
|
|
{
|
|
const char *s1 = (char *)lhs;
|
|
const char *s2 = (char *)rhs;
|
|
return st_locale_insensitive_strcasecmp(s1, s2);
|
|
}
|
|
|
|
NO_SANITIZE("unsigned-integer-overflow", PUREFUNC(static st_index_t strcasehash(st_data_t)));
|
|
static st_index_t
|
|
strcasehash(st_data_t arg)
|
|
{
|
|
register const char *string = (const char *)arg;
|
|
register st_index_t hval = FNV1_32A_INIT;
|
|
|
|
/*
|
|
* FNV-1a hash each octet in the buffer
|
|
*/
|
|
while (*string) {
|
|
unsigned int c = (unsigned char)*string++;
|
|
if ((unsigned int)(c - 'A') <= ('Z' - 'A')) c += 'a' - 'A';
|
|
hval ^= c;
|
|
|
|
/* multiply by the 32 bit FNV magic prime mod 2^32 */
|
|
hval *= FNV_32_PRIME;
|
|
}
|
|
return hval;
|
|
}
|
|
|
|
int
|
|
st_numcmp(st_data_t x, st_data_t y)
|
|
{
|
|
return x != y;
|
|
}
|
|
|
|
st_index_t
|
|
st_numhash(st_data_t n)
|
|
{
|
|
enum {s1 = 11, s2 = 3};
|
|
return (st_index_t)((n>>s1|(n<<s2)) ^ (n>>s2));
|
|
}
|
|
|
|
#ifdef RUBY
|
|
/* Expand TAB to be suitable for holding SIZ entries in total.
|
|
Pre-existing entries remain not deleted inside of TAB, but its bins
|
|
are cleared to expect future reconstruction. See rehash below. */
|
|
static void
|
|
st_expand_table(st_table *tab, st_index_t siz)
|
|
{
|
|
st_table *tmp;
|
|
st_index_t n;
|
|
|
|
if (siz <= get_allocated_entries(tab))
|
|
return; /* enough room already */
|
|
|
|
tmp = st_init_table_with_size(tab->type, siz);
|
|
n = get_allocated_entries(tab);
|
|
MEMCPY(tmp->entries, tab->entries, st_table_entry, n);
|
|
free(tab->entries);
|
|
free(tab->bins);
|
|
free(tmp->bins);
|
|
tab->entry_power = tmp->entry_power;
|
|
tab->bin_power = tmp->bin_power;
|
|
tab->size_ind = tmp->size_ind;
|
|
tab->entries = tmp->entries;
|
|
tab->bins = NULL;
|
|
tab->rebuilds_num++;
|
|
free(tmp);
|
|
}
|
|
|
|
/* Rehash using linear search. Return TRUE if we found that the table
|
|
was rebuilt. */
|
|
static int
|
|
st_rehash_linear(st_table *tab)
|
|
{
|
|
int eq_p, rebuilt_p;
|
|
st_index_t i, j;
|
|
st_table_entry *p, *q;
|
|
|
|
free(tab->bins);
|
|
tab->bins = NULL;
|
|
|
|
for (i = tab->entries_start; i < tab->entries_bound; i++) {
|
|
p = &tab->entries[i];
|
|
if (DELETED_ENTRY_P(p))
|
|
continue;
|
|
for (j = i + 1; j < tab->entries_bound; j++) {
|
|
q = &tab->entries[j];
|
|
if (DELETED_ENTRY_P(q))
|
|
continue;
|
|
DO_PTR_EQUAL_CHECK(tab, p, q->hash, q->key, eq_p, rebuilt_p);
|
|
if (EXPECT(rebuilt_p, 0))
|
|
return TRUE;
|
|
if (eq_p) {
|
|
*p = *q;
|
|
MARK_ENTRY_DELETED(q);
|
|
tab->num_entries--;
|
|
update_range_for_deleted(tab, j);
|
|
}
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/* Rehash using index. Return TRUE if we found that the table was
|
|
rebuilt. */
|
|
static int
|
|
st_rehash_indexed(st_table *tab)
|
|
{
|
|
int eq_p, rebuilt_p;
|
|
st_index_t i;
|
|
st_index_t const n = bins_size(tab);
|
|
unsigned int const size_ind = get_size_ind(tab);
|
|
st_index_t *bins = realloc(tab->bins, n);
|
|
tab->bins = bins;
|
|
initialize_bins(tab);
|
|
for (i = tab->entries_start; i < tab->entries_bound; i++) {
|
|
st_table_entry *p = &tab->entries[i];
|
|
st_index_t ind;
|
|
#ifdef QUADRATIC_PROBE
|
|
st_index_t d = 1;
|
|
#else
|
|
st_index_t perturb = p->hash;
|
|
#endif
|
|
|
|
if (DELETED_ENTRY_P(p))
|
|
continue;
|
|
|
|
ind = hash_bin(p->hash, tab);
|
|
for (;;) {
|
|
st_index_t bin = get_bin(bins, size_ind, ind);
|
|
if (EMPTY_OR_DELETED_BIN_P(bin)) {
|
|
/* ok, new room */
|
|
set_bin(bins, size_ind, ind, i + ENTRY_BASE);
|
|
break;
|
|
}
|
|
else {
|
|
st_table_entry *q = &tab->entries[bin - ENTRY_BASE];
|
|
DO_PTR_EQUAL_CHECK(tab, q, p->hash, p->key, eq_p, rebuilt_p);
|
|
if (EXPECT(rebuilt_p, 0))
|
|
return TRUE;
|
|
if (eq_p) {
|
|
/* duplicated key; delete it */
|
|
q->record = p->record;
|
|
MARK_ENTRY_DELETED(p);
|
|
tab->num_entries--;
|
|
update_range_for_deleted(tab, bin);
|
|
break;
|
|
}
|
|
else {
|
|
/* hash collision; skip it */
|
|
#ifdef QUADRATIC_PROBE
|
|
ind = hash_bin(ind + d, tab);
|
|
d++;
|
|
#else
|
|
ind = secondary_hash(ind, tab, &perturb);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/* Reconstruct TAB's bins according to TAB's entries. This function
|
|
permits conflicting keys inside of entries. No errors are reported
|
|
then. All but one of them are discarded silently. */
|
|
static void
|
|
st_rehash(st_table *tab)
|
|
{
|
|
int rebuilt_p;
|
|
|
|
do {
|
|
if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
|
|
rebuilt_p = st_rehash_linear(tab);
|
|
else
|
|
rebuilt_p = st_rehash_indexed(tab);
|
|
} while (rebuilt_p);
|
|
}
|
|
|
|
static st_data_t
|
|
st_stringify(VALUE key)
|
|
{
|
|
return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ?
|
|
rb_hash_key_str(key) : key;
|
|
}
|
|
|
|
static void
|
|
st_insert_single(st_table *tab, VALUE hash, VALUE key, VALUE val)
|
|
{
|
|
st_data_t k = st_stringify(key);
|
|
st_table_entry e;
|
|
e.hash = do_hash(k, tab);
|
|
e.key = k;
|
|
e.record = val;
|
|
|
|
tab->entries[tab->entries_bound++] = e;
|
|
tab->num_entries++;
|
|
RB_OBJ_WRITTEN(hash, Qundef, k);
|
|
RB_OBJ_WRITTEN(hash, Qundef, val);
|
|
}
|
|
|
|
static void
|
|
st_insert_linear(st_table *tab, long argc, const VALUE *argv, VALUE hash)
|
|
{
|
|
long i;
|
|
|
|
for (i = 0; i < argc; /* */) {
|
|
st_data_t k = st_stringify(argv[i++]);
|
|
st_data_t v = argv[i++];
|
|
st_insert(tab, k, v);
|
|
RB_OBJ_WRITTEN(hash, Qundef, k);
|
|
RB_OBJ_WRITTEN(hash, Qundef, v);
|
|
}
|
|
}
|
|
|
|
static void
|
|
st_insert_generic(st_table *tab, long argc, const VALUE *argv, VALUE hash)
|
|
{
|
|
long i;
|
|
|
|
/* push elems */
|
|
for (i = 0; i < argc; /* */) {
|
|
VALUE key = argv[i++];
|
|
VALUE val = argv[i++];
|
|
st_insert_single(tab, hash, key, val);
|
|
}
|
|
|
|
/* reindex */
|
|
st_rehash(tab);
|
|
}
|
|
|
|
/* Mimics ruby's { foo => bar } syntax. This function is subpart
|
|
of rb_hash_bulk_insert. */
|
|
void
|
|
rb_hash_bulk_insert_into_st_table(long argc, const VALUE *argv, VALUE hash)
|
|
{
|
|
st_index_t n, size = argc / 2;
|
|
st_table *tab = RHASH_ST_TABLE(hash);
|
|
|
|
tab = RHASH_TBL_RAW(hash);
|
|
n = tab->entries_bound + size;
|
|
st_expand_table(tab, n);
|
|
if (UNLIKELY(tab->num_entries))
|
|
st_insert_generic(tab, argc, argv, hash);
|
|
else if (argc <= 2)
|
|
st_insert_single(tab, hash, argv[0], argv[1]);
|
|
else if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
|
|
st_insert_linear(tab, argc, argv, hash);
|
|
else
|
|
st_insert_generic(tab, argc, argv, hash);
|
|
}
|
|
|
|
// to iterate iv_index_tbl
|
|
st_data_t
|
|
rb_st_nth_key(st_table *tab, st_index_t index)
|
|
{
|
|
if (LIKELY(tab->entries_start == 0 &&
|
|
tab->num_entries == tab->entries_bound &&
|
|
index < tab->num_entries)) {
|
|
return tab->entries[index].key;
|
|
}
|
|
else {
|
|
rb_bug("unreachable");
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_st_compact_table(st_table *tab)
|
|
{
|
|
st_index_t num = tab->num_entries;
|
|
if (REBUILD_THRESHOLD * num <= get_allocated_entries(tab)) {
|
|
/* Compaction: */
|
|
st_table *new_tab = st_init_table_with_size(tab->type, 2 * num);
|
|
rebuild_table_with(new_tab, tab);
|
|
rebuild_move_table(new_tab, tab);
|
|
rebuild_cleanup(tab);
|
|
}
|
|
}
|
|
|
|
#endif
|