ruby/variable.c

4311 строки
110 KiB
C

/**********************************************************************
variable.c -
$Author$
created at: Tue Apr 19 23:55:15 JST 1994
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/internal/config.h"
#include <stddef.h>
#include "ruby/internal/stdbool.h"
#include "ccan/list/list.h"
#include "constant.h"
#include "debug_counter.h"
#include "id.h"
#include "id_table.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/compilers.h"
#include "internal/error.h"
#include "internal/eval.h"
#include "internal/hash.h"
#include "internal/object.h"
#include "internal/re.h"
#include "internal/symbol.h"
#include "internal/thread.h"
#include "internal/variable.h"
#include "ruby/encoding.h"
#include "ruby/st.h"
#include "ruby/util.h"
#include "shape.h"
#include "symbol.h"
#include "variable.h"
#include "vm_core.h"
#include "ractor_core.h"
#include "vm_sync.h"
RUBY_EXTERN rb_serial_t ruby_vm_global_cvar_state;
#define GET_GLOBAL_CVAR_STATE() (ruby_vm_global_cvar_state)
typedef void rb_gvar_compact_t(void *var);
static struct rb_id_table *rb_global_tbl;
static ID autoload;
// This hash table maps file paths to loadable features. We use this to track
// autoload state until it's no longer needed.
// feature (file path) => struct autoload_data
static VALUE autoload_features;
// This mutex is used to protect autoloading state. We use a global mutex which
// is held until a per-feature mutex can be created. This ensures there are no
// race conditions relating to autoload state.
static VALUE autoload_mutex;
static void check_before_mod_set(VALUE, ID, VALUE, const char *);
static void setup_const_entry(rb_const_entry_t *, VALUE, VALUE, rb_const_flag_t);
static VALUE rb_const_search(VALUE klass, ID id, int exclude, int recurse, int visibility);
static st_table *generic_iv_tbl_;
void
Init_var_tables(void)
{
rb_global_tbl = rb_id_table_create(0);
generic_iv_tbl_ = st_init_numtable();
autoload = rb_intern_const("__autoload__");
autoload_mutex = rb_mutex_new();
rb_obj_hide(autoload_mutex);
rb_vm_register_global_object(autoload_mutex);
autoload_features = rb_ident_hash_new();
rb_obj_hide(autoload_features);
rb_vm_register_global_object(autoload_features);
}
static inline bool
rb_namespace_p(VALUE obj)
{
if (RB_SPECIAL_CONST_P(obj)) return false;
switch (RB_BUILTIN_TYPE(obj)) {
case T_MODULE: case T_CLASS: return true;
default: break;
}
return false;
}
/**
* Returns +classpath+ of _klass_, if it is named, or +nil+ for
* anonymous +class+/+module+. A named +classpath+ may contain
* an anonymous component, but the last component is guaranteed
* to not be anonymous. <code>*permanent</code> is set to 1
* if +classpath+ has no anonymous components. There is no builtin
* Ruby level APIs that can change a permanent +classpath+.
*
* YJIT needs this function to not allocate.
*/
static VALUE
classname(VALUE klass, bool *permanent)
{
*permanent = false;
VALUE classpath = RCLASS_EXT(klass)->classpath;
if (classpath == 0) return Qnil;
*permanent = RCLASS_EXT(klass)->permanent_classpath;
return classpath;
}
VALUE
rb_mod_name0(VALUE klass, bool *permanent)
{
return classname(klass, permanent);
}
/*
* call-seq:
* mod.name -> string or nil
*
* Returns the name of the module <i>mod</i>. Returns +nil+ for anonymous modules.
*/
VALUE
rb_mod_name(VALUE mod)
{
// YJIT needs this function to not allocate.
bool permanent;
return classname(mod, &permanent);
}
// Similar to logic in rb_mod_const_get().
static bool
is_constant_path(VALUE name)
{
const char *path = RSTRING_PTR(name);
const char *pend = RSTRING_END(name);
rb_encoding *enc = rb_enc_get(name);
const char *p = path;
if (p >= pend || !*p) {
return false;
}
while (p < pend) {
if (p + 2 <= pend && p[0] == ':' && p[1] == ':') {
p += 2;
}
const char *pbeg = p;
while (p < pend && *p != ':') p++;
if (pbeg == p) return false;
if (rb_enc_symname_type(pbeg, p - pbeg, enc, 0) != ID_CONST) {
return false;
}
}
return true;
}
/*
* call-seq:
* mod.set_temporary_name(string) -> self
* mod.set_temporary_name(nil) -> self
*
* Sets the temporary name of the module. This name is reflected in
* introspection of the module and the values that are related to it, such
* as instances, constants, and methods.
*
* The name should be +nil+ or a non-empty string that is not a valid constant
* path (to avoid confusing between permanent and temporary names).
*
* The method can be useful to distinguish dynamically generated classes and
* modules without assigning them to constants.
*
* If the module is given a permanent name by assigning it to a constant,
* the temporary name is discarded. A temporary name can't be assigned to
* modules that have a permanent name.
*
* If the given name is +nil+, the module becomes anonymous again.
*
* Example:
*
* m = Module.new # => #<Module:0x0000000102c68f38>
* m.name #=> nil
*
* m.set_temporary_name("fake_name") # => fake_name
* m.name #=> "fake_name"
*
* m.set_temporary_name(nil) # => #<Module:0x0000000102c68f38>
* m.name #=> nil
*
* c = Class.new
* c.set_temporary_name("MyClass(with description)")
*
* c.new # => #<MyClass(with description):0x0....>
*
* c::M = m
* c::M.name #=> "MyClass(with description)::M"
*
* # Assigning to a constant replaces the name with a permanent one
* C = c
*
* C.name #=> "C"
* C::M.name #=> "C::M"
* c.new # => #<C:0x0....>
*/
VALUE
rb_mod_set_temporary_name(VALUE mod, VALUE name)
{
// We don't allow setting the name if the classpath is already permanent:
if (RCLASS_EXT(mod)->permanent_classpath) {
rb_raise(rb_eRuntimeError, "can't change permanent name");
}
if (NIL_P(name)) {
// Set the temporary classpath to NULL (anonymous):
RCLASS_SET_CLASSPATH(mod, 0, FALSE);
}
else {
// Ensure the name is a string:
StringValue(name);
if (RSTRING_LEN(name) == 0) {
rb_raise(rb_eArgError, "empty class/module name");
}
if (is_constant_path(name)) {
rb_raise(rb_eArgError, "the temporary name must not be a constant path to avoid confusion");
}
// Set the temporary classpath to the given name:
RCLASS_SET_CLASSPATH(mod, name, FALSE);
}
return mod;
}
static VALUE
make_temporary_path(VALUE obj, VALUE klass)
{
VALUE path;
switch (klass) {
case Qnil:
path = rb_sprintf("#<Class:%p>", (void*)obj);
break;
case Qfalse:
path = rb_sprintf("#<Module:%p>", (void*)obj);
break;
default:
path = rb_sprintf("#<%"PRIsVALUE":%p>", klass, (void*)obj);
break;
}
OBJ_FREEZE(path);
return path;
}
typedef VALUE (*fallback_func)(VALUE obj, VALUE name);
static VALUE
rb_tmp_class_path(VALUE klass, bool *permanent, fallback_func fallback)
{
VALUE path = classname(klass, permanent);
if (!NIL_P(path)) {
return path;
}
if (RB_TYPE_P(klass, T_MODULE)) {
if (rb_obj_class(klass) == rb_cModule) {
path = Qfalse;
}
else {
bool perm;
path = rb_tmp_class_path(RBASIC(klass)->klass, &perm, fallback);
}
}
*permanent = false;
return fallback(klass, path);
}
VALUE
rb_class_path(VALUE klass)
{
bool permanent;
VALUE path = rb_tmp_class_path(klass, &permanent, make_temporary_path);
if (!NIL_P(path)) path = rb_str_dup(path);
return path;
}
VALUE
rb_class_path_cached(VALUE klass)
{
return rb_mod_name(klass);
}
static VALUE
no_fallback(VALUE obj, VALUE name)
{
return name;
}
VALUE
rb_search_class_path(VALUE klass)
{
bool permanent;
return rb_tmp_class_path(klass, &permanent, no_fallback);
}
static VALUE
build_const_pathname(VALUE head, VALUE tail)
{
VALUE path = rb_str_dup(head);
rb_str_cat2(path, "::");
rb_str_append(path, tail);
return rb_fstring(path);
}
static VALUE
build_const_path(VALUE head, ID tail)
{
return build_const_pathname(head, rb_id2str(tail));
}
void
rb_set_class_path_string(VALUE klass, VALUE under, VALUE name)
{
bool permanent = true;
VALUE str;
if (under == rb_cObject) {
str = rb_str_new_frozen(name);
}
else {
str = rb_tmp_class_path(under, &permanent, make_temporary_path);
str = build_const_pathname(str, name);
}
RCLASS_SET_CLASSPATH(klass, str, permanent);
}
void
rb_set_class_path(VALUE klass, VALUE under, const char *name)
{
VALUE str = rb_str_new2(name);
OBJ_FREEZE(str);
rb_set_class_path_string(klass, under, str);
}
VALUE
rb_path_to_class(VALUE pathname)
{
rb_encoding *enc = rb_enc_get(pathname);
const char *pbeg, *pend, *p, *path = RSTRING_PTR(pathname);
ID id;
VALUE c = rb_cObject;
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
}
pbeg = p = path;
pend = path + RSTRING_LEN(pathname);
if (path == pend || path[0] == '#') {
rb_raise(rb_eArgError, "can't retrieve anonymous class %"PRIsVALUE,
QUOTE(pathname));
}
while (p < pend) {
while (p < pend && *p != ':') p++;
id = rb_check_id_cstr(pbeg, p-pbeg, enc);
if (p < pend && p[0] == ':') {
if ((size_t)(pend - p) < 2 || p[1] != ':') goto undefined_class;
p += 2;
pbeg = p;
}
if (!id) {
goto undefined_class;
}
c = rb_const_search(c, id, TRUE, FALSE, FALSE);
if (UNDEF_P(c)) goto undefined_class;
if (!rb_namespace_p(c)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
pathname);
}
}
RB_GC_GUARD(pathname);
return c;
undefined_class:
rb_raise(rb_eArgError, "undefined class/module % "PRIsVALUE,
rb_str_subseq(pathname, 0, p-path));
UNREACHABLE_RETURN(Qundef);
}
VALUE
rb_path2class(const char *path)
{
return rb_path_to_class(rb_str_new_cstr(path));
}
VALUE
rb_class_name(VALUE klass)
{
return rb_class_path(rb_class_real(klass));
}
const char *
rb_class2name(VALUE klass)
{
bool permanent;
VALUE path = rb_tmp_class_path(rb_class_real(klass), &permanent, make_temporary_path);
if (NIL_P(path)) return NULL;
return RSTRING_PTR(path);
}
const char *
rb_obj_classname(VALUE obj)
{
return rb_class2name(CLASS_OF(obj));
}
struct trace_var {
int removed;
void (*func)(VALUE arg, VALUE val);
VALUE data;
struct trace_var *next;
};
struct rb_global_variable {
int counter;
int block_trace;
VALUE *data;
rb_gvar_getter_t *getter;
rb_gvar_setter_t *setter;
rb_gvar_marker_t *marker;
rb_gvar_compact_t *compactor;
struct trace_var *trace;
};
struct rb_global_entry {
struct rb_global_variable *var;
ID id;
bool ractor_local;
};
static enum rb_id_table_iterator_result
free_global_entry_i(VALUE val, void *arg)
{
struct rb_global_entry *entry = (struct rb_global_entry *)val;
if (entry->var->counter == 1) {
ruby_xfree(entry->var);
}
else {
entry->var->counter--;
}
ruby_xfree(entry);
return ID_TABLE_DELETE;
}
void
rb_free_rb_global_tbl(void)
{
rb_id_table_foreach_values(rb_global_tbl, free_global_entry_i, 0);
rb_id_table_free(rb_global_tbl);
}
void
rb_free_generic_iv_tbl_(void)
{
st_free_table(generic_iv_tbl_);
}
static struct rb_global_entry*
rb_find_global_entry(ID id)
{
struct rb_global_entry *entry;
VALUE data;
if (!rb_id_table_lookup(rb_global_tbl, id, &data)) {
entry = NULL;
}
else {
entry = (struct rb_global_entry *)data;
RUBY_ASSERT(entry != NULL);
}
if (UNLIKELY(!rb_ractor_main_p()) && (!entry || !entry->ractor_local)) {
rb_raise(rb_eRactorIsolationError, "can not access global variables %s from non-main Ractors", rb_id2name(id));
}
return entry;
}
void
rb_gvar_ractor_local(const char *name)
{
struct rb_global_entry *entry = rb_find_global_entry(rb_intern(name));
entry->ractor_local = true;
}
static void
rb_gvar_undef_compactor(void *var)
{
}
static struct rb_global_entry*
rb_global_entry(ID id)
{
struct rb_global_entry *entry = rb_find_global_entry(id);
if (!entry) {
struct rb_global_variable *var;
entry = ALLOC(struct rb_global_entry);
var = ALLOC(struct rb_global_variable);
entry->id = id;
entry->var = var;
entry->ractor_local = false;
var->counter = 1;
var->data = 0;
var->getter = rb_gvar_undef_getter;
var->setter = rb_gvar_undef_setter;
var->marker = rb_gvar_undef_marker;
var->compactor = rb_gvar_undef_compactor;
var->block_trace = 0;
var->trace = 0;
rb_id_table_insert(rb_global_tbl, id, (VALUE)entry);
}
return entry;
}
VALUE
rb_gvar_undef_getter(ID id, VALUE *_)
{
rb_warning("global variable '%"PRIsVALUE"' not initialized", QUOTE_ID(id));
return Qnil;
}
static void
rb_gvar_val_compactor(void *_var)
{
struct rb_global_variable *var = (struct rb_global_variable *)_var;
VALUE obj = (VALUE)var->data;
if (obj) {
VALUE new = rb_gc_location(obj);
if (new != obj) {
var->data = (void*)new;
}
}
}
void
rb_gvar_undef_setter(VALUE val, ID id, VALUE *_)
{
struct rb_global_variable *var = rb_global_entry(id)->var;
var->getter = rb_gvar_val_getter;
var->setter = rb_gvar_val_setter;
var->marker = rb_gvar_val_marker;
var->compactor = rb_gvar_val_compactor;
var->data = (void*)val;
}
void
rb_gvar_undef_marker(VALUE *var)
{
}
VALUE
rb_gvar_val_getter(ID id, VALUE *data)
{
return (VALUE)data;
}
void
rb_gvar_val_setter(VALUE val, ID id, VALUE *_)
{
struct rb_global_variable *var = rb_global_entry(id)->var;
var->data = (void*)val;
}
void
rb_gvar_val_marker(VALUE *var)
{
VALUE data = (VALUE)var;
if (data) rb_gc_mark_movable(data);
}
VALUE
rb_gvar_var_getter(ID id, VALUE *var)
{
if (!var) return Qnil;
return *var;
}
void
rb_gvar_var_setter(VALUE val, ID id, VALUE *data)
{
*data = val;
}
void
rb_gvar_var_marker(VALUE *var)
{
if (var) rb_gc_mark_maybe(*var);
}
void
rb_gvar_readonly_setter(VALUE v, ID id, VALUE *_)
{
rb_name_error(id, "%"PRIsVALUE" is a read-only variable", QUOTE_ID(id));
}
static enum rb_id_table_iterator_result
mark_global_entry(VALUE v, void *ignored)
{
struct rb_global_entry *entry = (struct rb_global_entry *)v;
struct trace_var *trace;
struct rb_global_variable *var = entry->var;
(*var->marker)(var->data);
trace = var->trace;
while (trace) {
if (trace->data) rb_gc_mark_maybe(trace->data);
trace = trace->next;
}
return ID_TABLE_CONTINUE;
}
#define gc_mark_table(task) \
if (rb_global_tbl) { rb_id_table_foreach_values(rb_global_tbl, task##_global_entry, 0); }
void
rb_gc_mark_global_tbl(void)
{
gc_mark_table(mark);
}
static enum rb_id_table_iterator_result
update_global_entry(VALUE v, void *ignored)
{
struct rb_global_entry *entry = (struct rb_global_entry *)v;
struct rb_global_variable *var = entry->var;
(*var->compactor)(var);
return ID_TABLE_CONTINUE;
}
void
rb_gc_update_global_tbl(void)
{
gc_mark_table(update);
}
static ID
global_id(const char *name)
{
ID id;
if (name[0] == '$') id = rb_intern(name);
else {
size_t len = strlen(name);
VALUE vbuf = 0;
char *buf = ALLOCV_N(char, vbuf, len+1);
buf[0] = '$';
memcpy(buf+1, name, len);
id = rb_intern2(buf, len+1);
ALLOCV_END(vbuf);
}
return id;
}
static ID
find_global_id(const char *name)
{
ID id;
size_t len = strlen(name);
if (name[0] == '$') {
id = rb_check_id_cstr(name, len, NULL);
}
else {
VALUE vbuf = 0;
char *buf = ALLOCV_N(char, vbuf, len+1);
buf[0] = '$';
memcpy(buf+1, name, len);
id = rb_check_id_cstr(buf, len+1, NULL);
ALLOCV_END(vbuf);
}
return id;
}
void
rb_define_hooked_variable(
const char *name,
VALUE *var,
rb_gvar_getter_t *getter,
rb_gvar_setter_t *setter)
{
volatile VALUE tmp = var ? *var : Qnil;
ID id = global_id(name);
struct rb_global_variable *gvar = rb_global_entry(id)->var;
gvar->data = (void*)var;
gvar->getter = getter ? (rb_gvar_getter_t *)getter : rb_gvar_var_getter;
gvar->setter = setter ? (rb_gvar_setter_t *)setter : rb_gvar_var_setter;
gvar->marker = rb_gvar_var_marker;
RB_GC_GUARD(tmp);
}
void
rb_define_variable(const char *name, VALUE *var)
{
rb_define_hooked_variable(name, var, 0, 0);
}
void
rb_define_readonly_variable(const char *name, const VALUE *var)
{
rb_define_hooked_variable(name, (VALUE *)var, 0, rb_gvar_readonly_setter);
}
void
rb_define_virtual_variable(
const char *name,
rb_gvar_getter_t *getter,
rb_gvar_setter_t *setter)
{
if (!getter) getter = rb_gvar_val_getter;
if (!setter) setter = rb_gvar_readonly_setter;
rb_define_hooked_variable(name, 0, getter, setter);
}
static void
rb_trace_eval(VALUE cmd, VALUE val)
{
rb_eval_cmd_kw(cmd, rb_ary_new3(1, val), RB_NO_KEYWORDS);
}
VALUE
rb_f_trace_var(int argc, const VALUE *argv)
{
VALUE var, cmd;
struct rb_global_entry *entry;
struct trace_var *trace;
if (rb_scan_args(argc, argv, "11", &var, &cmd) == 1) {
cmd = rb_block_proc();
}
if (NIL_P(cmd)) {
return rb_f_untrace_var(argc, argv);
}
entry = rb_global_entry(rb_to_id(var));
trace = ALLOC(struct trace_var);
trace->next = entry->var->trace;
trace->func = rb_trace_eval;
trace->data = cmd;
trace->removed = 0;
entry->var->trace = trace;
return Qnil;
}
static void
remove_trace(struct rb_global_variable *var)
{
struct trace_var *trace = var->trace;
struct trace_var t;
struct trace_var *next;
t.next = trace;
trace = &t;
while (trace->next) {
next = trace->next;
if (next->removed) {
trace->next = next->next;
xfree(next);
}
else {
trace = next;
}
}
var->trace = t.next;
}
VALUE
rb_f_untrace_var(int argc, const VALUE *argv)
{
VALUE var, cmd;
ID id;
struct rb_global_entry *entry;
struct trace_var *trace;
rb_scan_args(argc, argv, "11", &var, &cmd);
id = rb_check_id(&var);
if (!id) {
rb_name_error_str(var, "undefined global variable %"PRIsVALUE"", QUOTE(var));
}
if ((entry = rb_find_global_entry(id)) == NULL) {
rb_name_error(id, "undefined global variable %"PRIsVALUE"", QUOTE_ID(id));
}
trace = entry->var->trace;
if (NIL_P(cmd)) {
VALUE ary = rb_ary_new();
while (trace) {
struct trace_var *next = trace->next;
rb_ary_push(ary, (VALUE)trace->data);
trace->removed = 1;
trace = next;
}
if (!entry->var->block_trace) remove_trace(entry->var);
return ary;
}
else {
while (trace) {
if (trace->data == cmd) {
trace->removed = 1;
if (!entry->var->block_trace) remove_trace(entry->var);
return rb_ary_new3(1, cmd);
}
trace = trace->next;
}
}
return Qnil;
}
struct trace_data {
struct trace_var *trace;
VALUE val;
};
static VALUE
trace_ev(VALUE v)
{
struct trace_data *data = (void *)v;
struct trace_var *trace = data->trace;
while (trace) {
(*trace->func)(trace->data, data->val);
trace = trace->next;
}
return Qnil;
}
static VALUE
trace_en(VALUE v)
{
struct rb_global_variable *var = (void *)v;
var->block_trace = 0;
remove_trace(var);
return Qnil; /* not reached */
}
static VALUE
rb_gvar_set_entry(struct rb_global_entry *entry, VALUE val)
{
struct trace_data trace;
struct rb_global_variable *var = entry->var;
(*var->setter)(val, entry->id, var->data);
if (var->trace && !var->block_trace) {
var->block_trace = 1;
trace.trace = var->trace;
trace.val = val;
rb_ensure(trace_ev, (VALUE)&trace, trace_en, (VALUE)var);
}
return val;
}
VALUE
rb_gvar_set(ID id, VALUE val)
{
struct rb_global_entry *entry;
entry = rb_global_entry(id);
return rb_gvar_set_entry(entry, val);
}
VALUE
rb_gv_set(const char *name, VALUE val)
{
return rb_gvar_set(global_id(name), val);
}
VALUE
rb_gvar_get(ID id)
{
struct rb_global_entry *entry = rb_global_entry(id);
struct rb_global_variable *var = entry->var;
return (*var->getter)(entry->id, var->data);
}
VALUE
rb_gv_get(const char *name)
{
ID id = find_global_id(name);
if (!id) {
rb_warning("global variable '%s' not initialized", name);
return Qnil;
}
return rb_gvar_get(id);
}
VALUE
rb_gvar_defined(ID id)
{
struct rb_global_entry *entry = rb_global_entry(id);
return RBOOL(entry->var->getter != rb_gvar_undef_getter);
}
rb_gvar_getter_t *
rb_gvar_getter_function_of(ID id)
{
const struct rb_global_entry *entry = rb_global_entry(id);
return entry->var->getter;
}
rb_gvar_setter_t *
rb_gvar_setter_function_of(ID id)
{
const struct rb_global_entry *entry = rb_global_entry(id);
return entry->var->setter;
}
static enum rb_id_table_iterator_result
gvar_i(ID key, VALUE val, void *a)
{
VALUE ary = (VALUE)a;
rb_ary_push(ary, ID2SYM(key));
return ID_TABLE_CONTINUE;
}
VALUE
rb_f_global_variables(void)
{
VALUE ary = rb_ary_new();
VALUE sym, backref = rb_backref_get();
if (!rb_ractor_main_p()) {
rb_raise(rb_eRactorIsolationError, "can not access global variables from non-main Ractors");
}
rb_id_table_foreach(rb_global_tbl, gvar_i, (void *)ary);
if (!NIL_P(backref)) {
char buf[2];
int i, nmatch = rb_match_count(backref);
buf[0] = '$';
for (i = 1; i <= nmatch; ++i) {
if (!RTEST(rb_reg_nth_defined(i, backref))) continue;
if (i < 10) {
/* probably reused, make static ID */
buf[1] = (char)(i + '0');
sym = ID2SYM(rb_intern2(buf, 2));
}
else {
/* dynamic symbol */
sym = rb_str_intern(rb_sprintf("$%d", i));
}
rb_ary_push(ary, sym);
}
}
return ary;
}
void
rb_alias_variable(ID name1, ID name2)
{
struct rb_global_entry *entry1, *entry2;
VALUE data1;
struct rb_id_table *gtbl = rb_global_tbl;
if (!rb_ractor_main_p()) {
rb_raise(rb_eRactorIsolationError, "can not access global variables from non-main Ractors");
}
entry2 = rb_global_entry(name2);
if (!rb_id_table_lookup(gtbl, name1, &data1)) {
entry1 = ALLOC(struct rb_global_entry);
entry1->id = name1;
rb_id_table_insert(gtbl, name1, (VALUE)entry1);
}
else if ((entry1 = (struct rb_global_entry *)data1)->var != entry2->var) {
struct rb_global_variable *var = entry1->var;
if (var->block_trace) {
rb_raise(rb_eRuntimeError, "can't alias in tracer");
}
var->counter--;
if (var->counter == 0) {
struct trace_var *trace = var->trace;
while (trace) {
struct trace_var *next = trace->next;
xfree(trace);
trace = next;
}
xfree(var);
}
}
else {
return;
}
entry2->var->counter++;
entry1->var = entry2->var;
}
static void
IVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(ID id)
{
if (UNLIKELY(!rb_ractor_main_p())) {
if (rb_is_instance_id(id)) { // check only normal ivars
rb_raise(rb_eRactorIsolationError, "can not set instance variables of classes/modules by non-main Ractors");
}
}
}
#define CVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR() \
if (UNLIKELY(!rb_ractor_main_p())) { \
rb_raise(rb_eRactorIsolationError, "can not access class variables from non-main Ractors"); \
}
static inline struct st_table *
generic_ivtbl(VALUE obj, ID id, bool force_check_ractor)
{
ASSERT_vm_locking();
if ((force_check_ractor || LIKELY(rb_is_instance_id(id)) /* not internal ID */ ) &&
!RB_OBJ_FROZEN_RAW(obj) &&
UNLIKELY(!rb_ractor_main_p()) &&
UNLIKELY(rb_ractor_shareable_p(obj))) {
rb_raise(rb_eRactorIsolationError, "can not access instance variables of shareable objects from non-main Ractors");
}
return generic_iv_tbl_;
}
static inline struct st_table *
generic_ivtbl_no_ractor_check(VALUE obj)
{
return generic_ivtbl(obj, 0, false);
}
int
rb_gen_ivtbl_get(VALUE obj, ID id, struct gen_ivtbl **ivtbl)
{
RUBY_ASSERT(!RB_TYPE_P(obj, T_ICLASS));
st_data_t data;
int r = 0;
RB_VM_LOCK_ENTER();
{
if (st_lookup(generic_ivtbl(obj, id, false), (st_data_t)obj, &data)) {
*ivtbl = (struct gen_ivtbl *)data;
r = 1;
}
}
RB_VM_LOCK_LEAVE();
return r;
}
int
rb_ivar_generic_ivtbl_lookup(VALUE obj, struct gen_ivtbl **ivtbl)
{
return rb_gen_ivtbl_get(obj, 0, ivtbl);
}
static size_t
gen_ivtbl_bytes(size_t n)
{
return offsetof(struct gen_ivtbl, as.shape.ivptr) + n * sizeof(VALUE);
}
static struct gen_ivtbl *
gen_ivtbl_resize(struct gen_ivtbl *old, uint32_t n)
{
RUBY_ASSERT(n > 0);
uint32_t len = old ? old->as.shape.numiv : 0;
struct gen_ivtbl *ivtbl = xrealloc(old, gen_ivtbl_bytes(n));
ivtbl->as.shape.numiv = n;
for (; len < n; len++) {
ivtbl->as.shape.ivptr[len] = Qundef;
}
return ivtbl;
}
void
rb_mark_generic_ivar(VALUE obj)
{
st_data_t data;
if (st_lookup(generic_ivtbl_no_ractor_check(obj), (st_data_t)obj, &data)) {
struct gen_ivtbl *ivtbl = (struct gen_ivtbl *)data;
if (rb_shape_obj_too_complex(obj)) {
rb_mark_tbl_no_pin(ivtbl->as.complex.table);
}
else {
for (uint32_t i = 0; i < ivtbl->as.shape.numiv; i++) {
rb_gc_mark_movable(ivtbl->as.shape.ivptr[i]);
}
}
}
}
void
rb_ref_update_generic_ivar(VALUE obj)
{
struct gen_ivtbl *ivtbl;
if (rb_gen_ivtbl_get(obj, 0, &ivtbl)) {
if (rb_shape_obj_too_complex(obj)) {
rb_gc_ref_update_table_values_only(ivtbl->as.complex.table);
}
else {
for (uint32_t i = 0; i < ivtbl->as.shape.numiv; i++) {
ivtbl->as.shape.ivptr[i] = rb_gc_location(ivtbl->as.shape.ivptr[i]);
}
}
}
}
void
rb_mv_generic_ivar(VALUE rsrc, VALUE dst)
{
st_data_t key = (st_data_t)rsrc;
st_data_t ivtbl;
if (st_delete(generic_ivtbl_no_ractor_check(rsrc), &key, &ivtbl))
st_insert(generic_ivtbl_no_ractor_check(dst), (st_data_t)dst, ivtbl);
}
void
rb_free_generic_ivar(VALUE obj)
{
st_data_t key = (st_data_t)obj, value;
bool too_complex = rb_shape_obj_too_complex(obj);
if (st_delete(generic_ivtbl_no_ractor_check(obj), &key, &value)) {
struct gen_ivtbl *ivtbl = (struct gen_ivtbl *)value;
if (UNLIKELY(too_complex)) {
st_free_table(ivtbl->as.complex.table);
}
xfree(ivtbl);
}
}
size_t
rb_generic_ivar_memsize(VALUE obj)
{
struct gen_ivtbl *ivtbl;
if (rb_gen_ivtbl_get(obj, 0, &ivtbl)) {
if (rb_shape_obj_too_complex(obj)) {
return sizeof(struct gen_ivtbl) + st_memsize(ivtbl->as.complex.table);
}
else {
return gen_ivtbl_bytes(ivtbl->as.shape.numiv);
}
}
return 0;
}
#if !SHAPE_IN_BASIC_FLAGS
shape_id_t
rb_generic_shape_id(VALUE obj)
{
struct gen_ivtbl *ivtbl = 0;
shape_id_t shape_id = 0;
RB_VM_LOCK_ENTER();
{
st_table* global_iv_table = generic_ivtbl(obj, 0, false);
if (global_iv_table && st_lookup(global_iv_table, obj, (st_data_t *)&ivtbl)) {
shape_id = ivtbl->shape_id;
}
else if (OBJ_FROZEN(obj)) {
shape_id = SPECIAL_CONST_SHAPE_ID;
}
}
RB_VM_LOCK_LEAVE();
return shape_id;
}
#endif
static size_t
gen_ivtbl_count(VALUE obj, const struct gen_ivtbl *ivtbl)
{
uint32_t i;
size_t n = 0;
if (rb_shape_obj_too_complex(obj)) {
n = st_table_size(ivtbl->as.complex.table);
}
else {
for (i = 0; i < ivtbl->as.shape.numiv; i++) {
if (!UNDEF_P(ivtbl->as.shape.ivptr[i])) {
n++;
}
}
}
return n;
}
VALUE
rb_ivar_lookup(VALUE obj, ID id, VALUE undef)
{
if (SPECIAL_CONST_P(obj)) return undef;
shape_id_t shape_id;
VALUE * ivar_list;
rb_shape_t * shape;
#if SHAPE_IN_BASIC_FLAGS
shape_id = RBASIC_SHAPE_ID(obj);
#endif
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
case T_MODULE:
{
bool found = false;
VALUE val;
RB_VM_LOCK_ENTER();
{
#if !SHAPE_IN_BASIC_FLAGS
shape_id = RCLASS_SHAPE_ID(obj);
#endif
if (rb_shape_obj_too_complex(obj)) {
st_table * iv_table = RCLASS_IV_HASH(obj);
if (rb_st_lookup(iv_table, (st_data_t)id, (st_data_t *)&val)) {
found = true;
}
else {
val = undef;
}
}
else {
attr_index_t index = 0;
shape = rb_shape_get_shape_by_id(shape_id);
found = rb_shape_get_iv_index(shape, id, &index);
if (found) {
ivar_list = RCLASS_IVPTR(obj);
RUBY_ASSERT(ivar_list);
val = ivar_list[index];
}
else {
val = undef;
}
}
}
RB_VM_LOCK_LEAVE();
if (found &&
rb_is_instance_id(id) &&
UNLIKELY(!rb_ractor_main_p()) &&
!rb_ractor_shareable_p(val)) {
rb_raise(rb_eRactorIsolationError,
"can not get unshareable values from instance variables of classes/modules from non-main Ractors");
}
return val;
}
case T_OBJECT:
{
#if !SHAPE_IN_BASIC_FLAGS
shape_id = ROBJECT_SHAPE_ID(obj);
#endif
if (rb_shape_obj_too_complex(obj)) {
st_table * iv_table = ROBJECT_IV_HASH(obj);
VALUE val;
if (rb_st_lookup(iv_table, (st_data_t)id, (st_data_t *)&val)) {
return val;
}
else {
return undef;
}
}
RUBY_ASSERT(!rb_shape_obj_too_complex(obj));
ivar_list = ROBJECT_IVPTR(obj);
break;
}
default:
if (FL_TEST_RAW(obj, FL_EXIVAR)) {
struct gen_ivtbl *ivtbl;
rb_gen_ivtbl_get(obj, id, &ivtbl);
if (rb_shape_obj_too_complex(obj)) {
VALUE val;
if (rb_st_lookup(ivtbl->as.complex.table, (st_data_t)id, (st_data_t *)&val)) {
return val;
}
else {
return undef;
}
}
#if !SHAPE_IN_BASIC_FLAGS
shape_id = ivtbl->shape_id;
#endif
ivar_list = ivtbl->as.shape.ivptr;
}
else {
return undef;
}
break;
}
attr_index_t index = 0;
shape = rb_shape_get_shape_by_id(shape_id);
if (rb_shape_get_iv_index(shape, id, &index)) {
return ivar_list[index];
}
return undef;
}
VALUE
rb_ivar_get(VALUE obj, ID id)
{
VALUE iv = rb_ivar_lookup(obj, id, Qnil);
RB_DEBUG_COUNTER_INC(ivar_get_base);
return iv;
}
VALUE
rb_attr_get(VALUE obj, ID id)
{
return rb_ivar_lookup(obj, id, Qnil);
}
static VALUE
rb_ivar_delete(VALUE obj, ID id, VALUE undef)
{
rb_check_frozen(obj);
VALUE val = undef;
rb_shape_t *shape = rb_shape_get_shape(obj);
if (BUILTIN_TYPE(obj) == T_CLASS || BUILTIN_TYPE(obj) == T_MODULE) {
IVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(id);
}
if (!rb_shape_transition_shape_remove_ivar(obj, id, shape, &val)) {
if (!rb_shape_obj_too_complex(obj)) {
rb_evict_ivars_to_hash(obj);
}
st_table *table = NULL;
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
case T_MODULE:
table = RCLASS_IV_HASH(obj);
break;
case T_OBJECT:
table = ROBJECT_IV_HASH(obj);
break;
default: {
struct gen_ivtbl *ivtbl;
if (rb_gen_ivtbl_get(obj, 0, &ivtbl)) {
table = ivtbl->as.complex.table;
}
break;
}
}
if (table) {
if (!st_delete(table, (st_data_t *)&id, (st_data_t *)&val)) {
val = undef;
}
}
}
return val;
}
VALUE
rb_attr_delete(VALUE obj, ID id)
{
return rb_ivar_delete(obj, id, Qnil);
}
void
rb_obj_convert_to_too_complex(VALUE obj, st_table *table)
{
RUBY_ASSERT(!rb_shape_obj_too_complex(obj));
VALUE *old_ivptr = NULL;
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (!(RBASIC(obj)->flags & ROBJECT_EMBED)) {
old_ivptr = ROBJECT_IVPTR(obj);
}
rb_shape_set_shape_id(obj, OBJ_TOO_COMPLEX_SHAPE_ID);
ROBJECT_SET_IV_HASH(obj, table);
break;
case T_CLASS:
case T_MODULE:
old_ivptr = RCLASS_IVPTR(obj);
rb_shape_set_shape_id(obj, OBJ_TOO_COMPLEX_SHAPE_ID);
RCLASS_SET_IV_HASH(obj, table);
break;
default:
RB_VM_LOCK_ENTER();
{
struct st_table *gen_ivs = generic_ivtbl_no_ractor_check(obj);
struct gen_ivtbl *old_ivtbl = NULL;
st_lookup(gen_ivs, (st_data_t)obj, (st_data_t *)&old_ivtbl);
if (old_ivtbl) {
/* We need to modify old_ivtbl to have the too complex shape
* and hold the table because the xmalloc could trigger a GC
* compaction. We want the table to be updated rather than
* the original ivptr. */
#if SHAPE_IN_BASIC_FLAGS
rb_shape_set_shape_id(obj, OBJ_TOO_COMPLEX_SHAPE_ID);
#else
old_ivtbl->shape_id = OBJ_TOO_COMPLEX_SHAPE_ID;
#endif
old_ivtbl->as.complex.table = table;
old_ivptr = (VALUE *)old_ivtbl;
}
struct gen_ivtbl *ivtbl = xmalloc(sizeof(struct gen_ivtbl));
ivtbl->as.complex.table = table;
st_insert(gen_ivs, (st_data_t)obj, (st_data_t)ivtbl);
#if SHAPE_IN_BASIC_FLAGS
rb_shape_set_shape_id(obj, OBJ_TOO_COMPLEX_SHAPE_ID);
#else
ivtbl->shape_id = OBJ_TOO_COMPLEX_SHAPE_ID;
#endif
}
RB_VM_LOCK_LEAVE();
}
xfree(old_ivptr);
}
void
rb_evict_ivars_to_hash(VALUE obj)
{
RUBY_ASSERT(!rb_shape_obj_too_complex(obj));
st_table *table = st_init_numtable_with_size(rb_ivar_count(obj));
// Evacuate all previous values from shape into id_table
rb_obj_copy_ivs_to_hash_table(obj, table);
rb_obj_convert_to_too_complex(obj, table);
RUBY_ASSERT(rb_shape_obj_too_complex(obj));
}
struct general_ivar_set_result {
attr_index_t index;
bool existing;
};
static struct general_ivar_set_result
general_ivar_set(VALUE obj, ID id, VALUE val, void *data,
VALUE *(*shape_ivptr_func)(VALUE, void *),
void (*shape_resize_ivptr_func)(VALUE, attr_index_t, attr_index_t, void *),
void (*set_shape_func)(VALUE, rb_shape_t *, void *),
void (*transition_too_complex_func)(VALUE, void *),
st_table *(*too_complex_table_func)(VALUE, void *))
{
struct general_ivar_set_result result = {
.index = 0,
.existing = true
};
rb_shape_t *current_shape = rb_shape_get_shape(obj);
if (UNLIKELY(current_shape->type == SHAPE_OBJ_TOO_COMPLEX)) {
goto too_complex;
}
attr_index_t index;
if (!rb_shape_get_iv_index(current_shape, id, &index)) {
result.existing = false;
index = current_shape->next_iv_index;
if (index >= MAX_IVARS) {
rb_raise(rb_eArgError, "too many instance variables");
}
rb_shape_t *next_shape = rb_shape_get_next(current_shape, obj, id);
if (UNLIKELY(next_shape->type == SHAPE_OBJ_TOO_COMPLEX)) {
transition_too_complex_func(obj, data);
goto too_complex;
}
else if (UNLIKELY(next_shape->capacity != current_shape->capacity)) {
RUBY_ASSERT(next_shape->capacity > current_shape->capacity);
shape_resize_ivptr_func(obj, current_shape->capacity, next_shape->capacity, data);
}
RUBY_ASSERT(next_shape->type == SHAPE_IVAR);
RUBY_ASSERT(index == (next_shape->next_iv_index - 1));
set_shape_func(obj, next_shape, data);
}
VALUE *table = shape_ivptr_func(obj, data);
RB_OBJ_WRITE(obj, &table[index], val);
result.index = index;
return result;
too_complex:
{
RUBY_ASSERT(rb_shape_obj_too_complex(obj));
st_table *table = too_complex_table_func(obj, data);
result.existing = st_insert(table, (st_data_t)id, (st_data_t)val);
result.index = 0;
RB_OBJ_WRITTEN(obj, Qundef, val);
}
return result;
}
struct gen_ivar_lookup_ensure_size {
VALUE obj;
ID id;
struct gen_ivtbl *ivtbl;
rb_shape_t *shape;
bool resize;
};
static int
generic_ivar_lookup_ensure_size(st_data_t *k, st_data_t *v, st_data_t u, int existing)
{
ASSERT_vm_locking();
struct gen_ivar_lookup_ensure_size *ivar_lookup = (struct gen_ivar_lookup_ensure_size *)u;
struct gen_ivtbl *ivtbl = existing ? (struct gen_ivtbl *)*v : NULL;
if (!existing || ivar_lookup->resize) {
if (existing) {
RUBY_ASSERT(ivar_lookup->shape->type == SHAPE_IVAR);
RUBY_ASSERT(rb_shape_get_shape_by_id(ivar_lookup->shape->parent_id)->capacity < ivar_lookup->shape->capacity);
}
else {
FL_SET_RAW((VALUE)*k, FL_EXIVAR);
}
ivtbl = gen_ivtbl_resize(ivtbl, ivar_lookup->shape->capacity);
*v = (st_data_t)ivtbl;
}
RUBY_ASSERT(FL_TEST((VALUE)*k, FL_EXIVAR));
ivar_lookup->ivtbl = ivtbl;
if (ivar_lookup->shape) {
#if SHAPE_IN_BASIC_FLAGS
rb_shape_set_shape(ivar_lookup->obj, ivar_lookup->shape);
#else
ivtbl->shape_id = rb_shape_id(ivar_lookup->shape);
#endif
}
return ST_CONTINUE;
}
static VALUE *
generic_ivar_set_shape_ivptr(VALUE obj, void *data)
{
RUBY_ASSERT(!rb_shape_obj_too_complex(obj));
struct gen_ivar_lookup_ensure_size *ivar_lookup = data;
RB_VM_LOCK_ENTER();
{
st_update(generic_ivtbl(obj, ivar_lookup->id, false), (st_data_t)obj, generic_ivar_lookup_ensure_size, (st_data_t)ivar_lookup);
}
RB_VM_LOCK_LEAVE();
FL_SET_RAW(obj, FL_EXIVAR);
return ivar_lookup->ivtbl->as.shape.ivptr;
}
static void
generic_ivar_set_shape_resize_ivptr(VALUE obj, attr_index_t _old_capa, attr_index_t new_capa, void *data)
{
struct gen_ivar_lookup_ensure_size *ivar_lookup = data;
ivar_lookup->resize = true;
}
static void
generic_ivar_set_set_shape(VALUE obj, rb_shape_t *shape, void *data)
{
struct gen_ivar_lookup_ensure_size *ivar_lookup = data;
ivar_lookup->shape = shape;
}
static void
generic_ivar_set_transition_too_complex(VALUE obj, void *_data)
{
rb_evict_ivars_to_hash(obj);
FL_SET_RAW(obj, FL_EXIVAR);
}
static st_table *
generic_ivar_set_too_complex_table(VALUE obj, void *data)
{
struct gen_ivar_lookup_ensure_size *ivar_lookup = data;
struct gen_ivtbl *ivtbl;
if (!rb_gen_ivtbl_get(obj, 0, &ivtbl)) {
ivtbl = xmalloc(sizeof(struct gen_ivtbl));
#if !SHAPE_IN_BASIC_FLAGS
ivtbl->shape_id = SHAPE_OBJ_TOO_COMPLEX;
#endif
ivtbl->as.complex.table = st_init_numtable_with_size(1);
RB_VM_LOCK_ENTER();
{
st_insert(generic_ivtbl(obj, ivar_lookup->id, false), (st_data_t)obj, (st_data_t)ivtbl);
}
RB_VM_LOCK_LEAVE();
FL_SET_RAW(obj, FL_EXIVAR);
}
RUBY_ASSERT(rb_shape_obj_too_complex(obj));
return ivtbl->as.complex.table;
}
static void
generic_ivar_set(VALUE obj, ID id, VALUE val)
{
struct gen_ivar_lookup_ensure_size ivar_lookup = {
.obj = obj,
.id = id,
.resize = false,
.shape = NULL,
};
general_ivar_set(obj, id, val, &ivar_lookup,
generic_ivar_set_shape_ivptr,
generic_ivar_set_shape_resize_ivptr,
generic_ivar_set_set_shape,
generic_ivar_set_transition_too_complex,
generic_ivar_set_too_complex_table);
}
void
rb_ensure_iv_list_size(VALUE obj, uint32_t current_capacity, uint32_t new_capacity)
{
RUBY_ASSERT(!rb_shape_obj_too_complex(obj));
if (RBASIC(obj)->flags & ROBJECT_EMBED) {
VALUE *ptr = ROBJECT_IVPTR(obj);
VALUE *newptr = ALLOC_N(VALUE, new_capacity);
MEMCPY(newptr, ptr, VALUE, current_capacity);
RB_FL_UNSET_RAW(obj, ROBJECT_EMBED);
ROBJECT(obj)->as.heap.ivptr = newptr;
}
else {
REALLOC_N(ROBJECT(obj)->as.heap.ivptr, VALUE, new_capacity);
}
}
static int
rb_obj_copy_ivs_to_hash_table_i(ID key, VALUE val, st_data_t arg)
{
RUBY_ASSERT(!st_lookup((st_table *)arg, (st_data_t)key, NULL));
st_add_direct((st_table *)arg, (st_data_t)key, (st_data_t)val);
return ST_CONTINUE;
}
void
rb_obj_copy_ivs_to_hash_table(VALUE obj, st_table *table)
{
rb_ivar_foreach(obj, rb_obj_copy_ivs_to_hash_table_i, (st_data_t)table);
}
static VALUE *
obj_ivar_set_shape_ivptr(VALUE obj, void *_data)
{
RUBY_ASSERT(!rb_shape_obj_too_complex(obj));
return ROBJECT_IVPTR(obj);
}
static void
obj_ivar_set_shape_resize_ivptr(VALUE obj, attr_index_t old_capa, attr_index_t new_capa, void *_data)
{
rb_ensure_iv_list_size(obj, old_capa, new_capa);
}
static void
obj_ivar_set_set_shape(VALUE obj, rb_shape_t *shape, void *_data)
{
rb_shape_set_shape(obj, shape);
}
static void
obj_ivar_set_transition_too_complex(VALUE obj, void *_data)
{
rb_evict_ivars_to_hash(obj);
}
static st_table *
obj_ivar_set_too_complex_table(VALUE obj, void *_data)
{
RUBY_ASSERT(rb_shape_obj_too_complex(obj));
return ROBJECT_IV_HASH(obj);
}
attr_index_t
rb_obj_ivar_set(VALUE obj, ID id, VALUE val)
{
return general_ivar_set(obj, id, val, NULL,
obj_ivar_set_shape_ivptr,
obj_ivar_set_shape_resize_ivptr,
obj_ivar_set_set_shape,
obj_ivar_set_transition_too_complex,
obj_ivar_set_too_complex_table).index;
}
/* Set the instance variable +val+ on object +obj+ at ivar name +id+.
* This function only works with T_OBJECT objects, so make sure
* +obj+ is of type T_OBJECT before using this function.
*/
VALUE
rb_vm_set_ivar_id(VALUE obj, ID id, VALUE val)
{
rb_check_frozen(obj);
rb_obj_ivar_set(obj, id, val);
return val;
}
bool
rb_shape_set_shape_id(VALUE obj, shape_id_t shape_id)
{
if (rb_shape_get_shape_id(obj) == shape_id) {
return false;
}
#if SHAPE_IN_BASIC_FLAGS
RBASIC_SET_SHAPE_ID(obj, shape_id);
#else
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
ROBJECT_SET_SHAPE_ID(obj, shape_id);
break;
case T_CLASS:
case T_MODULE:
RCLASS_SET_SHAPE_ID(obj, shape_id);
break;
default:
if (shape_id != SPECIAL_CONST_SHAPE_ID) {
struct gen_ivtbl *ivtbl = 0;
RB_VM_LOCK_ENTER();
{
st_table* global_iv_table = generic_ivtbl(obj, 0, false);
if (st_lookup(global_iv_table, obj, (st_data_t *)&ivtbl)) {
ivtbl->shape_id = shape_id;
}
else {
rb_bug("Expected shape_id entry in global iv table");
}
}
RB_VM_LOCK_LEAVE();
}
}
#endif
return true;
}
void rb_obj_freeze_inline(VALUE x)
{
if (RB_FL_ABLE(x)) {
RB_FL_SET_RAW(x, RUBY_FL_FREEZE);
if (TYPE(x) == T_STRING) {
RB_FL_UNSET_RAW(x, FL_USER3); // STR_CHILLED
}
rb_shape_t * next_shape = rb_shape_transition_shape_frozen(x);
// If we're transitioning from "not complex" to "too complex"
// then evict ivars. This can happen if we run out of shapes
if (!rb_shape_obj_too_complex(x) && next_shape->type == SHAPE_OBJ_TOO_COMPLEX) {
rb_evict_ivars_to_hash(x);
}
rb_shape_set_shape(x, next_shape);
if (RBASIC_CLASS(x)) {
rb_freeze_singleton_class(x);
}
}
}
static void
ivar_set(VALUE obj, ID id, VALUE val)
{
RB_DEBUG_COUNTER_INC(ivar_set_base);
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
{
rb_obj_ivar_set(obj, id, val);
break;
}
case T_CLASS:
case T_MODULE:
IVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(id);
rb_class_ivar_set(obj, id, val);
break;
default:
generic_ivar_set(obj, id, val);
break;
}
}
VALUE
rb_ivar_set(VALUE obj, ID id, VALUE val)
{
rb_check_frozen(obj);
ivar_set(obj, id, val);
return val;
}
void
rb_ivar_set_internal(VALUE obj, ID id, VALUE val)
{
// should be internal instance variable name (no @ prefix)
VM_ASSERT(!rb_is_instance_id(id));
ivar_set(obj, id, val);
}
VALUE
rb_ivar_defined(VALUE obj, ID id)
{
attr_index_t index;
if (SPECIAL_CONST_P(obj)) return Qfalse;
if (rb_shape_obj_too_complex(obj)) {
VALUE idx;
st_table *table = NULL;
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
case T_MODULE:
table = (st_table *)RCLASS_IVPTR(obj);
break;
case T_OBJECT:
table = ROBJECT_IV_HASH(obj);
break;
default: {
struct gen_ivtbl *ivtbl;
if (rb_gen_ivtbl_get(obj, 0, &ivtbl)) {
table = ivtbl->as.complex.table;
}
break;
}
}
if (!table || !rb_st_lookup(table, id, &idx)) {
return Qfalse;
}
return Qtrue;
}
else {
return RBOOL(rb_shape_get_iv_index(rb_shape_get_shape(obj), id, &index));
}
}
typedef int rb_ivar_foreach_callback_func(ID key, VALUE val, st_data_t arg);
st_data_t rb_st_nth_key(st_table *tab, st_index_t index);
struct iv_itr_data {
VALUE obj;
struct gen_ivtbl * ivtbl;
st_data_t arg;
rb_ivar_foreach_callback_func *func;
};
/*
* Returns a flag to stop iterating depending on the result of +callback+.
*/
static bool
iterate_over_shapes_with_callback(rb_shape_t *shape, rb_ivar_foreach_callback_func *callback, struct iv_itr_data * itr_data)
{
switch ((enum shape_type)shape->type) {
case SHAPE_ROOT:
case SHAPE_T_OBJECT:
return false;
case SHAPE_IVAR:
ASSUME(callback);
if (iterate_over_shapes_with_callback(rb_shape_get_parent(shape), callback, itr_data))
return true;
VALUE * iv_list;
switch (BUILTIN_TYPE(itr_data->obj)) {
case T_OBJECT:
RUBY_ASSERT(!rb_shape_obj_too_complex(itr_data->obj));
iv_list = ROBJECT_IVPTR(itr_data->obj);
break;
case T_CLASS:
case T_MODULE:
iv_list = RCLASS_IVPTR(itr_data->obj);
break;
default:
iv_list = itr_data->ivtbl->as.shape.ivptr;
break;
}
VALUE val = iv_list[shape->next_iv_index - 1];
if (!UNDEF_P(val)) {
switch (callback(shape->edge_name, val, itr_data->arg)) {
case ST_CHECK:
case ST_CONTINUE:
break;
case ST_STOP:
return true;
default:
rb_bug("unreachable");
}
}
return false;
case SHAPE_FROZEN:
return iterate_over_shapes_with_callback(rb_shape_get_parent(shape), callback, itr_data);
case SHAPE_OBJ_TOO_COMPLEX:
default:
rb_bug("Unreachable");
}
}
static int
each_hash_iv(st_data_t id, st_data_t val, st_data_t data)
{
struct iv_itr_data * itr_data = (struct iv_itr_data *)data;
rb_ivar_foreach_callback_func *callback = itr_data->func;
return callback((ID)id, (VALUE)val, itr_data->arg);
}
static void
obj_ivar_each(VALUE obj, rb_ivar_foreach_callback_func *func, st_data_t arg)
{
rb_shape_t* shape = rb_shape_get_shape(obj);
struct iv_itr_data itr_data;
itr_data.obj = obj;
itr_data.arg = arg;
itr_data.func = func;
if (rb_shape_obj_too_complex(obj)) {
rb_st_foreach(ROBJECT_IV_HASH(obj), each_hash_iv, (st_data_t)&itr_data);
}
else {
iterate_over_shapes_with_callback(shape, func, &itr_data);
}
}
static void
gen_ivar_each(VALUE obj, rb_ivar_foreach_callback_func *func, st_data_t arg)
{
rb_shape_t *shape = rb_shape_get_shape(obj);
struct gen_ivtbl *ivtbl;
if (!rb_gen_ivtbl_get(obj, 0, &ivtbl)) return;
struct iv_itr_data itr_data;
itr_data.obj = obj;
itr_data.ivtbl = ivtbl;
itr_data.arg = arg;
itr_data.func = func;
if (rb_shape_obj_too_complex(obj)) {
rb_st_foreach(ivtbl->as.complex.table, each_hash_iv, (st_data_t)&itr_data);
}
else {
iterate_over_shapes_with_callback(shape, func, &itr_data);
}
}
static void
class_ivar_each(VALUE obj, rb_ivar_foreach_callback_func *func, st_data_t arg)
{
RUBY_ASSERT(RB_TYPE_P(obj, T_CLASS) || RB_TYPE_P(obj, T_MODULE));
rb_shape_t* shape = rb_shape_get_shape(obj);
struct iv_itr_data itr_data;
itr_data.obj = obj;
itr_data.arg = arg;
itr_data.func = func;
if (rb_shape_obj_too_complex(obj)) {
rb_st_foreach(RCLASS_IV_HASH(obj), each_hash_iv, (st_data_t)&itr_data);
}
else {
iterate_over_shapes_with_callback(shape, func, &itr_data);
}
}
void
rb_copy_generic_ivar(VALUE clone, VALUE obj)
{
struct gen_ivtbl *obj_ivtbl;
struct gen_ivtbl *new_ivtbl;
rb_check_frozen(clone);
if (!FL_TEST(obj, FL_EXIVAR)) {
goto clear;
}
if (rb_gen_ivtbl_get(obj, 0, &obj_ivtbl)) {
if (gen_ivtbl_count(obj, obj_ivtbl) == 0)
goto clear;
FL_SET(clone, FL_EXIVAR);
if (rb_shape_obj_too_complex(obj)) {
new_ivtbl = xmalloc(sizeof(struct gen_ivtbl));
#if !SHAPE_IN_BASIC_FLAGS
new_ivtbl->shape_id = SHAPE_OBJ_TOO_COMPLEX;
#endif
new_ivtbl->as.complex.table = st_copy(obj_ivtbl->as.complex.table);
}
else {
new_ivtbl = gen_ivtbl_resize(0, obj_ivtbl->as.shape.numiv);
for (uint32_t i=0; i<obj_ivtbl->as.shape.numiv; i++) {
RB_OBJ_WRITE(clone, &new_ivtbl->as.shape.ivptr[i], obj_ivtbl->as.shape.ivptr[i]);
}
}
/*
* c.ivtbl may change in gen_ivar_copy due to realloc,
* no need to free
*/
RB_VM_LOCK_ENTER();
{
generic_ivtbl_no_ractor_check(clone);
st_insert(generic_ivtbl_no_ractor_check(obj), (st_data_t)clone, (st_data_t)new_ivtbl);
}
RB_VM_LOCK_LEAVE();
rb_shape_t * obj_shape = rb_shape_get_shape(obj);
if (rb_shape_frozen_shape_p(obj_shape)) {
rb_shape_set_shape_id(clone, obj_shape->parent_id);
}
else {
rb_shape_set_shape(clone, obj_shape);
}
}
return;
clear:
if (FL_TEST(clone, FL_EXIVAR)) {
rb_free_generic_ivar(clone);
FL_UNSET(clone, FL_EXIVAR);
}
}
void
rb_replace_generic_ivar(VALUE clone, VALUE obj)
{
RUBY_ASSERT(FL_TEST(obj, FL_EXIVAR));
RB_VM_LOCK_ENTER();
{
st_data_t ivtbl, obj_data = (st_data_t)obj;
if (st_lookup(generic_iv_tbl_, (st_data_t)obj, &ivtbl)) {
st_insert(generic_iv_tbl_, (st_data_t)clone, ivtbl);
st_delete(generic_iv_tbl_, &obj_data, NULL);
}
else {
rb_bug("unreachable");
}
}
RB_VM_LOCK_LEAVE();
FL_SET(clone, FL_EXIVAR);
}
void
rb_ivar_foreach(VALUE obj, rb_ivar_foreach_callback_func *func, st_data_t arg)
{
if (SPECIAL_CONST_P(obj)) return;
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
obj_ivar_each(obj, func, arg);
break;
case T_CLASS:
case T_MODULE:
IVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(0);
RB_VM_LOCK_ENTER();
{
class_ivar_each(obj, func, arg);
}
RB_VM_LOCK_LEAVE();
break;
default:
if (FL_TEST(obj, FL_EXIVAR)) {
gen_ivar_each(obj, func, arg);
}
break;
}
}
st_index_t
rb_ivar_count(VALUE obj)
{
if (SPECIAL_CONST_P(obj)) return 0;
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
return ROBJECT_IV_COUNT(obj);
case T_CLASS:
case T_MODULE:
return RCLASS_IV_COUNT(obj);
default:
if (FL_TEST(obj, FL_EXIVAR)) {
struct gen_ivtbl *ivtbl;
if (rb_gen_ivtbl_get(obj, 0, &ivtbl)) {
return gen_ivtbl_count(obj, ivtbl);
}
}
break;
}
return 0;
}
static int
ivar_i(ID key, VALUE v, st_data_t a)
{
VALUE ary = (VALUE)a;
if (rb_is_instance_id(key)) {
rb_ary_push(ary, ID2SYM(key));
}
return ST_CONTINUE;
}
/*
* call-seq:
* obj.instance_variables -> array
*
* Returns an array of instance variable names for the receiver. Note
* that simply defining an accessor does not create the corresponding
* instance variable.
*
* class Fred
* attr_accessor :a1
* def initialize
* @iv = 3
* end
* end
* Fred.new.instance_variables #=> [:@iv]
*/
VALUE
rb_obj_instance_variables(VALUE obj)
{
VALUE ary;
ary = rb_ary_new();
rb_ivar_foreach(obj, ivar_i, ary);
return ary;
}
#define rb_is_constant_id rb_is_const_id
#define rb_is_constant_name rb_is_const_name
#define id_for_var(obj, name, part, type) \
id_for_var_message(obj, name, type, "'%1$s' is not allowed as "#part" "#type" variable name")
#define id_for_var_message(obj, name, type, message) \
check_id_type(obj, &(name), rb_is_##type##_id, rb_is_##type##_name, message, strlen(message))
static ID
check_id_type(VALUE obj, VALUE *pname,
int (*valid_id_p)(ID), int (*valid_name_p)(VALUE),
const char *message, size_t message_len)
{
ID id = rb_check_id(pname);
VALUE name = *pname;
if (id ? !valid_id_p(id) : !valid_name_p(name)) {
rb_name_err_raise_str(rb_fstring_new(message, message_len),
obj, name);
}
return id;
}
/*
* call-seq:
* obj.remove_instance_variable(symbol) -> obj
* obj.remove_instance_variable(string) -> obj
*
* Removes the named instance variable from <i>obj</i>, returning that
* variable's value. The name can be passed as a symbol or as a string.
*
* class Dummy
* attr_reader :var
* def initialize
* @var = 99
* end
* def remove
* remove_instance_variable(:@var)
* end
* end
* d = Dummy.new
* d.var #=> 99
* d.remove #=> 99
* d.var #=> nil
*/
VALUE
rb_obj_remove_instance_variable(VALUE obj, VALUE name)
{
const ID id = id_for_var(obj, name, an, instance);
// Frozen check comes here because it's expected that we raise a
// NameError (from the id_for_var check) before we raise a FrozenError
rb_check_frozen(obj);
if (id) {
VALUE val = rb_ivar_delete(obj, id, Qundef);
if (!UNDEF_P(val)) return val;
}
rb_name_err_raise("instance variable %1$s not defined",
obj, name);
UNREACHABLE_RETURN(Qnil);
}
NORETURN(static void uninitialized_constant(VALUE, VALUE));
static void
uninitialized_constant(VALUE klass, VALUE name)
{
if (klass && rb_class_real(klass) != rb_cObject)
rb_name_err_raise("uninitialized constant %2$s::%1$s",
klass, name);
else
rb_name_err_raise("uninitialized constant %1$s",
klass, name);
}
VALUE
rb_const_missing(VALUE klass, VALUE name)
{
VALUE value = rb_funcallv(klass, idConst_missing, 1, &name);
rb_vm_inc_const_missing_count();
return value;
}
/*
* call-seq:
* mod.const_missing(sym) -> obj
*
* Invoked when a reference is made to an undefined constant in
* <i>mod</i>. It is passed a symbol for the undefined constant, and
* returns a value to be used for that constant. For example, consider:
*
* def Foo.const_missing(name)
* name # return the constant name as Symbol
* end
*
* Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
*
* As the example above shows, +const_missing+ is not required to create the
* missing constant in <i>mod</i>, though that is often a side-effect. The
* caller gets its return value when triggered. If the constant is also defined,
* further lookups won't hit +const_missing+ and will return the value stored in
* the constant as usual. Otherwise, +const_missing+ will be invoked again.
*
* In the next example, when a reference is made to an undefined constant,
* +const_missing+ attempts to load a file whose path is the lowercase version
* of the constant name (thus class <code>Fred</code> is assumed to be in file
* <code>fred.rb</code>). If defined as a side-effect of loading the file, the
* method returns the value stored in the constant. This implements an autoload
* feature similar to Kernel#autoload and Module#autoload, though it differs in
* important ways.
*
* def Object.const_missing(name)
* @looked_for ||= {}
* str_name = name.to_s
* raise "Constant not found: #{name}" if @looked_for[str_name]
* @looked_for[str_name] = 1
* file = str_name.downcase
* require file
* const_get(name, false)
* end
*
*/
VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
rb_execution_context_t *ec = GET_EC();
VALUE ref = ec->private_const_reference;
rb_vm_pop_cfunc_frame();
if (ref) {
ec->private_const_reference = 0;
rb_name_err_raise("private constant %2$s::%1$s referenced", ref, name);
}
uninitialized_constant(klass, name);
UNREACHABLE_RETURN(Qnil);
}
static void
autoload_table_mark(void *ptr)
{
rb_mark_tbl_no_pin((st_table *)ptr);
}
static void
autoload_table_free(void *ptr)
{
st_free_table((st_table *)ptr);
}
static size_t
autoload_table_memsize(const void *ptr)
{
const st_table *tbl = ptr;
return st_memsize(tbl);
}
static void
autoload_table_compact(void *ptr)
{
rb_gc_update_tbl_refs((st_table *)ptr);
}
static const rb_data_type_t autoload_table_type = {
"autoload_table",
{autoload_table_mark, autoload_table_free, autoload_table_memsize, autoload_table_compact,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
};
#define check_autoload_table(av) \
(struct st_table *)rb_check_typeddata((av), &autoload_table_type)
static VALUE
autoload_data(VALUE mod, ID id)
{
struct st_table *tbl;
st_data_t val;
// If we are called with a non-origin ICLASS, fetch the autoload data from
// the original module.
if (RB_TYPE_P(mod, T_ICLASS)) {
if (FL_TEST_RAW(mod, RICLASS_IS_ORIGIN)) {
return 0;
}
else {
mod = RBASIC(mod)->klass;
}
}
RUBY_ASSERT(RB_TYPE_P(mod, T_CLASS) || RB_TYPE_P(mod, T_MODULE));
// Look up the instance variable table for `autoload`, then index into that table with the given constant name `id`.
VALUE tbl_value = rb_ivar_lookup(mod, autoload, Qfalse);
if (!RTEST(tbl_value) || !(tbl = check_autoload_table(tbl_value)) || !st_lookup(tbl, (st_data_t)id, &val)) {
return 0;
}
return (VALUE)val;
}
// Every autoload constant has exactly one instance of autoload_const, stored in `autoload_features`. Since multiple autoload constants can refer to the same file, every `autoload_const` refers to a de-duplicated `autoload_data`.
struct autoload_const {
// The linked list node of all constants which are loaded by the related autoload feature.
struct ccan_list_node cnode; /* <=> autoload_data.constants */
// The shared "autoload_data" if multiple constants are defined from the same feature.
VALUE autoload_data_value;
// The module we are loading a constant into.
VALUE module;
// The name of the constant we are loading.
ID name;
// The value of the constant (after it's loaded).
VALUE value;
// The constant entry flags which need to be re-applied after autoloading the feature.
rb_const_flag_t flag;
// The source file and line number that defined this constant (different from feature path).
VALUE file;
int line;
};
// Each `autoload_data` uniquely represents a specific feature which can be loaded, and a list of constants which it is able to define. We use a mutex to coordinate multiple threads trying to load the same feature.
struct autoload_data {
// The feature path to require to load this constant.
VALUE feature;
// The mutex which is protecting autoloading this feature.
VALUE mutex;
// The process fork serial number since the autoload mutex will become invalid on fork.
rb_serial_t fork_gen;
// The linked list of all constants that are going to be loaded by this autoload.
struct ccan_list_head constants; /* <=> autoload_const.cnode */
};
static void
autoload_data_compact(void *ptr)
{
struct autoload_data *p = ptr;
p->feature = rb_gc_location(p->feature);
p->mutex = rb_gc_location(p->mutex);
}
static void
autoload_data_mark(void *ptr)
{
struct autoload_data *p = ptr;
rb_gc_mark_movable(p->feature);
rb_gc_mark_movable(p->mutex);
}
static void
autoload_data_free(void *ptr)
{
struct autoload_data *p = ptr;
struct autoload_const *autoload_const, *next;
ccan_list_for_each_safe(&p->constants, autoload_const, next, cnode) {
ccan_list_del_init(&autoload_const->cnode);
}
ruby_xfree(p);
}
static size_t
autoload_data_memsize(const void *ptr)
{
return sizeof(struct autoload_data);
}
static const rb_data_type_t autoload_data_type = {
"autoload_data",
{autoload_data_mark, autoload_data_free, autoload_data_memsize, autoload_data_compact},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
};
static void
autoload_const_compact(void *ptr)
{
struct autoload_const *ac = ptr;
ac->module = rb_gc_location(ac->module);
ac->autoload_data_value = rb_gc_location(ac->autoload_data_value);
ac->value = rb_gc_location(ac->value);
ac->file = rb_gc_location(ac->file);
}
static void
autoload_const_mark(void *ptr)
{
struct autoload_const *ac = ptr;
rb_gc_mark_movable(ac->module);
rb_gc_mark_movable(ac->autoload_data_value);
rb_gc_mark_movable(ac->value);
rb_gc_mark_movable(ac->file);
}
static size_t
autoload_const_memsize(const void *ptr)
{
return sizeof(struct autoload_const);
}
static void
autoload_const_free(void *ptr)
{
struct autoload_const *autoload_const = ptr;
ccan_list_del(&autoload_const->cnode);
ruby_xfree(ptr);
}
static const rb_data_type_t autoload_const_type = {
"autoload_const",
{autoload_const_mark, autoload_const_free, autoload_const_memsize, autoload_const_compact,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static struct autoload_data *
get_autoload_data(VALUE autoload_const_value, struct autoload_const **autoload_const_pointer)
{
struct autoload_const *autoload_const = rb_check_typeddata(autoload_const_value, &autoload_const_type);
VALUE autoload_data_value = autoload_const->autoload_data_value;
struct autoload_data *autoload_data = rb_check_typeddata(autoload_data_value, &autoload_data_type);
/* do not reach across stack for ->state after forking: */
if (autoload_data && autoload_data->fork_gen != GET_VM()->fork_gen) {
RB_OBJ_WRITE(autoload_data_value, &autoload_data->mutex, Qnil);
autoload_data->fork_gen = 0;
}
if (autoload_const_pointer) *autoload_const_pointer = autoload_const;
return autoload_data;
}
void
rb_autoload(VALUE module, ID name, const char *feature)
{
if (!feature || !*feature) {
rb_raise(rb_eArgError, "empty feature name");
}
rb_autoload_str(module, name, rb_fstring_cstr(feature));
}
static void const_set(VALUE klass, ID id, VALUE val);
static void const_added(VALUE klass, ID const_name);
struct autoload_arguments {
VALUE module;
ID name;
VALUE feature;
};
static VALUE
autoload_feature_lookup_or_create(VALUE feature, struct autoload_data **autoload_data_pointer)
{
RUBY_ASSERT_MUTEX_OWNED(autoload_mutex);
RUBY_ASSERT_CRITICAL_SECTION_ENTER();
VALUE autoload_data_value = rb_hash_aref(autoload_features, feature);
struct autoload_data *autoload_data;
if (NIL_P(autoload_data_value)) {
autoload_data_value = TypedData_Make_Struct(0, struct autoload_data, &autoload_data_type, autoload_data);
RB_OBJ_WRITE(autoload_data_value, &autoload_data->feature, feature);
RB_OBJ_WRITE(autoload_data_value, &autoload_data->mutex, Qnil);
ccan_list_head_init(&autoload_data->constants);
if (autoload_data_pointer) *autoload_data_pointer = autoload_data;
rb_hash_aset(autoload_features, feature, autoload_data_value);
}
else if (autoload_data_pointer) {
*autoload_data_pointer = rb_check_typeddata(autoload_data_value, &autoload_data_type);
}
RUBY_ASSERT_CRITICAL_SECTION_LEAVE();
return autoload_data_value;
}
static VALUE
autoload_table_lookup_or_create(VALUE module)
{
VALUE autoload_table_value = rb_ivar_lookup(module, autoload, Qfalse);
if (RTEST(autoload_table_value)) {
return autoload_table_value;
}
else {
autoload_table_value = TypedData_Wrap_Struct(0, &autoload_table_type, NULL);
rb_class_ivar_set(module, autoload, autoload_table_value);
RTYPEDDATA_DATA(autoload_table_value) = st_init_numtable();
return autoload_table_value;
}
}
static VALUE
autoload_synchronized(VALUE _arguments)
{
struct autoload_arguments *arguments = (struct autoload_arguments *)_arguments;
rb_const_entry_t *constant_entry = rb_const_lookup(arguments->module, arguments->name);
if (constant_entry && !UNDEF_P(constant_entry->value)) {
return Qfalse;
}
// Reset any state associated with any previous constant:
const_set(arguments->module, arguments->name, Qundef);
VALUE autoload_table_value = autoload_table_lookup_or_create(arguments->module);
struct st_table *autoload_table = check_autoload_table(autoload_table_value);
// Ensure the string is uniqued since we use an identity lookup:
VALUE feature = rb_fstring(arguments->feature);
struct autoload_data *autoload_data;
VALUE autoload_data_value = autoload_feature_lookup_or_create(feature, &autoload_data);
{
struct autoload_const *autoload_const;
VALUE autoload_const_value = TypedData_Make_Struct(0, struct autoload_const, &autoload_const_type, autoload_const);
autoload_const->module = arguments->module;
autoload_const->name = arguments->name;
autoload_const->value = Qundef;
autoload_const->flag = CONST_PUBLIC;
autoload_const->autoload_data_value = autoload_data_value;
ccan_list_add_tail(&autoload_data->constants, &autoload_const->cnode);
st_insert(autoload_table, (st_data_t)arguments->name, (st_data_t)autoload_const_value);
RB_OBJ_WRITTEN(autoload_table_value, Qundef, autoload_const_value);
}
return Qtrue;
}
void
rb_autoload_str(VALUE module, ID name, VALUE feature)
{
if (!rb_is_const_id(name)) {
rb_raise(rb_eNameError, "autoload must be constant name: %"PRIsVALUE"", QUOTE_ID(name));
}
Check_Type(feature, T_STRING);
if (!RSTRING_LEN(feature)) {
rb_raise(rb_eArgError, "empty feature name");
}
struct autoload_arguments arguments = {
.module = module,
.name = name,
.feature = feature,
};
VALUE result = rb_mutex_synchronize(autoload_mutex, autoload_synchronized, (VALUE)&arguments);
if (result == Qtrue) {
const_added(module, name);
}
}
static void
autoload_delete(VALUE module, ID name)
{
RUBY_ASSERT_CRITICAL_SECTION_ENTER();
st_data_t load = 0, key = name;
RUBY_ASSERT(RB_TYPE_P(module, T_CLASS) || RB_TYPE_P(module, T_MODULE));
VALUE table_value = rb_ivar_lookup(module, autoload, Qfalse);
if (RTEST(table_value)) {
struct st_table *table = check_autoload_table(table_value);
st_delete(table, &key, &load);
RB_OBJ_WRITTEN(table_value, load, Qundef);
/* Qfalse can indicate already deleted */
if (load != Qfalse) {
struct autoload_const *autoload_const;
struct autoload_data *autoload_data = get_autoload_data((VALUE)load, &autoload_const);
VM_ASSERT(autoload_data);
VM_ASSERT(!ccan_list_empty(&autoload_data->constants));
/*
* we must delete here to avoid "already initialized" warnings
* with parallel autoload. Using list_del_init here so list_del
* works in autoload_const_free
*/
ccan_list_del_init(&autoload_const->cnode);
if (ccan_list_empty(&autoload_data->constants)) {
rb_hash_delete(autoload_features, autoload_data->feature);
}
// If the autoload table is empty, we can delete it.
if (table->num_entries == 0) {
rb_attr_delete(module, autoload);
}
}
}
RUBY_ASSERT_CRITICAL_SECTION_LEAVE();
}
static int
autoload_by_someone_else(struct autoload_data *ele)
{
return ele->mutex != Qnil && !rb_mutex_owned_p(ele->mutex);
}
static VALUE
check_autoload_required(VALUE mod, ID id, const char **loadingpath)
{
VALUE autoload_const_value = autoload_data(mod, id);
struct autoload_data *autoload_data;
const char *loading;
if (!autoload_const_value || !(autoload_data = get_autoload_data(autoload_const_value, 0))) {
return 0;
}
VALUE feature = autoload_data->feature;
/*
* if somebody else is autoloading, we MUST wait for them, since
* rb_provide_feature can provide a feature before autoload_const_set
* completes. We must wait until autoload_const_set finishes in
* the other thread.
*/
if (autoload_by_someone_else(autoload_data)) {
return autoload_const_value;
}
loading = RSTRING_PTR(feature);
if (!rb_feature_provided(loading, &loading)) {
return autoload_const_value;
}
if (loadingpath && loading) {
*loadingpath = loading;
return autoload_const_value;
}
return 0;
}
static struct autoload_const *autoloading_const_entry(VALUE mod, ID id);
int
rb_autoloading_value(VALUE mod, ID id, VALUE* value, rb_const_flag_t *flag)
{
struct autoload_const *ac = autoloading_const_entry(mod, id);
if (!ac) return FALSE;
if (value) {
*value = ac->value;
}
if (flag) {
*flag = ac->flag;
}
return TRUE;
}
static int
autoload_by_current(struct autoload_data *ele)
{
return ele->mutex != Qnil && rb_mutex_owned_p(ele->mutex);
}
// If there is an autoloading constant and it has been set by the current
// execution context, return it. This allows threads which are loading code to
// refer to their own autoloaded constants.
struct autoload_const *
autoloading_const_entry(VALUE mod, ID id)
{
VALUE load = autoload_data(mod, id);
struct autoload_data *ele;
struct autoload_const *ac;
// Find the autoloading state:
if (!load || !(ele = get_autoload_data(load, &ac))) {
// Couldn't be found:
return 0;
}
// Check if it's being loaded by the current thread/fiber:
if (autoload_by_current(ele)) {
if (!UNDEF_P(ac->value)) {
return ac;
}
}
return 0;
}
static int
autoload_defined_p(VALUE mod, ID id)
{
rb_const_entry_t *ce = rb_const_lookup(mod, id);
// If there is no constant or the constant is not undefined (special marker for autoloading):
if (!ce || !UNDEF_P(ce->value)) {
// We are not autoloading:
return 0;
}
// Otherwise check if there is an autoload in flight right now:
return !rb_autoloading_value(mod, id, NULL, NULL);
}
static void const_tbl_update(struct autoload_const *, int);
struct autoload_load_arguments {
VALUE module;
ID name;
int flag;
VALUE mutex;
// The specific constant which triggered the autoload code to fire:
struct autoload_const *autoload_const;
// The parent autoload data which is shared between multiple constants:
struct autoload_data *autoload_data;
};
static VALUE
autoload_const_set(struct autoload_const *ac)
{
check_before_mod_set(ac->module, ac->name, ac->value, "constant");
RB_VM_LOCK_ENTER();
{
const_tbl_update(ac, true);
}
RB_VM_LOCK_LEAVE();
return 0; /* ignored */
}
static VALUE
autoload_load_needed(VALUE _arguments)
{
struct autoload_load_arguments *arguments = (struct autoload_load_arguments*)_arguments;
const char *loading = 0, *src;
if (!autoload_defined_p(arguments->module, arguments->name)) {
return Qfalse;
}
VALUE autoload_const_value = check_autoload_required(arguments->module, arguments->name, &loading);
if (!autoload_const_value) {
return Qfalse;
}
src = rb_sourcefile();
if (src && loading && strcmp(src, loading) == 0) {
return Qfalse;
}
struct autoload_const *autoload_const;
struct autoload_data *autoload_data;
if (!(autoload_data = get_autoload_data(autoload_const_value, &autoload_const))) {
return Qfalse;
}
if (NIL_P(autoload_data->mutex)) {
RB_OBJ_WRITE(autoload_const->autoload_data_value, &autoload_data->mutex, rb_mutex_new());
autoload_data->fork_gen = GET_VM()->fork_gen;
}
else if (rb_mutex_owned_p(autoload_data->mutex)) {
return Qfalse;
}
arguments->mutex = autoload_data->mutex;
arguments->autoload_const = autoload_const;
return autoload_const_value;
}
static VALUE
autoload_apply_constants(VALUE _arguments)
{
RUBY_ASSERT_CRITICAL_SECTION_ENTER();
struct autoload_load_arguments *arguments = (struct autoload_load_arguments*)_arguments;
struct autoload_const *autoload_const = 0; // for ccan_container_off_var()
struct autoload_const *next;
// We use safe iteration here because `autoload_const_set` will eventually invoke
// `autoload_delete` which will remove the constant from the linked list. In theory, once
// the `autoload_data->constants` linked list is empty, we can remove it.
// Iterate over all constants and assign them:
ccan_list_for_each_safe(&arguments->autoload_data->constants, autoload_const, next, cnode) {
if (!UNDEF_P(autoload_const->value)) {
autoload_const_set(autoload_const);
}
}
RUBY_ASSERT_CRITICAL_SECTION_LEAVE();
return Qtrue;
}
static VALUE
autoload_feature_require(VALUE _arguments)
{
struct autoload_load_arguments *arguments = (struct autoload_load_arguments*)_arguments;
struct autoload_const *autoload_const = arguments->autoload_const;
// We save this for later use in autoload_apply_constants:
arguments->autoload_data = rb_check_typeddata(autoload_const->autoload_data_value, &autoload_data_type);
VALUE result = rb_funcall(rb_vm_top_self(), rb_intern("require"), 1, arguments->autoload_data->feature);
if (RTEST(result)) {
return rb_mutex_synchronize(autoload_mutex, autoload_apply_constants, _arguments);
}
return result;
}
static VALUE
autoload_try_load(VALUE _arguments)
{
struct autoload_load_arguments *arguments = (struct autoload_load_arguments*)_arguments;
VALUE result = autoload_feature_require(_arguments);
// After we loaded the feature, if the constant is not defined, we remove it completely:
rb_const_entry_t *ce = rb_const_lookup(arguments->module, arguments->name);
if (!ce || UNDEF_P(ce->value)) {
result = Qfalse;
rb_const_remove(arguments->module, arguments->name);
if (arguments->module == rb_cObject) {
rb_warning(
"Expected %"PRIsVALUE" to define %"PRIsVALUE" but it didn't",
arguments->autoload_data->feature,
ID2SYM(arguments->name)
);
}
else {
rb_warning(
"Expected %"PRIsVALUE" to define %"PRIsVALUE"::%"PRIsVALUE" but it didn't",
arguments->autoload_data->feature,
arguments->module,
ID2SYM(arguments->name)
);
}
}
else {
// Otherwise, it was loaded, copy the flags from the autoload constant:
ce->flag |= arguments->flag;
}
return result;
}
VALUE
rb_autoload_load(VALUE module, ID name)
{
rb_const_entry_t *ce = rb_const_lookup(module, name);
// We bail out as early as possible without any synchronisation:
if (!ce || !UNDEF_P(ce->value)) {
return Qfalse;
}
// At this point, we assume there might be autoloading, so fail if it's ractor:
if (UNLIKELY(!rb_ractor_main_p())) {
rb_raise(rb_eRactorUnsafeError, "require by autoload on non-main Ractor is not supported (%s)", rb_id2name(name));
}
// This state is stored on the stack and is used during the autoload process.
struct autoload_load_arguments arguments = {.module = module, .name = name, .mutex = Qnil};
// Figure out whether we can autoload the named constant:
VALUE autoload_const_value = rb_mutex_synchronize(autoload_mutex, autoload_load_needed, (VALUE)&arguments);
// This confirms whether autoloading is required or not:
if (autoload_const_value == Qfalse) return autoload_const_value;
arguments.flag = ce->flag & (CONST_DEPRECATED | CONST_VISIBILITY_MASK);
// Only one thread will enter here at a time:
VALUE result = rb_mutex_synchronize(arguments.mutex, autoload_try_load, (VALUE)&arguments);
// If you don't guard this value, it's possible for the autoload constant to
// be freed by another thread which loads multiple constants, one of which
// resolves to the constant this thread is trying to load, so proteect this
// so that it is not freed until we are done with it in `autoload_try_load`:
RB_GC_GUARD(autoload_const_value);
return result;
}
VALUE
rb_autoload_p(VALUE mod, ID id)
{
return rb_autoload_at_p(mod, id, TRUE);
}
VALUE
rb_autoload_at_p(VALUE mod, ID id, int recur)
{
VALUE load;
struct autoload_data *ele;
while (!autoload_defined_p(mod, id)) {
if (!recur) return Qnil;
mod = RCLASS_SUPER(mod);
if (!mod) return Qnil;
}
load = check_autoload_required(mod, id, 0);
if (!load) return Qnil;
return (ele = get_autoload_data(load, 0)) ? ele->feature : Qnil;
}
void
rb_const_warn_if_deprecated(const rb_const_entry_t *ce, VALUE klass, ID id)
{
if (RB_CONST_DEPRECATED_P(ce) &&
rb_warning_category_enabled_p(RB_WARN_CATEGORY_DEPRECATED)) {
if (klass == rb_cObject) {
rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "constant ::%"PRIsVALUE" is deprecated", QUOTE_ID(id));
}
else {
rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "constant %"PRIsVALUE"::%"PRIsVALUE" is deprecated",
rb_class_name(klass), QUOTE_ID(id));
}
}
}
static VALUE
rb_const_get_0(VALUE klass, ID id, int exclude, int recurse, int visibility)
{
VALUE c = rb_const_search(klass, id, exclude, recurse, visibility);
if (!UNDEF_P(c)) {
if (UNLIKELY(!rb_ractor_main_p())) {
if (!rb_ractor_shareable_p(c)) {
rb_raise(rb_eRactorIsolationError, "can not access non-shareable objects in constant %"PRIsVALUE"::%s by non-main Ractor.", rb_class_path(klass), rb_id2name(id));
}
}
return c;
}
return rb_const_missing(klass, ID2SYM(id));
}
static VALUE
rb_const_search_from(VALUE klass, ID id, int exclude, int recurse, int visibility)
{
VALUE value, current;
bool first_iteration = true;
for (current = klass;
RTEST(current);
current = RCLASS_SUPER(current), first_iteration = false) {
VALUE tmp;
VALUE am = 0;
rb_const_entry_t *ce;
if (!first_iteration && RCLASS_ORIGIN(current) != current) {
// This item in the super chain has an origin iclass
// that comes later in the chain. Skip this item so
// prepended modules take precedence.
continue;
}
// Do lookup in original class or module in case we are at an origin
// iclass in the chain.
tmp = current;
if (BUILTIN_TYPE(tmp) == T_ICLASS) tmp = RBASIC(tmp)->klass;
// Do the lookup. Loop in case of autoload.
while ((ce = rb_const_lookup(tmp, id))) {
if (visibility && RB_CONST_PRIVATE_P(ce)) {
GET_EC()->private_const_reference = tmp;
return Qundef;
}
rb_const_warn_if_deprecated(ce, tmp, id);
value = ce->value;
if (UNDEF_P(value)) {
struct autoload_const *ac;
if (am == tmp) break;
am = tmp;
ac = autoloading_const_entry(tmp, id);
if (ac) return ac->value;
rb_autoload_load(tmp, id);
continue;
}
if (exclude && tmp == rb_cObject) {
goto not_found;
}
return value;
}
if (!recurse) break;
}
not_found:
GET_EC()->private_const_reference = 0;
return Qundef;
}
static VALUE
rb_const_search(VALUE klass, ID id, int exclude, int recurse, int visibility)
{
VALUE value;
if (klass == rb_cObject) exclude = FALSE;
value = rb_const_search_from(klass, id, exclude, recurse, visibility);
if (!UNDEF_P(value)) return value;
if (exclude) return value;
if (BUILTIN_TYPE(klass) != T_MODULE) return value;
/* search global const too, if klass is a module */
return rb_const_search_from(rb_cObject, id, FALSE, recurse, visibility);
}
VALUE
rb_const_get_from(VALUE klass, ID id)
{
return rb_const_get_0(klass, id, TRUE, TRUE, FALSE);
}
VALUE
rb_const_get(VALUE klass, ID id)
{
return rb_const_get_0(klass, id, FALSE, TRUE, FALSE);
}
VALUE
rb_const_get_at(VALUE klass, ID id)
{
return rb_const_get_0(klass, id, TRUE, FALSE, FALSE);
}
VALUE
rb_public_const_get_from(VALUE klass, ID id)
{
return rb_const_get_0(klass, id, TRUE, TRUE, TRUE);
}
VALUE
rb_public_const_get_at(VALUE klass, ID id)
{
return rb_const_get_0(klass, id, TRUE, FALSE, TRUE);
}
NORETURN(static void undefined_constant(VALUE mod, VALUE name));
static void
undefined_constant(VALUE mod, VALUE name)
{
rb_name_err_raise("constant %2$s::%1$s not defined",
mod, name);
}
static VALUE
rb_const_location_from(VALUE klass, ID id, int exclude, int recurse, int visibility)
{
while (RTEST(klass)) {
rb_const_entry_t *ce;
while ((ce = rb_const_lookup(klass, id))) {
if (visibility && RB_CONST_PRIVATE_P(ce)) {
return Qnil;
}
if (exclude && klass == rb_cObject) {
goto not_found;
}
if (UNDEF_P(ce->value)) { // autoload
VALUE autoload_const_value = autoload_data(klass, id);
if (RTEST(autoload_const_value)) {
struct autoload_const *autoload_const;
struct autoload_data *autoload_data = get_autoload_data(autoload_const_value, &autoload_const);
if (!UNDEF_P(autoload_const->value) && RTEST(rb_mutex_owned_p(autoload_data->mutex))) {
return rb_assoc_new(autoload_const->file, INT2NUM(autoload_const->line));
}
}
}
if (NIL_P(ce->file)) return rb_ary_new();
return rb_assoc_new(ce->file, INT2NUM(ce->line));
}
if (!recurse) break;
klass = RCLASS_SUPER(klass);
}
not_found:
return Qnil;
}
static VALUE
rb_const_location(VALUE klass, ID id, int exclude, int recurse, int visibility)
{
VALUE loc;
if (klass == rb_cObject) exclude = FALSE;
loc = rb_const_location_from(klass, id, exclude, recurse, visibility);
if (!NIL_P(loc)) return loc;
if (exclude) return loc;
if (BUILTIN_TYPE(klass) != T_MODULE) return loc;
/* search global const too, if klass is a module */
return rb_const_location_from(rb_cObject, id, FALSE, recurse, visibility);
}
VALUE
rb_const_source_location(VALUE klass, ID id)
{
return rb_const_location(klass, id, FALSE, TRUE, FALSE);
}
VALUE
rb_const_source_location_at(VALUE klass, ID id)
{
return rb_const_location(klass, id, TRUE, FALSE, FALSE);
}
/*
* call-seq:
* remove_const(sym) -> obj
*
* Removes the definition of the given constant, returning that
* constant's previous value. If that constant referred to
* a module, this will not change that module's name and can lead
* to confusion.
*/
VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
const ID id = id_for_var(mod, name, a, constant);
if (!id) {
undefined_constant(mod, name);
}
return rb_const_remove(mod, id);
}
VALUE
rb_const_remove(VALUE mod, ID id)
{
VALUE val;
rb_const_entry_t *ce;
rb_check_frozen(mod);
ce = rb_const_lookup(mod, id);
if (!ce || !rb_id_table_delete(RCLASS_CONST_TBL(mod), id)) {
if (rb_const_defined_at(mod, id)) {
rb_name_err_raise("cannot remove %2$s::%1$s", mod, ID2SYM(id));
}
undefined_constant(mod, ID2SYM(id));
}
rb_clear_constant_cache_for_id(id);
val = ce->value;
if (UNDEF_P(val)) {
autoload_delete(mod, id);
val = Qnil;
}
ruby_xfree(ce);
return val;
}
static int
cv_i_update(st_data_t *k, st_data_t *v, st_data_t a, int existing)
{
if (existing) return ST_STOP;
*v = a;
return ST_CONTINUE;
}
static enum rb_id_table_iterator_result
sv_i(ID key, VALUE v, void *a)
{
rb_const_entry_t *ce = (rb_const_entry_t *)v;
st_table *tbl = a;
if (rb_is_const_id(key)) {
st_update(tbl, (st_data_t)key, cv_i_update, (st_data_t)ce);
}
return ID_TABLE_CONTINUE;
}
static enum rb_id_table_iterator_result
rb_local_constants_i(ID const_name, VALUE const_value, void *ary)
{
if (rb_is_const_id(const_name) && !RB_CONST_PRIVATE_P((rb_const_entry_t *)const_value)) {
rb_ary_push((VALUE)ary, ID2SYM(const_name));
}
return ID_TABLE_CONTINUE;
}
static VALUE
rb_local_constants(VALUE mod)
{
struct rb_id_table *tbl = RCLASS_CONST_TBL(mod);
VALUE ary;
if (!tbl) return rb_ary_new2(0);
RB_VM_LOCK_ENTER();
{
ary = rb_ary_new2(rb_id_table_size(tbl));
rb_id_table_foreach(tbl, rb_local_constants_i, (void *)ary);
}
RB_VM_LOCK_LEAVE();
return ary;
}
void*
rb_mod_const_at(VALUE mod, void *data)
{
st_table *tbl = data;
if (!tbl) {
tbl = st_init_numtable();
}
if (RCLASS_CONST_TBL(mod)) {
RB_VM_LOCK_ENTER();
{
rb_id_table_foreach(RCLASS_CONST_TBL(mod), sv_i, tbl);
}
RB_VM_LOCK_LEAVE();
}
return tbl;
}
void*
rb_mod_const_of(VALUE mod, void *data)
{
VALUE tmp = mod;
for (;;) {
data = rb_mod_const_at(tmp, data);
tmp = RCLASS_SUPER(tmp);
if (!tmp) break;
if (tmp == rb_cObject && mod != rb_cObject) break;
}
return data;
}
static int
list_i(st_data_t key, st_data_t value, VALUE ary)
{
ID sym = (ID)key;
rb_const_entry_t *ce = (rb_const_entry_t *)value;
if (RB_CONST_PUBLIC_P(ce)) rb_ary_push(ary, ID2SYM(sym));
return ST_CONTINUE;
}
VALUE
rb_const_list(void *data)
{
st_table *tbl = data;
VALUE ary;
if (!tbl) return rb_ary_new2(0);
ary = rb_ary_new2(tbl->num_entries);
st_foreach_safe(tbl, list_i, ary);
st_free_table(tbl);
return ary;
}
/*
* call-seq:
* mod.constants(inherit=true) -> array
*
* Returns an array of the names of the constants accessible in
* <i>mod</i>. This includes the names of constants in any included
* modules (example at start of section), unless the <i>inherit</i>
* parameter is set to <code>false</code>.
*
* The implementation makes no guarantees about the order in which the
* constants are yielded.
*
* IO.constants.include?(:SYNC) #=> true
* IO.constants(false).include?(:SYNC) #=> false
*
* Also see Module#const_defined?.
*/
VALUE
rb_mod_constants(int argc, const VALUE *argv, VALUE mod)
{
bool inherit = true;
if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
if (inherit) {
return rb_const_list(rb_mod_const_of(mod, 0));
}
else {
return rb_local_constants(mod);
}
}
static int
rb_const_defined_0(VALUE klass, ID id, int exclude, int recurse, int visibility)
{
VALUE tmp;
int mod_retry = 0;
rb_const_entry_t *ce;
tmp = klass;
retry:
while (tmp) {
if ((ce = rb_const_lookup(tmp, id))) {
if (visibility && RB_CONST_PRIVATE_P(ce)) {
return (int)Qfalse;
}
if (UNDEF_P(ce->value) && !check_autoload_required(tmp, id, 0) &&
!rb_autoloading_value(tmp, id, NULL, NULL))
return (int)Qfalse;
if (exclude && tmp == rb_cObject && klass != rb_cObject) {
return (int)Qfalse;
}
return (int)Qtrue;
}
if (!recurse) break;
tmp = RCLASS_SUPER(tmp);
}
if (!exclude && !mod_retry && BUILTIN_TYPE(klass) == T_MODULE) {
mod_retry = 1;
tmp = rb_cObject;
goto retry;
}
return (int)Qfalse;
}
int
rb_const_defined_from(VALUE klass, ID id)
{
return rb_const_defined_0(klass, id, TRUE, TRUE, FALSE);
}
int
rb_const_defined(VALUE klass, ID id)
{
return rb_const_defined_0(klass, id, FALSE, TRUE, FALSE);
}
int
rb_const_defined_at(VALUE klass, ID id)
{
return rb_const_defined_0(klass, id, TRUE, FALSE, FALSE);
}
int
rb_public_const_defined_from(VALUE klass, ID id)
{
return rb_const_defined_0(klass, id, TRUE, TRUE, TRUE);
}
static void
check_before_mod_set(VALUE klass, ID id, VALUE val, const char *dest)
{
rb_check_frozen(klass);
}
static void set_namespace_path(VALUE named_namespace, VALUE name);
static enum rb_id_table_iterator_result
set_namespace_path_i(ID id, VALUE v, void *payload)
{
rb_const_entry_t *ce = (rb_const_entry_t *)v;
VALUE value = ce->value;
VALUE parental_path = *((VALUE *) payload);
if (!rb_is_const_id(id) || !rb_namespace_p(value)) {
return ID_TABLE_CONTINUE;
}
bool has_permanent_classpath;
classname(value, &has_permanent_classpath);
if (has_permanent_classpath) {
return ID_TABLE_CONTINUE;
}
set_namespace_path(value, build_const_path(parental_path, id));
if (!RCLASS_EXT(value)->permanent_classpath) {
RCLASS_SET_CLASSPATH(value, 0, false);
}
return ID_TABLE_CONTINUE;
}
/*
* Assign permanent classpaths to all namespaces that are directly or indirectly
* nested under +named_namespace+. +named_namespace+ must have a permanent
* classpath.
*/
static void
set_namespace_path(VALUE named_namespace, VALUE namespace_path)
{
struct rb_id_table *const_table = RCLASS_CONST_TBL(named_namespace);
RB_VM_LOCK_ENTER();
{
RCLASS_SET_CLASSPATH(named_namespace, namespace_path, true);
if (const_table) {
rb_id_table_foreach(const_table, set_namespace_path_i, &namespace_path);
}
}
RB_VM_LOCK_LEAVE();
}
static void
const_added(VALUE klass, ID const_name)
{
if (GET_VM()->running) {
VALUE name = ID2SYM(const_name);
rb_funcallv(klass, idConst_added, 1, &name);
}
}
static void
const_set(VALUE klass, ID id, VALUE val)
{
rb_const_entry_t *ce;
if (NIL_P(klass)) {
rb_raise(rb_eTypeError, "no class/module to define constant %"PRIsVALUE"",
QUOTE_ID(id));
}
if (!rb_ractor_main_p() && !rb_ractor_shareable_p(val)) {
rb_raise(rb_eRactorIsolationError, "can not set constants with non-shareable objects by non-main Ractors");
}
check_before_mod_set(klass, id, val, "constant");
RB_VM_LOCK_ENTER();
{
struct rb_id_table *tbl = RCLASS_CONST_TBL(klass);
if (!tbl) {
RCLASS_CONST_TBL(klass) = tbl = rb_id_table_create(0);
rb_clear_constant_cache_for_id(id);
ce = ZALLOC(rb_const_entry_t);
rb_id_table_insert(tbl, id, (VALUE)ce);
setup_const_entry(ce, klass, val, CONST_PUBLIC);
}
else {
struct autoload_const ac = {
.module = klass, .name = id,
.value = val, .flag = CONST_PUBLIC,
/* fill the rest with 0 */
};
ac.file = rb_source_location(&ac.line);
const_tbl_update(&ac, false);
}
}
RB_VM_LOCK_LEAVE();
/*
* Resolve and cache class name immediately to resolve ambiguity
* and avoid order-dependency on const_tbl
*/
if (rb_cObject && rb_namespace_p(val)) {
bool val_path_permanent;
VALUE val_path = classname(val, &val_path_permanent);
if (NIL_P(val_path) || !val_path_permanent) {
if (klass == rb_cObject) {
set_namespace_path(val, rb_id2str(id));
}
else {
bool parental_path_permanent;
VALUE parental_path = classname(klass, &parental_path_permanent);
if (NIL_P(parental_path)) {
bool throwaway;
parental_path = rb_tmp_class_path(klass, &throwaway, make_temporary_path);
}
if (parental_path_permanent && !val_path_permanent) {
set_namespace_path(val, build_const_path(parental_path, id));
}
else if (!parental_path_permanent && NIL_P(val_path)) {
RCLASS_SET_CLASSPATH(val, build_const_path(parental_path, id), false);
}
}
}
}
}
void
rb_const_set(VALUE klass, ID id, VALUE val)
{
const_set(klass, id, val);
const_added(klass, id);
}
static struct autoload_data *
autoload_data_for_named_constant(VALUE module, ID name, struct autoload_const **autoload_const_pointer)
{
VALUE autoload_data_value = autoload_data(module, name);
if (!autoload_data_value) return 0;
struct autoload_data *autoload_data = get_autoload_data(autoload_data_value, autoload_const_pointer);
if (!autoload_data) return 0;
/* for autoloading thread, keep the defined value to autoloading storage */
if (autoload_by_current(autoload_data)) {
return autoload_data;
}
return 0;
}
static void
const_tbl_update(struct autoload_const *ac, int autoload_force)
{
VALUE value;
VALUE klass = ac->module;
VALUE val = ac->value;
ID id = ac->name;
struct rb_id_table *tbl = RCLASS_CONST_TBL(klass);
rb_const_flag_t visibility = ac->flag;
rb_const_entry_t *ce;
if (rb_id_table_lookup(tbl, id, &value)) {
ce = (rb_const_entry_t *)value;
if (UNDEF_P(ce->value)) {
RUBY_ASSERT_CRITICAL_SECTION_ENTER();
VALUE file = ac->file;
int line = ac->line;
struct autoload_data *ele = autoload_data_for_named_constant(klass, id, &ac);
if (!autoload_force && ele) {
rb_clear_constant_cache_for_id(id);
ac->value = val; /* autoload_data is non-WB-protected */
ac->file = rb_source_location(&ac->line);
}
else {
/* otherwise autoloaded constant, allow to override */
autoload_delete(klass, id);
ce->flag = visibility;
RB_OBJ_WRITE(klass, &ce->value, val);
RB_OBJ_WRITE(klass, &ce->file, file);
ce->line = line;
}
RUBY_ASSERT_CRITICAL_SECTION_LEAVE();
return;
}
else {
VALUE name = QUOTE_ID(id);
visibility = ce->flag;
if (klass == rb_cObject)
rb_warn("already initialized constant %"PRIsVALUE"", name);
else
rb_warn("already initialized constant %"PRIsVALUE"::%"PRIsVALUE"",
rb_class_name(klass), name);
if (!NIL_P(ce->file) && ce->line) {
rb_compile_warn(RSTRING_PTR(ce->file), ce->line,
"previous definition of %"PRIsVALUE" was here", name);
}
}
rb_clear_constant_cache_for_id(id);
setup_const_entry(ce, klass, val, visibility);
}
else {
rb_clear_constant_cache_for_id(id);
ce = ZALLOC(rb_const_entry_t);
rb_id_table_insert(tbl, id, (VALUE)ce);
setup_const_entry(ce, klass, val, visibility);
}
}
static void
setup_const_entry(rb_const_entry_t *ce, VALUE klass, VALUE val,
rb_const_flag_t visibility)
{
ce->flag = visibility;
RB_OBJ_WRITE(klass, &ce->value, val);
RB_OBJ_WRITE(klass, &ce->file, rb_source_location(&ce->line));
}
void
rb_define_const(VALUE klass, const char *name, VALUE val)
{
ID id = rb_intern(name);
if (!rb_is_const_id(id)) {
rb_warn("rb_define_const: invalid name '%s' for constant", name);
}
if (!RB_SPECIAL_CONST_P(val)) {
rb_vm_register_global_object(val);
}
rb_const_set(klass, id, val);
}
void
rb_define_global_const(const char *name, VALUE val)
{
rb_define_const(rb_cObject, name, val);
}
static void
set_const_visibility(VALUE mod, int argc, const VALUE *argv,
rb_const_flag_t flag, rb_const_flag_t mask)
{
int i;
rb_const_entry_t *ce;
ID id;
rb_class_modify_check(mod);
if (argc == 0) {
rb_warning("%"PRIsVALUE" with no argument is just ignored",
QUOTE_ID(rb_frame_callee()));
return;
}
for (i = 0; i < argc; i++) {
struct autoload_const *ac;
VALUE val = argv[i];
id = rb_check_id(&val);
if (!id) {
undefined_constant(mod, val);
}
if ((ce = rb_const_lookup(mod, id))) {
ce->flag &= ~mask;
ce->flag |= flag;
if (UNDEF_P(ce->value)) {
struct autoload_data *ele;
ele = autoload_data_for_named_constant(mod, id, &ac);
if (ele) {
ac->flag &= ~mask;
ac->flag |= flag;
}
}
rb_clear_constant_cache_for_id(id);
}
else {
undefined_constant(mod, ID2SYM(id));
}
}
}
void
rb_deprecate_constant(VALUE mod, const char *name)
{
rb_const_entry_t *ce;
ID id;
long len = strlen(name);
rb_class_modify_check(mod);
if (!(id = rb_check_id_cstr(name, len, NULL))) {
undefined_constant(mod, rb_fstring_new(name, len));
}
if (!(ce = rb_const_lookup(mod, id))) {
undefined_constant(mod, ID2SYM(id));
}
ce->flag |= CONST_DEPRECATED;
}
/*
* call-seq:
* mod.private_constant(symbol, ...) => mod
*
* Makes a list of existing constants private.
*/
VALUE
rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK);
return obj;
}
/*
* call-seq:
* mod.public_constant(symbol, ...) => mod
*
* Makes a list of existing constants public.
*/
VALUE
rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK);
return obj;
}
/*
* call-seq:
* mod.deprecate_constant(symbol, ...) => mod
*
* Makes a list of existing constants deprecated. Attempt
* to refer to them will produce a warning.
*
* module HTTP
* NotFound = Exception.new
* NOT_FOUND = NotFound # previous version of the library used this name
*
* deprecate_constant :NOT_FOUND
* end
*
* HTTP::NOT_FOUND
* # warning: constant HTTP::NOT_FOUND is deprecated
*
*/
VALUE
rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj)
{
set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED);
return obj;
}
static VALUE
original_module(VALUE c)
{
if (RB_TYPE_P(c, T_ICLASS))
return RBASIC(c)->klass;
return c;
}
static int
cvar_lookup_at(VALUE klass, ID id, st_data_t *v)
{
if (RB_TYPE_P(klass, T_ICLASS)) {
if (FL_TEST_RAW(klass, RICLASS_IS_ORIGIN)) {
return 0;
}
else {
// check the original module
klass = RBASIC(klass)->klass;
}
}
VALUE n = rb_ivar_lookup(klass, id, Qundef);
if (UNDEF_P(n)) return 0;
if (v) *v = n;
return 1;
}
static VALUE
cvar_front_klass(VALUE klass)
{
if (RCLASS_SINGLETON_P(klass)) {
VALUE obj = RCLASS_ATTACHED_OBJECT(klass);
if (rb_namespace_p(obj)) {
return obj;
}
}
return RCLASS_SUPER(klass);
}
static void
cvar_overtaken(VALUE front, VALUE target, ID id)
{
if (front && target != front) {
if (original_module(front) != original_module(target)) {
rb_raise(rb_eRuntimeError,
"class variable % "PRIsVALUE" of %"PRIsVALUE" is overtaken by %"PRIsVALUE"",
ID2SYM(id), rb_class_name(original_module(front)),
rb_class_name(original_module(target)));
}
if (BUILTIN_TYPE(front) == T_CLASS) {
rb_ivar_delete(front, id, Qundef);
}
}
}
#define CVAR_FOREACH_ANCESTORS(klass, v, r) \
for (klass = cvar_front_klass(klass); klass; klass = RCLASS_SUPER(klass)) { \
if (cvar_lookup_at(klass, id, (v))) { \
r; \
} \
}
#define CVAR_LOOKUP(v,r) do {\
CVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(); \
if (cvar_lookup_at(klass, id, (v))) {r;}\
CVAR_FOREACH_ANCESTORS(klass, v, r);\
} while(0)
static VALUE
find_cvar(VALUE klass, VALUE * front, VALUE * target, ID id)
{
VALUE v = Qundef;
CVAR_LOOKUP(&v, {
if (!*front) {
*front = klass;
}
*target = klass;
});
return v;
}
static void
check_for_cvar_table(VALUE subclass, VALUE key)
{
// Must not check ivar on ICLASS
if (!RB_TYPE_P(subclass, T_ICLASS) && RTEST(rb_ivar_defined(subclass, key))) {
RB_DEBUG_COUNTER_INC(cvar_class_invalidate);
ruby_vm_global_cvar_state++;
return;
}
rb_class_foreach_subclass(subclass, check_for_cvar_table, key);
}
void
rb_cvar_set(VALUE klass, ID id, VALUE val)
{
VALUE tmp, front = 0, target = 0;
tmp = klass;
CVAR_LOOKUP(0, {if (!front) front = klass; target = klass;});
if (target) {
cvar_overtaken(front, target, id);
}
else {
target = tmp;
}
if (RB_TYPE_P(target, T_ICLASS)) {
target = RBASIC(target)->klass;
}
check_before_mod_set(target, id, val, "class variable");
int result = rb_class_ivar_set(target, id, val);
struct rb_id_table *rb_cvc_tbl = RCLASS_CVC_TBL(target);
if (!rb_cvc_tbl) {
rb_cvc_tbl = RCLASS_CVC_TBL(target) = rb_id_table_create(2);
}
struct rb_cvar_class_tbl_entry *ent;
VALUE ent_data;
if (!rb_id_table_lookup(rb_cvc_tbl, id, &ent_data)) {
ent = ALLOC(struct rb_cvar_class_tbl_entry);
ent->class_value = target;
ent->global_cvar_state = GET_GLOBAL_CVAR_STATE();
ent->cref = 0;
rb_id_table_insert(rb_cvc_tbl, id, (VALUE)ent);
RB_DEBUG_COUNTER_INC(cvar_inline_miss);
}
else {
ent = (void *)ent_data;
ent->global_cvar_state = GET_GLOBAL_CVAR_STATE();
}
// Break the cvar cache if this is a new class variable
// and target is a module or a subclass with the same
// cvar in this lookup.
if (result == 0) {
if (RB_TYPE_P(target, T_CLASS)) {
if (RCLASS_SUBCLASSES(target)) {
rb_class_foreach_subclass(target, check_for_cvar_table, id);
}
}
}
}
VALUE
rb_cvar_find(VALUE klass, ID id, VALUE *front)
{
VALUE target = 0;
VALUE value;
value = find_cvar(klass, front, &target, id);
if (!target) {
rb_name_err_raise("uninitialized class variable %1$s in %2$s",
klass, ID2SYM(id));
}
cvar_overtaken(*front, target, id);
return (VALUE)value;
}
VALUE
rb_cvar_get(VALUE klass, ID id)
{
VALUE front = 0;
return rb_cvar_find(klass, id, &front);
}
VALUE
rb_cvar_defined(VALUE klass, ID id)
{
if (!klass) return Qfalse;
CVAR_LOOKUP(0,return Qtrue);
return Qfalse;
}
static ID
cv_intern(VALUE klass, const char *name)
{
ID id = rb_intern(name);
if (!rb_is_class_id(id)) {
rb_name_err_raise("wrong class variable name %1$s",
klass, rb_str_new_cstr(name));
}
return id;
}
void
rb_cv_set(VALUE klass, const char *name, VALUE val)
{
ID id = cv_intern(klass, name);
rb_cvar_set(klass, id, val);
}
VALUE
rb_cv_get(VALUE klass, const char *name)
{
ID id = cv_intern(klass, name);
return rb_cvar_get(klass, id);
}
void
rb_define_class_variable(VALUE klass, const char *name, VALUE val)
{
rb_cv_set(klass, name, val);
}
static int
cv_i(ID key, VALUE v, st_data_t a)
{
st_table *tbl = (st_table *)a;
if (rb_is_class_id(key)) {
st_update(tbl, (st_data_t)key, cv_i_update, 0);
}
return ST_CONTINUE;
}
static void*
mod_cvar_at(VALUE mod, void *data)
{
st_table *tbl = data;
if (!tbl) {
tbl = st_init_numtable();
}
mod = original_module(mod);
rb_ivar_foreach(mod, cv_i, (st_data_t)tbl);
return tbl;
}
static void*
mod_cvar_of(VALUE mod, void *data)
{
VALUE tmp = mod;
if (RCLASS_SINGLETON_P(mod)) {
if (rb_namespace_p(RCLASS_ATTACHED_OBJECT(mod))) {
data = mod_cvar_at(tmp, data);
tmp = cvar_front_klass(tmp);
}
}
for (;;) {
data = mod_cvar_at(tmp, data);
tmp = RCLASS_SUPER(tmp);
if (!tmp) break;
}
return data;
}
static int
cv_list_i(st_data_t key, st_data_t value, VALUE ary)
{
ID sym = (ID)key;
rb_ary_push(ary, ID2SYM(sym));
return ST_CONTINUE;
}
static VALUE
cvar_list(void *data)
{
st_table *tbl = data;
VALUE ary;
if (!tbl) return rb_ary_new2(0);
ary = rb_ary_new2(tbl->num_entries);
st_foreach_safe(tbl, cv_list_i, ary);
st_free_table(tbl);
return ary;
}
/*
* call-seq:
* mod.class_variables(inherit=true) -> array
*
* Returns an array of the names of class variables in <i>mod</i>.
* This includes the names of class variables in any included
* modules, unless the <i>inherit</i> parameter is set to
* <code>false</code>.
*
* class One
* @@var1 = 1
* end
* class Two < One
* @@var2 = 2
* end
* One.class_variables #=> [:@@var1]
* Two.class_variables #=> [:@@var2, :@@var1]
* Two.class_variables(false) #=> [:@@var2]
*/
VALUE
rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod)
{
bool inherit = true;
st_table *tbl;
if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
if (inherit) {
tbl = mod_cvar_of(mod, 0);
}
else {
tbl = mod_cvar_at(mod, 0);
}
return cvar_list(tbl);
}
/*
* call-seq:
* remove_class_variable(sym) -> obj
*
* Removes the named class variable from the receiver, returning that
* variable's value.
*
* class Example
* @@var = 99
* puts remove_class_variable(:@@var)
* p(defined? @@var)
* end
*
* <em>produces:</em>
*
* 99
* nil
*/
VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s");
st_data_t val;
if (!id) {
goto not_defined;
}
rb_check_frozen(mod);
val = rb_ivar_delete(mod, id, Qundef);
if (!UNDEF_P(val)) {
return (VALUE)val;
}
if (rb_cvar_defined(mod, id)) {
rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id));
}
not_defined:
rb_name_err_raise("class variable %1$s not defined for %2$s",
mod, name);
UNREACHABLE_RETURN(Qundef);
}
VALUE
rb_iv_get(VALUE obj, const char *name)
{
ID id = rb_check_id_cstr(name, strlen(name), rb_usascii_encoding());
if (!id) {
return Qnil;
}
return rb_ivar_get(obj, id);
}
VALUE
rb_iv_set(VALUE obj, const char *name, VALUE val)
{
ID id = rb_intern(name);
return rb_ivar_set(obj, id, val);
}
static VALUE *
class_ivar_set_shape_ivptr(VALUE obj, void *_data)
{
RUBY_ASSERT(!rb_shape_obj_too_complex(obj));
return RCLASS_IVPTR(obj);
}
static void
class_ivar_set_shape_resize_ivptr(VALUE obj, attr_index_t _old_capa, attr_index_t new_capa, void *_data)
{
REALLOC_N(RCLASS_IVPTR(obj), VALUE, new_capa);
}
static void
class_ivar_set_set_shape(VALUE obj, rb_shape_t *shape, void *_data)
{
rb_shape_set_shape(obj, shape);
}
static void
class_ivar_set_transition_too_complex(VALUE obj, void *_data)
{
rb_evict_ivars_to_hash(obj);
}
static st_table *
class_ivar_set_too_complex_table(VALUE obj, void *_data)
{
RUBY_ASSERT(rb_shape_obj_too_complex(obj));
return RCLASS_IV_HASH(obj);
}
int
rb_class_ivar_set(VALUE obj, ID id, VALUE val)
{
RUBY_ASSERT(RB_TYPE_P(obj, T_CLASS) || RB_TYPE_P(obj, T_MODULE));
bool existing = false;
rb_check_frozen(obj);
RB_VM_LOCK_ENTER();
{
existing = general_ivar_set(obj, id, val, NULL,
class_ivar_set_shape_ivptr,
class_ivar_set_shape_resize_ivptr,
class_ivar_set_set_shape,
class_ivar_set_transition_too_complex,
class_ivar_set_too_complex_table).existing;
}
RB_VM_LOCK_LEAVE();
return existing;
}
static int
tbl_copy_i(ID key, VALUE val, st_data_t dest)
{
rb_class_ivar_set((VALUE)dest, key, val);
return ST_CONTINUE;
}
void
rb_iv_tbl_copy(VALUE dst, VALUE src)
{
RUBY_ASSERT(rb_type(dst) == rb_type(src));
RUBY_ASSERT(RB_TYPE_P(dst, T_CLASS) || RB_TYPE_P(dst, T_MODULE));
RUBY_ASSERT(rb_shape_get_shape(dst)->type == SHAPE_ROOT);
RUBY_ASSERT(!RCLASS_IVPTR(dst));
rb_ivar_foreach(src, tbl_copy_i, dst);
}
rb_const_entry_t *
rb_const_lookup(VALUE klass, ID id)
{
struct rb_id_table *tbl = RCLASS_CONST_TBL(klass);
if (tbl) {
VALUE val;
bool r;
RB_VM_LOCK_ENTER();
{
r = rb_id_table_lookup(tbl, id, &val);
}
RB_VM_LOCK_LEAVE();
if (r) return (rb_const_entry_t *)val;
}
return NULL;
}