ruby/vm.c

4694 строки
137 KiB
C

/**********************************************************************
Vm.c -
$Author$
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#define vm_exec rb_vm_exec
#include "eval_intern.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/compile.h"
#include "internal/cont.h"
#include "internal/error.h"
#include "internal/encoding.h"
#include "internal/eval.h"
#include "internal/gc.h"
#include "internal/inits.h"
#include "internal/missing.h"
#include "internal/object.h"
#include "internal/proc.h"
#include "internal/re.h"
#include "internal/ruby_parser.h"
#include "internal/symbol.h"
#include "internal/thread.h"
#include "internal/transcode.h"
#include "internal/vm.h"
#include "internal/sanitizers.h"
#include "internal/variable.h"
#include "iseq.h"
#include "rjit.h"
#include "yjit.h"
#include "ruby/st.h"
#include "ruby/vm.h"
#include "vm_core.h"
#include "vm_callinfo.h"
#include "vm_debug.h"
#include "vm_exec.h"
#include "vm_insnhelper.h"
#include "ractor_core.h"
#include "vm_sync.h"
#include "shape.h"
#include "builtin.h"
#include "probes.h"
#include "probes_helper.h"
#ifdef RUBY_ASSERT_CRITICAL_SECTION
int ruby_assert_critical_section_entered = 0;
#endif
static void *native_main_thread_stack_top;
VALUE rb_str_concat_literals(size_t, const VALUE*);
VALUE vm_exec(rb_execution_context_t *);
extern const char *const rb_debug_counter_names[];
PUREFUNC(static inline const VALUE *VM_EP_LEP(const VALUE *));
static inline const VALUE *
VM_EP_LEP(const VALUE *ep)
{
while (!VM_ENV_LOCAL_P(ep)) {
ep = VM_ENV_PREV_EP(ep);
}
return ep;
}
static inline const rb_control_frame_t *
rb_vm_search_cf_from_ep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, const VALUE * const ep)
{
if (!ep) {
return NULL;
}
else {
const rb_control_frame_t * const eocfp = RUBY_VM_END_CONTROL_FRAME(ec); /* end of control frame pointer */
while (cfp < eocfp) {
if (cfp->ep == ep) {
return cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return NULL;
}
}
const VALUE *
rb_vm_ep_local_ep(const VALUE *ep)
{
return VM_EP_LEP(ep);
}
PUREFUNC(static inline const VALUE *VM_CF_LEP(const rb_control_frame_t * const cfp));
static inline const VALUE *
VM_CF_LEP(const rb_control_frame_t * const cfp)
{
return VM_EP_LEP(cfp->ep);
}
static inline const VALUE *
VM_CF_PREV_EP(const rb_control_frame_t * const cfp)
{
return VM_ENV_PREV_EP(cfp->ep);
}
PUREFUNC(static inline VALUE VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp));
static inline VALUE
VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp)
{
const VALUE *ep = VM_CF_LEP(cfp);
return VM_ENV_BLOCK_HANDLER(ep);
}
int
rb_vm_cframe_keyword_p(const rb_control_frame_t *cfp)
{
return VM_FRAME_CFRAME_KW_P(cfp);
}
VALUE
rb_vm_frame_block_handler(const rb_control_frame_t *cfp)
{
return VM_CF_BLOCK_HANDLER(cfp);
}
#if VM_CHECK_MODE > 0
static int
VM_CFP_IN_HEAP_P(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
const VALUE *start = ec->vm_stack;
const VALUE *end = (VALUE *)ec->vm_stack + ec->vm_stack_size;
VM_ASSERT(start != NULL);
if (start <= (VALUE *)cfp && (VALUE *)cfp < end) {
return FALSE;
}
else {
return TRUE;
}
}
static int
VM_EP_IN_HEAP_P(const rb_execution_context_t *ec, const VALUE *ep)
{
const VALUE *start = ec->vm_stack;
const VALUE *end = (VALUE *)ec->cfp;
VM_ASSERT(start != NULL);
if (start <= ep && ep < end) {
return FALSE;
}
else {
return TRUE;
}
}
static int
vm_ep_in_heap_p_(const rb_execution_context_t *ec, const VALUE *ep)
{
if (VM_EP_IN_HEAP_P(ec, ep)) {
VALUE envval = ep[VM_ENV_DATA_INDEX_ENV]; /* VM_ENV_ENVVAL(ep); */
if (!UNDEF_P(envval)) {
const rb_env_t *env = (const rb_env_t *)envval;
VM_ASSERT(vm_assert_env(envval));
VM_ASSERT(VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED));
VM_ASSERT(env->ep == ep);
}
return TRUE;
}
else {
return FALSE;
}
}
int
rb_vm_ep_in_heap_p(const VALUE *ep)
{
const rb_execution_context_t *ec = GET_EC();
if (ec->vm_stack == NULL) return TRUE;
return vm_ep_in_heap_p_(ec, ep);
}
#endif
static struct rb_captured_block *
VM_CFP_TO_CAPTURED_BLOCK(const rb_control_frame_t *cfp)
{
VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp));
return (struct rb_captured_block *)&cfp->self;
}
static rb_control_frame_t *
VM_CAPTURED_BLOCK_TO_CFP(const struct rb_captured_block *captured)
{
rb_control_frame_t *cfp = ((rb_control_frame_t *)((VALUE *)(captured) - 3));
VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp));
VM_ASSERT(sizeof(rb_control_frame_t)/sizeof(VALUE) == 7 + VM_DEBUG_BP_CHECK ? 1 : 0);
return cfp;
}
static int
VM_BH_FROM_CFP_P(VALUE block_handler, const rb_control_frame_t *cfp)
{
const struct rb_captured_block *captured = VM_CFP_TO_CAPTURED_BLOCK(cfp);
return VM_TAGGED_PTR_REF(block_handler, 0x03) == captured;
}
static VALUE
vm_passed_block_handler(rb_execution_context_t *ec)
{
VALUE block_handler = ec->passed_block_handler;
ec->passed_block_handler = VM_BLOCK_HANDLER_NONE;
vm_block_handler_verify(block_handler);
return block_handler;
}
static rb_cref_t *
vm_cref_new0(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval, int use_prev_prev, int singleton)
{
VALUE refinements = Qnil;
int omod_shared = FALSE;
rb_cref_t *cref;
/* scope */
union {
rb_scope_visibility_t visi;
VALUE value;
} scope_visi;
scope_visi.visi.method_visi = visi;
scope_visi.visi.module_func = module_func;
/* refinements */
if (prev_cref != NULL && prev_cref != (void *)1 /* TODO: why CREF_NEXT(cref) is 1? */) {
refinements = CREF_REFINEMENTS(prev_cref);
if (!NIL_P(refinements)) {
omod_shared = TRUE;
CREF_OMOD_SHARED_SET(prev_cref);
}
}
VM_ASSERT(singleton || klass);
cref = (rb_cref_t *)rb_imemo_new(imemo_cref, klass, (VALUE)(use_prev_prev ? CREF_NEXT(prev_cref) : prev_cref), scope_visi.value, refinements);
if (pushed_by_eval) CREF_PUSHED_BY_EVAL_SET(cref);
if (omod_shared) CREF_OMOD_SHARED_SET(cref);
if (singleton) CREF_SINGLETON_SET(cref);
return cref;
}
static rb_cref_t *
vm_cref_new(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval, int singleton)
{
return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, FALSE, singleton);
}
static rb_cref_t *
vm_cref_new_use_prev(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval)
{
return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, TRUE, FALSE);
}
static int
ref_delete_symkey(VALUE key, VALUE value, VALUE unused)
{
return SYMBOL_P(key) ? ST_DELETE : ST_CONTINUE;
}
static rb_cref_t *
vm_cref_dup(const rb_cref_t *cref)
{
const rb_scope_visibility_t *visi = CREF_SCOPE_VISI(cref);
rb_cref_t *next_cref = CREF_NEXT(cref), *new_cref;
int pushed_by_eval = CREF_PUSHED_BY_EVAL(cref);
int singleton = CREF_SINGLETON(cref);
new_cref = vm_cref_new(cref->klass_or_self, visi->method_visi, visi->module_func, next_cref, pushed_by_eval, singleton);
if (!NIL_P(CREF_REFINEMENTS(cref))) {
VALUE ref = rb_hash_dup(CREF_REFINEMENTS(cref));
rb_hash_foreach(ref, ref_delete_symkey, Qnil);
CREF_REFINEMENTS_SET(new_cref, ref);
CREF_OMOD_SHARED_UNSET(new_cref);
}
return new_cref;
}
rb_cref_t *
rb_vm_cref_dup_without_refinements(const rb_cref_t *cref)
{
const rb_scope_visibility_t *visi = CREF_SCOPE_VISI(cref);
rb_cref_t *next_cref = CREF_NEXT(cref), *new_cref;
int pushed_by_eval = CREF_PUSHED_BY_EVAL(cref);
int singleton = CREF_SINGLETON(cref);
new_cref = vm_cref_new(cref->klass_or_self, visi->method_visi, visi->module_func, next_cref, pushed_by_eval, singleton);
if (!NIL_P(CREF_REFINEMENTS(cref))) {
CREF_REFINEMENTS_SET(new_cref, Qnil);
CREF_OMOD_SHARED_UNSET(new_cref);
}
return new_cref;
}
static rb_cref_t *
vm_cref_new_toplevel(rb_execution_context_t *ec)
{
rb_cref_t *cref = vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE /* toplevel visibility is private */, FALSE, NULL, FALSE, FALSE);
VALUE top_wrapper = rb_ec_thread_ptr(ec)->top_wrapper;
if (top_wrapper) {
cref = vm_cref_new(top_wrapper, METHOD_VISI_PRIVATE, FALSE, cref, FALSE, FALSE);
}
return cref;
}
rb_cref_t *
rb_vm_cref_new_toplevel(void)
{
return vm_cref_new_toplevel(GET_EC());
}
static void
vm_cref_dump(const char *mesg, const rb_cref_t *cref)
{
ruby_debug_printf("vm_cref_dump: %s (%p)\n", mesg, (void *)cref);
while (cref) {
ruby_debug_printf("= cref| klass: %s\n", RSTRING_PTR(rb_class_path(CREF_CLASS(cref))));
cref = CREF_NEXT(cref);
}
}
void
rb_vm_block_ep_update(VALUE obj, const struct rb_block *dst, const VALUE *ep)
{
*((const VALUE **)&dst->as.captured.ep) = ep;
RB_OBJ_WRITTEN(obj, Qundef, VM_ENV_ENVVAL(ep));
}
static void
vm_bind_update_env(VALUE bindval, rb_binding_t *bind, VALUE envval)
{
const rb_env_t *env = (rb_env_t *)envval;
RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
rb_vm_block_ep_update(bindval, &bind->block, env->ep);
}
#if VM_COLLECT_USAGE_DETAILS
static void vm_collect_usage_operand(int insn, int n, VALUE op);
static void vm_collect_usage_insn(int insn);
static void vm_collect_usage_register(int reg, int isset);
#endif
static VALUE vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp);
extern VALUE rb_vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, int kw_splat, VALUE block_handler,
const rb_callable_method_entry_t *me);
static VALUE vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE block_handler);
#if USE_YJIT
// Counter to serve as a proxy for execution time, total number of calls
static uint64_t yjit_total_entry_hits = 0;
// Number of calls used to estimate how hot an ISEQ is
#define YJIT_CALL_COUNT_INTERV 20u
/// Test whether we are ready to compile an ISEQ or not
static inline bool
rb_yjit_threshold_hit(const rb_iseq_t *iseq, uint64_t entry_calls)
{
yjit_total_entry_hits += 1;
// Record the number of calls at the beginning of the interval
if (entry_calls + YJIT_CALL_COUNT_INTERV == rb_yjit_call_threshold) {
iseq->body->yjit_calls_at_interv = yjit_total_entry_hits;
}
// Try to estimate the total time taken (total number of calls) to reach 20 calls to this ISEQ
// This give us a ratio of how hot/cold this ISEQ is
if (entry_calls == rb_yjit_call_threshold) {
// We expect threshold 1 to compile everything immediately
if (rb_yjit_call_threshold < YJIT_CALL_COUNT_INTERV) {
return true;
}
uint64_t num_calls = yjit_total_entry_hits - iseq->body->yjit_calls_at_interv;
// Reject ISEQs that don't get called often enough
if (num_calls > rb_yjit_cold_threshold) {
rb_yjit_incr_counter("cold_iseq_entry");
return false;
}
return true;
}
return false;
}
#else
#define rb_yjit_threshold_hit(iseq, entry_calls) false
#endif
#if USE_RJIT || USE_YJIT
// Generate JIT code that supports the following kinds of ISEQ entries:
// * The first ISEQ on vm_exec (e.g. <main>, or Ruby methods/blocks
// called by a C method). The current frame has VM_FRAME_FLAG_FINISH.
// The current vm_exec stops if JIT code returns a non-Qundef value.
// * ISEQs called by the interpreter on vm_sendish (e.g. Ruby methods or
// blocks called by a Ruby frame that isn't compiled or side-exited).
// The current frame doesn't have VM_FRAME_FLAG_FINISH. The current
// vm_exec does NOT stop whether JIT code returns Qundef or not.
static inline rb_jit_func_t
jit_compile(rb_execution_context_t *ec)
{
const rb_iseq_t *iseq = ec->cfp->iseq;
struct rb_iseq_constant_body *body = ISEQ_BODY(iseq);
bool yjit_enabled = rb_yjit_enabled_p;
if (!(yjit_enabled || rb_rjit_call_p)) {
return NULL;
}
// Increment the ISEQ's call counter and trigger JIT compilation if not compiled
if (body->jit_entry == NULL) {
body->jit_entry_calls++;
if (yjit_enabled) {
if (rb_yjit_threshold_hit(iseq, body->jit_entry_calls)) {
rb_yjit_compile_iseq(iseq, ec, false);
}
}
else if (body->jit_entry_calls == rb_rjit_call_threshold()) {
rb_rjit_compile(iseq);
}
}
return body->jit_entry;
}
// Execute JIT code compiled by jit_compile()
static inline VALUE
jit_exec(rb_execution_context_t *ec)
{
rb_jit_func_t func = jit_compile(ec);
if (func) {
// Call the JIT code
return func(ec, ec->cfp);
}
else {
return Qundef;
}
}
#else
# define jit_compile(ec) ((rb_jit_func_t)0)
# define jit_exec(ec) Qundef
#endif
#if USE_YJIT
// Generate JIT code that supports the following kind of ISEQ entry:
// * The first ISEQ pushed by vm_exec_handle_exception. The frame would
// point to a location specified by a catch table, and it doesn't have
// VM_FRAME_FLAG_FINISH. The current vm_exec stops if JIT code returns
// a non-Qundef value. So you should not return a non-Qundef value
// until ec->cfp is changed to a frame with VM_FRAME_FLAG_FINISH.
static inline rb_jit_func_t
jit_compile_exception(rb_execution_context_t *ec)
{
const rb_iseq_t *iseq = ec->cfp->iseq;
struct rb_iseq_constant_body *body = ISEQ_BODY(iseq);
if (!rb_yjit_enabled_p) {
return NULL;
}
// Increment the ISEQ's call counter and trigger JIT compilation if not compiled
if (body->jit_exception == NULL) {
body->jit_exception_calls++;
if (body->jit_exception_calls == rb_yjit_call_threshold) {
rb_yjit_compile_iseq(iseq, ec, true);
}
}
return body->jit_exception;
}
// Execute JIT code compiled by jit_compile_exception()
static inline VALUE
jit_exec_exception(rb_execution_context_t *ec)
{
rb_jit_func_t func = jit_compile_exception(ec);
if (func) {
// Call the JIT code
return func(ec, ec->cfp);
}
else {
return Qundef;
}
}
#else
# define jit_compile_exception(ec) ((rb_jit_func_t)0)
# define jit_exec_exception(ec) Qundef
#endif
static void add_opt_method_entry(const rb_method_entry_t *me);
#include "vm_insnhelper.c"
#include "vm_exec.c"
#include "vm_method.c"
#include "vm_eval.c"
#define PROCDEBUG 0
VALUE rb_cRubyVM;
VALUE rb_cThread;
VALUE rb_mRubyVMFrozenCore;
VALUE rb_block_param_proxy;
VALUE ruby_vm_const_missing_count = 0;
rb_vm_t *ruby_current_vm_ptr = NULL;
rb_ractor_t *ruby_single_main_ractor;
bool ruby_vm_keep_script_lines;
#ifdef RB_THREAD_LOCAL_SPECIFIER
RB_THREAD_LOCAL_SPECIFIER rb_execution_context_t *ruby_current_ec;
#ifdef RUBY_NT_SERIAL
RB_THREAD_LOCAL_SPECIFIER rb_atomic_t ruby_nt_serial;
#endif
// no-inline decl on thread_pthread.h
rb_execution_context_t *
rb_current_ec_noinline(void)
{
return ruby_current_ec;
}
void
rb_current_ec_set(rb_execution_context_t *ec)
{
ruby_current_ec = ec;
}
#ifdef __APPLE__
rb_execution_context_t *
rb_current_ec(void)
{
return ruby_current_ec;
}
#endif
#else
native_tls_key_t ruby_current_ec_key;
#endif
rb_event_flag_t ruby_vm_event_flags;
rb_event_flag_t ruby_vm_event_enabled_global_flags;
unsigned int ruby_vm_event_local_num;
rb_serial_t ruby_vm_constant_cache_invalidations = 0;
rb_serial_t ruby_vm_constant_cache_misses = 0;
rb_serial_t ruby_vm_global_cvar_state = 1;
static const struct rb_callcache vm_empty_cc = {
.flags = T_IMEMO | (imemo_callcache << FL_USHIFT) | VM_CALLCACHE_UNMARKABLE,
.klass = Qfalse,
.cme_ = NULL,
.call_ = vm_call_general,
.aux_ = {
.v = Qfalse,
}
};
static const struct rb_callcache vm_empty_cc_for_super = {
.flags = T_IMEMO | (imemo_callcache << FL_USHIFT) | VM_CALLCACHE_UNMARKABLE,
.klass = Qfalse,
.cme_ = NULL,
.call_ = vm_call_super_method,
.aux_ = {
.v = Qfalse,
}
};
static void thread_free(void *ptr);
void
rb_vm_inc_const_missing_count(void)
{
ruby_vm_const_missing_count +=1;
}
int
rb_dtrace_setup(rb_execution_context_t *ec, VALUE klass, ID id,
struct ruby_dtrace_method_hook_args *args)
{
enum ruby_value_type type;
if (!klass) {
if (!ec) ec = GET_EC();
if (!rb_ec_frame_method_id_and_class(ec, &id, 0, &klass) || !klass)
return FALSE;
}
if (RB_TYPE_P(klass, T_ICLASS)) {
klass = RBASIC(klass)->klass;
}
else if (FL_TEST(klass, FL_SINGLETON)) {
klass = RCLASS_ATTACHED_OBJECT(klass);
if (NIL_P(klass)) return FALSE;
}
type = BUILTIN_TYPE(klass);
if (type == T_CLASS || type == T_ICLASS || type == T_MODULE) {
VALUE name = rb_class_path(klass);
const char *classname, *filename;
const char *methodname = rb_id2name(id);
if (methodname && (filename = rb_source_location_cstr(&args->line_no)) != 0) {
if (NIL_P(name) || !(classname = StringValuePtr(name)))
classname = "<unknown>";
args->classname = classname;
args->methodname = methodname;
args->filename = filename;
args->klass = klass;
args->name = name;
return TRUE;
}
}
return FALSE;
}
extern unsigned int redblack_buffer_size;
/*
* call-seq:
* RubyVM.stat -> Hash
* RubyVM.stat(hsh) -> hsh
* RubyVM.stat(Symbol) -> Numeric
*
* Returns a Hash containing implementation-dependent counters inside the VM.
*
* This hash includes information about method/constant caches:
*
* {
* :constant_cache_invalidations=>2,
* :constant_cache_misses=>14,
* :global_cvar_state=>27
* }
*
* If <tt>USE_DEBUG_COUNTER</tt> is enabled, debug counters will be included.
*
* The contents of the hash are implementation specific and may be changed in
* the future.
*
* This method is only expected to work on C Ruby.
*/
static VALUE
vm_stat(int argc, VALUE *argv, VALUE self)
{
static VALUE sym_constant_cache_invalidations, sym_constant_cache_misses, sym_global_cvar_state, sym_next_shape_id;
static VALUE sym_shape_cache_size;
VALUE arg = Qnil;
VALUE hash = Qnil, key = Qnil;
if (rb_check_arity(argc, 0, 1) == 1) {
arg = argv[0];
if (SYMBOL_P(arg))
key = arg;
else if (RB_TYPE_P(arg, T_HASH))
hash = arg;
else
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
else {
hash = rb_hash_new();
}
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
S(constant_cache_invalidations);
S(constant_cache_misses);
S(global_cvar_state);
S(next_shape_id);
S(shape_cache_size);
#undef S
#define SET(name, attr) \
if (key == sym_##name) \
return SERIALT2NUM(attr); \
else if (hash != Qnil) \
rb_hash_aset(hash, sym_##name, SERIALT2NUM(attr));
SET(constant_cache_invalidations, ruby_vm_constant_cache_invalidations);
SET(constant_cache_misses, ruby_vm_constant_cache_misses);
SET(global_cvar_state, ruby_vm_global_cvar_state);
SET(next_shape_id, (rb_serial_t)GET_SHAPE_TREE()->next_shape_id);
SET(shape_cache_size, (rb_serial_t)GET_SHAPE_TREE()->cache_size);
#undef SET
#if USE_DEBUG_COUNTER
ruby_debug_counter_show_at_exit(FALSE);
for (size_t i = 0; i < RB_DEBUG_COUNTER_MAX; i++) {
const VALUE name = rb_sym_intern_ascii_cstr(rb_debug_counter_names[i]);
const VALUE boxed_value = SIZET2NUM(rb_debug_counter[i]);
if (key == name) {
return boxed_value;
}
else if (hash != Qnil) {
rb_hash_aset(hash, name, boxed_value);
}
}
#endif
if (!NIL_P(key)) { /* matched key should return above */
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
return hash;
}
/* control stack frame */
static void
vm_set_top_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq)
{
if (ISEQ_BODY(iseq)->type != ISEQ_TYPE_TOP) {
rb_raise(rb_eTypeError, "Not a toplevel InstructionSequence");
}
/* for return */
vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH, rb_ec_thread_ptr(ec)->top_self,
VM_BLOCK_HANDLER_NONE,
(VALUE)vm_cref_new_toplevel(ec), /* cref or me */
ISEQ_BODY(iseq)->iseq_encoded, ec->cfp->sp,
ISEQ_BODY(iseq)->local_table_size, ISEQ_BODY(iseq)->stack_max);
}
static void
vm_set_eval_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq, const rb_cref_t *cref, const struct rb_block *base_block)
{
vm_push_frame(ec, iseq, VM_FRAME_MAGIC_EVAL | VM_FRAME_FLAG_FINISH,
vm_block_self(base_block), VM_GUARDED_PREV_EP(vm_block_ep(base_block)),
(VALUE)cref, /* cref or me */
ISEQ_BODY(iseq)->iseq_encoded,
ec->cfp->sp, ISEQ_BODY(iseq)->local_table_size,
ISEQ_BODY(iseq)->stack_max);
}
static void
vm_set_main_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq)
{
VALUE toplevel_binding = rb_const_get(rb_cObject, rb_intern("TOPLEVEL_BINDING"));
rb_binding_t *bind;
GetBindingPtr(toplevel_binding, bind);
RUBY_ASSERT_MESG(bind, "TOPLEVEL_BINDING is not built");
vm_set_eval_stack(ec, iseq, 0, &bind->block);
/* save binding */
if (ISEQ_BODY(iseq)->local_table_size > 0) {
vm_bind_update_env(toplevel_binding, bind, vm_make_env_object(ec, ec->cfp));
}
}
rb_control_frame_t *
rb_vm_get_binding_creatable_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
if (cfp->iseq) {
return (rb_control_frame_t *)cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
rb_control_frame_t *
rb_vm_get_ruby_level_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
if (VM_FRAME_RUBYFRAME_P(cfp)) {
return (rb_control_frame_t *)cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
static rb_control_frame_t *
vm_get_ruby_level_caller_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
if (VM_FRAME_RUBYFRAME_P(cfp)) {
return (rb_control_frame_t *)cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
if (VM_FRAME_RUBYFRAME_P(cfp)) {
return (rb_control_frame_t *)cfp;
}
if (VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_PASSED) == FALSE) {
break;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
void
rb_vm_pop_cfunc_frame(void)
{
rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, Qnil);
RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id);
vm_pop_frame(ec, cfp, cfp->ep);
}
void
rb_vm_rewind_cfp(rb_execution_context_t *ec, rb_control_frame_t *cfp)
{
/* check skipped frame */
while (ec->cfp != cfp) {
#if VMDEBUG
printf("skipped frame: %s\n", vm_frametype_name(ec->cfp));
#endif
if (VM_FRAME_TYPE(ec->cfp) != VM_FRAME_MAGIC_CFUNC) {
rb_vm_pop_frame(ec);
}
else { /* unlikely path */
rb_vm_pop_cfunc_frame();
}
}
}
/* at exit */
void
ruby_vm_at_exit(void (*func)(rb_vm_t *))
{
rb_vm_t *vm = GET_VM();
rb_at_exit_list *nl = ALLOC(rb_at_exit_list);
nl->func = func;
nl->next = vm->at_exit;
vm->at_exit = nl;
}
static void
ruby_vm_run_at_exit_hooks(rb_vm_t *vm)
{
rb_at_exit_list *l = vm->at_exit;
while (l) {
rb_at_exit_list* t = l->next;
rb_vm_at_exit_func *func = l->func;
ruby_xfree(l);
l = t;
(*func)(vm);
}
}
/* Env */
static VALUE check_env_value(const rb_env_t *env);
static int
check_env(const rb_env_t *env)
{
fputs("---\n", stderr);
ruby_debug_printf("envptr: %p\n", (void *)&env->ep[0]);
ruby_debug_printf("envval: %10p ", (void *)env->ep[1]);
dp(env->ep[1]);
ruby_debug_printf("ep: %10p\n", (void *)env->ep);
if (rb_vm_env_prev_env(env)) {
fputs(">>\n", stderr);
check_env_value(rb_vm_env_prev_env(env));
fputs("<<\n", stderr);
}
return 1;
}
static VALUE
check_env_value(const rb_env_t *env)
{
if (check_env(env)) {
return (VALUE)env;
}
rb_bug("invalid env");
return Qnil; /* unreachable */
}
static VALUE
vm_block_handler_escape(const rb_execution_context_t *ec, VALUE block_handler)
{
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_ifunc:
case block_handler_type_iseq:
return rb_vm_make_proc(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc);
case block_handler_type_symbol:
case block_handler_type_proc:
return block_handler;
}
VM_UNREACHABLE(vm_block_handler_escape);
return Qnil;
}
static VALUE
vm_make_env_each(const rb_execution_context_t * const ec, rb_control_frame_t *const cfp)
{
const VALUE * const ep = cfp->ep;
VALUE *env_body, *env_ep;
int local_size, env_size;
if (VM_ENV_ESCAPED_P(ep)) {
return VM_ENV_ENVVAL(ep);
}
if (!VM_ENV_LOCAL_P(ep)) {
const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
if (!VM_ENV_ESCAPED_P(prev_ep)) {
rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
while (prev_cfp->ep != prev_ep) {
prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(prev_cfp);
VM_ASSERT(prev_cfp->ep != NULL);
}
vm_make_env_each(ec, prev_cfp);
VM_FORCE_WRITE_SPECIAL_CONST(&ep[VM_ENV_DATA_INDEX_SPECVAL], VM_GUARDED_PREV_EP(prev_cfp->ep));
}
}
else {
VALUE block_handler = VM_ENV_BLOCK_HANDLER(ep);
if (block_handler != VM_BLOCK_HANDLER_NONE) {
VALUE blockprocval = vm_block_handler_escape(ec, block_handler);
VM_STACK_ENV_WRITE(ep, VM_ENV_DATA_INDEX_SPECVAL, blockprocval);
}
}
if (!VM_FRAME_RUBYFRAME_P(cfp)) {
local_size = VM_ENV_DATA_SIZE;
}
else {
local_size = ISEQ_BODY(cfp->iseq)->local_table_size + VM_ENV_DATA_SIZE;
}
/*
* # local variables on a stack frame (N == local_size)
* [lvar1, lvar2, ..., lvarN, SPECVAL]
* ^
* ep[0]
*
* # moved local variables
* [lvar1, lvar2, ..., lvarN, SPECVAL, Envval, BlockProcval (if needed)]
* ^ ^
* env->env[0] ep[0]
*/
env_size = local_size +
1 /* envval */;
// Careful with order in the following sequence. Each allocation can move objects.
env_body = ALLOC_N(VALUE, env_size);
rb_env_t *env = (rb_env_t *)rb_imemo_new(imemo_env, 0, 0, 0, 0);
// Set up env without WB since it's brand new (similar to newobj_init(), newobj_fill())
MEMCPY(env_body, ep - (local_size - 1 /* specval */), VALUE, local_size);
env_ep = &env_body[local_size - 1 /* specval */];
env_ep[VM_ENV_DATA_INDEX_ENV] = (VALUE)env;
env->iseq = (rb_iseq_t *)(VM_FRAME_RUBYFRAME_P(cfp) ? cfp->iseq : NULL);
env->ep = env_ep;
env->env = env_body;
env->env_size = env_size;
cfp->ep = env_ep;
VM_ENV_FLAGS_SET(env_ep, VM_ENV_FLAG_ESCAPED | VM_ENV_FLAG_WB_REQUIRED);
VM_STACK_ENV_WRITE(ep, 0, (VALUE)env); /* GC mark */
#if 0
for (i = 0; i < local_size; i++) {
if (VM_FRAME_RUBYFRAME_P(cfp)) {
/* clear value stack for GC */
ep[-local_size + i] = 0;
}
}
#endif
return (VALUE)env;
}
static VALUE
vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp)
{
VALUE envval = vm_make_env_each(ec, cfp);
if (PROCDEBUG) {
check_env_value((const rb_env_t *)envval);
}
return envval;
}
void
rb_vm_stack_to_heap(rb_execution_context_t *ec)
{
rb_control_frame_t *cfp = ec->cfp;
while ((cfp = rb_vm_get_binding_creatable_next_cfp(ec, cfp)) != 0) {
vm_make_env_object(ec, cfp);
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
const rb_env_t *
rb_vm_env_prev_env(const rb_env_t *env)
{
const VALUE *ep = env->ep;
if (VM_ENV_LOCAL_P(ep)) {
return NULL;
}
else {
const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
return VM_ENV_ENVVAL_PTR(prev_ep);
}
}
static int
collect_local_variables_in_iseq(const rb_iseq_t *iseq, const struct local_var_list *vars)
{
unsigned int i;
if (!iseq) return 0;
for (i = 0; i < ISEQ_BODY(iseq)->local_table_size; i++) {
local_var_list_add(vars, ISEQ_BODY(iseq)->local_table[i]);
}
return 1;
}
static void
collect_local_variables_in_env(const rb_env_t *env, const struct local_var_list *vars)
{
do {
if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) break;
collect_local_variables_in_iseq(env->iseq, vars);
} while ((env = rb_vm_env_prev_env(env)) != NULL);
}
static int
vm_collect_local_variables_in_heap(const VALUE *ep, const struct local_var_list *vars)
{
if (VM_ENV_ESCAPED_P(ep)) {
collect_local_variables_in_env(VM_ENV_ENVVAL_PTR(ep), vars);
return 1;
}
else {
return 0;
}
}
VALUE
rb_vm_env_local_variables(const rb_env_t *env)
{
struct local_var_list vars;
local_var_list_init(&vars);
collect_local_variables_in_env(env, &vars);
return local_var_list_finish(&vars);
}
VALUE
rb_iseq_local_variables(const rb_iseq_t *iseq)
{
struct local_var_list vars;
local_var_list_init(&vars);
while (collect_local_variables_in_iseq(iseq, &vars)) {
iseq = ISEQ_BODY(iseq)->parent_iseq;
}
return local_var_list_finish(&vars);
}
/* Proc */
static VALUE
vm_proc_create_from_captured(VALUE klass,
const struct rb_captured_block *captured,
enum rb_block_type block_type,
int8_t is_from_method, int8_t is_lambda)
{
VALUE procval = rb_proc_alloc(klass);
rb_proc_t *proc = RTYPEDDATA_DATA(procval);
VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), captured->ep));
/* copy block */
RB_OBJ_WRITE(procval, &proc->block.as.captured.code.val, captured->code.val);
RB_OBJ_WRITE(procval, &proc->block.as.captured.self, captured->self);
rb_vm_block_ep_update(procval, &proc->block, captured->ep);
vm_block_type_set(&proc->block, block_type);
proc->is_from_method = is_from_method;
proc->is_lambda = is_lambda;
return procval;
}
void
rb_vm_block_copy(VALUE obj, const struct rb_block *dst, const struct rb_block *src)
{
/* copy block */
switch (vm_block_type(src)) {
case block_type_iseq:
case block_type_ifunc:
RB_OBJ_WRITE(obj, &dst->as.captured.self, src->as.captured.self);
RB_OBJ_WRITE(obj, &dst->as.captured.code.val, src->as.captured.code.val);
rb_vm_block_ep_update(obj, dst, src->as.captured.ep);
break;
case block_type_symbol:
RB_OBJ_WRITE(obj, &dst->as.symbol, src->as.symbol);
break;
case block_type_proc:
RB_OBJ_WRITE(obj, &dst->as.proc, src->as.proc);
break;
}
}
static VALUE
proc_create(VALUE klass, const struct rb_block *block, int8_t is_from_method, int8_t is_lambda)
{
VALUE procval = rb_proc_alloc(klass);
rb_proc_t *proc = RTYPEDDATA_DATA(procval);
VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), vm_block_ep(block)));
rb_vm_block_copy(procval, &proc->block, block);
vm_block_type_set(&proc->block, block->type);
proc->is_from_method = is_from_method;
proc->is_lambda = is_lambda;
return procval;
}
VALUE
rb_proc_dup(VALUE self)
{
VALUE procval;
rb_proc_t *src;
GetProcPtr(self, src);
procval = proc_create(rb_obj_class(self), &src->block, src->is_from_method, src->is_lambda);
if (RB_OBJ_SHAREABLE_P(self)) FL_SET_RAW(procval, RUBY_FL_SHAREABLE);
RB_GC_GUARD(self); /* for: body = rb_proc_dup(body) */
return procval;
}
struct collect_outer_variable_name_data {
VALUE ary;
VALUE read_only;
bool yield;
bool isolate;
};
static VALUE
ID2NUM(ID id)
{
if (SIZEOF_VOIDP > SIZEOF_LONG)
return ULL2NUM(id);
else
return ULONG2NUM(id);
}
static ID
NUM2ID(VALUE num)
{
if (SIZEOF_VOIDP > SIZEOF_LONG)
return (ID)NUM2ULL(num);
else
return (ID)NUM2ULONG(num);
}
static enum rb_id_table_iterator_result
collect_outer_variable_names(ID id, VALUE val, void *ptr)
{
struct collect_outer_variable_name_data *data = (struct collect_outer_variable_name_data *)ptr;
if (id == rb_intern("yield")) {
data->yield = true;
}
else {
VALUE *store;
if (data->isolate ||
val == Qtrue /* write */) {
store = &data->ary;
}
else {
store = &data->read_only;
}
if (*store == Qfalse) *store = rb_ary_new();
rb_ary_push(*store, ID2NUM(id));
}
return ID_TABLE_CONTINUE;
}
static const rb_env_t *
env_copy(const VALUE *src_ep, VALUE read_only_variables)
{
const rb_env_t *src_env = (rb_env_t *)VM_ENV_ENVVAL(src_ep);
VM_ASSERT(src_env->ep == src_ep);
VALUE *env_body = ZALLOC_N(VALUE, src_env->env_size); // fill with Qfalse
VALUE *ep = &env_body[src_env->env_size - 2];
const rb_env_t *copied_env = vm_env_new(ep, env_body, src_env->env_size, src_env->iseq);
// Copy after allocations above, since they can move objects in src_ep.
RB_OBJ_WRITE(copied_env, &ep[VM_ENV_DATA_INDEX_ME_CREF], src_ep[VM_ENV_DATA_INDEX_ME_CREF]);
ep[VM_ENV_DATA_INDEX_FLAGS] = src_ep[VM_ENV_DATA_INDEX_FLAGS] | VM_ENV_FLAG_ISOLATED;
if (!VM_ENV_LOCAL_P(src_ep)) {
VM_ENV_FLAGS_SET(ep, VM_ENV_FLAG_LOCAL);
}
if (read_only_variables) {
for (int i=RARRAY_LENINT(read_only_variables)-1; i>=0; i--) {
ID id = NUM2ID(RARRAY_AREF(read_only_variables, i));
for (unsigned int j=0; j<ISEQ_BODY(src_env->iseq)->local_table_size; j++) {
if (id == ISEQ_BODY(src_env->iseq)->local_table[j]) {
VALUE v = src_env->env[j];
if (!rb_ractor_shareable_p(v)) {
VALUE name = rb_id2str(id);
VALUE msg = rb_sprintf("can not make shareable Proc because it can refer"
" unshareable object %+" PRIsVALUE " from ", v);
if (name)
rb_str_catf(msg, "variable '%" PRIsVALUE "'", name);
else
rb_str_cat_cstr(msg, "a hidden variable");
rb_exc_raise(rb_exc_new_str(rb_eRactorIsolationError, msg));
}
RB_OBJ_WRITE((VALUE)copied_env, &env_body[j], v);
rb_ary_delete_at(read_only_variables, i);
break;
}
}
}
}
if (!VM_ENV_LOCAL_P(src_ep)) {
const VALUE *prev_ep = VM_ENV_PREV_EP(src_env->ep);
const rb_env_t *new_prev_env = env_copy(prev_ep, read_only_variables);
ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_GUARDED_PREV_EP(new_prev_env->ep);
RB_OBJ_WRITTEN(copied_env, Qundef, new_prev_env);
VM_ENV_FLAGS_UNSET(ep, VM_ENV_FLAG_LOCAL);
}
else {
ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE;
}
return copied_env;
}
static void
proc_isolate_env(VALUE self, rb_proc_t *proc, VALUE read_only_variables)
{
const struct rb_captured_block *captured = &proc->block.as.captured;
const rb_env_t *env = env_copy(captured->ep, read_only_variables);
*((const VALUE **)&proc->block.as.captured.ep) = env->ep;
RB_OBJ_WRITTEN(self, Qundef, env);
}
static VALUE
proc_shared_outer_variables(struct rb_id_table *outer_variables, bool isolate, const char *message)
{
struct collect_outer_variable_name_data data = {
.isolate = isolate,
.ary = Qfalse,
.read_only = Qfalse,
.yield = false,
};
rb_id_table_foreach(outer_variables, collect_outer_variable_names, (void *)&data);
if (data.ary != Qfalse) {
VALUE str = rb_sprintf("can not %s because it accesses outer variables", message);
VALUE ary = data.ary;
const char *sep = " (";
for (long i = 0; i < RARRAY_LEN(ary); i++) {
VALUE name = rb_id2str(NUM2ID(RARRAY_AREF(ary, i)));
if (!name) continue;
rb_str_cat_cstr(str, sep);
sep = ", ";
rb_str_append(str, name);
}
if (*sep == ',') rb_str_cat_cstr(str, ")");
rb_str_cat_cstr(str, data.yield ? " and uses 'yield'." : ".");
rb_exc_raise(rb_exc_new_str(rb_eArgError, str));
}
else if (data.yield) {
rb_raise(rb_eArgError, "can not %s because it uses 'yield'.", message);
}
return data.read_only;
}
VALUE
rb_proc_isolate_bang(VALUE self)
{
const rb_iseq_t *iseq = vm_proc_iseq(self);
if (iseq) {
rb_proc_t *proc = (rb_proc_t *)RTYPEDDATA_DATA(self);
if (proc->block.type != block_type_iseq) rb_raise(rb_eRuntimeError, "not supported yet");
if (ISEQ_BODY(iseq)->outer_variables) {
proc_shared_outer_variables(ISEQ_BODY(iseq)->outer_variables, true, "isolate a Proc");
}
proc_isolate_env(self, proc, Qfalse);
proc->is_isolated = TRUE;
}
FL_SET_RAW(self, RUBY_FL_SHAREABLE);
return self;
}
VALUE
rb_proc_isolate(VALUE self)
{
VALUE dst = rb_proc_dup(self);
rb_proc_isolate_bang(dst);
return dst;
}
VALUE
rb_proc_ractor_make_shareable(VALUE self)
{
const rb_iseq_t *iseq = vm_proc_iseq(self);
if (iseq) {
rb_proc_t *proc = (rb_proc_t *)RTYPEDDATA_DATA(self);
if (proc->block.type != block_type_iseq) rb_raise(rb_eRuntimeError, "not supported yet");
if (!rb_ractor_shareable_p(vm_block_self(&proc->block))) {
rb_raise(rb_eRactorIsolationError,
"Proc's self is not shareable: %" PRIsVALUE,
self);
}
VALUE read_only_variables = Qfalse;
if (ISEQ_BODY(iseq)->outer_variables) {
read_only_variables =
proc_shared_outer_variables(ISEQ_BODY(iseq)->outer_variables, false, "make a Proc shareable");
}
proc_isolate_env(self, proc, read_only_variables);
proc->is_isolated = TRUE;
}
FL_SET_RAW(self, RUBY_FL_SHAREABLE);
return self;
}
VALUE
rb_vm_make_proc_lambda(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass, int8_t is_lambda)
{
VALUE procval;
enum imemo_type code_type = imemo_type(captured->code.val);
if (!VM_ENV_ESCAPED_P(captured->ep)) {
rb_control_frame_t *cfp = VM_CAPTURED_BLOCK_TO_CFP(captured);
vm_make_env_object(ec, cfp);
}
VM_ASSERT(VM_EP_IN_HEAP_P(ec, captured->ep));
VM_ASSERT(code_type == imemo_iseq || code_type == imemo_ifunc);
procval = vm_proc_create_from_captured(klass, captured,
code_type == imemo_iseq ? block_type_iseq : block_type_ifunc,
FALSE, is_lambda);
if (code_type == imemo_ifunc) {
struct vm_ifunc *ifunc = (struct vm_ifunc *)captured->code.val;
if (ifunc->svar_lep) {
VALUE ep0 = ifunc->svar_lep[0];
if (RB_TYPE_P(ep0, T_IMEMO) && imemo_type_p(ep0, imemo_env)) {
// `ep0 == imemo_env` means this ep is escaped to heap (in env object).
const rb_env_t *env = (const rb_env_t *)ep0;
ifunc->svar_lep = (VALUE *)env->ep;
}
else {
VM_ASSERT(FIXNUM_P(ep0));
if (ep0 & VM_ENV_FLAG_ESCAPED) {
// ok. do nothing
}
else {
ifunc->svar_lep = NULL;
}
}
}
}
return procval;
}
/* Binding */
VALUE
rb_vm_make_binding(const rb_execution_context_t *ec, const rb_control_frame_t *src_cfp)
{
rb_control_frame_t *cfp = rb_vm_get_binding_creatable_next_cfp(ec, src_cfp);
rb_control_frame_t *ruby_level_cfp = rb_vm_get_ruby_level_next_cfp(ec, src_cfp);
VALUE bindval, envval;
rb_binding_t *bind;
if (cfp == 0 || ruby_level_cfp == 0) {
rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber.");
}
if (!VM_FRAME_RUBYFRAME_P(src_cfp) &&
!VM_FRAME_RUBYFRAME_P(RUBY_VM_PREVIOUS_CONTROL_FRAME(src_cfp))) {
rb_raise(rb_eRuntimeError, "Cannot create Binding object for non-Ruby caller");
}
envval = vm_make_env_object(ec, cfp);
bindval = rb_binding_alloc(rb_cBinding);
GetBindingPtr(bindval, bind);
vm_bind_update_env(bindval, bind, envval);
RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, cfp->self);
RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, cfp->iseq);
RB_OBJ_WRITE(bindval, &bind->pathobj, ISEQ_BODY(ruby_level_cfp->iseq)->location.pathobj);
bind->first_lineno = rb_vm_get_sourceline(ruby_level_cfp);
return bindval;
}
const VALUE *
rb_binding_add_dynavars(VALUE bindval, rb_binding_t *bind, int dyncount, const ID *dynvars)
{
VALUE envval, pathobj = bind->pathobj;
VALUE path = pathobj_path(pathobj);
VALUE realpath = pathobj_realpath(pathobj);
const struct rb_block *base_block;
const rb_env_t *env;
rb_execution_context_t *ec = GET_EC();
const rb_iseq_t *base_iseq, *iseq;
rb_ast_body_t ast;
rb_node_scope_t tmp_node;
if (dyncount < 0) return 0;
base_block = &bind->block;
base_iseq = vm_block_iseq(base_block);
VALUE idtmp = 0;
rb_ast_id_table_t *dyns = ALLOCV(idtmp, sizeof(rb_ast_id_table_t) + dyncount * sizeof(ID));
dyns->size = dyncount;
MEMCPY(dyns->ids, dynvars, ID, dyncount);
rb_node_init(RNODE(&tmp_node), NODE_SCOPE);
tmp_node.nd_tbl = dyns;
tmp_node.nd_body = 0;
tmp_node.nd_args = 0;
ast.root = RNODE(&tmp_node);
ast.frozen_string_literal = -1;
ast.coverage_enabled = -1;
ast.script_lines = INT2FIX(-1);
if (base_iseq) {
iseq = rb_iseq_new(&ast, ISEQ_BODY(base_iseq)->location.label, path, realpath, base_iseq, ISEQ_TYPE_EVAL);
}
else {
VALUE tempstr = rb_fstring_lit("<temp>");
iseq = rb_iseq_new_top(&ast, tempstr, tempstr, tempstr, NULL);
}
tmp_node.nd_tbl = 0; /* reset table */
ALLOCV_END(idtmp);
vm_set_eval_stack(ec, iseq, 0, base_block);
vm_bind_update_env(bindval, bind, envval = vm_make_env_object(ec, ec->cfp));
rb_vm_pop_frame(ec);
env = (const rb_env_t *)envval;
return env->env;
}
/* C -> Ruby: block */
static inline VALUE
invoke_block(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_cref_t *cref, VALUE type, int opt_pc)
{
int arg_size = ISEQ_BODY(iseq)->param.size;
vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_FINISH, self,
VM_GUARDED_PREV_EP(captured->ep),
(VALUE)cref, /* cref or method */
ISEQ_BODY(iseq)->iseq_encoded + opt_pc,
ec->cfp->sp + arg_size,
ISEQ_BODY(iseq)->local_table_size - arg_size,
ISEQ_BODY(iseq)->stack_max);
return vm_exec(ec);
}
static VALUE
invoke_bmethod(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_callable_method_entry_t *me, VALUE type, int opt_pc)
{
/* bmethod call from outside the VM */
int arg_size = ISEQ_BODY(iseq)->param.size;
VALUE ret;
VM_ASSERT(me->def->type == VM_METHOD_TYPE_BMETHOD);
vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_BMETHOD, self,
VM_GUARDED_PREV_EP(captured->ep),
(VALUE)me,
ISEQ_BODY(iseq)->iseq_encoded + opt_pc,
ec->cfp->sp + 1 /* self */ + arg_size,
ISEQ_BODY(iseq)->local_table_size - arg_size,
ISEQ_BODY(iseq)->stack_max);
VM_ENV_FLAGS_SET(ec->cfp->ep, VM_FRAME_FLAG_FINISH);
ret = vm_exec(ec);
return ret;
}
ALWAYS_INLINE(static VALUE
invoke_iseq_block_from_c(rb_execution_context_t *ec, const struct rb_captured_block *captured,
VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler,
const rb_cref_t *cref, int is_lambda, const rb_callable_method_entry_t *me));
static inline VALUE
invoke_iseq_block_from_c(rb_execution_context_t *ec, const struct rb_captured_block *captured,
VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler,
const rb_cref_t *cref, int is_lambda, const rb_callable_method_entry_t *me)
{
const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq);
int opt_pc;
VALUE type = VM_FRAME_MAGIC_BLOCK | (is_lambda ? VM_FRAME_FLAG_LAMBDA : 0);
rb_control_frame_t *cfp = ec->cfp;
VALUE *sp = cfp->sp;
int flags = (kw_splat ? VM_CALL_KW_SPLAT : 0);
VALUE *use_argv = (VALUE *)argv;
VALUE av[2];
stack_check(ec);
if (UNLIKELY(argc > VM_ARGC_STACK_MAX) &&
(VM_ARGC_STACK_MAX >= 1 ||
/* Skip ruby array for potential autosplat case */
(argc != 1 || is_lambda))) {
use_argv = vm_argv_ruby_array(av, argv, &flags, &argc, kw_splat);
}
CHECK_VM_STACK_OVERFLOW(cfp, argc + 1);
vm_check_canary(ec, sp);
VALUE *stack_argv = sp;
if (me) {
*sp = self; // bemthods need `self` on the VM stack
stack_argv++;
}
cfp->sp = stack_argv + argc;
MEMCPY(stack_argv, use_argv, VALUE, argc); // restrict: new stack space
opt_pc = vm_yield_setup_args(ec, iseq, argc, stack_argv, flags, passed_block_handler,
(is_lambda ? arg_setup_method : arg_setup_block));
cfp->sp = sp;
if (me == NULL) {
return invoke_block(ec, iseq, self, captured, cref, type, opt_pc);
}
else {
return invoke_bmethod(ec, iseq, self, captured, me, type, opt_pc);
}
}
static inline VALUE
invoke_block_from_c_bh(rb_execution_context_t *ec, VALUE block_handler,
int argc, const VALUE *argv,
int kw_splat, VALUE passed_block_handler, const rb_cref_t *cref,
int is_lambda, int force_blockarg)
{
again:
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_iseq:
{
const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(block_handler);
return invoke_iseq_block_from_c(ec, captured, captured->self,
argc, argv, kw_splat, passed_block_handler,
cref, is_lambda, NULL);
}
case block_handler_type_ifunc:
return vm_yield_with_cfunc(ec, VM_BH_TO_IFUNC_BLOCK(block_handler),
VM_BH_TO_IFUNC_BLOCK(block_handler)->self,
argc, argv, kw_splat, passed_block_handler, NULL);
case block_handler_type_symbol:
return vm_yield_with_symbol(ec, VM_BH_TO_SYMBOL(block_handler),
argc, argv, kw_splat, passed_block_handler);
case block_handler_type_proc:
if (force_blockarg == FALSE) {
is_lambda = block_proc_is_lambda(VM_BH_TO_PROC(block_handler));
}
block_handler = vm_proc_to_block_handler(VM_BH_TO_PROC(block_handler));
goto again;
}
VM_UNREACHABLE(invoke_block_from_c_splattable);
return Qundef;
}
static inline VALUE
check_block_handler(rb_execution_context_t *ec)
{
VALUE block_handler = VM_CF_BLOCK_HANDLER(ec->cfp);
vm_block_handler_verify(block_handler);
if (UNLIKELY(block_handler == VM_BLOCK_HANDLER_NONE)) {
rb_vm_localjump_error("no block given", Qnil, 0);
}
return block_handler;
}
static VALUE
vm_yield_with_cref(rb_execution_context_t *ec, int argc, const VALUE *argv, int kw_splat, const rb_cref_t *cref, int is_lambda)
{
return invoke_block_from_c_bh(ec, check_block_handler(ec),
argc, argv, kw_splat, VM_BLOCK_HANDLER_NONE,
cref, is_lambda, FALSE);
}
static VALUE
vm_yield(rb_execution_context_t *ec, int argc, const VALUE *argv, int kw_splat)
{
return vm_yield_with_cref(ec, argc, argv, kw_splat, NULL, FALSE);
}
static VALUE
vm_yield_with_block(rb_execution_context_t *ec, int argc, const VALUE *argv, VALUE block_handler, int kw_splat)
{
return invoke_block_from_c_bh(ec, check_block_handler(ec),
argc, argv, kw_splat, block_handler,
NULL, FALSE, FALSE);
}
static VALUE
vm_yield_force_blockarg(rb_execution_context_t *ec, VALUE args)
{
return invoke_block_from_c_bh(ec, check_block_handler(ec), 1, &args,
RB_NO_KEYWORDS, VM_BLOCK_HANDLER_NONE, NULL, FALSE, TRUE);
}
ALWAYS_INLINE(static VALUE
invoke_block_from_c_proc(rb_execution_context_t *ec, const rb_proc_t *proc,
VALUE self, int argc, const VALUE *argv,
int kw_splat, VALUE passed_block_handler, int is_lambda,
const rb_callable_method_entry_t *me));
static inline VALUE
invoke_block_from_c_proc(rb_execution_context_t *ec, const rb_proc_t *proc,
VALUE self, int argc, const VALUE *argv,
int kw_splat, VALUE passed_block_handler, int is_lambda,
const rb_callable_method_entry_t *me)
{
const struct rb_block *block = &proc->block;
again:
switch (vm_block_type(block)) {
case block_type_iseq:
return invoke_iseq_block_from_c(ec, &block->as.captured, self, argc, argv, kw_splat, passed_block_handler, NULL, is_lambda, me);
case block_type_ifunc:
if (kw_splat == 1) {
VALUE keyword_hash = argv[argc-1];
if (!RB_TYPE_P(keyword_hash, T_HASH)) {
keyword_hash = rb_to_hash_type(keyword_hash);
}
if (RHASH_EMPTY_P(keyword_hash)) {
argc--;
}
else {
((VALUE *)argv)[argc-1] = rb_hash_dup(keyword_hash);
}
}
return vm_yield_with_cfunc(ec, &block->as.captured, self, argc, argv, kw_splat, passed_block_handler, me);
case block_type_symbol:
return vm_yield_with_symbol(ec, block->as.symbol, argc, argv, kw_splat, passed_block_handler);
case block_type_proc:
is_lambda = block_proc_is_lambda(block->as.proc);
block = vm_proc_block(block->as.proc);
goto again;
}
VM_UNREACHABLE(invoke_block_from_c_proc);
return Qundef;
}
static VALUE
vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler)
{
return invoke_block_from_c_proc(ec, proc, self, argc, argv, kw_splat, passed_block_handler, proc->is_lambda, NULL);
}
VALUE
rb_vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, int kw_splat, VALUE block_handler, const rb_callable_method_entry_t *me)
{
return invoke_block_from_c_proc(ec, proc, self, argc, argv, kw_splat, block_handler, TRUE, me);
}
VALUE
rb_vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc,
int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler)
{
VALUE self = vm_block_self(&proc->block);
vm_block_handler_verify(passed_block_handler);
if (proc->is_from_method) {
return rb_vm_invoke_bmethod(ec, proc, self, argc, argv, kw_splat, passed_block_handler, NULL);
}
else {
return vm_invoke_proc(ec, proc, self, argc, argv, kw_splat, passed_block_handler);
}
}
VALUE
rb_vm_invoke_proc_with_self(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler)
{
vm_block_handler_verify(passed_block_handler);
if (proc->is_from_method) {
return rb_vm_invoke_bmethod(ec, proc, self, argc, argv, kw_splat, passed_block_handler, NULL);
}
else {
return vm_invoke_proc(ec, proc, self, argc, argv, kw_splat, passed_block_handler);
}
}
/* special variable */
VALUE *
rb_vm_svar_lep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
while (cfp->pc == 0 || cfp->iseq == 0) {
if (VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_IFUNC) {
struct vm_ifunc *ifunc = (struct vm_ifunc *)cfp->iseq;
return ifunc->svar_lep;
}
else {
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
return NULL;
}
}
return (VALUE *)VM_CF_LEP(cfp);
}
static VALUE
vm_cfp_svar_get(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key)
{
return lep_svar_get(ec, rb_vm_svar_lep(ec, cfp), key);
}
static void
vm_cfp_svar_set(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key, const VALUE val)
{
lep_svar_set(ec, rb_vm_svar_lep(ec, cfp), key, val);
}
static VALUE
vm_svar_get(const rb_execution_context_t *ec, VALUE key)
{
return vm_cfp_svar_get(ec, ec->cfp, key);
}
static void
vm_svar_set(const rb_execution_context_t *ec, VALUE key, VALUE val)
{
vm_cfp_svar_set(ec, ec->cfp, key, val);
}
VALUE
rb_backref_get(void)
{
return vm_svar_get(GET_EC(), VM_SVAR_BACKREF);
}
void
rb_backref_set(VALUE val)
{
vm_svar_set(GET_EC(), VM_SVAR_BACKREF, val);
}
VALUE
rb_lastline_get(void)
{
return vm_svar_get(GET_EC(), VM_SVAR_LASTLINE);
}
void
rb_lastline_set(VALUE val)
{
vm_svar_set(GET_EC(), VM_SVAR_LASTLINE, val);
}
void
rb_lastline_set_up(VALUE val, unsigned int up)
{
rb_control_frame_t * cfp = GET_EC()->cfp;
for(unsigned int i = 0; i < up; i++) {
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
vm_cfp_svar_set(GET_EC(), cfp, VM_SVAR_LASTLINE, val);
}
/* misc */
const char *
rb_sourcefile(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
if (cfp) {
return RSTRING_PTR(rb_iseq_path(cfp->iseq));
}
else {
return 0;
}
}
int
rb_sourceline(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
if (cfp) {
return rb_vm_get_sourceline(cfp);
}
else {
return 0;
}
}
VALUE
rb_source_location(int *pline)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
if (cfp && VM_FRAME_RUBYFRAME_P(cfp)) {
if (pline) *pline = rb_vm_get_sourceline(cfp);
return rb_iseq_path(cfp->iseq);
}
else {
if (pline) *pline = 0;
return Qnil;
}
}
const char *
rb_source_location_cstr(int *pline)
{
VALUE path = rb_source_location(pline);
if (NIL_P(path)) return NULL;
return RSTRING_PTR(path);
}
rb_cref_t *
rb_vm_cref(void)
{
const rb_execution_context_t *ec = GET_EC();
return vm_ec_cref(ec);
}
rb_cref_t *
rb_vm_cref_replace_with_duplicated_cref(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
rb_cref_t *cref = vm_cref_replace_with_duplicated_cref(cfp->ep);
ASSUME(cref);
return cref;
}
const rb_cref_t *
rb_vm_cref_in_context(VALUE self, VALUE cbase)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
const rb_cref_t *cref;
if (!cfp || cfp->self != self) return NULL;
if (!vm_env_cref_by_cref(cfp->ep)) return NULL;
cref = vm_get_cref(cfp->ep);
if (CREF_CLASS(cref) != cbase) return NULL;
return cref;
}
#if 0
void
debug_cref(rb_cref_t *cref)
{
while (cref) {
dp(CREF_CLASS(cref));
printf("%ld\n", CREF_VISI(cref));
cref = CREF_NEXT(cref);
}
}
#endif
VALUE
rb_vm_cbase(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
if (cfp == 0) {
rb_raise(rb_eRuntimeError, "Can't call on top of Fiber or Thread");
}
return vm_get_cbase(cfp->ep);
}
/* jump */
static VALUE
make_localjump_error(const char *mesg, VALUE value, int reason)
{
extern VALUE rb_eLocalJumpError;
VALUE exc = rb_exc_new2(rb_eLocalJumpError, mesg);
ID id;
switch (reason) {
case TAG_BREAK:
CONST_ID(id, "break");
break;
case TAG_REDO:
CONST_ID(id, "redo");
break;
case TAG_RETRY:
CONST_ID(id, "retry");
break;
case TAG_NEXT:
CONST_ID(id, "next");
break;
case TAG_RETURN:
CONST_ID(id, "return");
break;
default:
CONST_ID(id, "noreason");
break;
}
rb_iv_set(exc, "@exit_value", value);
rb_iv_set(exc, "@reason", ID2SYM(id));
return exc;
}
void
rb_vm_localjump_error(const char *mesg, VALUE value, int reason)
{
VALUE exc = make_localjump_error(mesg, value, reason);
rb_exc_raise(exc);
}
VALUE
rb_vm_make_jump_tag_but_local_jump(int state, VALUE val)
{
const char *mesg;
switch (state) {
case TAG_RETURN:
mesg = "unexpected return";
break;
case TAG_BREAK:
mesg = "unexpected break";
break;
case TAG_NEXT:
mesg = "unexpected next";
break;
case TAG_REDO:
mesg = "unexpected redo";
val = Qnil;
break;
case TAG_RETRY:
mesg = "retry outside of rescue clause";
val = Qnil;
break;
default:
return Qnil;
}
if (UNDEF_P(val)) {
val = GET_EC()->tag->retval;
}
return make_localjump_error(mesg, val, state);
}
void
rb_vm_jump_tag_but_local_jump(int state)
{
VALUE exc = rb_vm_make_jump_tag_but_local_jump(state, Qundef);
if (!NIL_P(exc)) rb_exc_raise(exc);
EC_JUMP_TAG(GET_EC(), state);
}
static rb_control_frame_t *
next_not_local_frame(rb_control_frame_t *cfp)
{
while (VM_ENV_LOCAL_P(cfp->ep)) {
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return cfp;
}
NORETURN(static void vm_iter_break(rb_execution_context_t *ec, VALUE val));
static void
vm_iter_break(rb_execution_context_t *ec, VALUE val)
{
rb_control_frame_t *cfp = next_not_local_frame(ec->cfp);
const VALUE *ep = VM_CF_PREV_EP(cfp);
const rb_control_frame_t *target_cfp = rb_vm_search_cf_from_ep(ec, cfp, ep);
if (!target_cfp) {
rb_vm_localjump_error("unexpected break", val, TAG_BREAK);
}
ec->errinfo = (VALUE)THROW_DATA_NEW(val, target_cfp, TAG_BREAK);
EC_JUMP_TAG(ec, TAG_BREAK);
}
void
rb_iter_break(void)
{
vm_iter_break(GET_EC(), Qnil);
}
void
rb_iter_break_value(VALUE val)
{
vm_iter_break(GET_EC(), val);
}
/* optimization: redefine management */
short ruby_vm_redefined_flag[BOP_LAST_];
static st_table *vm_opt_method_def_table = 0;
static st_table *vm_opt_mid_table = 0;
void
rb_free_vm_opt_tables(void)
{
st_free_table(vm_opt_method_def_table);
st_free_table(vm_opt_mid_table);
}
static int
vm_redefinition_check_flag(VALUE klass)
{
if (klass == rb_cInteger) return INTEGER_REDEFINED_OP_FLAG;
if (klass == rb_cFloat) return FLOAT_REDEFINED_OP_FLAG;
if (klass == rb_cString) return STRING_REDEFINED_OP_FLAG;
if (klass == rb_cArray) return ARRAY_REDEFINED_OP_FLAG;
if (klass == rb_cHash) return HASH_REDEFINED_OP_FLAG;
if (klass == rb_cSymbol) return SYMBOL_REDEFINED_OP_FLAG;
#if 0
if (klass == rb_cTime) return TIME_REDEFINED_OP_FLAG;
#endif
if (klass == rb_cRegexp) return REGEXP_REDEFINED_OP_FLAG;
if (klass == rb_cNilClass) return NIL_REDEFINED_OP_FLAG;
if (klass == rb_cTrueClass) return TRUE_REDEFINED_OP_FLAG;
if (klass == rb_cFalseClass) return FALSE_REDEFINED_OP_FLAG;
if (klass == rb_cProc) return PROC_REDEFINED_OP_FLAG;
return 0;
}
int
rb_vm_check_optimizable_mid(VALUE mid)
{
if (!vm_opt_mid_table) {
return FALSE;
}
return st_lookup(vm_opt_mid_table, mid, NULL);
}
static int
vm_redefinition_check_method_type(const rb_method_entry_t *me)
{
if (me->called_id != me->def->original_id) {
return FALSE;
}
if (METHOD_ENTRY_BASIC(me)) return TRUE;
const rb_method_definition_t *def = me->def;
switch (def->type) {
case VM_METHOD_TYPE_CFUNC:
case VM_METHOD_TYPE_OPTIMIZED:
return TRUE;
default:
return FALSE;
}
}
static void
rb_vm_check_redefinition_opt_method(const rb_method_entry_t *me, VALUE klass)
{
st_data_t bop;
if (RB_TYPE_P(klass, T_ICLASS) && FL_TEST(klass, RICLASS_IS_ORIGIN) &&
RB_TYPE_P(RBASIC_CLASS(klass), T_CLASS)) {
klass = RBASIC_CLASS(klass);
}
if (vm_redefinition_check_method_type(me)) {
if (st_lookup(vm_opt_method_def_table, (st_data_t)me->def, &bop)) {
int flag = vm_redefinition_check_flag(klass);
if (flag != 0) {
rb_yjit_bop_redefined(flag, (enum ruby_basic_operators)bop);
rb_rjit_bop_redefined(flag, (enum ruby_basic_operators)bop);
ruby_vm_redefined_flag[bop] |= flag;
}
}
}
}
static enum rb_id_table_iterator_result
check_redefined_method(ID mid, VALUE value, void *data)
{
VALUE klass = (VALUE)data;
const rb_method_entry_t *me = (rb_method_entry_t *)value;
const rb_method_entry_t *newme = rb_method_entry(klass, mid);
if (newme != me) rb_vm_check_redefinition_opt_method(me, me->owner);
return ID_TABLE_CONTINUE;
}
void
rb_vm_check_redefinition_by_prepend(VALUE klass)
{
if (!vm_redefinition_check_flag(klass)) return;
rb_id_table_foreach(RCLASS_M_TBL(RCLASS_ORIGIN(klass)), check_redefined_method, (void *)klass);
}
static void
add_opt_method_entry_bop(const rb_method_entry_t *me, ID mid, enum ruby_basic_operators bop)
{
st_insert(vm_opt_method_def_table, (st_data_t)me->def, (st_data_t)bop);
st_insert(vm_opt_mid_table, (st_data_t)mid, (st_data_t)Qtrue);
}
static void
add_opt_method(VALUE klass, ID mid, enum ruby_basic_operators bop)
{
const rb_method_entry_t *me = rb_method_entry_at(klass, mid);
if (me && vm_redefinition_check_method_type(me)) {
add_opt_method_entry_bop(me, mid, bop);
}
else {
rb_bug("undefined optimized method: %s", rb_id2name(mid));
}
}
static enum ruby_basic_operators vm_redefinition_bop_for_id(ID mid);
static void
add_opt_method_entry(const rb_method_entry_t *me)
{
if (me && vm_redefinition_check_method_type(me)) {
ID mid = me->called_id;
enum ruby_basic_operators bop = vm_redefinition_bop_for_id(mid);
if ((int)bop >= 0) {
add_opt_method_entry_bop(me, mid, bop);
}
}
}
static void
vm_init_redefined_flag(void)
{
ID mid;
enum ruby_basic_operators bop;
#define OP(mid_, bop_) (mid = id##mid_, bop = BOP_##bop_, ruby_vm_redefined_flag[bop] = 0)
#define C(k) add_opt_method(rb_c##k, mid, bop)
OP(PLUS, PLUS), (C(Integer), C(Float), C(String), C(Array));
OP(MINUS, MINUS), (C(Integer), C(Float));
OP(MULT, MULT), (C(Integer), C(Float));
OP(DIV, DIV), (C(Integer), C(Float));
OP(MOD, MOD), (C(Integer), C(Float));
OP(Eq, EQ), (C(Integer), C(Float), C(String), C(Symbol));
OP(Eqq, EQQ), (C(Integer), C(Float), C(Symbol), C(String),
C(NilClass), C(TrueClass), C(FalseClass));
OP(LT, LT), (C(Integer), C(Float));
OP(LE, LE), (C(Integer), C(Float));
OP(GT, GT), (C(Integer), C(Float));
OP(GE, GE), (C(Integer), C(Float));
OP(LTLT, LTLT), (C(String), C(Array));
OP(AREF, AREF), (C(Array), C(Hash), C(Integer));
OP(ASET, ASET), (C(Array), C(Hash));
OP(Length, LENGTH), (C(Array), C(String), C(Hash));
OP(Size, SIZE), (C(Array), C(String), C(Hash));
OP(EmptyP, EMPTY_P), (C(Array), C(String), C(Hash));
OP(Succ, SUCC), (C(Integer), C(String));
OP(EqTilde, MATCH), (C(Regexp), C(String));
OP(Freeze, FREEZE), (C(String));
OP(UMinus, UMINUS), (C(String));
OP(Max, MAX), (C(Array));
OP(Min, MIN), (C(Array));
OP(Hash, HASH), (C(Array));
OP(Call, CALL), (C(Proc));
OP(And, AND), (C(Integer));
OP(Or, OR), (C(Integer));
OP(NilP, NIL_P), (C(NilClass));
OP(Cmp, CMP), (C(Integer), C(Float), C(String));
OP(Default, DEFAULT), (C(Hash));
#undef C
#undef OP
}
static enum ruby_basic_operators
vm_redefinition_bop_for_id(ID mid)
{
switch (mid) {
#define OP(mid_, bop_) case id##mid_: return BOP_##bop_
OP(PLUS, PLUS);
OP(MINUS, MINUS);
OP(MULT, MULT);
OP(DIV, DIV);
OP(MOD, MOD);
OP(Eq, EQ);
OP(Eqq, EQQ);
OP(LT, LT);
OP(LE, LE);
OP(GT, GT);
OP(GE, GE);
OP(LTLT, LTLT);
OP(AREF, AREF);
OP(ASET, ASET);
OP(Length, LENGTH);
OP(Size, SIZE);
OP(EmptyP, EMPTY_P);
OP(Succ, SUCC);
OP(EqTilde, MATCH);
OP(Freeze, FREEZE);
OP(UMinus, UMINUS);
OP(Max, MAX);
OP(Min, MIN);
OP(Hash, HASH);
OP(Call, CALL);
OP(And, AND);
OP(Or, OR);
OP(NilP, NIL_P);
OP(Cmp, CMP);
OP(Default, DEFAULT);
#undef OP
}
return -1;
}
/* for vm development */
#if VMDEBUG
static const char *
vm_frametype_name(const rb_control_frame_t *cfp)
{
switch (VM_FRAME_TYPE(cfp)) {
case VM_FRAME_MAGIC_METHOD: return "method";
case VM_FRAME_MAGIC_BLOCK: return "block";
case VM_FRAME_MAGIC_CLASS: return "class";
case VM_FRAME_MAGIC_TOP: return "top";
case VM_FRAME_MAGIC_CFUNC: return "cfunc";
case VM_FRAME_MAGIC_IFUNC: return "ifunc";
case VM_FRAME_MAGIC_EVAL: return "eval";
case VM_FRAME_MAGIC_RESCUE: return "rescue";
default:
rb_bug("unknown frame");
}
}
#endif
static VALUE
frame_return_value(const struct vm_throw_data *err)
{
if (THROW_DATA_P(err) &&
THROW_DATA_STATE(err) == TAG_BREAK &&
THROW_DATA_CONSUMED_P(err) == FALSE) {
return THROW_DATA_VAL(err);
}
else {
return Qnil;
}
}
#if 0
/* for debug */
static const char *
frame_name(const rb_control_frame_t *cfp)
{
unsigned long type = VM_FRAME_TYPE(cfp);
#define C(t) if (type == VM_FRAME_MAGIC_##t) return #t
C(METHOD);
C(BLOCK);
C(CLASS);
C(TOP);
C(CFUNC);
C(PROC);
C(IFUNC);
C(EVAL);
C(LAMBDA);
C(RESCUE);
C(DUMMY);
#undef C
return "unknown";
}
#endif
// cfp_returning_with_value:
// Whether cfp is the last frame in the unwinding process for a non-local return.
static void
hook_before_rewind(rb_execution_context_t *ec, bool cfp_returning_with_value, int state, struct vm_throw_data *err)
{
if (state == TAG_RAISE && RBASIC(err)->klass == rb_eSysStackError) {
return;
}
else {
const rb_iseq_t *iseq = ec->cfp->iseq;
rb_hook_list_t *local_hooks = iseq->aux.exec.local_hooks;
switch (VM_FRAME_TYPE(ec->cfp)) {
case VM_FRAME_MAGIC_METHOD:
RUBY_DTRACE_METHOD_RETURN_HOOK(ec, 0, 0);
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err));
if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_RETURN)) {
rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_RETURN,
ec->cfp->self, 0, 0, 0, frame_return_value(err), TRUE);
}
THROW_DATA_CONSUMED_SET(err);
break;
case VM_FRAME_MAGIC_BLOCK:
if (VM_FRAME_BMETHOD_P(ec->cfp)) {
VALUE bmethod_return_value = frame_return_value(err);
if (cfp_returning_with_value) {
// Non-local return terminating at a BMETHOD control frame.
bmethod_return_value = THROW_DATA_VAL(err);
}
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, bmethod_return_value);
if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_B_RETURN)) {
rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_B_RETURN,
ec->cfp->self, 0, 0, 0, bmethod_return_value, TRUE);
}
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(ec->cfp);
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self,
rb_vm_frame_method_entry(ec->cfp)->def->original_id,
rb_vm_frame_method_entry(ec->cfp)->called_id,
rb_vm_frame_method_entry(ec->cfp)->owner,
bmethod_return_value);
VM_ASSERT(me->def->type == VM_METHOD_TYPE_BMETHOD);
local_hooks = me->def->body.bmethod.hooks;
if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_RETURN)) {
rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_RETURN, ec->cfp->self,
rb_vm_frame_method_entry(ec->cfp)->def->original_id,
rb_vm_frame_method_entry(ec->cfp)->called_id,
rb_vm_frame_method_entry(ec->cfp)->owner,
bmethod_return_value, TRUE);
}
THROW_DATA_CONSUMED_SET(err);
}
else {
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err));
if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_B_RETURN)) {
rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_B_RETURN,
ec->cfp->self, 0, 0, 0, frame_return_value(err), TRUE);
}
THROW_DATA_CONSUMED_SET(err);
}
break;
case VM_FRAME_MAGIC_CLASS:
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_END, ec->cfp->self, 0, 0, 0, Qnil);
break;
}
}
}
/* evaluator body */
/* finish
VMe (h1) finish
VM finish F1 F2
cfunc finish F1 F2 C1
rb_funcall finish F1 F2 C1
VMe finish F1 F2 C1
VM finish F1 F2 C1 F3
F1 - F3 : pushed by VM
C1 : pushed by send insn (CFUNC)
struct CONTROL_FRAME {
VALUE *pc; // cfp[0], program counter
VALUE *sp; // cfp[1], stack pointer
rb_iseq_t *iseq; // cfp[2], iseq
VALUE self; // cfp[3], self
const VALUE *ep; // cfp[4], env pointer
const void *block_code; // cfp[5], block code
};
struct rb_captured_block {
VALUE self;
VALUE *ep;
union code;
};
struct METHOD_ENV {
VALUE param0;
...
VALUE paramN;
VALUE lvar1;
...
VALUE lvarM;
VALUE cref; // ep[-2]
VALUE special; // ep[-1]
VALUE flags; // ep[ 0] == lep[0]
};
struct BLOCK_ENV {
VALUE block_param0;
...
VALUE block_paramN;
VALUE block_lvar1;
...
VALUE block_lvarM;
VALUE cref; // ep[-2]
VALUE special; // ep[-1]
VALUE flags; // ep[ 0]
};
struct CLASS_ENV {
VALUE class_lvar0;
...
VALUE class_lvarN;
VALUE cref;
VALUE prev_ep; // for frame jump
VALUE flags;
};
struct C_METHOD_CONTROL_FRAME {
VALUE *pc; // 0
VALUE *sp; // stack pointer
rb_iseq_t *iseq; // cmi
VALUE self; // ?
VALUE *ep; // ep == lep
void *code; //
};
struct C_BLOCK_CONTROL_FRAME {
VALUE *pc; // point only "finish" insn
VALUE *sp; // sp
rb_iseq_t *iseq; // ?
VALUE self; //
VALUE *ep; // ep
void *code; //
};
*/
static inline VALUE
vm_exec_handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state, VALUE errinfo);
static inline VALUE
vm_exec_loop(rb_execution_context_t *ec, enum ruby_tag_type state, struct rb_vm_tag *tag, VALUE result);
// for non-Emscripten Wasm build, use vm_exec with optimized setjmp for runtime performance
#if defined(__wasm__) && !defined(__EMSCRIPTEN__)
struct rb_vm_exec_context {
rb_execution_context_t *const ec;
struct rb_vm_tag *const tag;
VALUE result;
};
static void
vm_exec_bottom_main(void *context)
{
struct rb_vm_exec_context *ctx = context;
rb_execution_context_t *ec = ctx->ec;
ctx->result = vm_exec_loop(ec, TAG_NONE, ctx->tag, vm_exec_core(ec));
}
static void
vm_exec_bottom_rescue(void *context)
{
struct rb_vm_exec_context *ctx = context;
rb_execution_context_t *ec = ctx->ec;
ctx->result = vm_exec_loop(ec, rb_ec_tag_state(ec), ctx->tag, ec->errinfo);
}
#endif
VALUE
vm_exec(rb_execution_context_t *ec)
{
VALUE result = Qundef;
EC_PUSH_TAG(ec);
_tag.retval = Qnil;
#if defined(__wasm__) && !defined(__EMSCRIPTEN__)
struct rb_vm_exec_context ctx = {
.ec = ec,
.tag = &_tag,
};
struct rb_wasm_try_catch try_catch;
EC_REPUSH_TAG();
rb_wasm_try_catch_init(&try_catch, vm_exec_bottom_main, vm_exec_bottom_rescue, &ctx);
rb_wasm_try_catch_loop_run(&try_catch, &RB_VM_TAG_JMPBUF_GET(_tag.buf));
result = ctx.result;
#else
enum ruby_tag_type state;
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
if (UNDEF_P(result = jit_exec(ec))) {
result = vm_exec_core(ec);
}
/* fallback to the VM */
result = vm_exec_loop(ec, TAG_NONE, &_tag, result);
}
else {
result = vm_exec_loop(ec, state, &_tag, ec->errinfo);
}
#endif
EC_POP_TAG();
return result;
}
static inline VALUE
vm_exec_loop(rb_execution_context_t *ec, enum ruby_tag_type state,
struct rb_vm_tag *tag, VALUE result)
{
if (state == TAG_NONE) { /* no jumps, result is discarded */
goto vm_loop_start;
}
rb_ec_raised_reset(ec, RAISED_STACKOVERFLOW | RAISED_NOMEMORY);
while (UNDEF_P(result = vm_exec_handle_exception(ec, state, result))) {
// caught a jump, exec the handler. JIT code in jit_exec_exception()
// may return Qundef to run remaining frames with vm_exec_core().
if (UNDEF_P(result = jit_exec_exception(ec))) {
result = vm_exec_core(ec);
}
vm_loop_start:
VM_ASSERT(ec->tag == tag);
/* when caught `throw`, `tag.state` is set. */
if ((state = tag->state) == TAG_NONE) break;
tag->state = TAG_NONE;
}
return result;
}
static inline VALUE
vm_exec_handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state, VALUE errinfo)
{
struct vm_throw_data *err = (struct vm_throw_data *)errinfo;
for (;;) {
unsigned int i;
const struct iseq_catch_table_entry *entry;
const struct iseq_catch_table *ct;
unsigned long epc, cont_pc, cont_sp;
const rb_iseq_t *catch_iseq;
VALUE type;
const rb_control_frame_t *escape_cfp;
cont_pc = cont_sp = 0;
catch_iseq = NULL;
while (ec->cfp->pc == 0 || ec->cfp->iseq == 0) {
if (UNLIKELY(VM_FRAME_TYPE(ec->cfp) == VM_FRAME_MAGIC_CFUNC)) {
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_C_RETURN, ec->cfp->self,
rb_vm_frame_method_entry(ec->cfp)->def->original_id,
rb_vm_frame_method_entry(ec->cfp)->called_id,
rb_vm_frame_method_entry(ec->cfp)->owner, Qnil);
RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec,
rb_vm_frame_method_entry(ec->cfp)->owner,
rb_vm_frame_method_entry(ec->cfp)->def->original_id);
}
rb_vm_pop_frame(ec);
}
rb_control_frame_t *const cfp = ec->cfp;
epc = cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded;
escape_cfp = NULL;
if (state == TAG_BREAK || state == TAG_RETURN) {
escape_cfp = THROW_DATA_CATCH_FRAME(err);
if (cfp == escape_cfp) {
if (state == TAG_RETURN) {
if (!VM_FRAME_FINISHED_P(cfp)) {
THROW_DATA_CATCH_FRAME_SET(err, cfp + 1);
THROW_DATA_STATE_SET(err, state = TAG_BREAK);
}
else {
ct = ISEQ_BODY(cfp->iseq)->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
}
}
if (catch_iseq == NULL) {
ec->errinfo = Qnil;
THROW_DATA_CATCH_FRAME_SET(err, cfp + 1);
// cfp == escape_cfp here so calling with cfp_returning_with_value = true
hook_before_rewind(ec, true, state, err);
rb_vm_pop_frame(ec);
return THROW_DATA_VAL(err);
}
}
/* through */
}
else {
/* TAG_BREAK */
*cfp->sp++ = THROW_DATA_VAL(err);
ec->errinfo = Qnil;
return Qundef;
}
}
}
if (state == TAG_RAISE) {
ct = ISEQ_BODY(cfp->iseq)->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_RESCUE ||
entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
}
}
}
else if (state == TAG_RETRY) {
ct = ISEQ_BODY(cfp->iseq)->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
else if (entry->type == CATCH_TYPE_RETRY) {
const rb_control_frame_t *escape_cfp;
escape_cfp = THROW_DATA_CATCH_FRAME(err);
if (cfp == escape_cfp) {
cfp->pc = ISEQ_BODY(cfp->iseq)->iseq_encoded + entry->cont;
ec->errinfo = Qnil;
return Qundef;
}
}
}
}
}
else if ((state == TAG_BREAK && !escape_cfp) ||
(state == TAG_REDO) ||
(state == TAG_NEXT)) {
type = (const enum rb_catch_type[TAG_MASK]) {
[TAG_BREAK] = CATCH_TYPE_BREAK,
[TAG_NEXT] = CATCH_TYPE_NEXT,
[TAG_REDO] = CATCH_TYPE_REDO,
/* otherwise = dontcare */
}[state];
ct = ISEQ_BODY(cfp->iseq)->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
else if (entry->type == type) {
cfp->pc = ISEQ_BODY(cfp->iseq)->iseq_encoded + entry->cont;
cfp->sp = vm_base_ptr(cfp) + entry->sp;
if (state != TAG_REDO) {
*cfp->sp++ = THROW_DATA_VAL(err);
}
ec->errinfo = Qnil;
VM_ASSERT(ec->tag->state == TAG_NONE);
return Qundef;
}
}
}
}
else {
ct = ISEQ_BODY(cfp->iseq)->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
}
}
}
if (catch_iseq != NULL) { /* found catch table */
/* enter catch scope */
const int arg_size = 1;
rb_iseq_check(catch_iseq);
cfp->sp = vm_base_ptr(cfp) + cont_sp;
cfp->pc = ISEQ_BODY(cfp->iseq)->iseq_encoded + cont_pc;
/* push block frame */
cfp->sp[0] = (VALUE)err;
vm_push_frame(ec, catch_iseq, VM_FRAME_MAGIC_RESCUE,
cfp->self,
VM_GUARDED_PREV_EP(cfp->ep),
0, /* cref or me */
ISEQ_BODY(catch_iseq)->iseq_encoded,
cfp->sp + arg_size /* push value */,
ISEQ_BODY(catch_iseq)->local_table_size - arg_size,
ISEQ_BODY(catch_iseq)->stack_max);
state = 0;
ec->tag->state = TAG_NONE;
ec->errinfo = Qnil;
return Qundef;
}
else {
hook_before_rewind(ec, (cfp == escape_cfp), state, err);
if (VM_FRAME_FINISHED_P(ec->cfp)) {
rb_vm_pop_frame(ec);
ec->errinfo = (VALUE)err;
ec->tag = ec->tag->prev;
EC_JUMP_TAG(ec, state);
}
else {
rb_vm_pop_frame(ec);
}
}
}
}
/* misc */
VALUE
rb_iseq_eval(const rb_iseq_t *iseq)
{
rb_execution_context_t *ec = GET_EC();
VALUE val;
vm_set_top_stack(ec, iseq);
val = vm_exec(ec);
return val;
}
VALUE
rb_iseq_eval_main(const rb_iseq_t *iseq)
{
rb_execution_context_t *ec = GET_EC();
VALUE val;
vm_set_main_stack(ec, iseq);
val = vm_exec(ec);
return val;
}
int
rb_vm_control_frame_id_and_class(const rb_control_frame_t *cfp, ID *idp, ID *called_idp, VALUE *klassp)
{
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (me) {
if (idp) *idp = me->def->original_id;
if (called_idp) *called_idp = me->called_id;
if (klassp) *klassp = me->owner;
return TRUE;
}
else {
return FALSE;
}
}
int
rb_ec_frame_method_id_and_class(const rb_execution_context_t *ec, ID *idp, ID *called_idp, VALUE *klassp)
{
return rb_vm_control_frame_id_and_class(ec->cfp, idp, called_idp, klassp);
}
int
rb_frame_method_id_and_class(ID *idp, VALUE *klassp)
{
return rb_ec_frame_method_id_and_class(GET_EC(), idp, 0, klassp);
}
VALUE
rb_vm_call_cfunc(VALUE recv, VALUE (*func)(VALUE), VALUE arg,
VALUE block_handler, VALUE filename)
{
rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *reg_cfp = ec->cfp;
const rb_iseq_t *iseq = rb_iseq_new(0, filename, filename, Qnil, 0, ISEQ_TYPE_TOP);
VALUE val;
vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH,
recv, block_handler,
(VALUE)vm_cref_new_toplevel(ec), /* cref or me */
0, reg_cfp->sp, 0, 0);
val = (*func)(arg);
rb_vm_pop_frame(ec);
return val;
}
/* vm */
void
rb_vm_update_references(void *ptr)
{
if (ptr) {
rb_vm_t *vm = ptr;
rb_gc_update_tbl_refs(vm->ci_table);
rb_gc_update_tbl_refs(vm->frozen_strings);
vm->mark_object_ary = rb_gc_location(vm->mark_object_ary);
vm->load_path = rb_gc_location(vm->load_path);
vm->load_path_snapshot = rb_gc_location(vm->load_path_snapshot);
if (vm->load_path_check_cache) {
vm->load_path_check_cache = rb_gc_location(vm->load_path_check_cache);
}
vm->expanded_load_path = rb_gc_location(vm->expanded_load_path);
vm->loaded_features = rb_gc_location(vm->loaded_features);
vm->loaded_features_snapshot = rb_gc_location(vm->loaded_features_snapshot);
vm->loaded_features_realpaths = rb_gc_location(vm->loaded_features_realpaths);
vm->loaded_features_realpath_map = rb_gc_location(vm->loaded_features_realpath_map);
vm->top_self = rb_gc_location(vm->top_self);
vm->orig_progname = rb_gc_location(vm->orig_progname);
rb_gc_update_tbl_refs(vm->overloaded_cme_table);
rb_gc_update_values(RUBY_NSIG, vm->trap_list.cmd);
if (vm->coverages) {
vm->coverages = rb_gc_location(vm->coverages);
vm->me2counter = rb_gc_location(vm->me2counter);
}
}
}
void
rb_vm_each_stack_value(void *ptr, void (*cb)(VALUE, void*), void *ctx)
{
if (ptr) {
rb_vm_t *vm = ptr;
rb_ractor_t *r = 0;
ccan_list_for_each(&vm->ractor.set, r, vmlr_node) {
VM_ASSERT(rb_ractor_status_p(r, ractor_blocking) ||
rb_ractor_status_p(r, ractor_running));
if (r->threads.cnt > 0) {
rb_thread_t *th = 0;
ccan_list_for_each(&r->threads.set, th, lt_node) {
VM_ASSERT(th != NULL);
rb_execution_context_t * ec = th->ec;
if (ec->vm_stack) {
VALUE *p = ec->vm_stack;
VALUE *sp = ec->cfp->sp;
while (p < sp) {
if (!rb_special_const_p(*p)) {
cb(*p, ctx);
}
p++;
}
}
}
}
}
}
}
static enum rb_id_table_iterator_result
vm_mark_negative_cme(VALUE val, void *dmy)
{
rb_gc_mark(val);
return ID_TABLE_CONTINUE;
}
void rb_thread_sched_mark_zombies(rb_vm_t *vm);
void
rb_vm_mark(void *ptr)
{
RUBY_MARK_ENTER("vm");
RUBY_GC_INFO("-------------------------------------------------\n");
if (ptr) {
rb_vm_t *vm = ptr;
rb_ractor_t *r = 0;
long i, len;
const VALUE *obj_ary;
ccan_list_for_each(&vm->ractor.set, r, vmlr_node) {
// ractor.set only contains blocking or running ractors
VM_ASSERT(rb_ractor_status_p(r, ractor_blocking) ||
rb_ractor_status_p(r, ractor_running));
rb_gc_mark(rb_ractor_self(r));
}
rb_gc_mark_movable(vm->mark_object_ary);
len = RARRAY_LEN(vm->mark_object_ary);
obj_ary = RARRAY_CONST_PTR(vm->mark_object_ary);
for (i=0; i < len; i++) {
const VALUE *ptr;
long j, jlen;
rb_gc_mark(*obj_ary);
jlen = RARRAY_LEN(*obj_ary);
ptr = RARRAY_CONST_PTR(*obj_ary);
for (j=0; j < jlen; j++) {
rb_gc_mark(*ptr++);
}
obj_ary++;
}
rb_gc_mark_movable(vm->load_path);
rb_gc_mark_movable(vm->load_path_snapshot);
RUBY_MARK_MOVABLE_UNLESS_NULL(vm->load_path_check_cache);
rb_gc_mark_movable(vm->expanded_load_path);
rb_gc_mark_movable(vm->loaded_features);
rb_gc_mark_movable(vm->loaded_features_snapshot);
rb_gc_mark_movable(vm->loaded_features_realpaths);
rb_gc_mark_movable(vm->loaded_features_realpath_map);
rb_gc_mark_movable(vm->top_self);
rb_gc_mark_movable(vm->orig_progname);
RUBY_MARK_MOVABLE_UNLESS_NULL(vm->coverages);
RUBY_MARK_MOVABLE_UNLESS_NULL(vm->me2counter);
/* Prevent classes from moving */
rb_mark_tbl(vm->defined_module_hash);
if (vm->loading_table) {
rb_mark_tbl(vm->loading_table);
}
rb_gc_mark_values(RUBY_NSIG, vm->trap_list.cmd);
rb_id_table_foreach_values(vm->negative_cme_table, vm_mark_negative_cme, NULL);
rb_mark_tbl_no_pin(vm->overloaded_cme_table);
for (i=0; i<VM_GLOBAL_CC_CACHE_TABLE_SIZE; i++) {
const struct rb_callcache *cc = vm->global_cc_cache_table[i];
if (cc != NULL) {
if (!vm_cc_invalidated_p(cc)) {
rb_gc_mark((VALUE)cc);
}
else {
vm->global_cc_cache_table[i] = NULL;
}
}
}
rb_thread_sched_mark_zombies(vm);
rb_rjit_mark();
}
RUBY_MARK_LEAVE("vm");
}
#undef rb_vm_register_special_exception
void
rb_vm_register_special_exception_str(enum ruby_special_exceptions sp, VALUE cls, VALUE mesg)
{
rb_vm_t *vm = GET_VM();
VALUE exc = rb_exc_new3(cls, rb_obj_freeze(mesg));
OBJ_FREEZE(exc);
((VALUE *)vm->special_exceptions)[sp] = exc;
rb_gc_register_mark_object(exc);
}
int
rb_vm_add_root_module(VALUE module)
{
rb_vm_t *vm = GET_VM();
st_insert(vm->defined_module_hash, (st_data_t)module, (st_data_t)module);
return TRUE;
}
static int
free_loading_table_entry(st_data_t key, st_data_t value, st_data_t arg)
{
xfree((char *)key);
return ST_DELETE;
}
void rb_free_loaded_features_index(rb_vm_t *vm);
void rb_objspace_free_objects(void *objspace);
int
ruby_vm_destruct(rb_vm_t *vm)
{
RUBY_FREE_ENTER("vm");
if (vm) {
rb_thread_t *th = vm->ractor.main_thread;
VALUE *stack = th->ec->vm_stack;
if (rb_free_at_exit) {
rb_free_encoded_insn_data();
rb_free_global_enc_table();
rb_free_loaded_builtin_table();
rb_free_shared_fiber_pool();
rb_free_static_symid_str();
rb_free_transcoder_table();
rb_free_vm_opt_tables();
rb_free_warning();
rb_free_rb_global_tbl();
rb_free_loaded_features_index(vm);
rb_id_table_free(vm->negative_cme_table);
st_free_table(vm->overloaded_cme_table);
rb_id_table_free(RCLASS(rb_mRubyVMFrozenCore)->m_tbl);
rb_shape_t *cursor = rb_shape_get_root_shape();
rb_shape_t *end = rb_shape_get_shape_by_id(GET_SHAPE_TREE()->next_shape_id);
while (cursor < end) {
// 0x1 == SINGLE_CHILD_P
if (cursor->edges && !(((uintptr_t)cursor->edges) & 0x1))
rb_id_table_free(cursor->edges);
cursor += 1;
}
xfree(GET_SHAPE_TREE());
st_free_table(vm->static_ext_inits);
st_free_table(vm->ensure_rollback_table);
rb_vm_postponed_job_free();
st_free_table(vm->defined_module_hash);
rb_id_table_free(vm->constant_cache);
if (th) {
xfree(th->nt);
th->nt = NULL;
}
#ifndef HAVE_SETPROCTITLE
ruby_free_proctitle();
#endif
}
else {
if (th) {
rb_fiber_reset_root_local_storage(th);
thread_free(th);
}
}
struct rb_objspace *objspace = vm->objspace;
rb_vm_living_threads_init(vm);
ruby_vm_run_at_exit_hooks(vm);
if (vm->loading_table) {
st_foreach(vm->loading_table, free_loading_table_entry, 0);
st_free_table(vm->loading_table);
vm->loading_table = 0;
}
if (vm->ci_table) {
st_free_table(vm->ci_table);
vm->ci_table = NULL;
}
if (vm->frozen_strings) {
st_free_table(vm->frozen_strings);
vm->frozen_strings = 0;
}
RB_ALTSTACK_FREE(vm->main_altstack);
if (objspace) {
if (rb_free_at_exit) {
rb_objspace_free_objects(objspace);
rb_free_generic_iv_tbl_();
rb_free_default_rand_key();
if (th && vm->fork_gen == 0) {
/* If we have forked, main_thread may not be the initial thread */
xfree(stack);
ruby_mimfree(th);
}
}
rb_objspace_free(objspace);
}
rb_native_mutex_destroy(&vm->workqueue_lock);
/* after freeing objspace, you *can't* use ruby_xfree() */
ruby_mimfree(vm);
ruby_current_vm_ptr = NULL;
}
RUBY_FREE_LEAVE("vm");
return 0;
}
size_t rb_vm_memsize_waiting_fds(struct ccan_list_head *waiting_fds); // thread.c
size_t rb_vm_memsize_workqueue(struct ccan_list_head *workqueue); // vm_trace.c
// Used for VM memsize reporting. Returns the size of the at_exit list by
// looping through the linked list and adding up the size of the structs.
static enum rb_id_table_iterator_result
vm_memsize_constant_cache_i(ID id, VALUE ics, void *size)
{
*((size_t *) size) += rb_st_memsize((st_table *) ics);
return ID_TABLE_CONTINUE;
}
// Returns a size_t representing the memory footprint of the VM's constant
// cache, which is the memsize of the table as well as the memsize of all of the
// nested tables.
static size_t
vm_memsize_constant_cache(void)
{
rb_vm_t *vm = GET_VM();
size_t size = rb_id_table_memsize(vm->constant_cache);
rb_id_table_foreach(vm->constant_cache, vm_memsize_constant_cache_i, &size);
return size;
}
static size_t
vm_memsize_at_exit_list(rb_at_exit_list *at_exit)
{
size_t size = 0;
while (at_exit) {
size += sizeof(rb_at_exit_list);
at_exit = at_exit->next;
}
return size;
}
// Used for VM memsize reporting. Returns the size of the builtin function
// table if it has been defined.
static size_t
vm_memsize_builtin_function_table(const struct rb_builtin_function *builtin_function_table)
{
return builtin_function_table == NULL ? 0 : sizeof(struct rb_builtin_function);
}
// Reports the memsize of the VM struct object and the structs that are
// associated with it.
static size_t
vm_memsize(const void *ptr)
{
rb_vm_t *vm = GET_VM();
return (
sizeof(rb_vm_t) +
rb_vm_memsize_waiting_fds(&vm->waiting_fds) +
rb_st_memsize(vm->loaded_features_index) +
rb_st_memsize(vm->loading_table) +
rb_st_memsize(vm->ensure_rollback_table) +
rb_vm_memsize_postponed_job_queue() +
rb_vm_memsize_workqueue(&vm->workqueue) +
rb_st_memsize(vm->defined_module_hash) +
vm_memsize_at_exit_list(vm->at_exit) +
rb_st_memsize(vm->ci_table) +
rb_st_memsize(vm->frozen_strings) +
vm_memsize_builtin_function_table(vm->builtin_function_table) +
rb_id_table_memsize(vm->negative_cme_table) +
rb_st_memsize(vm->overloaded_cme_table) +
vm_memsize_constant_cache() +
GET_SHAPE_TREE()->cache_size * sizeof(redblack_node_t)
);
// TODO
// struct { struct ccan_list_head set; } ractor;
// void *main_altstack; #ifdef USE_SIGALTSTACK
// struct rb_objspace *objspace;
}
static const rb_data_type_t vm_data_type = {
"VM",
{0, 0, vm_memsize,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
vm_default_params(void)
{
rb_vm_t *vm = GET_VM();
VALUE result = rb_hash_new_with_size(4);
#define SET(name) rb_hash_aset(result, ID2SYM(rb_intern(#name)), SIZET2NUM(vm->default_params.name));
SET(thread_vm_stack_size);
SET(thread_machine_stack_size);
SET(fiber_vm_stack_size);
SET(fiber_machine_stack_size);
#undef SET
rb_obj_freeze(result);
return result;
}
static size_t
get_param(const char *name, size_t default_value, size_t min_value)
{
const char *envval;
size_t result = default_value;
if ((envval = getenv(name)) != 0) {
long val = atol(envval);
if (val < (long)min_value) {
val = (long)min_value;
}
result = (size_t)(((val -1 + RUBY_VM_SIZE_ALIGN) / RUBY_VM_SIZE_ALIGN) * RUBY_VM_SIZE_ALIGN);
}
if (0) ruby_debug_printf("%s: %"PRIuSIZE"\n", name, result); /* debug print */
return result;
}
static void
check_machine_stack_size(size_t *sizep)
{
#ifdef PTHREAD_STACK_MIN
size_t size = *sizep;
#endif
#ifdef PTHREAD_STACK_MIN
if (size < (size_t)PTHREAD_STACK_MIN) {
*sizep = (size_t)PTHREAD_STACK_MIN * 2;
}
#endif
}
static void
vm_default_params_setup(rb_vm_t *vm)
{
vm->default_params.thread_vm_stack_size =
get_param("RUBY_THREAD_VM_STACK_SIZE",
RUBY_VM_THREAD_VM_STACK_SIZE,
RUBY_VM_THREAD_VM_STACK_SIZE_MIN);
vm->default_params.thread_machine_stack_size =
get_param("RUBY_THREAD_MACHINE_STACK_SIZE",
RUBY_VM_THREAD_MACHINE_STACK_SIZE,
RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN);
vm->default_params.fiber_vm_stack_size =
get_param("RUBY_FIBER_VM_STACK_SIZE",
RUBY_VM_FIBER_VM_STACK_SIZE,
RUBY_VM_FIBER_VM_STACK_SIZE_MIN);
vm->default_params.fiber_machine_stack_size =
get_param("RUBY_FIBER_MACHINE_STACK_SIZE",
RUBY_VM_FIBER_MACHINE_STACK_SIZE,
RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN);
/* environment dependent check */
check_machine_stack_size(&vm->default_params.thread_machine_stack_size);
check_machine_stack_size(&vm->default_params.fiber_machine_stack_size);
}
static void
vm_init2(rb_vm_t *vm)
{
MEMZERO(vm, rb_vm_t, 1);
rb_vm_living_threads_init(vm);
vm->thread_report_on_exception = 1;
vm->src_encoding_index = -1;
vm_default_params_setup(vm);
}
void
rb_execution_context_update(rb_execution_context_t *ec)
{
/* update VM stack */
if (ec->vm_stack) {
long i;
VM_ASSERT(ec->cfp);
VALUE *p = ec->vm_stack;
VALUE *sp = ec->cfp->sp;
rb_control_frame_t *cfp = ec->cfp;
rb_control_frame_t *limit_cfp = (void *)(ec->vm_stack + ec->vm_stack_size);
for (i = 0; i < (long)(sp - p); i++) {
VALUE ref = p[i];
VALUE update = rb_gc_location(ref);
if (ref != update) {
p[i] = update;
}
}
while (cfp != limit_cfp) {
const VALUE *ep = cfp->ep;
cfp->self = rb_gc_location(cfp->self);
cfp->iseq = (rb_iseq_t *)rb_gc_location((VALUE)cfp->iseq);
cfp->block_code = (void *)rb_gc_location((VALUE)cfp->block_code);
if (!VM_ENV_LOCAL_P(ep)) {
const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
if (VM_ENV_FLAGS(prev_ep, VM_ENV_FLAG_ESCAPED)) {
VM_FORCE_WRITE(&prev_ep[VM_ENV_DATA_INDEX_ENV], rb_gc_location(prev_ep[VM_ENV_DATA_INDEX_ENV]));
}
if (VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED)) {
VM_FORCE_WRITE(&ep[VM_ENV_DATA_INDEX_ENV], rb_gc_location(ep[VM_ENV_DATA_INDEX_ENV]));
VM_FORCE_WRITE(&ep[VM_ENV_DATA_INDEX_ME_CREF], rb_gc_location(ep[VM_ENV_DATA_INDEX_ME_CREF]));
}
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
ec->storage = rb_gc_location(ec->storage);
}
static enum rb_id_table_iterator_result
mark_local_storage_i(VALUE local, void *data)
{
rb_gc_mark(local);
return ID_TABLE_CONTINUE;
}
void
rb_execution_context_mark(const rb_execution_context_t *ec)
{
/* mark VM stack */
if (ec->vm_stack) {
VM_ASSERT(ec->cfp);
VALUE *p = ec->vm_stack;
VALUE *sp = ec->cfp->sp;
rb_control_frame_t *cfp = ec->cfp;
rb_control_frame_t *limit_cfp = (void *)(ec->vm_stack + ec->vm_stack_size);
VM_ASSERT(sp == ec->cfp->sp);
rb_gc_mark_vm_stack_values((long)(sp - p), p);
while (cfp != limit_cfp) {
const VALUE *ep = cfp->ep;
VM_ASSERT(!!VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED) == vm_ep_in_heap_p_(ec, ep));
if (VM_FRAME_TYPE(cfp) != VM_FRAME_MAGIC_DUMMY) {
rb_gc_mark_movable(cfp->self);
rb_gc_mark_movable((VALUE)cfp->iseq);
rb_gc_mark_movable((VALUE)cfp->block_code);
if (!VM_ENV_LOCAL_P(ep)) {
const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
if (VM_ENV_FLAGS(prev_ep, VM_ENV_FLAG_ESCAPED)) {
rb_gc_mark_movable(prev_ep[VM_ENV_DATA_INDEX_ENV]);
}
if (VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED)) {
rb_gc_mark_movable(ep[VM_ENV_DATA_INDEX_ENV]);
rb_gc_mark(ep[VM_ENV_DATA_INDEX_ME_CREF]);
}
}
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
/* mark machine stack */
if (ec->machine.stack_start && ec->machine.stack_end &&
ec != GET_EC() /* marked for current ec at the first stage of marking */
) {
rb_gc_mark_machine_stack(ec);
rb_gc_mark_locations((VALUE *)&ec->machine.regs,
(VALUE *)(&ec->machine.regs) +
sizeof(ec->machine.regs) / (sizeof(VALUE)));
}
RUBY_MARK_UNLESS_NULL(ec->errinfo);
RUBY_MARK_UNLESS_NULL(ec->root_svar);
if (ec->local_storage) {
rb_id_table_foreach_values(ec->local_storage, mark_local_storage_i, NULL);
}
RUBY_MARK_UNLESS_NULL(ec->local_storage_recursive_hash);
RUBY_MARK_UNLESS_NULL(ec->local_storage_recursive_hash_for_trace);
RUBY_MARK_UNLESS_NULL(ec->private_const_reference);
RUBY_MARK_MOVABLE_UNLESS_NULL(ec->storage);
}
void rb_fiber_mark_self(rb_fiber_t *fib);
void rb_fiber_update_self(rb_fiber_t *fib);
void rb_threadptr_root_fiber_setup(rb_thread_t *th);
void rb_threadptr_root_fiber_release(rb_thread_t *th);
static void
thread_compact(void *ptr)
{
rb_thread_t *th = ptr;
th->self = rb_gc_location(th->self);
if (!th->root_fiber) {
rb_execution_context_update(th->ec);
}
}
static void
thread_mark(void *ptr)
{
rb_thread_t *th = ptr;
RUBY_MARK_ENTER("thread");
rb_fiber_mark_self(th->ec->fiber_ptr);
/* mark ruby objects */
switch (th->invoke_type) {
case thread_invoke_type_proc:
case thread_invoke_type_ractor_proc:
RUBY_MARK_UNLESS_NULL(th->invoke_arg.proc.proc);
RUBY_MARK_UNLESS_NULL(th->invoke_arg.proc.args);
break;
case thread_invoke_type_func:
rb_gc_mark_maybe((VALUE)th->invoke_arg.func.arg);
break;
default:
break;
}
rb_gc_mark(rb_ractor_self(th->ractor));
RUBY_MARK_UNLESS_NULL(th->thgroup);
RUBY_MARK_UNLESS_NULL(th->value);
RUBY_MARK_UNLESS_NULL(th->pending_interrupt_queue);
RUBY_MARK_UNLESS_NULL(th->pending_interrupt_mask_stack);
RUBY_MARK_UNLESS_NULL(th->top_self);
RUBY_MARK_UNLESS_NULL(th->top_wrapper);
if (th->root_fiber) rb_fiber_mark_self(th->root_fiber);
RUBY_ASSERT(th->ec == rb_fiberptr_get_ec(th->ec->fiber_ptr));
RUBY_MARK_UNLESS_NULL(th->stat_insn_usage);
RUBY_MARK_UNLESS_NULL(th->last_status);
RUBY_MARK_UNLESS_NULL(th->locking_mutex);
RUBY_MARK_UNLESS_NULL(th->name);
RUBY_MARK_UNLESS_NULL(th->scheduler);
RUBY_MARK_LEAVE("thread");
}
void rb_threadptr_sched_free(rb_thread_t *th); // thread_*.c
static void
thread_free(void *ptr)
{
rb_thread_t *th = ptr;
RUBY_FREE_ENTER("thread");
rb_threadptr_sched_free(th);
if (th->locking_mutex != Qfalse) {
rb_bug("thread_free: locking_mutex must be NULL (%p:%p)", (void *)th, (void *)th->locking_mutex);
}
if (th->keeping_mutexes != NULL) {
rb_bug("thread_free: keeping_mutexes must be NULL (%p:%p)", (void *)th, (void *)th->keeping_mutexes);
}
ruby_xfree(th->specific_storage);
rb_threadptr_root_fiber_release(th);
if (th->vm && th->vm->ractor.main_thread == th) {
RUBY_GC_INFO("MRI main thread\n");
}
else {
// ruby_xfree(th->nt);
// TODO: MN system collect nt, but without MN system it should be freed here.
ruby_xfree(th);
}
RUBY_FREE_LEAVE("thread");
}
static size_t
thread_memsize(const void *ptr)
{
const rb_thread_t *th = ptr;
size_t size = sizeof(rb_thread_t);
if (!th->root_fiber) {
size += th->ec->vm_stack_size * sizeof(VALUE);
}
if (th->ec->local_storage) {
size += rb_id_table_memsize(th->ec->local_storage);
}
return size;
}
#define thread_data_type ruby_threadptr_data_type
const rb_data_type_t ruby_threadptr_data_type = {
"VM/thread",
{
thread_mark,
thread_free,
thread_memsize,
thread_compact,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
VALUE
rb_obj_is_thread(VALUE obj)
{
return RBOOL(rb_typeddata_is_kind_of(obj, &thread_data_type));
}
static VALUE
thread_alloc(VALUE klass)
{
rb_thread_t *th;
return TypedData_Make_Struct(klass, rb_thread_t, &thread_data_type, th);
}
inline void
rb_ec_set_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size)
{
ec->vm_stack = stack;
ec->vm_stack_size = size;
}
void
rb_ec_initialize_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size)
{
rb_ec_set_vm_stack(ec, stack, size);
ec->cfp = (void *)(ec->vm_stack + ec->vm_stack_size);
vm_push_frame(ec,
NULL /* dummy iseq */,
VM_FRAME_MAGIC_DUMMY | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH | VM_FRAME_FLAG_CFRAME /* dummy frame */,
Qnil /* dummy self */, VM_BLOCK_HANDLER_NONE /* dummy block ptr */,
0 /* dummy cref/me */,
0 /* dummy pc */, ec->vm_stack, 0, 0
);
}
void
rb_ec_clear_vm_stack(rb_execution_context_t *ec)
{
rb_ec_set_vm_stack(ec, NULL, 0);
// Avoid dangling pointers:
ec->cfp = NULL;
}
static void
th_init(rb_thread_t *th, VALUE self, rb_vm_t *vm)
{
th->self = self;
rb_threadptr_root_fiber_setup(th);
/* All threads are blocking until a non-blocking fiber is scheduled */
th->blocking = 1;
th->scheduler = Qnil;
if (self == 0) {
size_t size = vm->default_params.thread_vm_stack_size / sizeof(VALUE);
rb_ec_initialize_vm_stack(th->ec, ALLOC_N(VALUE, size), size);
}
else {
VM_ASSERT(th->ec->cfp == NULL);
VM_ASSERT(th->ec->vm_stack == NULL);
VM_ASSERT(th->ec->vm_stack_size == 0);
}
th->status = THREAD_RUNNABLE;
th->last_status = Qnil;
th->top_wrapper = 0;
th->top_self = vm->top_self; // 0 while self == 0
th->value = Qundef;
th->ec->errinfo = Qnil;
th->ec->root_svar = Qfalse;
th->ec->local_storage_recursive_hash = Qnil;
th->ec->local_storage_recursive_hash_for_trace = Qnil;
th->ec->storage = Qnil;
#if OPT_CALL_THREADED_CODE
th->retval = Qundef;
#endif
th->name = Qnil;
th->report_on_exception = vm->thread_report_on_exception;
th->ext_config.ractor_safe = true;
#if USE_RUBY_DEBUG_LOG
static rb_atomic_t thread_serial = 1;
th->serial = RUBY_ATOMIC_FETCH_ADD(thread_serial, 1);
RUBY_DEBUG_LOG("th:%u", th->serial);
#endif
}
VALUE
rb_thread_alloc(VALUE klass)
{
VALUE self = thread_alloc(klass);
rb_thread_t *target_th = rb_thread_ptr(self);
target_th->ractor = GET_RACTOR();
th_init(target_th, self, target_th->vm = GET_VM());
return self;
}
#define REWIND_CFP(expr) do { \
rb_execution_context_t *ec__ = GET_EC(); \
VALUE *const curr_sp = (ec__->cfp++)->sp; \
VALUE *const saved_sp = ec__->cfp->sp; \
ec__->cfp->sp = curr_sp; \
expr; \
(ec__->cfp--)->sp = saved_sp; \
} while (0)
static VALUE
m_core_set_method_alias(VALUE self, VALUE cbase, VALUE sym1, VALUE sym2)
{
REWIND_CFP({
rb_alias(cbase, SYM2ID(sym1), SYM2ID(sym2));
});
return Qnil;
}
static VALUE
m_core_set_variable_alias(VALUE self, VALUE sym1, VALUE sym2)
{
REWIND_CFP({
rb_alias_variable(SYM2ID(sym1), SYM2ID(sym2));
});
return Qnil;
}
static VALUE
m_core_undef_method(VALUE self, VALUE cbase, VALUE sym)
{
REWIND_CFP({
ID mid = SYM2ID(sym);
rb_undef(cbase, mid);
rb_clear_method_cache(self, mid);
});
return Qnil;
}
static VALUE
m_core_set_postexe(VALUE self)
{
rb_set_end_proc(rb_call_end_proc, rb_block_proc());
return Qnil;
}
static VALUE core_hash_merge_kwd(VALUE hash, VALUE kw);
static VALUE
core_hash_merge(VALUE hash, long argc, const VALUE *argv)
{
Check_Type(hash, T_HASH);
VM_ASSERT(argc % 2 == 0);
rb_hash_bulk_insert(argc, argv, hash);
return hash;
}
static VALUE
m_core_hash_merge_ptr(int argc, VALUE *argv, VALUE recv)
{
VALUE hash = argv[0];
REWIND_CFP(hash = core_hash_merge(hash, argc-1, argv+1));
return hash;
}
static int
kwmerge_i(VALUE key, VALUE value, VALUE hash)
{
rb_hash_aset(hash, key, value);
return ST_CONTINUE;
}
static VALUE
m_core_hash_merge_kwd(VALUE recv, VALUE hash, VALUE kw)
{
if (!NIL_P(kw)) {
REWIND_CFP(hash = core_hash_merge_kwd(hash, kw));
}
return hash;
}
static VALUE
m_core_make_shareable(VALUE recv, VALUE obj)
{
return rb_ractor_make_shareable(obj);
}
static VALUE
m_core_make_shareable_copy(VALUE recv, VALUE obj)
{
return rb_ractor_make_shareable_copy(obj);
}
static VALUE
m_core_ensure_shareable(VALUE recv, VALUE obj, VALUE name)
{
return rb_ractor_ensure_shareable(obj, name);
}
static VALUE
core_hash_merge_kwd(VALUE hash, VALUE kw)
{
rb_hash_foreach(rb_to_hash_type(kw), kwmerge_i, hash);
return hash;
}
extern VALUE *rb_gc_stack_start;
extern size_t rb_gc_stack_maxsize;
/* debug functions */
/* :nodoc: */
static VALUE
sdr(VALUE self)
{
rb_vm_bugreport(NULL, stderr);
return Qnil;
}
/* :nodoc: */
static VALUE
nsdr(VALUE self)
{
VALUE ary = rb_ary_new();
#ifdef HAVE_BACKTRACE
#include <execinfo.h>
#define MAX_NATIVE_TRACE 1024
static void *trace[MAX_NATIVE_TRACE];
int n = (int)backtrace(trace, MAX_NATIVE_TRACE);
char **syms = backtrace_symbols(trace, n);
int i;
if (syms == 0) {
rb_memerror();
}
for (i=0; i<n; i++) {
rb_ary_push(ary, rb_str_new2(syms[i]));
}
free(syms); /* OK */
#endif
return ary;
}
#if VM_COLLECT_USAGE_DETAILS
static VALUE usage_analysis_insn_start(VALUE self);
static VALUE usage_analysis_operand_start(VALUE self);
static VALUE usage_analysis_register_start(VALUE self);
static VALUE usage_analysis_insn_stop(VALUE self);
static VALUE usage_analysis_operand_stop(VALUE self);
static VALUE usage_analysis_register_stop(VALUE self);
static VALUE usage_analysis_insn_running(VALUE self);
static VALUE usage_analysis_operand_running(VALUE self);
static VALUE usage_analysis_register_running(VALUE self);
static VALUE usage_analysis_insn_clear(VALUE self);
static VALUE usage_analysis_operand_clear(VALUE self);
static VALUE usage_analysis_register_clear(VALUE self);
#endif
static VALUE
f_raise(int c, VALUE *v, VALUE _)
{
return rb_f_raise(c, v);
}
static VALUE
f_proc(VALUE _)
{
return rb_block_proc();
}
static VALUE
f_lambda(VALUE _)
{
return rb_block_lambda();
}
static VALUE
f_sprintf(int c, const VALUE *v, VALUE _)
{
return rb_f_sprintf(c, v);
}
/* :nodoc: */
static VALUE
vm_mtbl(VALUE self, VALUE obj, VALUE sym)
{
vm_mtbl_dump(CLASS_OF(obj), RTEST(sym) ? SYM2ID(sym) : 0);
return Qnil;
}
/* :nodoc: */
static VALUE
vm_mtbl2(VALUE self, VALUE obj, VALUE sym)
{
vm_mtbl_dump(obj, RTEST(sym) ? SYM2ID(sym) : 0);
return Qnil;
}
/*
* call-seq:
* RubyVM.keep_script_lines -> true or false
*
* Return current +keep_script_lines+ status. Now it only returns
* +true+ of +false+, but it can return other objects in future.
*
* Note that this is an API for ruby internal use, debugging,
* and research. Do not use this for any other purpose.
* The compatibility is not guaranteed.
*/
static VALUE
vm_keep_script_lines(VALUE self)
{
return RBOOL(ruby_vm_keep_script_lines);
}
/*
* call-seq:
* RubyVM.keep_script_lines = true / false
*
* It set +keep_script_lines+ flag. If the flag is set, all
* loaded scripts are recorded in a interpreter process.
*
* Note that this is an API for ruby internal use, debugging,
* and research. Do not use this for any other purpose.
* The compatibility is not guaranteed.
*/
static VALUE
vm_keep_script_lines_set(VALUE self, VALUE flags)
{
ruby_vm_keep_script_lines = RTEST(flags);
return flags;
}
void
Init_VM(void)
{
VALUE opts;
VALUE klass;
VALUE fcore;
/*
* Document-class: RubyVM
*
* The RubyVM module only exists on MRI. +RubyVM+ is not defined in
* other Ruby implementations such as JRuby and TruffleRuby.
*
* The RubyVM module provides some access to MRI internals.
* This module is for very limited purposes, such as debugging,
* prototyping, and research. Normal users must not use it.
* This module is not portable between Ruby implementations.
*/
rb_cRubyVM = rb_define_class("RubyVM", rb_cObject);
rb_undef_alloc_func(rb_cRubyVM);
rb_undef_method(CLASS_OF(rb_cRubyVM), "new");
rb_define_singleton_method(rb_cRubyVM, "stat", vm_stat, -1);
rb_define_singleton_method(rb_cRubyVM, "keep_script_lines", vm_keep_script_lines, 0);
rb_define_singleton_method(rb_cRubyVM, "keep_script_lines=", vm_keep_script_lines_set, 1);
#if USE_DEBUG_COUNTER
rb_define_singleton_method(rb_cRubyVM, "reset_debug_counters", rb_debug_counter_reset, 0);
rb_define_singleton_method(rb_cRubyVM, "show_debug_counters", rb_debug_counter_show, 0);
#endif
/* FrozenCore (hidden) */
fcore = rb_class_new(rb_cBasicObject);
rb_set_class_path(fcore, rb_cRubyVM, "FrozenCore");
RBASIC(fcore)->flags = T_ICLASS;
klass = rb_singleton_class(fcore);
rb_define_method_id(klass, id_core_set_method_alias, m_core_set_method_alias, 3);
rb_define_method_id(klass, id_core_set_variable_alias, m_core_set_variable_alias, 2);
rb_define_method_id(klass, id_core_undef_method, m_core_undef_method, 2);
rb_define_method_id(klass, id_core_set_postexe, m_core_set_postexe, 0);
rb_define_method_id(klass, id_core_hash_merge_ptr, m_core_hash_merge_ptr, -1);
rb_define_method_id(klass, id_core_hash_merge_kwd, m_core_hash_merge_kwd, 2);
rb_define_method_id(klass, id_core_raise, f_raise, -1);
rb_define_method_id(klass, id_core_sprintf, f_sprintf, -1);
rb_define_method_id(klass, idProc, f_proc, 0);
rb_define_method_id(klass, idLambda, f_lambda, 0);
rb_define_method(klass, "make_shareable", m_core_make_shareable, 1);
rb_define_method(klass, "make_shareable_copy", m_core_make_shareable_copy, 1);
rb_define_method(klass, "ensure_shareable", m_core_ensure_shareable, 2);
rb_obj_freeze(fcore);
RBASIC_CLEAR_CLASS(klass);
rb_obj_freeze(klass);
rb_gc_register_mark_object(fcore);
rb_gc_register_mark_object(rb_class_path_cached(fcore));
rb_mRubyVMFrozenCore = fcore;
/*
* Document-class: Thread
*
* Threads are the Ruby implementation for a concurrent programming model.
*
* Programs that require multiple threads of execution are a perfect
* candidate for Ruby's Thread class.
*
* For example, we can create a new thread separate from the main thread's
* execution using ::new.
*
* thr = Thread.new { puts "What's the big deal" }
*
* Then we are able to pause the execution of the main thread and allow
* our new thread to finish, using #join:
*
* thr.join #=> "What's the big deal"
*
* If we don't call +thr.join+ before the main thread terminates, then all
* other threads including +thr+ will be killed.
*
* Alternatively, you can use an array for handling multiple threads at
* once, like in the following example:
*
* threads = []
* threads << Thread.new { puts "What's the big deal" }
* threads << Thread.new { 3.times { puts "Threads are fun!" } }
*
* After creating a few threads we wait for them all to finish
* consecutively.
*
* threads.each { |thr| thr.join }
*
* To retrieve the last value of a thread, use #value
*
* thr = Thread.new { sleep 1; "Useful value" }
* thr.value #=> "Useful value"
*
* === Thread initialization
*
* In order to create new threads, Ruby provides ::new, ::start, and
* ::fork. A block must be provided with each of these methods, otherwise
* a ThreadError will be raised.
*
* When subclassing the Thread class, the +initialize+ method of your
* subclass will be ignored by ::start and ::fork. Otherwise, be sure to
* call super in your +initialize+ method.
*
* === Thread termination
*
* For terminating threads, Ruby provides a variety of ways to do this.
*
* The class method ::kill, is meant to exit a given thread:
*
* thr = Thread.new { sleep }
* Thread.kill(thr) # sends exit() to thr
*
* Alternatively, you can use the instance method #exit, or any of its
* aliases #kill or #terminate.
*
* thr.exit
*
* === Thread status
*
* Ruby provides a few instance methods for querying the state of a given
* thread. To get a string with the current thread's state use #status
*
* thr = Thread.new { sleep }
* thr.status # => "sleep"
* thr.exit
* thr.status # => false
*
* You can also use #alive? to tell if the thread is running or sleeping,
* and #stop? if the thread is dead or sleeping.
*
* === Thread variables and scope
*
* Since threads are created with blocks, the same rules apply to other
* Ruby blocks for variable scope. Any local variables created within this
* block are accessible to only this thread.
*
* ==== Fiber-local vs. Thread-local
*
* Each fiber has its own bucket for Thread#[] storage. When you set a
* new fiber-local it is only accessible within this Fiber. To illustrate:
*
* Thread.new {
* Thread.current[:foo] = "bar"
* Fiber.new {
* p Thread.current[:foo] # => nil
* }.resume
* }.join
*
* This example uses #[] for getting and #[]= for setting fiber-locals,
* you can also use #keys to list the fiber-locals for a given
* thread and #key? to check if a fiber-local exists.
*
* When it comes to thread-locals, they are accessible within the entire
* scope of the thread. Given the following example:
*
* Thread.new{
* Thread.current.thread_variable_set(:foo, 1)
* p Thread.current.thread_variable_get(:foo) # => 1
* Fiber.new{
* Thread.current.thread_variable_set(:foo, 2)
* p Thread.current.thread_variable_get(:foo) # => 2
* }.resume
* p Thread.current.thread_variable_get(:foo) # => 2
* }.join
*
* You can see that the thread-local +:foo+ carried over into the fiber
* and was changed to +2+ by the end of the thread.
*
* This example makes use of #thread_variable_set to create new
* thread-locals, and #thread_variable_get to reference them.
*
* There is also #thread_variables to list all thread-locals, and
* #thread_variable? to check if a given thread-local exists.
*
* === Exception handling
*
* When an unhandled exception is raised inside a thread, it will
* terminate. By default, this exception will not propagate to other
* threads. The exception is stored and when another thread calls #value
* or #join, the exception will be re-raised in that thread.
*
* t = Thread.new{ raise 'something went wrong' }
* t.value #=> RuntimeError: something went wrong
*
* An exception can be raised from outside the thread using the
* Thread#raise instance method, which takes the same parameters as
* Kernel#raise.
*
* Setting Thread.abort_on_exception = true, Thread#abort_on_exception =
* true, or $DEBUG = true will cause a subsequent unhandled exception
* raised in a thread to be automatically re-raised in the main thread.
*
* With the addition of the class method ::handle_interrupt, you can now
* handle exceptions asynchronously with threads.
*
* === Scheduling
*
* Ruby provides a few ways to support scheduling threads in your program.
*
* The first way is by using the class method ::stop, to put the current
* running thread to sleep and schedule the execution of another thread.
*
* Once a thread is asleep, you can use the instance method #wakeup to
* mark your thread as eligible for scheduling.
*
* You can also try ::pass, which attempts to pass execution to another
* thread but is dependent on the OS whether a running thread will switch
* or not. The same goes for #priority, which lets you hint to the thread
* scheduler which threads you want to take precedence when passing
* execution. This method is also dependent on the OS and may be ignored
* on some platforms.
*
*/
rb_cThread = rb_define_class("Thread", rb_cObject);
rb_undef_alloc_func(rb_cThread);
#if VM_COLLECT_USAGE_DETAILS
/* ::RubyVM::USAGE_ANALYSIS_* */
#define define_usage_analysis_hash(name) /* shut up rdoc -C */ \
rb_define_const(rb_cRubyVM, "USAGE_ANALYSIS_" #name, rb_hash_new())
define_usage_analysis_hash(INSN);
define_usage_analysis_hash(REGS);
define_usage_analysis_hash(INSN_BIGRAM);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_START", usage_analysis_insn_start, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_START", usage_analysis_operand_start, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_START", usage_analysis_register_start, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_STOP", usage_analysis_insn_stop, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_STOP", usage_analysis_operand_stop, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_STOP", usage_analysis_register_stop, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_RUNNING", usage_analysis_insn_running, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_RUNNING", usage_analysis_operand_running, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_RUNNING", usage_analysis_register_running, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_CLEAR", usage_analysis_insn_clear, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_CLEAR", usage_analysis_operand_clear, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_CLEAR", usage_analysis_register_clear, 0);
#endif
/* ::RubyVM::OPTS
* An Array of VM build options.
* This constant is MRI specific.
*/
rb_define_const(rb_cRubyVM, "OPTS", opts = rb_ary_new());
#if OPT_DIRECT_THREADED_CODE
rb_ary_push(opts, rb_str_new2("direct threaded code"));
#elif OPT_TOKEN_THREADED_CODE
rb_ary_push(opts, rb_str_new2("token threaded code"));
#elif OPT_CALL_THREADED_CODE
rb_ary_push(opts, rb_str_new2("call threaded code"));
#endif
#if OPT_OPERANDS_UNIFICATION
rb_ary_push(opts, rb_str_new2("operands unification"));
#endif
#if OPT_INSTRUCTIONS_UNIFICATION
rb_ary_push(opts, rb_str_new2("instructions unification"));
#endif
#if OPT_INLINE_METHOD_CACHE
rb_ary_push(opts, rb_str_new2("inline method cache"));
#endif
/* ::RubyVM::INSTRUCTION_NAMES
* A list of bytecode instruction names in MRI.
* This constant is MRI specific.
*/
rb_define_const(rb_cRubyVM, "INSTRUCTION_NAMES", rb_insns_name_array());
/* ::RubyVM::DEFAULT_PARAMS
* This constant exposes the VM's default parameters.
* Note that changing these values does not affect VM execution.
* Specification is not stable and you should not depend on this value.
* Of course, this constant is MRI specific.
*/
rb_define_const(rb_cRubyVM, "DEFAULT_PARAMS", vm_default_params());
/* debug functions ::RubyVM::SDR(), ::RubyVM::NSDR() */
#if VMDEBUG
rb_define_singleton_method(rb_cRubyVM, "SDR", sdr, 0);
rb_define_singleton_method(rb_cRubyVM, "NSDR", nsdr, 0);
rb_define_singleton_method(rb_cRubyVM, "mtbl", vm_mtbl, 2);
rb_define_singleton_method(rb_cRubyVM, "mtbl2", vm_mtbl2, 2);
#else
(void)sdr;
(void)nsdr;
(void)vm_mtbl;
(void)vm_mtbl2;
#endif
/* VM bootstrap: phase 2 */
{
rb_vm_t *vm = ruby_current_vm_ptr;
rb_thread_t *th = GET_THREAD();
VALUE filename = rb_fstring_lit("<main>");
const rb_iseq_t *iseq = rb_iseq_new(0, filename, filename, Qnil, 0, ISEQ_TYPE_TOP);
// Ractor setup
rb_ractor_main_setup(vm, th->ractor, th);
/* create vm object */
vm->self = TypedData_Wrap_Struct(rb_cRubyVM, &vm_data_type, vm);
/* create main thread */
th->self = TypedData_Wrap_Struct(rb_cThread, &thread_data_type, th);
vm->ractor.main_thread = th;
vm->ractor.main_ractor = th->ractor;
th->vm = vm;
th->top_wrapper = 0;
th->top_self = rb_vm_top_self();
rb_gc_register_mark_object((VALUE)iseq);
th->ec->cfp->iseq = iseq;
th->ec->cfp->pc = ISEQ_BODY(iseq)->iseq_encoded;
th->ec->cfp->self = th->top_self;
VM_ENV_FLAGS_UNSET(th->ec->cfp->ep, VM_FRAME_FLAG_CFRAME);
VM_STACK_ENV_WRITE(th->ec->cfp->ep, VM_ENV_DATA_INDEX_ME_CREF, (VALUE)vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE, FALSE, NULL, FALSE, FALSE));
/*
* The Binding of the top level scope
*/
rb_define_global_const("TOPLEVEL_BINDING", rb_binding_new());
rb_objspace_gc_enable(vm->objspace);
}
vm_init_redefined_flag();
rb_block_param_proxy = rb_obj_alloc(rb_cObject);
rb_add_method_optimized(rb_singleton_class(rb_block_param_proxy), idCall,
OPTIMIZED_METHOD_TYPE_BLOCK_CALL, 0, METHOD_VISI_PUBLIC);
rb_obj_freeze(rb_block_param_proxy);
rb_gc_register_mark_object(rb_block_param_proxy);
/* vm_backtrace.c */
Init_vm_backtrace();
}
void
rb_vm_set_progname(VALUE filename)
{
rb_thread_t *th = GET_VM()->ractor.main_thread;
rb_control_frame_t *cfp = (void *)(th->ec->vm_stack + th->ec->vm_stack_size);
--cfp;
filename = rb_str_new_frozen(filename);
rb_iseq_pathobj_set(cfp->iseq, filename, rb_iseq_realpath(cfp->iseq));
}
extern const struct st_hash_type rb_fstring_hash_type;
void
Init_BareVM(void)
{
/* VM bootstrap: phase 1 */
rb_vm_t * vm = ruby_mimmalloc(sizeof(*vm));
rb_thread_t * th = ruby_mimmalloc(sizeof(*th));
if (!vm || !th) {
fputs("[FATAL] failed to allocate memory\n", stderr);
exit(EXIT_FAILURE);
}
// setup the VM
MEMZERO(th, rb_thread_t, 1);
vm_init2(vm);
rb_vm_postponed_job_queue_init(vm);
ruby_current_vm_ptr = vm;
vm->objspace = rb_objspace_alloc();
vm->negative_cme_table = rb_id_table_create(16);
vm->overloaded_cme_table = st_init_numtable();
vm->constant_cache = rb_id_table_create(0);
// setup main thread
th->nt = ZALLOC(struct rb_native_thread);
th->vm = vm;
th->ractor = vm->ractor.main_ractor = rb_ractor_main_alloc();
Init_native_thread(th);
rb_jit_cont_init();
th_init(th, 0, vm);
rb_ractor_set_current_ec(th->ractor, th->ec);
/* n.b. native_main_thread_stack_top is set by the INIT_STACK macro */
ruby_thread_init_stack(th, native_main_thread_stack_top);
// setup ractor system
rb_native_mutex_initialize(&vm->ractor.sync.lock);
rb_native_cond_initialize(&vm->ractor.sync.terminate_cond);
vm_opt_method_def_table = st_init_numtable();
vm_opt_mid_table = st_init_numtable();
#ifdef RUBY_THREAD_WIN32_H
rb_native_cond_initialize(&vm->ractor.sync.barrier_cond);
#endif
}
void
ruby_init_stack(void *addr)
{
native_main_thread_stack_top = addr;
}
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#endif
void
Init_vm_objects(void)
{
rb_vm_t *vm = GET_VM();
vm->defined_module_hash = st_init_numtable();
/* initialize mark object array, hash */
vm->mark_object_ary = rb_ary_hidden_new(128);
vm->loading_table = st_init_strtable();
vm->ci_table = st_init_table(&vm_ci_hashtype);
vm->frozen_strings = st_init_table_with_size(&rb_fstring_hash_type, 10000);
}
/* Stub for builtin function when not building YJIT units*/
#if !USE_YJIT
void Init_builtin_yjit(void) {}
#endif
/* top self */
static VALUE
main_to_s(VALUE obj)
{
return rb_str_new2("main");
}
VALUE
rb_vm_top_self(void)
{
return GET_VM()->top_self;
}
void
Init_top_self(void)
{
rb_vm_t *vm = GET_VM();
vm->top_self = rb_obj_alloc(rb_cObject);
rb_define_singleton_method(rb_vm_top_self(), "to_s", main_to_s, 0);
rb_define_alias(rb_singleton_class(rb_vm_top_self()), "inspect", "to_s");
}
VALUE *
rb_ruby_verbose_ptr(void)
{
rb_ractor_t *cr = GET_RACTOR();
return &cr->verbose;
}
static bool prism;
bool *
rb_ruby_prism_ptr(void)
{
return &prism;
}
VALUE *
rb_ruby_debug_ptr(void)
{
rb_ractor_t *cr = GET_RACTOR();
return &cr->debug;
}
bool rb_free_at_exit = false;
/* iseq.c */
VALUE rb_insn_operand_intern(const rb_iseq_t *iseq,
VALUE insn, int op_no, VALUE op,
int len, size_t pos, VALUE *pnop, VALUE child);
st_table *
rb_vm_fstring_table(void)
{
return GET_VM()->frozen_strings;
}
#if VM_COLLECT_USAGE_DETAILS
#define HASH_ASET(h, k, v) rb_hash_aset((h), (st_data_t)(k), (st_data_t)(v))
/* uh = {
* insn(Fixnum) => ihash(Hash)
* }
* ihash = {
* -1(Fixnum) => count, # insn usage
* 0(Fixnum) => ophash, # operand usage
* }
* ophash = {
* val(interned string) => count(Fixnum)
* }
*/
static void
vm_analysis_insn(int insn)
{
ID usage_hash;
ID bigram_hash;
static int prev_insn = -1;
VALUE uh;
VALUE ihash;
VALUE cv;
CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
CONST_ID(bigram_hash, "USAGE_ANALYSIS_INSN_BIGRAM");
uh = rb_const_get(rb_cRubyVM, usage_hash);
if (NIL_P(ihash = rb_hash_aref(uh, INT2FIX(insn)))) {
ihash = rb_hash_new();
HASH_ASET(uh, INT2FIX(insn), ihash);
}
if (NIL_P(cv = rb_hash_aref(ihash, INT2FIX(-1)))) {
cv = INT2FIX(0);
}
HASH_ASET(ihash, INT2FIX(-1), INT2FIX(FIX2INT(cv) + 1));
/* calc bigram */
if (prev_insn != -1) {
VALUE bi;
VALUE ary[2];
VALUE cv;
ary[0] = INT2FIX(prev_insn);
ary[1] = INT2FIX(insn);
bi = rb_ary_new4(2, &ary[0]);
uh = rb_const_get(rb_cRubyVM, bigram_hash);
if (NIL_P(cv = rb_hash_aref(uh, bi))) {
cv = INT2FIX(0);
}
HASH_ASET(uh, bi, INT2FIX(FIX2INT(cv) + 1));
}
prev_insn = insn;
}
static void
vm_analysis_operand(int insn, int n, VALUE op)
{
ID usage_hash;
VALUE uh;
VALUE ihash;
VALUE ophash;
VALUE valstr;
VALUE cv;
CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
uh = rb_const_get(rb_cRubyVM, usage_hash);
if (NIL_P(ihash = rb_hash_aref(uh, INT2FIX(insn)))) {
ihash = rb_hash_new();
HASH_ASET(uh, INT2FIX(insn), ihash);
}
if (NIL_P(ophash = rb_hash_aref(ihash, INT2FIX(n)))) {
ophash = rb_hash_new();
HASH_ASET(ihash, INT2FIX(n), ophash);
}
/* intern */
valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0);
/* set count */
if (NIL_P(cv = rb_hash_aref(ophash, valstr))) {
cv = INT2FIX(0);
}
HASH_ASET(ophash, valstr, INT2FIX(FIX2INT(cv) + 1));
}
static void
vm_analysis_register(int reg, int isset)
{
ID usage_hash;
VALUE uh;
VALUE valstr;
static const char regstrs[][5] = {
"pc", /* 0 */
"sp", /* 1 */
"ep", /* 2 */
"cfp", /* 3 */
"self", /* 4 */
"iseq", /* 5 */
};
static const char getsetstr[][4] = {
"get",
"set",
};
static VALUE syms[sizeof(regstrs) / sizeof(regstrs[0])][2];
VALUE cv;
CONST_ID(usage_hash, "USAGE_ANALYSIS_REGS");
if (syms[0] == 0) {
char buff[0x10];
int i;
for (i = 0; i < (int)(sizeof(regstrs) / sizeof(regstrs[0])); i++) {
int j;
for (j = 0; j < 2; j++) {
snprintf(buff, 0x10, "%d %s %-4s", i, getsetstr[j], regstrs[i]);
syms[i][j] = ID2SYM(rb_intern(buff));
}
}
}
valstr = syms[reg][isset];
uh = rb_const_get(rb_cRubyVM, usage_hash);
if (NIL_P(cv = rb_hash_aref(uh, valstr))) {
cv = INT2FIX(0);
}
HASH_ASET(uh, valstr, INT2FIX(FIX2INT(cv) + 1));
}
#undef HASH_ASET
static void (*ruby_vm_collect_usage_func_insn)(int insn) = NULL;
static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op) = NULL;
static void (*ruby_vm_collect_usage_func_register)(int reg, int isset) = NULL;
/* :nodoc: */
static VALUE
usage_analysis_insn_start(VALUE self)
{
ruby_vm_collect_usage_func_insn = vm_analysis_insn;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_operand_start(VALUE self)
{
ruby_vm_collect_usage_func_operand = vm_analysis_operand;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_register_start(VALUE self)
{
ruby_vm_collect_usage_func_register = vm_analysis_register;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_insn_stop(VALUE self)
{
ruby_vm_collect_usage_func_insn = 0;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_operand_stop(VALUE self)
{
ruby_vm_collect_usage_func_operand = 0;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_register_stop(VALUE self)
{
ruby_vm_collect_usage_func_register = 0;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_insn_running(VALUE self)
{
return RBOOL(ruby_vm_collect_usage_func_insn != 0);
}
/* :nodoc: */
static VALUE
usage_analysis_operand_running(VALUE self)
{
return RBOOL(ruby_vm_collect_usage_func_operand != 0);
}
/* :nodoc: */
static VALUE
usage_analysis_register_running(VALUE self)
{
return RBOOL(ruby_vm_collect_usage_func_register != 0);
}
static VALUE
usage_analysis_clear(VALUE self, ID usage_hash)
{
VALUE uh;
uh = rb_const_get(self, usage_hash);
rb_hash_clear(uh);
return Qtrue;
}
/* :nodoc: */
static VALUE
usage_analysis_insn_clear(VALUE self)
{
ID usage_hash;
ID bigram_hash;
CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
CONST_ID(bigram_hash, "USAGE_ANALYSIS_INSN_BIGRAM");
usage_analysis_clear(rb_cRubyVM, usage_hash);
return usage_analysis_clear(rb_cRubyVM, bigram_hash);
}
/* :nodoc: */
static VALUE
usage_analysis_operand_clear(VALUE self)
{
ID usage_hash;
CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
return usage_analysis_clear(self, usage_hash);
}
/* :nodoc: */
static VALUE
usage_analysis_register_clear(VALUE self)
{
ID usage_hash;
CONST_ID(usage_hash, "USAGE_ANALYSIS_REGS");
return usage_analysis_clear(self, usage_hash);
}
#else
MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_insn)(int insn)) = 0;
MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op)) = 0;
MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_register)(int reg, int isset)) = 0;
#endif
#if VM_COLLECT_USAGE_DETAILS
/* @param insn instruction number */
static void
vm_collect_usage_insn(int insn)
{
if (RUBY_DTRACE_INSN_ENABLED()) {
RUBY_DTRACE_INSN(rb_insns_name(insn));
}
if (ruby_vm_collect_usage_func_insn)
(*ruby_vm_collect_usage_func_insn)(insn);
}
/* @param insn instruction number
* @param n n-th operand
* @param op operand value
*/
static void
vm_collect_usage_operand(int insn, int n, VALUE op)
{
if (RUBY_DTRACE_INSN_OPERAND_ENABLED()) {
VALUE valstr;
valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0);
RUBY_DTRACE_INSN_OPERAND(RSTRING_PTR(valstr), rb_insns_name(insn));
RB_GC_GUARD(valstr);
}
if (ruby_vm_collect_usage_func_operand)
(*ruby_vm_collect_usage_func_operand)(insn, n, op);
}
/* @param reg register id. see code of vm_analysis_register() */
/* @param isset 0: read, 1: write */
static void
vm_collect_usage_register(int reg, int isset)
{
if (ruby_vm_collect_usage_func_register)
(*ruby_vm_collect_usage_func_register)(reg, isset);
}
#endif
const struct rb_callcache *
rb_vm_empty_cc(void)
{
return &vm_empty_cc;
}
const struct rb_callcache *
rb_vm_empty_cc_for_super(void)
{
return &vm_empty_cc_for_super;
}
#include "vm_call_iseq_optimized.inc" /* required from vm_insnhelper.c */