зеркало из https://github.com/github/ruby.git
1640 строки
38 KiB
C
1640 строки
38 KiB
C
/* included by thread.c */
|
|
#include "ccan/list/list.h"
|
|
|
|
static VALUE rb_cMutex, rb_cQueue, rb_cSizedQueue, rb_cConditionVariable;
|
|
static VALUE rb_eClosedQueueError;
|
|
|
|
/* Mutex */
|
|
typedef struct rb_mutex_struct {
|
|
rb_fiber_t *fiber;
|
|
struct rb_mutex_struct *next_mutex;
|
|
struct list_head waitq; /* protected by GVL */
|
|
} rb_mutex_t;
|
|
|
|
/* sync_waiter is always on-stack */
|
|
struct sync_waiter {
|
|
VALUE self;
|
|
rb_thread_t *th;
|
|
rb_fiber_t *fiber;
|
|
struct list_node node;
|
|
};
|
|
|
|
#define MUTEX_ALLOW_TRAP FL_USER1
|
|
|
|
static void
|
|
sync_wakeup(struct list_head *head, long max)
|
|
{
|
|
struct sync_waiter *cur = 0, *next;
|
|
|
|
list_for_each_safe(head, cur, next, node) {
|
|
list_del_init(&cur->node);
|
|
|
|
if (cur->th->status != THREAD_KILLED) {
|
|
|
|
if (cur->th->scheduler != Qnil && rb_fiberptr_blocking(cur->fiber) == 0) {
|
|
rb_fiber_scheduler_unblock(cur->th->scheduler, cur->self, rb_fiberptr_self(cur->fiber));
|
|
}
|
|
else {
|
|
rb_threadptr_interrupt(cur->th);
|
|
cur->th->status = THREAD_RUNNABLE;
|
|
}
|
|
|
|
if (--max == 0) return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
wakeup_one(struct list_head *head)
|
|
{
|
|
sync_wakeup(head, 1);
|
|
}
|
|
|
|
static void
|
|
wakeup_all(struct list_head *head)
|
|
{
|
|
sync_wakeup(head, LONG_MAX);
|
|
}
|
|
|
|
#if defined(HAVE_WORKING_FORK)
|
|
static void rb_mutex_abandon_all(rb_mutex_t *mutexes);
|
|
static void rb_mutex_abandon_keeping_mutexes(rb_thread_t *th);
|
|
static void rb_mutex_abandon_locking_mutex(rb_thread_t *th);
|
|
#endif
|
|
static const char* rb_mutex_unlock_th(rb_mutex_t *mutex, rb_thread_t *th, rb_fiber_t *fiber);
|
|
|
|
/*
|
|
* Document-class: Thread::Mutex
|
|
*
|
|
* Thread::Mutex implements a simple semaphore that can be used to
|
|
* coordinate access to shared data from multiple concurrent threads.
|
|
*
|
|
* Example:
|
|
*
|
|
* semaphore = Thread::Mutex.new
|
|
*
|
|
* a = Thread.new {
|
|
* semaphore.synchronize {
|
|
* # access shared resource
|
|
* }
|
|
* }
|
|
*
|
|
* b = Thread.new {
|
|
* semaphore.synchronize {
|
|
* # access shared resource
|
|
* }
|
|
* }
|
|
*
|
|
*/
|
|
|
|
#define mutex_mark ((void(*)(void*))0)
|
|
|
|
static size_t
|
|
rb_mutex_num_waiting(rb_mutex_t *mutex)
|
|
{
|
|
struct sync_waiter *w = 0;
|
|
size_t n = 0;
|
|
|
|
list_for_each(&mutex->waitq, w, node) {
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
rb_thread_t* rb_fiber_threadptr(const rb_fiber_t *fiber);
|
|
|
|
static void
|
|
mutex_free(void *ptr)
|
|
{
|
|
rb_mutex_t *mutex = ptr;
|
|
if (mutex->fiber) {
|
|
/* rb_warn("free locked mutex"); */
|
|
const char *err = rb_mutex_unlock_th(mutex, rb_fiber_threadptr(mutex->fiber), mutex->fiber);
|
|
if (err) rb_bug("%s", err);
|
|
}
|
|
ruby_xfree(ptr);
|
|
}
|
|
|
|
static size_t
|
|
mutex_memsize(const void *ptr)
|
|
{
|
|
return sizeof(rb_mutex_t);
|
|
}
|
|
|
|
static const rb_data_type_t mutex_data_type = {
|
|
"mutex",
|
|
{mutex_mark, mutex_free, mutex_memsize,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
static rb_mutex_t *
|
|
mutex_ptr(VALUE obj)
|
|
{
|
|
rb_mutex_t *mutex;
|
|
|
|
TypedData_Get_Struct(obj, rb_mutex_t, &mutex_data_type, mutex);
|
|
|
|
return mutex;
|
|
}
|
|
|
|
VALUE
|
|
rb_obj_is_mutex(VALUE obj)
|
|
{
|
|
if (rb_typeddata_is_kind_of(obj, &mutex_data_type)) {
|
|
return Qtrue;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
mutex_alloc(VALUE klass)
|
|
{
|
|
VALUE obj;
|
|
rb_mutex_t *mutex;
|
|
|
|
obj = TypedData_Make_Struct(klass, rb_mutex_t, &mutex_data_type, mutex);
|
|
|
|
list_head_init(&mutex->waitq);
|
|
return obj;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Thread::Mutex.new -> mutex
|
|
*
|
|
* Creates a new Mutex
|
|
*/
|
|
static VALUE
|
|
mutex_initialize(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
VALUE
|
|
rb_mutex_new(void)
|
|
{
|
|
return mutex_alloc(rb_cMutex);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mutex.locked? -> true or false
|
|
*
|
|
* Returns +true+ if this lock is currently held by some thread.
|
|
*/
|
|
VALUE
|
|
rb_mutex_locked_p(VALUE self)
|
|
{
|
|
rb_mutex_t *mutex = mutex_ptr(self);
|
|
|
|
return mutex->fiber ? Qtrue : Qfalse;
|
|
}
|
|
|
|
static void
|
|
thread_mutex_insert(rb_thread_t *thread, rb_mutex_t *mutex)
|
|
{
|
|
if (thread->keeping_mutexes) {
|
|
mutex->next_mutex = thread->keeping_mutexes;
|
|
}
|
|
|
|
thread->keeping_mutexes = mutex;
|
|
}
|
|
|
|
static void
|
|
thread_mutex_remove(rb_thread_t *thread, rb_mutex_t *mutex)
|
|
{
|
|
rb_mutex_t **keeping_mutexes = &thread->keeping_mutexes;
|
|
|
|
while (*keeping_mutexes && *keeping_mutexes != mutex) {
|
|
// Move to the next mutex in the list:
|
|
keeping_mutexes = &(*keeping_mutexes)->next_mutex;
|
|
}
|
|
|
|
if (*keeping_mutexes) {
|
|
*keeping_mutexes = mutex->next_mutex;
|
|
mutex->next_mutex = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
mutex_locked(rb_thread_t *th, VALUE self)
|
|
{
|
|
rb_mutex_t *mutex = mutex_ptr(self);
|
|
|
|
thread_mutex_insert(th, mutex);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mutex.try_lock -> true or false
|
|
*
|
|
* Attempts to obtain the lock and returns immediately. Returns +true+ if the
|
|
* lock was granted.
|
|
*/
|
|
VALUE
|
|
rb_mutex_trylock(VALUE self)
|
|
{
|
|
rb_mutex_t *mutex = mutex_ptr(self);
|
|
|
|
if (mutex->fiber == 0) {
|
|
rb_fiber_t *fiber = GET_EC()->fiber_ptr;
|
|
rb_thread_t *th = GET_THREAD();
|
|
mutex->fiber = fiber;
|
|
|
|
mutex_locked(th, self);
|
|
return Qtrue;
|
|
}
|
|
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* At maximum, only one thread can use cond_timedwait and watch deadlock
|
|
* periodically. Multiple polling thread (i.e. concurrent deadlock check)
|
|
* introduces new race conditions. [Bug #6278] [ruby-core:44275]
|
|
*/
|
|
static const rb_thread_t *patrol_thread = NULL;
|
|
|
|
static VALUE
|
|
mutex_owned_p(rb_fiber_t *fiber, rb_mutex_t *mutex)
|
|
{
|
|
if (mutex->fiber == fiber) {
|
|
return Qtrue;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
call_rb_fiber_scheduler_block(VALUE mutex)
|
|
{
|
|
return rb_fiber_scheduler_block(rb_fiber_scheduler_current(), mutex, Qnil);
|
|
}
|
|
|
|
static VALUE
|
|
delete_from_waitq(VALUE value)
|
|
{
|
|
struct sync_waiter *sync_waiter = (void *)value;
|
|
list_del(&sync_waiter->node);
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
do_mutex_lock(VALUE self, int interruptible_p)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
rb_thread_t *th = ec->thread_ptr;
|
|
rb_fiber_t *fiber = ec->fiber_ptr;
|
|
rb_mutex_t *mutex = mutex_ptr(self);
|
|
|
|
/* When running trap handler */
|
|
if (!FL_TEST_RAW(self, MUTEX_ALLOW_TRAP) &&
|
|
th->ec->interrupt_mask & TRAP_INTERRUPT_MASK) {
|
|
rb_raise(rb_eThreadError, "can't be called from trap context");
|
|
}
|
|
|
|
if (rb_mutex_trylock(self) == Qfalse) {
|
|
if (mutex->fiber == fiber) {
|
|
rb_raise(rb_eThreadError, "deadlock; recursive locking");
|
|
}
|
|
|
|
while (mutex->fiber != fiber) {
|
|
VALUE scheduler = rb_fiber_scheduler_current();
|
|
if (scheduler != Qnil) {
|
|
struct sync_waiter sync_waiter = {
|
|
.self = self,
|
|
.th = th,
|
|
.fiber = fiber
|
|
};
|
|
|
|
list_add_tail(&mutex->waitq, &sync_waiter.node);
|
|
|
|
rb_ensure(call_rb_fiber_scheduler_block, self, delete_from_waitq, (VALUE)&sync_waiter);
|
|
|
|
if (!mutex->fiber) {
|
|
mutex->fiber = fiber;
|
|
}
|
|
}
|
|
else {
|
|
enum rb_thread_status prev_status = th->status;
|
|
rb_hrtime_t *timeout = 0;
|
|
rb_hrtime_t rel = rb_msec2hrtime(100);
|
|
|
|
th->status = THREAD_STOPPED_FOREVER;
|
|
th->locking_mutex = self;
|
|
rb_ractor_sleeper_threads_inc(th->ractor);
|
|
/*
|
|
* Carefully! while some contended threads are in native_sleep(),
|
|
* ractor->sleeper is unstable value. we have to avoid both deadlock
|
|
* and busy loop.
|
|
*/
|
|
if ((rb_ractor_living_thread_num(th->ractor) == rb_ractor_sleeper_thread_num(th->ractor)) &&
|
|
!patrol_thread) {
|
|
timeout = &rel;
|
|
patrol_thread = th;
|
|
}
|
|
|
|
struct sync_waiter sync_waiter = {
|
|
.self = self,
|
|
.th = th,
|
|
.fiber = fiber
|
|
};
|
|
|
|
list_add_tail(&mutex->waitq, &sync_waiter.node);
|
|
|
|
native_sleep(th, timeout); /* release GVL */
|
|
|
|
list_del(&sync_waiter.node);
|
|
|
|
if (!mutex->fiber) {
|
|
mutex->fiber = fiber;
|
|
}
|
|
|
|
if (patrol_thread == th)
|
|
patrol_thread = NULL;
|
|
|
|
th->locking_mutex = Qfalse;
|
|
if (mutex->fiber && timeout && !RUBY_VM_INTERRUPTED(th->ec)) {
|
|
rb_check_deadlock(th->ractor);
|
|
}
|
|
if (th->status == THREAD_STOPPED_FOREVER) {
|
|
th->status = prev_status;
|
|
}
|
|
rb_ractor_sleeper_threads_dec(th->ractor);
|
|
}
|
|
|
|
if (interruptible_p) {
|
|
/* release mutex before checking for interrupts...as interrupt checking
|
|
* code might call rb_raise() */
|
|
if (mutex->fiber == fiber) mutex->fiber = 0;
|
|
RUBY_VM_CHECK_INTS_BLOCKING(th->ec); /* may release mutex */
|
|
if (!mutex->fiber) {
|
|
mutex->fiber = fiber;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mutex->fiber == fiber) mutex_locked(th, self);
|
|
}
|
|
|
|
// assertion
|
|
if (mutex_owned_p(fiber, mutex) == Qfalse) rb_bug("do_mutex_lock: mutex is not owned.");
|
|
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
mutex_lock_uninterruptible(VALUE self)
|
|
{
|
|
return do_mutex_lock(self, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mutex.lock -> self
|
|
*
|
|
* Attempts to grab the lock and waits if it isn't available.
|
|
* Raises +ThreadError+ if +mutex+ was locked by the current thread.
|
|
*/
|
|
VALUE
|
|
rb_mutex_lock(VALUE self)
|
|
{
|
|
return do_mutex_lock(self, 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mutex.owned? -> true or false
|
|
*
|
|
* Returns +true+ if this lock is currently held by current thread.
|
|
*/
|
|
VALUE
|
|
rb_mutex_owned_p(VALUE self)
|
|
{
|
|
rb_fiber_t *fiber = GET_EC()->fiber_ptr;
|
|
rb_mutex_t *mutex = mutex_ptr(self);
|
|
|
|
return mutex_owned_p(fiber, mutex);
|
|
}
|
|
|
|
static const char *
|
|
rb_mutex_unlock_th(rb_mutex_t *mutex, rb_thread_t *th, rb_fiber_t *fiber)
|
|
{
|
|
const char *err = NULL;
|
|
|
|
if (mutex->fiber == 0) {
|
|
err = "Attempt to unlock a mutex which is not locked";
|
|
}
|
|
else if (mutex->fiber != fiber) {
|
|
err = "Attempt to unlock a mutex which is locked by another thread/fiber";
|
|
}
|
|
else {
|
|
struct sync_waiter *cur = 0, *next;
|
|
|
|
mutex->fiber = 0;
|
|
list_for_each_safe(&mutex->waitq, cur, next, node) {
|
|
list_del_init(&cur->node);
|
|
|
|
if (cur->th->scheduler != Qnil && rb_fiberptr_blocking(cur->fiber) == 0) {
|
|
rb_fiber_scheduler_unblock(cur->th->scheduler, cur->self, rb_fiberptr_self(cur->fiber));
|
|
goto found;
|
|
}
|
|
else {
|
|
switch (cur->th->status) {
|
|
case THREAD_RUNNABLE: /* from someone else calling Thread#run */
|
|
case THREAD_STOPPED_FOREVER: /* likely (rb_mutex_lock) */
|
|
rb_threadptr_interrupt(cur->th);
|
|
goto found;
|
|
case THREAD_STOPPED: /* probably impossible */
|
|
rb_bug("unexpected THREAD_STOPPED");
|
|
case THREAD_KILLED:
|
|
/* not sure about this, possible in exit GC? */
|
|
rb_bug("unexpected THREAD_KILLED");
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
found:
|
|
thread_mutex_remove(th, mutex);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mutex.unlock -> self
|
|
*
|
|
* Releases the lock.
|
|
* Raises +ThreadError+ if +mutex+ wasn't locked by the current thread.
|
|
*/
|
|
VALUE
|
|
rb_mutex_unlock(VALUE self)
|
|
{
|
|
const char *err;
|
|
rb_mutex_t *mutex = mutex_ptr(self);
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
err = rb_mutex_unlock_th(mutex, th, GET_EC()->fiber_ptr);
|
|
if (err) rb_raise(rb_eThreadError, "%s", err);
|
|
|
|
return self;
|
|
}
|
|
|
|
#if defined(HAVE_WORKING_FORK)
|
|
static void
|
|
rb_mutex_abandon_keeping_mutexes(rb_thread_t *th)
|
|
{
|
|
rb_mutex_abandon_all(th->keeping_mutexes);
|
|
th->keeping_mutexes = NULL;
|
|
}
|
|
|
|
static void
|
|
rb_mutex_abandon_locking_mutex(rb_thread_t *th)
|
|
{
|
|
if (th->locking_mutex) {
|
|
rb_mutex_t *mutex = mutex_ptr(th->locking_mutex);
|
|
|
|
list_head_init(&mutex->waitq);
|
|
th->locking_mutex = Qfalse;
|
|
}
|
|
}
|
|
|
|
static void
|
|
rb_mutex_abandon_all(rb_mutex_t *mutexes)
|
|
{
|
|
rb_mutex_t *mutex;
|
|
|
|
while (mutexes) {
|
|
mutex = mutexes;
|
|
mutexes = mutex->next_mutex;
|
|
mutex->fiber = 0;
|
|
mutex->next_mutex = 0;
|
|
list_head_init(&mutex->waitq);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static VALUE
|
|
rb_mutex_sleep_forever(VALUE self)
|
|
{
|
|
rb_thread_sleep_deadly_allow_spurious_wakeup(self);
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
rb_mutex_wait_for(VALUE time)
|
|
{
|
|
rb_hrtime_t *rel = (rb_hrtime_t *)time;
|
|
/* permit spurious check */
|
|
sleep_hrtime(GET_THREAD(), *rel, 0);
|
|
return Qnil;
|
|
}
|
|
|
|
VALUE
|
|
rb_mutex_sleep(VALUE self, VALUE timeout)
|
|
{
|
|
struct timeval t;
|
|
|
|
if (!NIL_P(timeout)) {
|
|
t = rb_time_interval(timeout);
|
|
}
|
|
|
|
rb_mutex_unlock(self);
|
|
time_t beg = time(0);
|
|
|
|
VALUE scheduler = rb_fiber_scheduler_current();
|
|
if (scheduler != Qnil) {
|
|
rb_fiber_scheduler_kernel_sleep(scheduler, timeout);
|
|
mutex_lock_uninterruptible(self);
|
|
}
|
|
else {
|
|
if (NIL_P(timeout)) {
|
|
rb_ensure(rb_mutex_sleep_forever, self, mutex_lock_uninterruptible, self);
|
|
}
|
|
else {
|
|
rb_hrtime_t rel = rb_timeval2hrtime(&t);
|
|
rb_ensure(rb_mutex_wait_for, (VALUE)&rel, mutex_lock_uninterruptible, self);
|
|
}
|
|
}
|
|
|
|
RUBY_VM_CHECK_INTS_BLOCKING(GET_EC());
|
|
time_t end = time(0) - beg;
|
|
return TIMET2NUM(end);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mutex.sleep(timeout = nil) -> number
|
|
*
|
|
* Releases the lock and sleeps +timeout+ seconds if it is given and
|
|
* non-nil or forever. Raises +ThreadError+ if +mutex+ wasn't locked by
|
|
* the current thread.
|
|
*
|
|
* When the thread is next woken up, it will attempt to reacquire
|
|
* the lock.
|
|
*
|
|
* Note that this method can wakeup without explicit Thread#wakeup call.
|
|
* For example, receiving signal and so on.
|
|
*/
|
|
static VALUE
|
|
mutex_sleep(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE timeout;
|
|
|
|
timeout = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
|
|
return rb_mutex_sleep(self, timeout);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mutex.synchronize { ... } -> result of the block
|
|
*
|
|
* Obtains a lock, runs the block, and releases the lock when the block
|
|
* completes. See the example under Thread::Mutex.
|
|
*/
|
|
|
|
VALUE
|
|
rb_mutex_synchronize(VALUE mutex, VALUE (*func)(VALUE arg), VALUE arg)
|
|
{
|
|
rb_mutex_lock(mutex);
|
|
return rb_ensure(func, arg, rb_mutex_unlock, mutex);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mutex.synchronize { ... } -> result of the block
|
|
*
|
|
* Obtains a lock, runs the block, and releases the lock when the block
|
|
* completes. See the example under Thread::Mutex.
|
|
*/
|
|
static VALUE
|
|
rb_mutex_synchronize_m(VALUE self)
|
|
{
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eThreadError, "must be called with a block");
|
|
}
|
|
|
|
return rb_mutex_synchronize(self, rb_yield, Qundef);
|
|
}
|
|
|
|
void rb_mutex_allow_trap(VALUE self, int val)
|
|
{
|
|
Check_TypedStruct(self, &mutex_data_type);
|
|
|
|
if (val)
|
|
FL_SET_RAW(self, MUTEX_ALLOW_TRAP);
|
|
else
|
|
FL_UNSET_RAW(self, MUTEX_ALLOW_TRAP);
|
|
}
|
|
|
|
/* Queue */
|
|
|
|
#define queue_waitq(q) UNALIGNED_MEMBER_PTR(q, waitq)
|
|
PACKED_STRUCT_UNALIGNED(struct rb_queue {
|
|
struct list_head waitq;
|
|
rb_serial_t fork_gen;
|
|
const VALUE que;
|
|
int num_waiting;
|
|
});
|
|
|
|
#define szqueue_waitq(sq) UNALIGNED_MEMBER_PTR(sq, q.waitq)
|
|
#define szqueue_pushq(sq) UNALIGNED_MEMBER_PTR(sq, pushq)
|
|
PACKED_STRUCT_UNALIGNED(struct rb_szqueue {
|
|
struct rb_queue q;
|
|
int num_waiting_push;
|
|
struct list_head pushq;
|
|
long max;
|
|
});
|
|
|
|
static void
|
|
queue_mark(void *ptr)
|
|
{
|
|
struct rb_queue *q = ptr;
|
|
|
|
/* no need to mark threads in waitq, they are on stack */
|
|
rb_gc_mark(q->que);
|
|
}
|
|
|
|
static size_t
|
|
queue_memsize(const void *ptr)
|
|
{
|
|
return sizeof(struct rb_queue);
|
|
}
|
|
|
|
static const rb_data_type_t queue_data_type = {
|
|
"queue",
|
|
{queue_mark, RUBY_TYPED_DEFAULT_FREE, queue_memsize,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY|RUBY_TYPED_WB_PROTECTED
|
|
};
|
|
|
|
static VALUE
|
|
queue_alloc(VALUE klass)
|
|
{
|
|
VALUE obj;
|
|
struct rb_queue *q;
|
|
|
|
obj = TypedData_Make_Struct(klass, struct rb_queue, &queue_data_type, q);
|
|
list_head_init(queue_waitq(q));
|
|
return obj;
|
|
}
|
|
|
|
static int
|
|
queue_fork_check(struct rb_queue *q)
|
|
{
|
|
rb_serial_t fork_gen = GET_VM()->fork_gen;
|
|
|
|
if (q->fork_gen == fork_gen) {
|
|
return 0;
|
|
}
|
|
/* forked children can't reach into parent thread stacks */
|
|
q->fork_gen = fork_gen;
|
|
list_head_init(queue_waitq(q));
|
|
q->num_waiting = 0;
|
|
return 1;
|
|
}
|
|
|
|
static struct rb_queue *
|
|
queue_ptr(VALUE obj)
|
|
{
|
|
struct rb_queue *q;
|
|
|
|
TypedData_Get_Struct(obj, struct rb_queue, &queue_data_type, q);
|
|
queue_fork_check(q);
|
|
|
|
return q;
|
|
}
|
|
|
|
#define QUEUE_CLOSED FL_USER5
|
|
|
|
static void
|
|
szqueue_mark(void *ptr)
|
|
{
|
|
struct rb_szqueue *sq = ptr;
|
|
|
|
queue_mark(&sq->q);
|
|
}
|
|
|
|
static size_t
|
|
szqueue_memsize(const void *ptr)
|
|
{
|
|
return sizeof(struct rb_szqueue);
|
|
}
|
|
|
|
static const rb_data_type_t szqueue_data_type = {
|
|
"sized_queue",
|
|
{szqueue_mark, RUBY_TYPED_DEFAULT_FREE, szqueue_memsize,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY|RUBY_TYPED_WB_PROTECTED
|
|
};
|
|
|
|
static VALUE
|
|
szqueue_alloc(VALUE klass)
|
|
{
|
|
struct rb_szqueue *sq;
|
|
VALUE obj = TypedData_Make_Struct(klass, struct rb_szqueue,
|
|
&szqueue_data_type, sq);
|
|
list_head_init(szqueue_waitq(sq));
|
|
list_head_init(szqueue_pushq(sq));
|
|
return obj;
|
|
}
|
|
|
|
static struct rb_szqueue *
|
|
szqueue_ptr(VALUE obj)
|
|
{
|
|
struct rb_szqueue *sq;
|
|
|
|
TypedData_Get_Struct(obj, struct rb_szqueue, &szqueue_data_type, sq);
|
|
if (queue_fork_check(&sq->q)) {
|
|
list_head_init(szqueue_pushq(sq));
|
|
sq->num_waiting_push = 0;
|
|
}
|
|
|
|
return sq;
|
|
}
|
|
|
|
static VALUE
|
|
ary_buf_new(void)
|
|
{
|
|
return rb_ary_tmp_new(1);
|
|
}
|
|
|
|
static VALUE
|
|
check_array(VALUE obj, VALUE ary)
|
|
{
|
|
if (!RB_TYPE_P(ary, T_ARRAY)) {
|
|
rb_raise(rb_eTypeError, "%+"PRIsVALUE" not initialized", obj);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
static long
|
|
queue_length(VALUE self, struct rb_queue *q)
|
|
{
|
|
return RARRAY_LEN(check_array(self, q->que));
|
|
}
|
|
|
|
static int
|
|
queue_closed_p(VALUE self)
|
|
{
|
|
return FL_TEST_RAW(self, QUEUE_CLOSED) != 0;
|
|
}
|
|
|
|
/*
|
|
* Document-class: ClosedQueueError
|
|
*
|
|
* The exception class which will be raised when pushing into a closed
|
|
* Queue. See Thread::Queue#close and Thread::SizedQueue#close.
|
|
*/
|
|
|
|
NORETURN(static void raise_closed_queue_error(VALUE self));
|
|
|
|
static void
|
|
raise_closed_queue_error(VALUE self)
|
|
{
|
|
rb_raise(rb_eClosedQueueError, "queue closed");
|
|
}
|
|
|
|
static VALUE
|
|
queue_closed_result(VALUE self, struct rb_queue *q)
|
|
{
|
|
assert(queue_length(self, q) == 0);
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* Document-class: Thread::Queue
|
|
*
|
|
* The Thread::Queue class implements multi-producer, multi-consumer
|
|
* queues. It is especially useful in threaded programming when
|
|
* information must be exchanged safely between multiple threads. The
|
|
* Thread::Queue class implements all the required locking semantics.
|
|
*
|
|
* The class implements FIFO type of queue. In a FIFO queue, the first
|
|
* tasks added are the first retrieved.
|
|
*
|
|
* Example:
|
|
*
|
|
* queue = Thread::Queue.new
|
|
*
|
|
* producer = Thread.new do
|
|
* 5.times do |i|
|
|
* sleep rand(i) # simulate expense
|
|
* queue << i
|
|
* puts "#{i} produced"
|
|
* end
|
|
* end
|
|
*
|
|
* consumer = Thread.new do
|
|
* 5.times do |i|
|
|
* value = queue.pop
|
|
* sleep rand(i/2) # simulate expense
|
|
* puts "consumed #{value}"
|
|
* end
|
|
* end
|
|
*
|
|
* consumer.join
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Document-method: Queue::new
|
|
*
|
|
* Creates a new queue instance, optionally using the contents of an Enumerable
|
|
* for its initial state.
|
|
*
|
|
* Example:
|
|
*
|
|
* q = Thread::Queue.new
|
|
* q = Thread::Queue.new([a, b, c])
|
|
* q = Thread::Queue.new(items)
|
|
*/
|
|
|
|
static VALUE
|
|
rb_queue_initialize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE initial;
|
|
struct rb_queue *q = queue_ptr(self);
|
|
if ((argc = rb_scan_args(argc, argv, "01", &initial)) == 1) {
|
|
initial = rb_to_array(initial);
|
|
}
|
|
RB_OBJ_WRITE(self, &q->que, ary_buf_new());
|
|
list_head_init(queue_waitq(q));
|
|
if (argc == 1) {
|
|
rb_ary_concat(q->que, initial);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
queue_do_push(VALUE self, struct rb_queue *q, VALUE obj)
|
|
{
|
|
if (queue_closed_p(self)) {
|
|
raise_closed_queue_error(self);
|
|
}
|
|
rb_ary_push(check_array(self, q->que), obj);
|
|
wakeup_one(queue_waitq(q));
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::Queue#close
|
|
* call-seq:
|
|
* close
|
|
*
|
|
* Closes the queue. A closed queue cannot be re-opened.
|
|
*
|
|
* After the call to close completes, the following are true:
|
|
*
|
|
* - +closed?+ will return true
|
|
*
|
|
* - +close+ will be ignored.
|
|
*
|
|
* - calling enq/push/<< will raise a +ClosedQueueError+.
|
|
*
|
|
* - when +empty?+ is false, calling deq/pop/shift will return an object
|
|
* from the queue as usual.
|
|
* - when +empty?+ is true, deq(false) will not suspend the thread and will return nil.
|
|
* deq(true) will raise a +ThreadError+.
|
|
*
|
|
* ClosedQueueError is inherited from StopIteration, so that you can break loop block.
|
|
*
|
|
* Example:
|
|
*
|
|
* q = Thread::Queue.new
|
|
* Thread.new{
|
|
* while e = q.deq # wait for nil to break loop
|
|
* # ...
|
|
* end
|
|
* }
|
|
* q.close
|
|
*/
|
|
|
|
static VALUE
|
|
rb_queue_close(VALUE self)
|
|
{
|
|
struct rb_queue *q = queue_ptr(self);
|
|
|
|
if (!queue_closed_p(self)) {
|
|
FL_SET(self, QUEUE_CLOSED);
|
|
|
|
wakeup_all(queue_waitq(q));
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::Queue#closed?
|
|
* call-seq: closed?
|
|
*
|
|
* Returns +true+ if the queue is closed.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_queue_closed_p(VALUE self)
|
|
{
|
|
return queue_closed_p(self) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::Queue#push
|
|
* call-seq:
|
|
* push(object)
|
|
* enq(object)
|
|
* <<(object)
|
|
*
|
|
* Pushes the given +object+ to the queue.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_queue_push(VALUE self, VALUE obj)
|
|
{
|
|
return queue_do_push(self, queue_ptr(self), obj);
|
|
}
|
|
|
|
static VALUE
|
|
queue_sleep(VALUE self)
|
|
{
|
|
rb_thread_sleep_deadly_allow_spurious_wakeup(self);
|
|
return Qnil;
|
|
}
|
|
|
|
struct queue_waiter {
|
|
struct sync_waiter w;
|
|
union {
|
|
struct rb_queue *q;
|
|
struct rb_szqueue *sq;
|
|
} as;
|
|
};
|
|
|
|
static VALUE
|
|
queue_sleep_done(VALUE p)
|
|
{
|
|
struct queue_waiter *qw = (struct queue_waiter *)p;
|
|
|
|
list_del(&qw->w.node);
|
|
qw->as.q->num_waiting--;
|
|
|
|
return Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
szqueue_sleep_done(VALUE p)
|
|
{
|
|
struct queue_waiter *qw = (struct queue_waiter *)p;
|
|
|
|
list_del(&qw->w.node);
|
|
qw->as.sq->num_waiting_push--;
|
|
|
|
return Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
queue_do_pop(VALUE self, struct rb_queue *q, int should_block)
|
|
{
|
|
check_array(self, q->que);
|
|
|
|
while (RARRAY_LEN(q->que) == 0) {
|
|
if (!should_block) {
|
|
rb_raise(rb_eThreadError, "queue empty");
|
|
}
|
|
else if (queue_closed_p(self)) {
|
|
return queue_closed_result(self, q);
|
|
}
|
|
else {
|
|
rb_execution_context_t *ec = GET_EC();
|
|
|
|
assert(RARRAY_LEN(q->que) == 0);
|
|
assert(queue_closed_p(self) == 0);
|
|
|
|
struct queue_waiter queue_waiter = {
|
|
.w = {.self = self, .th = ec->thread_ptr, .fiber = ec->fiber_ptr},
|
|
.as = {.q = q}
|
|
};
|
|
|
|
list_add_tail(queue_waitq(queue_waiter.as.q), &queue_waiter.w.node);
|
|
queue_waiter.as.q->num_waiting++;
|
|
|
|
rb_ensure(queue_sleep, self, queue_sleep_done, (VALUE)&queue_waiter);
|
|
}
|
|
}
|
|
|
|
return rb_ary_shift(q->que);
|
|
}
|
|
|
|
static int
|
|
queue_pop_should_block(int argc, const VALUE *argv)
|
|
{
|
|
int should_block = 1;
|
|
rb_check_arity(argc, 0, 1);
|
|
if (argc > 0) {
|
|
should_block = !RTEST(argv[0]);
|
|
}
|
|
return should_block;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::Queue#pop
|
|
* call-seq:
|
|
* pop(non_block=false)
|
|
* deq(non_block=false)
|
|
* shift(non_block=false)
|
|
*
|
|
* Retrieves data from the queue.
|
|
*
|
|
* If the queue is empty, the calling thread is suspended until data is pushed
|
|
* onto the queue. If +non_block+ is true, the thread isn't suspended, and
|
|
* +ThreadError+ is raised.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_queue_pop(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
int should_block = queue_pop_should_block(argc, argv);
|
|
return queue_do_pop(self, queue_ptr(self), should_block);
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::Queue#empty?
|
|
* call-seq: empty?
|
|
*
|
|
* Returns +true+ if the queue is empty.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_queue_empty_p(VALUE self)
|
|
{
|
|
return queue_length(self, queue_ptr(self)) == 0 ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::Queue#clear
|
|
*
|
|
* Removes all objects from the queue.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_queue_clear(VALUE self)
|
|
{
|
|
struct rb_queue *q = queue_ptr(self);
|
|
|
|
rb_ary_clear(check_array(self, q->que));
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::Queue#length
|
|
* call-seq:
|
|
* length
|
|
* size
|
|
*
|
|
* Returns the length of the queue.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_queue_length(VALUE self)
|
|
{
|
|
return LONG2NUM(queue_length(self, queue_ptr(self)));
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::Queue#num_waiting
|
|
*
|
|
* Returns the number of threads waiting on the queue.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_queue_num_waiting(VALUE self)
|
|
{
|
|
struct rb_queue *q = queue_ptr(self);
|
|
|
|
return INT2NUM(q->num_waiting);
|
|
}
|
|
|
|
/*
|
|
* Document-class: Thread::SizedQueue
|
|
*
|
|
* This class represents queues of specified size capacity. The push operation
|
|
* may be blocked if the capacity is full.
|
|
*
|
|
* See Thread::Queue for an example of how a Thread::SizedQueue works.
|
|
*/
|
|
|
|
/*
|
|
* Document-method: SizedQueue::new
|
|
* call-seq: new(max)
|
|
*
|
|
* Creates a fixed-length queue with a maximum size of +max+.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_szqueue_initialize(VALUE self, VALUE vmax)
|
|
{
|
|
long max;
|
|
struct rb_szqueue *sq = szqueue_ptr(self);
|
|
|
|
max = NUM2LONG(vmax);
|
|
if (max <= 0) {
|
|
rb_raise(rb_eArgError, "queue size must be positive");
|
|
}
|
|
|
|
RB_OBJ_WRITE(self, &sq->q.que, ary_buf_new());
|
|
list_head_init(szqueue_waitq(sq));
|
|
list_head_init(szqueue_pushq(sq));
|
|
sq->max = max;
|
|
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::SizedQueue#close
|
|
* call-seq:
|
|
* close
|
|
*
|
|
* Similar to Thread::Queue#close.
|
|
*
|
|
* The difference is behavior with waiting enqueuing threads.
|
|
*
|
|
* If there are waiting enqueuing threads, they are interrupted by
|
|
* raising ClosedQueueError('queue closed').
|
|
*/
|
|
static VALUE
|
|
rb_szqueue_close(VALUE self)
|
|
{
|
|
if (!queue_closed_p(self)) {
|
|
struct rb_szqueue *sq = szqueue_ptr(self);
|
|
|
|
FL_SET(self, QUEUE_CLOSED);
|
|
wakeup_all(szqueue_waitq(sq));
|
|
wakeup_all(szqueue_pushq(sq));
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::SizedQueue#max
|
|
*
|
|
* Returns the maximum size of the queue.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_szqueue_max_get(VALUE self)
|
|
{
|
|
return LONG2NUM(szqueue_ptr(self)->max);
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::SizedQueue#max=
|
|
* call-seq: max=(number)
|
|
*
|
|
* Sets the maximum size of the queue to the given +number+.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_szqueue_max_set(VALUE self, VALUE vmax)
|
|
{
|
|
long max = NUM2LONG(vmax);
|
|
long diff = 0;
|
|
struct rb_szqueue *sq = szqueue_ptr(self);
|
|
|
|
if (max <= 0) {
|
|
rb_raise(rb_eArgError, "queue size must be positive");
|
|
}
|
|
if (max > sq->max) {
|
|
diff = max - sq->max;
|
|
}
|
|
sq->max = max;
|
|
sync_wakeup(szqueue_pushq(sq), diff);
|
|
return vmax;
|
|
}
|
|
|
|
static int
|
|
szqueue_push_should_block(int argc, const VALUE *argv)
|
|
{
|
|
int should_block = 1;
|
|
rb_check_arity(argc, 1, 2);
|
|
if (argc > 1) {
|
|
should_block = !RTEST(argv[1]);
|
|
}
|
|
return should_block;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::SizedQueue#push
|
|
* call-seq:
|
|
* push(object, non_block=false)
|
|
* enq(object, non_block=false)
|
|
* <<(object)
|
|
*
|
|
* Pushes +object+ to the queue.
|
|
*
|
|
* If there is no space left in the queue, waits until space becomes
|
|
* available, unless +non_block+ is true. If +non_block+ is true, the
|
|
* thread isn't suspended, and +ThreadError+ is raised.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_szqueue_push(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
struct rb_szqueue *sq = szqueue_ptr(self);
|
|
int should_block = szqueue_push_should_block(argc, argv);
|
|
|
|
while (queue_length(self, &sq->q) >= sq->max) {
|
|
if (!should_block) {
|
|
rb_raise(rb_eThreadError, "queue full");
|
|
}
|
|
else if (queue_closed_p(self)) {
|
|
break;
|
|
}
|
|
else {
|
|
rb_execution_context_t *ec = GET_EC();
|
|
struct queue_waiter queue_waiter = {
|
|
.w = {.self = self, .th = ec->thread_ptr, .fiber = ec->fiber_ptr},
|
|
.as = {.sq = sq}
|
|
};
|
|
|
|
struct list_head *pushq = szqueue_pushq(sq);
|
|
|
|
list_add_tail(pushq, &queue_waiter.w.node);
|
|
sq->num_waiting_push++;
|
|
|
|
rb_ensure(queue_sleep, self, szqueue_sleep_done, (VALUE)&queue_waiter);
|
|
}
|
|
}
|
|
|
|
if (queue_closed_p(self)) {
|
|
raise_closed_queue_error(self);
|
|
}
|
|
|
|
return queue_do_push(self, &sq->q, argv[0]);
|
|
}
|
|
|
|
static VALUE
|
|
szqueue_do_pop(VALUE self, int should_block)
|
|
{
|
|
struct rb_szqueue *sq = szqueue_ptr(self);
|
|
VALUE retval = queue_do_pop(self, &sq->q, should_block);
|
|
|
|
if (queue_length(self, &sq->q) < sq->max) {
|
|
wakeup_one(szqueue_pushq(sq));
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::SizedQueue#pop
|
|
* call-seq:
|
|
* pop(non_block=false)
|
|
* deq(non_block=false)
|
|
* shift(non_block=false)
|
|
*
|
|
* Retrieves data from the queue.
|
|
*
|
|
* If the queue is empty, the calling thread is suspended until data is pushed
|
|
* onto the queue. If +non_block+ is true, the thread isn't suspended, and
|
|
* +ThreadError+ is raised.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_szqueue_pop(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
int should_block = queue_pop_should_block(argc, argv);
|
|
return szqueue_do_pop(self, should_block);
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::SizedQueue#clear
|
|
*
|
|
* Removes all objects from the queue.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_szqueue_clear(VALUE self)
|
|
{
|
|
struct rb_szqueue *sq = szqueue_ptr(self);
|
|
|
|
rb_ary_clear(check_array(self, sq->q.que));
|
|
wakeup_all(szqueue_pushq(sq));
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::SizedQueue#length
|
|
* call-seq:
|
|
* length
|
|
* size
|
|
*
|
|
* Returns the length of the queue.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_szqueue_length(VALUE self)
|
|
{
|
|
struct rb_szqueue *sq = szqueue_ptr(self);
|
|
|
|
return LONG2NUM(queue_length(self, &sq->q));
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::SizedQueue#num_waiting
|
|
*
|
|
* Returns the number of threads waiting on the queue.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_szqueue_num_waiting(VALUE self)
|
|
{
|
|
struct rb_szqueue *sq = szqueue_ptr(self);
|
|
|
|
return INT2NUM(sq->q.num_waiting + sq->num_waiting_push);
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::SizedQueue#empty?
|
|
* call-seq: empty?
|
|
*
|
|
* Returns +true+ if the queue is empty.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_szqueue_empty_p(VALUE self)
|
|
{
|
|
struct rb_szqueue *sq = szqueue_ptr(self);
|
|
|
|
return queue_length(self, &sq->q) == 0 ? Qtrue : Qfalse;
|
|
}
|
|
|
|
|
|
/* ConditionalVariable */
|
|
struct rb_condvar {
|
|
struct list_head waitq;
|
|
rb_serial_t fork_gen;
|
|
};
|
|
|
|
/*
|
|
* Document-class: Thread::ConditionVariable
|
|
*
|
|
* ConditionVariable objects augment class Mutex. Using condition variables,
|
|
* it is possible to suspend while in the middle of a critical section until a
|
|
* resource becomes available.
|
|
*
|
|
* Example:
|
|
*
|
|
* mutex = Thread::Mutex.new
|
|
* resource = Thread::ConditionVariable.new
|
|
*
|
|
* a = Thread.new {
|
|
* mutex.synchronize {
|
|
* # Thread 'a' now needs the resource
|
|
* resource.wait(mutex)
|
|
* # 'a' can now have the resource
|
|
* }
|
|
* }
|
|
*
|
|
* b = Thread.new {
|
|
* mutex.synchronize {
|
|
* # Thread 'b' has finished using the resource
|
|
* resource.signal
|
|
* }
|
|
* }
|
|
*/
|
|
|
|
static size_t
|
|
condvar_memsize(const void *ptr)
|
|
{
|
|
return sizeof(struct rb_condvar);
|
|
}
|
|
|
|
static const rb_data_type_t cv_data_type = {
|
|
"condvar",
|
|
{0, RUBY_TYPED_DEFAULT_FREE, condvar_memsize,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY|RUBY_TYPED_WB_PROTECTED
|
|
};
|
|
|
|
static struct rb_condvar *
|
|
condvar_ptr(VALUE self)
|
|
{
|
|
struct rb_condvar *cv;
|
|
rb_serial_t fork_gen = GET_VM()->fork_gen;
|
|
|
|
TypedData_Get_Struct(self, struct rb_condvar, &cv_data_type, cv);
|
|
|
|
/* forked children can't reach into parent thread stacks */
|
|
if (cv->fork_gen != fork_gen) {
|
|
cv->fork_gen = fork_gen;
|
|
list_head_init(&cv->waitq);
|
|
}
|
|
|
|
return cv;
|
|
}
|
|
|
|
static VALUE
|
|
condvar_alloc(VALUE klass)
|
|
{
|
|
struct rb_condvar *cv;
|
|
VALUE obj;
|
|
|
|
obj = TypedData_Make_Struct(klass, struct rb_condvar, &cv_data_type, cv);
|
|
list_head_init(&cv->waitq);
|
|
|
|
return obj;
|
|
}
|
|
|
|
/*
|
|
* Document-method: ConditionVariable::new
|
|
*
|
|
* Creates a new condition variable instance.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_condvar_initialize(VALUE self)
|
|
{
|
|
struct rb_condvar *cv = condvar_ptr(self);
|
|
list_head_init(&cv->waitq);
|
|
return self;
|
|
}
|
|
|
|
struct sleep_call {
|
|
VALUE mutex;
|
|
VALUE timeout;
|
|
};
|
|
|
|
static ID id_sleep;
|
|
|
|
static VALUE
|
|
do_sleep(VALUE args)
|
|
{
|
|
struct sleep_call *p = (struct sleep_call *)args;
|
|
return rb_funcallv(p->mutex, id_sleep, 1, &p->timeout);
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::ConditionVariable#wait
|
|
* call-seq: wait(mutex, timeout=nil)
|
|
*
|
|
* Releases the lock held in +mutex+ and waits; reacquires the lock on wakeup.
|
|
*
|
|
* If +timeout+ is given, this method returns after +timeout+ seconds passed,
|
|
* even if no other thread doesn't signal.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_condvar_wait(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
|
|
struct rb_condvar *cv = condvar_ptr(self);
|
|
struct sleep_call args;
|
|
|
|
rb_scan_args(argc, argv, "11", &args.mutex, &args.timeout);
|
|
|
|
struct sync_waiter sync_waiter = {
|
|
.self = args.mutex,
|
|
.th = ec->thread_ptr,
|
|
.fiber = ec->fiber_ptr
|
|
};
|
|
|
|
list_add_tail(&cv->waitq, &sync_waiter.node);
|
|
rb_ensure(do_sleep, (VALUE)&args, delete_from_waitq, (VALUE)&sync_waiter);
|
|
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::ConditionVariable#signal
|
|
*
|
|
* Wakes up the first thread in line waiting for this lock.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_condvar_signal(VALUE self)
|
|
{
|
|
struct rb_condvar *cv = condvar_ptr(self);
|
|
wakeup_one(&cv->waitq);
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* Document-method: Thread::ConditionVariable#broadcast
|
|
*
|
|
* Wakes up all threads waiting for this lock.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_condvar_broadcast(VALUE self)
|
|
{
|
|
struct rb_condvar *cv = condvar_ptr(self);
|
|
wakeup_all(&cv->waitq);
|
|
return self;
|
|
}
|
|
|
|
NORETURN(static VALUE undumpable(VALUE obj));
|
|
/* :nodoc: */
|
|
static VALUE
|
|
undumpable(VALUE obj)
|
|
{
|
|
rb_raise(rb_eTypeError, "can't dump %"PRIsVALUE, rb_obj_class(obj));
|
|
UNREACHABLE_RETURN(Qnil);
|
|
}
|
|
|
|
static VALUE
|
|
define_thread_class(VALUE outer, const ID name, VALUE super)
|
|
{
|
|
VALUE klass = rb_define_class_id_under(outer, name, super);
|
|
rb_const_set(rb_cObject, name, klass);
|
|
return klass;
|
|
}
|
|
|
|
static void
|
|
Init_thread_sync(void)
|
|
{
|
|
#undef rb_intern
|
|
#if defined(TEACH_RDOC) && TEACH_RDOC == 42
|
|
rb_cMutex = rb_define_class_under(rb_cThread, "Mutex", rb_cObject);
|
|
rb_cConditionVariable = rb_define_class_under(rb_cThread, "ConditionVariable", rb_cObject);
|
|
rb_cQueue = rb_define_class_under(rb_cThread, "Queue", rb_cObject);
|
|
rb_cSizedQueue = rb_define_class_under(rb_cThread, "SizedQueue", rb_cObject);
|
|
#endif
|
|
|
|
#define DEFINE_CLASS(name, super) \
|
|
rb_c##name = define_thread_class(rb_cThread, rb_intern(#name), rb_c##super)
|
|
|
|
/* Mutex */
|
|
DEFINE_CLASS(Mutex, Object);
|
|
rb_define_alloc_func(rb_cMutex, mutex_alloc);
|
|
rb_define_method(rb_cMutex, "initialize", mutex_initialize, 0);
|
|
rb_define_method(rb_cMutex, "locked?", rb_mutex_locked_p, 0);
|
|
rb_define_method(rb_cMutex, "try_lock", rb_mutex_trylock, 0);
|
|
rb_define_method(rb_cMutex, "lock", rb_mutex_lock, 0);
|
|
rb_define_method(rb_cMutex, "unlock", rb_mutex_unlock, 0);
|
|
rb_define_method(rb_cMutex, "sleep", mutex_sleep, -1);
|
|
rb_define_method(rb_cMutex, "synchronize", rb_mutex_synchronize_m, 0);
|
|
rb_define_method(rb_cMutex, "owned?", rb_mutex_owned_p, 0);
|
|
|
|
/* Queue */
|
|
DEFINE_CLASS(Queue, Object);
|
|
rb_define_alloc_func(rb_cQueue, queue_alloc);
|
|
|
|
rb_eClosedQueueError = rb_define_class("ClosedQueueError", rb_eStopIteration);
|
|
|
|
rb_define_method(rb_cQueue, "initialize", rb_queue_initialize, -1);
|
|
rb_undef_method(rb_cQueue, "initialize_copy");
|
|
rb_define_method(rb_cQueue, "marshal_dump", undumpable, 0);
|
|
rb_define_method(rb_cQueue, "close", rb_queue_close, 0);
|
|
rb_define_method(rb_cQueue, "closed?", rb_queue_closed_p, 0);
|
|
rb_define_method(rb_cQueue, "push", rb_queue_push, 1);
|
|
rb_define_method(rb_cQueue, "pop", rb_queue_pop, -1);
|
|
rb_define_method(rb_cQueue, "empty?", rb_queue_empty_p, 0);
|
|
rb_define_method(rb_cQueue, "clear", rb_queue_clear, 0);
|
|
rb_define_method(rb_cQueue, "length", rb_queue_length, 0);
|
|
rb_define_method(rb_cQueue, "num_waiting", rb_queue_num_waiting, 0);
|
|
|
|
rb_define_alias(rb_cQueue, "enq", "push");
|
|
rb_define_alias(rb_cQueue, "<<", "push");
|
|
rb_define_alias(rb_cQueue, "deq", "pop");
|
|
rb_define_alias(rb_cQueue, "shift", "pop");
|
|
rb_define_alias(rb_cQueue, "size", "length");
|
|
|
|
DEFINE_CLASS(SizedQueue, Queue);
|
|
rb_define_alloc_func(rb_cSizedQueue, szqueue_alloc);
|
|
|
|
rb_define_method(rb_cSizedQueue, "initialize", rb_szqueue_initialize, 1);
|
|
rb_define_method(rb_cSizedQueue, "close", rb_szqueue_close, 0);
|
|
rb_define_method(rb_cSizedQueue, "max", rb_szqueue_max_get, 0);
|
|
rb_define_method(rb_cSizedQueue, "max=", rb_szqueue_max_set, 1);
|
|
rb_define_method(rb_cSizedQueue, "push", rb_szqueue_push, -1);
|
|
rb_define_method(rb_cSizedQueue, "pop", rb_szqueue_pop, -1);
|
|
rb_define_method(rb_cSizedQueue, "empty?", rb_szqueue_empty_p, 0);
|
|
rb_define_method(rb_cSizedQueue, "clear", rb_szqueue_clear, 0);
|
|
rb_define_method(rb_cSizedQueue, "length", rb_szqueue_length, 0);
|
|
rb_define_method(rb_cSizedQueue, "num_waiting", rb_szqueue_num_waiting, 0);
|
|
|
|
rb_define_alias(rb_cSizedQueue, "enq", "push");
|
|
rb_define_alias(rb_cSizedQueue, "<<", "push");
|
|
rb_define_alias(rb_cSizedQueue, "deq", "pop");
|
|
rb_define_alias(rb_cSizedQueue, "shift", "pop");
|
|
rb_define_alias(rb_cSizedQueue, "size", "length");
|
|
|
|
/* CVar */
|
|
DEFINE_CLASS(ConditionVariable, Object);
|
|
rb_define_alloc_func(rb_cConditionVariable, condvar_alloc);
|
|
|
|
id_sleep = rb_intern("sleep");
|
|
|
|
rb_define_method(rb_cConditionVariable, "initialize", rb_condvar_initialize, 0);
|
|
rb_undef_method(rb_cConditionVariable, "initialize_copy");
|
|
rb_define_method(rb_cConditionVariable, "marshal_dump", undumpable, 0);
|
|
rb_define_method(rb_cConditionVariable, "wait", rb_condvar_wait, -1);
|
|
rb_define_method(rb_cConditionVariable, "signal", rb_condvar_signal, 0);
|
|
rb_define_method(rb_cConditionVariable, "broadcast", rb_condvar_broadcast, 0);
|
|
|
|
rb_provide("thread.rb");
|
|
}
|