зеркало из https://github.com/github/ruby.git
1324 строки
30 KiB
C
1324 строки
30 KiB
C
/* This is a public domain general purpose hash table package written by Peter Moore @ UCB. */
|
|
|
|
/* static char sccsid[] = "@(#) st.c 5.1 89/12/14 Crucible"; */
|
|
|
|
#ifdef NOT_RUBY
|
|
#include "regint.h"
|
|
#include "st.h"
|
|
#else
|
|
#include "ruby/ruby.h"
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#ifdef HAVE_STDLIB_H
|
|
#include <stdlib.h>
|
|
#endif
|
|
#include <string.h>
|
|
|
|
typedef struct st_table_entry st_table_entry;
|
|
|
|
struct st_table_entry {
|
|
st_index_t hash;
|
|
st_data_t key;
|
|
st_data_t record;
|
|
st_table_entry *next;
|
|
st_table_entry *fore, *back;
|
|
};
|
|
|
|
#define ST_DEFAULT_MAX_DENSITY 5
|
|
#define ST_DEFAULT_INIT_TABLE_SIZE 11
|
|
|
|
/*
|
|
* DEFAULT_MAX_DENSITY is the default for the largest we allow the
|
|
* average number of items per bin before increasing the number of
|
|
* bins
|
|
*
|
|
* DEFAULT_INIT_TABLE_SIZE is the default for the number of bins
|
|
* allocated initially
|
|
*
|
|
*/
|
|
|
|
static const struct st_hash_type type_numhash = {
|
|
st_numcmp,
|
|
st_numhash,
|
|
};
|
|
|
|
/* extern int strcmp(const char *, const char *); */
|
|
static st_index_t strhash(st_data_t);
|
|
static const struct st_hash_type type_strhash = {
|
|
strcmp,
|
|
strhash,
|
|
};
|
|
|
|
static st_index_t strcasehash(st_data_t);
|
|
static const struct st_hash_type type_strcasehash = {
|
|
st_strcasecmp,
|
|
strcasehash,
|
|
};
|
|
|
|
static void rehash(st_table *);
|
|
|
|
#ifdef RUBY
|
|
#define malloc xmalloc
|
|
#define calloc xcalloc
|
|
#define free(x) xfree(x)
|
|
#endif
|
|
|
|
#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
|
|
|
|
#define alloc(type) (type*)malloc((size_t)sizeof(type))
|
|
#define Calloc(n,s) (char*)calloc((n),(s))
|
|
|
|
#define EQUAL(table,x,y) ((x)==(y) || (*table->type->compare)((x),(y)) == 0)
|
|
|
|
/* remove cast to unsigned int in the future */
|
|
#define do_hash(key,table) (unsigned int)(st_index_t)(*(table)->type->hash)((key))
|
|
#define do_hash_bin(key,table) (do_hash(key, table)%(table)->num_bins)
|
|
|
|
/*
|
|
* MINSIZE is the minimum size of a dictionary.
|
|
*/
|
|
|
|
#define MINSIZE 8
|
|
|
|
/*
|
|
Table of prime numbers 2^n+a, 2<=n<=30.
|
|
*/
|
|
static const unsigned int primes[] = {
|
|
8 + 3,
|
|
16 + 3,
|
|
32 + 5,
|
|
64 + 3,
|
|
128 + 3,
|
|
256 + 27,
|
|
512 + 9,
|
|
1024 + 9,
|
|
2048 + 5,
|
|
4096 + 3,
|
|
8192 + 27,
|
|
16384 + 43,
|
|
32768 + 3,
|
|
65536 + 45,
|
|
131072 + 29,
|
|
262144 + 3,
|
|
524288 + 21,
|
|
1048576 + 7,
|
|
2097152 + 17,
|
|
4194304 + 15,
|
|
8388608 + 9,
|
|
16777216 + 43,
|
|
33554432 + 35,
|
|
67108864 + 15,
|
|
134217728 + 29,
|
|
268435456 + 3,
|
|
536870912 + 11,
|
|
1073741824 + 85,
|
|
0
|
|
};
|
|
|
|
static st_index_t
|
|
new_size(st_index_t size)
|
|
{
|
|
int i;
|
|
|
|
#if 0
|
|
for (i=3; i<31; i++) {
|
|
if ((1<<i) > size) return 1<<i;
|
|
}
|
|
return -1;
|
|
#else
|
|
st_index_t newsize;
|
|
|
|
for (i = 0, newsize = MINSIZE; i < numberof(primes); i++, newsize <<= 1) {
|
|
if (newsize > size) return primes[i];
|
|
}
|
|
/* Ran out of polynomials */
|
|
#ifndef NOT_RUBY
|
|
rb_raise(rb_eRuntimeError, "st_table too big");
|
|
#endif
|
|
return -1; /* should raise exception */
|
|
#endif
|
|
}
|
|
|
|
#ifdef HASH_LOG
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
static struct {
|
|
int all, total, num, str, strcase;
|
|
} collision;
|
|
static int init_st = 0;
|
|
|
|
static void
|
|
stat_col(void)
|
|
{
|
|
char fname[10+sizeof(long)*3];
|
|
FILE *f = fopen((snprintf(fname, sizeof(fname), "/tmp/col%ld", (long)getpid()), fname), "w");
|
|
fprintf(f, "collision: %d / %d (%6.2f)\n", collision.all, collision.total,
|
|
((double)collision.all / (collision.total)) * 100);
|
|
fprintf(f, "num: %d, str: %d, strcase: %d\n", collision.num, collision.str, collision.strcase);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
#define MAX_PACKED_NUMHASH (ST_DEFAULT_INIT_TABLE_SIZE/2)
|
|
|
|
st_table*
|
|
st_init_table_with_size(const struct st_hash_type *type, st_index_t size)
|
|
{
|
|
st_table *tbl;
|
|
|
|
#ifdef HASH_LOG
|
|
# if HASH_LOG+0 < 0
|
|
{
|
|
const char *e = getenv("ST_HASH_LOG");
|
|
if (!e || !*e) init_st = 1;
|
|
}
|
|
# endif
|
|
if (init_st == 0) {
|
|
init_st = 1;
|
|
atexit(stat_col);
|
|
}
|
|
#endif
|
|
|
|
size = new_size(size); /* round up to prime number */
|
|
|
|
tbl = alloc(st_table);
|
|
tbl->type = type;
|
|
tbl->num_entries = 0;
|
|
tbl->entries_packed = type == &type_numhash && size/2 <= MAX_PACKED_NUMHASH;
|
|
tbl->num_bins = size;
|
|
tbl->bins = (st_table_entry **)Calloc(size, sizeof(st_table_entry*));
|
|
tbl->head = 0;
|
|
tbl->tail = 0;
|
|
|
|
return tbl;
|
|
}
|
|
|
|
st_table*
|
|
st_init_table(const struct st_hash_type *type)
|
|
{
|
|
return st_init_table_with_size(type, 0);
|
|
}
|
|
|
|
st_table*
|
|
st_init_numtable(void)
|
|
{
|
|
return st_init_table(&type_numhash);
|
|
}
|
|
|
|
st_table*
|
|
st_init_numtable_with_size(st_index_t size)
|
|
{
|
|
return st_init_table_with_size(&type_numhash, size);
|
|
}
|
|
|
|
st_table*
|
|
st_init_strtable(void)
|
|
{
|
|
return st_init_table(&type_strhash);
|
|
}
|
|
|
|
st_table*
|
|
st_init_strtable_with_size(st_index_t size)
|
|
{
|
|
return st_init_table_with_size(&type_strhash, size);
|
|
}
|
|
|
|
st_table*
|
|
st_init_strcasetable(void)
|
|
{
|
|
return st_init_table(&type_strcasehash);
|
|
}
|
|
|
|
st_table*
|
|
st_init_strcasetable_with_size(st_index_t size)
|
|
{
|
|
return st_init_table_with_size(&type_strcasehash, size);
|
|
}
|
|
|
|
void
|
|
st_clear(st_table *table)
|
|
{
|
|
register st_table_entry *ptr, *next;
|
|
st_index_t i;
|
|
|
|
if (table->entries_packed) {
|
|
table->num_entries = 0;
|
|
return;
|
|
}
|
|
|
|
for(i = 0; i < table->num_bins; i++) {
|
|
ptr = table->bins[i];
|
|
table->bins[i] = 0;
|
|
while (ptr != 0) {
|
|
next = ptr->next;
|
|
free(ptr);
|
|
ptr = next;
|
|
}
|
|
}
|
|
table->num_entries = 0;
|
|
table->head = 0;
|
|
table->tail = 0;
|
|
}
|
|
|
|
void
|
|
st_free_table(st_table *table)
|
|
{
|
|
st_clear(table);
|
|
free(table->bins);
|
|
free(table);
|
|
}
|
|
|
|
size_t
|
|
st_memsize(const st_table *table)
|
|
{
|
|
if (table->entries_packed) {
|
|
return table->num_bins * sizeof (void *) + sizeof(st_table);
|
|
}
|
|
else {
|
|
return table->num_entries * sizeof(struct st_table_entry) + table->num_bins * sizeof (void *) + sizeof(st_table);
|
|
}
|
|
}
|
|
|
|
#define PTR_NOT_EQUAL(table, ptr, hash_val, key) \
|
|
((ptr) != 0 && (ptr->hash != (hash_val) || !EQUAL((table), (key), (ptr)->key)))
|
|
|
|
#ifdef HASH_LOG
|
|
static void
|
|
count_collision(const struct st_hash_type *type)
|
|
{
|
|
collision.all++;
|
|
if (type == &type_numhash) {
|
|
collision.num++;
|
|
}
|
|
else if (type == &type_strhash) {
|
|
collision.strcase++;
|
|
}
|
|
else if (type == &type_strcasehash) {
|
|
collision.str++;
|
|
}
|
|
}
|
|
#define COLLISION (collision_check ? count_collision(table->type) : (void)0)
|
|
#define FOUND_ENTRY (collision_check ? collision.total++ : (void)0)
|
|
#else
|
|
#define COLLISION
|
|
#define FOUND_ENTRY
|
|
#endif
|
|
|
|
#define FIND_ENTRY(table, ptr, hash_val, bin_pos) do {\
|
|
bin_pos = hash_val%(table)->num_bins;\
|
|
ptr = (table)->bins[bin_pos];\
|
|
FOUND_ENTRY;\
|
|
if (PTR_NOT_EQUAL(table, ptr, hash_val, key)) {\
|
|
COLLISION;\
|
|
while (PTR_NOT_EQUAL(table, ptr->next, hash_val, key)) {\
|
|
ptr = ptr->next;\
|
|
}\
|
|
ptr = ptr->next;\
|
|
}\
|
|
} while (0)
|
|
|
|
#define collision_check 0
|
|
|
|
int
|
|
st_lookup(st_table *table, register st_data_t key, st_data_t *value)
|
|
{
|
|
st_index_t hash_val, bin_pos;
|
|
register st_table_entry *ptr;
|
|
|
|
if (table->entries_packed) {
|
|
st_index_t i;
|
|
for (i = 0; i < table->num_entries; i++) {
|
|
if ((st_data_t)table->bins[i*2] == key) {
|
|
if (value !=0) *value = (st_data_t)table->bins[i*2+1];
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
hash_val = do_hash(key, table);
|
|
FIND_ENTRY(table, ptr, hash_val, bin_pos);
|
|
|
|
if (ptr == 0) {
|
|
return 0;
|
|
}
|
|
else {
|
|
if (value != 0) *value = ptr->record;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int
|
|
st_get_key(st_table *table, register st_data_t key, st_data_t *result)
|
|
{
|
|
st_index_t hash_val, bin_pos;
|
|
register st_table_entry *ptr;
|
|
|
|
if (table->entries_packed) {
|
|
st_index_t i;
|
|
for (i = 0; i < table->num_entries; i++) {
|
|
if ((st_data_t)table->bins[i*2] == key) {
|
|
if (result !=0) *result = (st_data_t)table->bins[i*2];
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
hash_val = do_hash(key, table);
|
|
FIND_ENTRY(table, ptr, hash_val, bin_pos);
|
|
|
|
if (ptr == 0) {
|
|
return 0;
|
|
}
|
|
else {
|
|
if (result != 0) *result = ptr->key;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
#undef collision_check
|
|
#define collision_check 1
|
|
|
|
#define MORE_PACKABLE_P(table) \
|
|
((st_index_t)((table)->num_entries+1) * 2 <= (table)->num_bins && \
|
|
(table)->num_entries+1 <= MAX_PACKED_NUMHASH)
|
|
|
|
#define ADD_DIRECT(table, key, value, hash_val, bin_pos)\
|
|
do {\
|
|
st_table_entry *entry;\
|
|
if (table->num_entries > ST_DEFAULT_MAX_DENSITY * table->num_bins) {\
|
|
rehash(table);\
|
|
bin_pos = hash_val % table->num_bins;\
|
|
}\
|
|
\
|
|
entry = alloc(st_table_entry);\
|
|
\
|
|
entry->hash = hash_val;\
|
|
entry->key = key;\
|
|
entry->record = value;\
|
|
entry->next = table->bins[bin_pos];\
|
|
if (table->head != 0) {\
|
|
entry->fore = 0;\
|
|
(entry->back = table->tail)->fore = entry;\
|
|
table->tail = entry;\
|
|
}\
|
|
else {\
|
|
table->head = table->tail = entry;\
|
|
entry->fore = entry->back = 0;\
|
|
}\
|
|
table->bins[bin_pos] = entry;\
|
|
table->num_entries++;\
|
|
} while (0)
|
|
|
|
static void
|
|
unpack_entries(register st_table *table)
|
|
{
|
|
st_index_t i;
|
|
struct st_table_entry *packed_bins[MAX_PACKED_NUMHASH*2];
|
|
st_table tmp_table = *table;
|
|
|
|
memcpy(packed_bins, table->bins, sizeof(struct st_table_entry *) * table->num_entries*2);
|
|
table->bins = packed_bins;
|
|
tmp_table.entries_packed = 0;
|
|
tmp_table.num_entries = 0;
|
|
memset(tmp_table.bins, 0, sizeof(struct st_table_entry *) * tmp_table.num_bins);
|
|
for (i = 0; i < table->num_entries; i++) {
|
|
st_insert(&tmp_table, (st_data_t)packed_bins[i*2], (st_data_t)packed_bins[i*2+1]);
|
|
}
|
|
*table = tmp_table;
|
|
}
|
|
|
|
int
|
|
st_insert(register st_table *table, register st_data_t key, st_data_t value)
|
|
{
|
|
st_index_t hash_val, bin_pos;
|
|
register st_table_entry *ptr;
|
|
|
|
if (table->entries_packed) {
|
|
st_index_t i;
|
|
for (i = 0; i < table->num_entries; i++) {
|
|
if ((st_data_t)table->bins[i*2] == key) {
|
|
table->bins[i*2+1] = (struct st_table_entry*)value;
|
|
return 1;
|
|
}
|
|
}
|
|
if (MORE_PACKABLE_P(table)) {
|
|
i = table->num_entries++;
|
|
table->bins[i*2] = (struct st_table_entry*)key;
|
|
table->bins[i*2+1] = (struct st_table_entry*)value;
|
|
return 0;
|
|
}
|
|
else {
|
|
unpack_entries(table);
|
|
}
|
|
}
|
|
|
|
hash_val = do_hash(key, table);
|
|
FIND_ENTRY(table, ptr, hash_val, bin_pos);
|
|
|
|
if (ptr == 0) {
|
|
ADD_DIRECT(table, key, value, hash_val, bin_pos);
|
|
return 0;
|
|
}
|
|
else {
|
|
ptr->record = value;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int
|
|
st_insert2(register st_table *table, register st_data_t key, st_data_t value,
|
|
st_data_t (*func)(st_data_t))
|
|
{
|
|
st_index_t hash_val, bin_pos;
|
|
register st_table_entry *ptr;
|
|
|
|
if (table->entries_packed) {
|
|
st_index_t i;
|
|
for (i = 0; i < table->num_entries; i++) {
|
|
if ((st_data_t)table->bins[i*2] == key) {
|
|
table->bins[i*2+1] = (struct st_table_entry*)value;
|
|
return 1;
|
|
}
|
|
}
|
|
if (MORE_PACKABLE_P(table)) {
|
|
i = table->num_entries++;
|
|
table->bins[i*2] = (struct st_table_entry*)key;
|
|
table->bins[i*2+1] = (struct st_table_entry*)value;
|
|
return 0;
|
|
}
|
|
else {
|
|
unpack_entries(table);
|
|
}
|
|
}
|
|
|
|
hash_val = do_hash(key, table);
|
|
FIND_ENTRY(table, ptr, hash_val, bin_pos);
|
|
|
|
if (ptr == 0) {
|
|
key = (*func)(key);
|
|
ADD_DIRECT(table, key, value, hash_val, bin_pos);
|
|
return 0;
|
|
}
|
|
else {
|
|
ptr->record = value;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
st_add_direct(st_table *table, st_data_t key, st_data_t value)
|
|
{
|
|
st_index_t hash_val, bin_pos;
|
|
|
|
if (table->entries_packed) {
|
|
int i;
|
|
if (MORE_PACKABLE_P(table)) {
|
|
i = table->num_entries++;
|
|
table->bins[i*2] = (struct st_table_entry*)key;
|
|
table->bins[i*2+1] = (struct st_table_entry*)value;
|
|
return;
|
|
}
|
|
else {
|
|
unpack_entries(table);
|
|
}
|
|
}
|
|
|
|
hash_val = do_hash(key, table);
|
|
bin_pos = hash_val % table->num_bins;
|
|
ADD_DIRECT(table, key, value, hash_val, bin_pos);
|
|
}
|
|
|
|
static void
|
|
rehash(register st_table *table)
|
|
{
|
|
register st_table_entry *ptr, **new_bins;
|
|
st_index_t i, new_num_bins, hash_val;
|
|
|
|
new_num_bins = new_size(table->num_bins+1);
|
|
new_bins = (st_table_entry**)
|
|
xrealloc(table->bins, new_num_bins * sizeof(st_table_entry*));
|
|
for (i = 0; i < new_num_bins; ++i) new_bins[i] = 0;
|
|
table->num_bins = new_num_bins;
|
|
table->bins = new_bins;
|
|
|
|
if ((ptr = table->head) != 0) {
|
|
do {
|
|
hash_val = ptr->hash % new_num_bins;
|
|
ptr->next = new_bins[hash_val];
|
|
new_bins[hash_val] = ptr;
|
|
} while ((ptr = ptr->fore) != 0);
|
|
}
|
|
}
|
|
|
|
st_table*
|
|
st_copy(st_table *old_table)
|
|
{
|
|
st_table *new_table;
|
|
st_table_entry *ptr, *entry, *prev, **tail;
|
|
st_index_t num_bins = old_table->num_bins;
|
|
st_index_t hash_val;
|
|
|
|
new_table = alloc(st_table);
|
|
if (new_table == 0) {
|
|
return 0;
|
|
}
|
|
|
|
*new_table = *old_table;
|
|
new_table->bins = (st_table_entry**)
|
|
Calloc((unsigned)num_bins, sizeof(st_table_entry*));
|
|
|
|
if (new_table->bins == 0) {
|
|
free(new_table);
|
|
return 0;
|
|
}
|
|
|
|
if (old_table->entries_packed) {
|
|
memcpy(new_table->bins, old_table->bins, sizeof(struct st_table_entry *) * old_table->num_bins);
|
|
return new_table;
|
|
}
|
|
|
|
if ((ptr = old_table->head) != 0) {
|
|
prev = 0;
|
|
tail = &new_table->head;
|
|
do {
|
|
entry = alloc(st_table_entry);
|
|
if (entry == 0) {
|
|
st_free_table(new_table);
|
|
return 0;
|
|
}
|
|
*entry = *ptr;
|
|
hash_val = entry->hash % num_bins;
|
|
entry->next = new_table->bins[hash_val];
|
|
new_table->bins[hash_val] = entry;
|
|
entry->back = prev;
|
|
*tail = prev = entry;
|
|
tail = &entry->fore;
|
|
} while ((ptr = ptr->fore) != 0);
|
|
new_table->tail = prev;
|
|
}
|
|
|
|
return new_table;
|
|
}
|
|
|
|
#define REMOVE_ENTRY(table, ptr) do \
|
|
{ \
|
|
if (ptr->fore == 0 && ptr->back == 0) { \
|
|
table->head = 0; \
|
|
table->tail = 0; \
|
|
} \
|
|
else { \
|
|
st_table_entry *fore = ptr->fore, *back = ptr->back; \
|
|
if (fore) fore->back = back; \
|
|
if (back) back->fore = fore; \
|
|
if (ptr == table->head) table->head = fore; \
|
|
if (ptr == table->tail) table->tail = back; \
|
|
} \
|
|
table->num_entries--; \
|
|
} while (0)
|
|
|
|
int
|
|
st_delete(register st_table *table, register st_data_t *key, st_data_t *value)
|
|
{
|
|
st_index_t hash_val;
|
|
st_table_entry **prev;
|
|
register st_table_entry *ptr;
|
|
|
|
if (table->entries_packed) {
|
|
st_index_t i;
|
|
for (i = 0; i < table->num_entries; i++) {
|
|
if ((st_data_t)table->bins[i*2] == *key) {
|
|
if (value != 0) *value = (st_data_t)table->bins[i*2+1];
|
|
table->num_entries--;
|
|
memmove(&table->bins[i*2], &table->bins[(i+1)*2],
|
|
sizeof(struct st_table_entry*) * 2*(table->num_entries-i));
|
|
return 1;
|
|
}
|
|
}
|
|
if (value != 0) *value = 0;
|
|
return 0;
|
|
}
|
|
|
|
hash_val = do_hash_bin(*key, table);
|
|
|
|
for (prev = &table->bins[hash_val]; (ptr = *prev) != 0; prev = &ptr->next) {
|
|
if (EQUAL(table, *key, ptr->key)) {
|
|
*prev = ptr->next;
|
|
REMOVE_ENTRY(table, ptr);
|
|
if (value != 0) *value = ptr->record;
|
|
*key = ptr->key;
|
|
free(ptr);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (value != 0) *value = 0;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
st_delete_safe(register st_table *table, register st_data_t *key, st_data_t *value, st_data_t never)
|
|
{
|
|
st_index_t hash_val;
|
|
register st_table_entry *ptr;
|
|
|
|
if (table->entries_packed) {
|
|
st_index_t i;
|
|
for (i = 0; i < table->num_entries; i++) {
|
|
if ((st_data_t)table->bins[i*2] == *key) {
|
|
if (value != 0) *value = (st_data_t)table->bins[i*2+1];
|
|
table->bins[i*2] = (void *)never;
|
|
return 1;
|
|
}
|
|
}
|
|
if (value != 0) *value = 0;
|
|
return 0;
|
|
}
|
|
|
|
hash_val = do_hash_bin(*key, table);
|
|
ptr = table->bins[hash_val];
|
|
|
|
for (; ptr != 0; ptr = ptr->next) {
|
|
if ((ptr->key != never) && EQUAL(table, ptr->key, *key)) {
|
|
REMOVE_ENTRY(table, ptr);
|
|
*key = ptr->key;
|
|
if (value != 0) *value = ptr->record;
|
|
ptr->key = ptr->record = never;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (value != 0) *value = 0;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
st_cleanup_safe(st_table *table, st_data_t never)
|
|
{
|
|
st_table_entry *ptr, **last, *tmp;
|
|
st_index_t i;
|
|
|
|
if (table->entries_packed) {
|
|
st_index_t i = 0, j = 0;
|
|
while ((st_data_t)table->bins[i*2] != never) {
|
|
if (i++ == table->num_entries) return;
|
|
}
|
|
for (j = i; ++i < table->num_entries;) {
|
|
if ((st_data_t)table->bins[i*2] == never) continue;
|
|
table->bins[j*2] = table->bins[i*2];
|
|
table->bins[j*2+1] = table->bins[i*2+1];
|
|
j++;
|
|
}
|
|
table->num_entries = j;
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < table->num_bins; i++) {
|
|
ptr = *(last = &table->bins[i]);
|
|
while (ptr != 0) {
|
|
if (ptr->key == never) {
|
|
tmp = ptr;
|
|
*last = ptr = ptr->next;
|
|
free(tmp);
|
|
}
|
|
else {
|
|
ptr = *(last = &ptr->next);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
st_foreach(st_table *table, int (*func)(ANYARGS), st_data_t arg)
|
|
{
|
|
st_table_entry *ptr, **last, *tmp;
|
|
enum st_retval retval;
|
|
st_index_t i;
|
|
|
|
if (table->entries_packed) {
|
|
for (i = 0; i < table->num_entries; i++) {
|
|
st_index_t j;
|
|
st_data_t key, val;
|
|
key = (st_data_t)table->bins[i*2];
|
|
val = (st_data_t)table->bins[i*2+1];
|
|
retval = (*func)(key, val, arg);
|
|
switch (retval) {
|
|
case ST_CHECK: /* check if hash is modified during iteration */
|
|
for (j = 0; j < table->num_entries; j++) {
|
|
if ((st_data_t)table->bins[j*2] == key)
|
|
break;
|
|
}
|
|
if (j == table->num_entries) {
|
|
/* call func with error notice */
|
|
retval = (*func)(0, 0, arg, 1);
|
|
return 1;
|
|
}
|
|
/* fall through */
|
|
case ST_CONTINUE:
|
|
break;
|
|
case ST_STOP:
|
|
return 0;
|
|
case ST_DELETE:
|
|
table->num_entries--;
|
|
memmove(&table->bins[i*2], &table->bins[(i+1)*2],
|
|
sizeof(struct st_table_entry*) * 2*(table->num_entries-i));
|
|
i--;
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if ((ptr = table->head) != 0) {
|
|
do {
|
|
retval = (*func)(ptr->key, ptr->record, arg);
|
|
switch (retval) {
|
|
case ST_CHECK: /* check if hash is modified during iteration */
|
|
i = ptr->hash % table->num_bins;
|
|
for (tmp = table->bins[i]; tmp != ptr; tmp = tmp->next) {
|
|
if (!tmp) {
|
|
/* call func with error notice */
|
|
retval = (*func)(0, 0, arg, 1);
|
|
return 1;
|
|
}
|
|
}
|
|
/* fall through */
|
|
case ST_CONTINUE:
|
|
ptr = ptr->fore;
|
|
break;
|
|
case ST_STOP:
|
|
return 0;
|
|
case ST_DELETE:
|
|
last = &table->bins[ptr->hash % table->num_bins];
|
|
for (; (tmp = *last) != 0; last = &tmp->next) {
|
|
if (ptr == tmp) {
|
|
tmp = ptr->fore;
|
|
*last = ptr->next;
|
|
REMOVE_ENTRY(table, ptr);
|
|
free(ptr);
|
|
if (ptr == tmp) return 0;
|
|
ptr = tmp;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} while (ptr && table->head);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if 0 /* unused right now */
|
|
int
|
|
st_reverse_foreach(st_table *table, int (*func)(ANYARGS), st_data_t arg)
|
|
{
|
|
st_table_entry *ptr, **last, *tmp;
|
|
enum st_retval retval;
|
|
int i;
|
|
|
|
if (table->entries_packed) {
|
|
for (i = table->num_entries-1; 0 <= i; i--) {
|
|
int j;
|
|
st_data_t key, val;
|
|
key = (st_data_t)table->bins[i*2];
|
|
val = (st_data_t)table->bins[i*2+1];
|
|
retval = (*func)(key, val, arg);
|
|
switch (retval) {
|
|
case ST_CHECK: /* check if hash is modified during iteration */
|
|
for (j = 0; j < table->num_entries; j++) {
|
|
if ((st_data_t)table->bins[j*2] == key)
|
|
break;
|
|
}
|
|
if (j == table->num_entries) {
|
|
/* call func with error notice */
|
|
retval = (*func)(0, 0, arg, 1);
|
|
return 1;
|
|
}
|
|
/* fall through */
|
|
case ST_CONTINUE:
|
|
break;
|
|
case ST_STOP:
|
|
return 0;
|
|
case ST_DELETE:
|
|
table->num_entries--;
|
|
memmove(&table->bins[i*2], &table->bins[(i+1)*2],
|
|
sizeof(struct st_table_entry*) * 2*(table->num_entries-i));
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if ((ptr = table->head) != 0) {
|
|
ptr = ptr->back;
|
|
do {
|
|
retval = (*func)(ptr->key, ptr->record, arg, 0);
|
|
switch (retval) {
|
|
case ST_CHECK: /* check if hash is modified during iteration */
|
|
i = ptr->hash % table->num_bins;
|
|
for (tmp = table->bins[i]; tmp != ptr; tmp = tmp->next) {
|
|
if (!tmp) {
|
|
/* call func with error notice */
|
|
retval = (*func)(0, 0, arg, 1);
|
|
return 1;
|
|
}
|
|
}
|
|
/* fall through */
|
|
case ST_CONTINUE:
|
|
ptr = ptr->back;
|
|
break;
|
|
case ST_STOP:
|
|
return 0;
|
|
case ST_DELETE:
|
|
last = &table->bins[ptr->hash % table->num_bins];
|
|
for (; (tmp = *last) != 0; last = &tmp->next) {
|
|
if (ptr == tmp) {
|
|
tmp = ptr->back;
|
|
*last = ptr->next;
|
|
REMOVE_ENTRY(table, ptr);
|
|
free(ptr);
|
|
ptr = tmp;
|
|
break;
|
|
}
|
|
}
|
|
ptr = ptr->next;
|
|
free(tmp);
|
|
table->num_entries--;
|
|
}
|
|
} while (ptr && table->head);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* hash_32 - 32 bit Fowler/Noll/Vo FNV-1a hash code
|
|
*
|
|
* @(#) $Hash32: Revision: 1.1 $
|
|
* @(#) $Hash32: Id: hash_32a.c,v 1.1 2003/10/03 20:38:53 chongo Exp $
|
|
* @(#) $Hash32: Source: /usr/local/src/cmd/fnv/RCS/hash_32a.c,v $
|
|
*
|
|
***
|
|
*
|
|
* Fowler/Noll/Vo hash
|
|
*
|
|
* The basis of this hash algorithm was taken from an idea sent
|
|
* as reviewer comments to the IEEE POSIX P1003.2 committee by:
|
|
*
|
|
* Phong Vo (http://www.research.att.com/info/kpv/)
|
|
* Glenn Fowler (http://www.research.att.com/~gsf/)
|
|
*
|
|
* In a subsequent ballot round:
|
|
*
|
|
* Landon Curt Noll (http://www.isthe.com/chongo/)
|
|
*
|
|
* improved on their algorithm. Some people tried this hash
|
|
* and found that it worked rather well. In an EMail message
|
|
* to Landon, they named it the ``Fowler/Noll/Vo'' or FNV hash.
|
|
*
|
|
* FNV hashes are designed to be fast while maintaining a low
|
|
* collision rate. The FNV speed allows one to quickly hash lots
|
|
* of data while maintaining a reasonable collision rate. See:
|
|
*
|
|
* http://www.isthe.com/chongo/tech/comp/fnv/index.html
|
|
*
|
|
* for more details as well as other forms of the FNV hash.
|
|
***
|
|
*
|
|
* To use the recommended 32 bit FNV-1a hash, pass FNV1_32A_INIT as the
|
|
* Fnv32_t hashval argument to fnv_32a_buf() or fnv_32a_str().
|
|
*
|
|
***
|
|
*
|
|
* Please do not copyright this code. This code is in the public domain.
|
|
*
|
|
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
|
|
* EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
|
|
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
|
|
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
|
|
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
|
* PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* By:
|
|
* chongo <Landon Curt Noll> /\oo/\
|
|
* http://www.isthe.com/chongo/
|
|
*
|
|
* Share and Enjoy! :-)
|
|
*/
|
|
|
|
/*
|
|
* 32 bit FNV-1 and FNV-1a non-zero initial basis
|
|
*
|
|
* The FNV-1 initial basis is the FNV-0 hash of the following 32 octets:
|
|
*
|
|
* chongo <Landon Curt Noll> /\../\
|
|
*
|
|
* NOTE: The \'s above are not back-slashing escape characters.
|
|
* They are literal ASCII backslash 0x5c characters.
|
|
*
|
|
* NOTE: The FNV-1a initial basis is the same value as FNV-1 by definition.
|
|
*/
|
|
#define FNV1_32A_INIT 0x811c9dc5
|
|
|
|
/*
|
|
* 32 bit magic FNV-1a prime
|
|
*/
|
|
#define FNV_32_PRIME 0x01000193
|
|
|
|
#ifdef ST_USE_FNV1
|
|
static st_index_t
|
|
strhash(st_data_t arg)
|
|
{
|
|
register const char *string = (const char *)arg;
|
|
register st_index_t hval = FNV1_32A_INIT;
|
|
|
|
/*
|
|
* FNV-1a hash each octet in the buffer
|
|
*/
|
|
while (*string) {
|
|
/* xor the bottom with the current octet */
|
|
hval ^= (unsigned int)*string++;
|
|
|
|
/* multiply by the 32 bit FNV magic prime mod 2^32 */
|
|
hval *= FNV_32_PRIME;
|
|
}
|
|
return hval;
|
|
}
|
|
#else
|
|
|
|
#ifndef UNALIGNED_WORD_ACCESS
|
|
# if defined __i386__ || defined _M_IX86
|
|
# define UNALIGNED_WORD_ACCESS 1
|
|
# endif
|
|
#endif
|
|
#ifndef UNALIGNED_WORD_ACCESS
|
|
# define UNALIGNED_WORD_ACCESS 0
|
|
#endif
|
|
|
|
/* MurmurHash described in http://murmurhash.googlepages.com/ */
|
|
#ifndef MURMUR
|
|
#define MURMUR 2
|
|
#endif
|
|
|
|
#if MURMUR == 1
|
|
#define MurmurMagic 0xc6a4a793
|
|
#elif MURMUR == 2
|
|
#if SIZEOF_ST_INDEX_T > 4
|
|
#define MurmurMagic 0xc6a4a7935bd1e995
|
|
#else
|
|
#define MurmurMagic 0x5bd1e995
|
|
#endif
|
|
#endif
|
|
|
|
static inline st_index_t
|
|
murmur(st_index_t h, st_index_t k, int r)
|
|
{
|
|
const st_index_t m = MurmurMagic;
|
|
#if MURMUR == 1
|
|
h += k;
|
|
h *= m;
|
|
h ^= h >> r;
|
|
#elif MURMUR == 2
|
|
k *= m;
|
|
k ^= k >> r;
|
|
k *= m;
|
|
|
|
h *= m;
|
|
h ^= k;
|
|
#endif
|
|
return h;
|
|
}
|
|
|
|
static inline st_index_t
|
|
murmur_finish(st_index_t h)
|
|
{
|
|
#if MURMUR == 1
|
|
h = murmur(h, 0, 10);
|
|
h = murmur(h, 0, 17);
|
|
#elif MURMUR == 2
|
|
h ^= h >> 13;
|
|
h *= MurmurMagic;
|
|
h ^= h >> 15;
|
|
#endif
|
|
return h;
|
|
}
|
|
|
|
#define murmur_step(h, k) murmur(h, k, 16)
|
|
|
|
#if MURMUR == 1
|
|
#define murmur1(h) murmur_step(h, 16)
|
|
#else
|
|
#define murmur1(h) murmur_step(h, 24)
|
|
#endif
|
|
|
|
st_index_t
|
|
st_hash(const void *ptr, size_t len, st_index_t h)
|
|
{
|
|
const char *data = ptr;
|
|
st_index_t t = 0;
|
|
|
|
h += 0xdeadbeef;
|
|
|
|
#define data_at(n) (st_index_t)((unsigned char)data[n])
|
|
#define UNALIGNED_ADD_4 UNALIGNED_ADD(2); UNALIGNED_ADD(1); UNALIGNED_ADD(0)
|
|
#if SIZEOF_ST_INDEX_T > 4
|
|
#define UNALIGNED_ADD_8 UNALIGNED_ADD(6); UNALIGNED_ADD(5); UNALIGNED_ADD(4); UNALIGNED_ADD(3); UNALIGNED_ADD_4
|
|
#if SIZEOF_ST_INDEX_T > 8
|
|
#define UNALIGNED_ADD_16 UNALIGNED_ADD(14); UNALIGNED_ADD(13); UNALIGNED_ADD(12); UNALIGNED_ADD(11); \
|
|
UNALIGNED_ADD(10); UNALIGNED_ADD(9); UNALIGNED_ADD(8); UNALIGNED_ADD(7); UNALIGNED_ADD_8
|
|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_16
|
|
#endif
|
|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_8
|
|
#else
|
|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_4
|
|
#endif
|
|
if (len >= sizeof(st_index_t)) {
|
|
#if !UNALIGNED_WORD_ACCESS
|
|
int align = (int)((st_data_t)data % sizeof(st_index_t));
|
|
if (align) {
|
|
st_index_t d = 0;
|
|
int sl, sr, pack;
|
|
|
|
switch (align) {
|
|
#ifdef WORDS_BIGENDIAN
|
|
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \
|
|
t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 2)
|
|
#else
|
|
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \
|
|
t |= data_at(n) << CHAR_BIT*(n)
|
|
#endif
|
|
UNALIGNED_ADD_ALL;
|
|
#undef UNALIGNED_ADD
|
|
}
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
t >>= (CHAR_BIT * align) - CHAR_BIT;
|
|
#else
|
|
t <<= (CHAR_BIT * align);
|
|
#endif
|
|
|
|
data += sizeof(st_index_t)-align;
|
|
len -= sizeof(st_index_t)-align;
|
|
|
|
sl = CHAR_BIT * (SIZEOF_ST_INDEX_T-align);
|
|
sr = CHAR_BIT * align;
|
|
|
|
while (len >= sizeof(st_index_t)) {
|
|
d = *(st_index_t *)data;
|
|
#ifdef WORDS_BIGENDIAN
|
|
t = (t << sr) | (d >> sl);
|
|
#else
|
|
t = (t >> sr) | (d << sl);
|
|
#endif
|
|
h = murmur_step(h, t);
|
|
t = d;
|
|
data += sizeof(st_index_t);
|
|
len -= sizeof(st_index_t);
|
|
}
|
|
|
|
pack = len < (size_t)align ? (int)len : align;
|
|
d = 0;
|
|
switch (pack) {
|
|
#ifdef WORDS_BIGENDIAN
|
|
# define UNALIGNED_ADD(n) case (n) + 1: \
|
|
d |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
|
|
#else
|
|
# define UNALIGNED_ADD(n) case (n) + 1: \
|
|
d |= data_at(n) << CHAR_BIT*(n)
|
|
#endif
|
|
UNALIGNED_ADD_ALL;
|
|
#undef UNALIGNED_ADD
|
|
}
|
|
#ifdef WORDS_BIGENDIAN
|
|
t = (t << sr) | (d >> sl);
|
|
#else
|
|
t = (t >> sr) | (d << sl);
|
|
#endif
|
|
|
|
#if MURMUR == 2
|
|
if (len < (size_t)align) goto skip_tail;
|
|
#endif
|
|
h = murmur_step(h, t);
|
|
data += pack;
|
|
len -= pack;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
do {
|
|
h = murmur_step(h, *(st_index_t *)data);
|
|
data += sizeof(st_index_t);
|
|
len -= sizeof(st_index_t);
|
|
} while (len >= sizeof(st_index_t));
|
|
}
|
|
}
|
|
|
|
t = 0;
|
|
switch (len) {
|
|
#ifdef WORDS_BIGENDIAN
|
|
# define UNALIGNED_ADD(n) case (n) + 1: \
|
|
t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
|
|
#else
|
|
# define UNALIGNED_ADD(n) case (n) + 1: \
|
|
t |= data_at(n) << CHAR_BIT*(n)
|
|
#endif
|
|
UNALIGNED_ADD_ALL;
|
|
#undef UNALIGNED_ADD
|
|
#if MURMUR == 1
|
|
h = murmur_step(h, t);
|
|
#elif MURMUR == 2
|
|
# if !UNALIGNED_WORD_ACCESS
|
|
skip_tail:
|
|
# endif
|
|
h ^= t;
|
|
h *= MurmurMagic;
|
|
#endif
|
|
}
|
|
|
|
return murmur_finish(h);
|
|
}
|
|
|
|
st_index_t
|
|
st_hash_uint32(st_index_t h, uint32_t i)
|
|
{
|
|
return murmur_step(h + i, 16);
|
|
}
|
|
|
|
st_index_t
|
|
st_hash_uint(st_index_t h, st_index_t i)
|
|
{
|
|
st_index_t v = 0;
|
|
h += i;
|
|
#ifdef WORDS_BIGENDIAN
|
|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 12*8
|
|
v = murmur1(v + (h >> 12*8));
|
|
#endif
|
|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
|
|
v = murmur1(v + (h >> 8*8));
|
|
#endif
|
|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 4*8
|
|
v = murmur1(v + (h >> 4*8));
|
|
#endif
|
|
#endif
|
|
v = murmur1(v + h);
|
|
#ifndef WORDS_BIGENDIAN
|
|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 4*8
|
|
v = murmur1(v + (h >> 4*8));
|
|
#endif
|
|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
|
|
v = murmur1(v + (h >> 8*8));
|
|
#endif
|
|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 12*8
|
|
v = murmur1(v + (h >> 12*8));
|
|
#endif
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
st_index_t
|
|
st_hash_end(st_index_t h)
|
|
{
|
|
h = murmur_step(h, 10);
|
|
h = murmur_step(h, 17);
|
|
return h;
|
|
}
|
|
|
|
#undef st_hash_start
|
|
st_index_t
|
|
st_hash_start(st_index_t h)
|
|
{
|
|
return h;
|
|
}
|
|
|
|
static st_index_t
|
|
strhash(st_data_t arg)
|
|
{
|
|
register const char *string = (const char *)arg;
|
|
return st_hash(string, strlen(string), FNV1_32A_INIT);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
st_strcasecmp(const char *s1, const char *s2)
|
|
{
|
|
unsigned int c1, c2;
|
|
|
|
while (1) {
|
|
c1 = (unsigned char)*s1++;
|
|
c2 = (unsigned char)*s2++;
|
|
if (c1 == '\0' || c2 == '\0') {
|
|
if (c1 != '\0') return 1;
|
|
if (c2 != '\0') return -1;
|
|
return 0;
|
|
}
|
|
if ((unsigned int)(c1 - 'A') <= ('Z' - 'A')) c1 += 'a' - 'A';
|
|
if ((unsigned int)(c2 - 'A') <= ('Z' - 'A')) c2 += 'a' - 'A';
|
|
if (c1 != c2) {
|
|
if (c1 > c2)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
st_strncasecmp(const char *s1, const char *s2, size_t n)
|
|
{
|
|
unsigned int c1, c2;
|
|
|
|
while (n--) {
|
|
c1 = (unsigned char)*s1++;
|
|
c2 = (unsigned char)*s2++;
|
|
if (c1 == '\0' || c2 == '\0') {
|
|
if (c1 != '\0') return 1;
|
|
if (c2 != '\0') return -1;
|
|
return 0;
|
|
}
|
|
if ((unsigned int)(c1 - 'A') <= ('Z' - 'A')) c1 += 'a' - 'A';
|
|
if ((unsigned int)(c2 - 'A') <= ('Z' - 'A')) c2 += 'a' - 'A';
|
|
if (c1 != c2) {
|
|
if (c1 > c2)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static st_index_t
|
|
strcasehash(st_data_t arg)
|
|
{
|
|
register const char *string = (const char *)arg;
|
|
register st_index_t hval = FNV1_32A_INIT;
|
|
|
|
/*
|
|
* FNV-1a hash each octet in the buffer
|
|
*/
|
|
while (*string) {
|
|
unsigned int c = (unsigned char)*string++;
|
|
if ((unsigned int)(c - 'A') <= ('Z' - 'A')) c += 'a' - 'A';
|
|
hval ^= c;
|
|
|
|
/* multiply by the 32 bit FNV magic prime mod 2^32 */
|
|
hval *= FNV_32_PRIME;
|
|
}
|
|
return hval;
|
|
}
|
|
|
|
int
|
|
st_numcmp(st_data_t x, st_data_t y)
|
|
{
|
|
return x != y;
|
|
}
|
|
|
|
st_index_t
|
|
st_numhash(st_data_t n)
|
|
{
|
|
return (st_index_t)n;
|
|
}
|