ruby/object.c

2684 строки
65 KiB
C

/**********************************************************************
object.c -
$Author$
created at: Thu Jul 15 12:01:24 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/st.h"
#include "ruby/util.h"
#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <math.h>
#include <float.h>
VALUE rb_cBasicObject;
VALUE rb_mKernel;
VALUE rb_cObject;
VALUE rb_cModule;
VALUE rb_cClass;
VALUE rb_cData;
VALUE rb_cNilClass;
VALUE rb_cTrueClass;
VALUE rb_cFalseClass;
static ID id_eq, id_eql, id_match, id_inspect, id_init_copy;
/*
* call-seq:
* obj === other => true or false
*
* Case Equality---For class <code>Object</code>, effectively the same
* as calling <code>#==</code>, but typically overridden by descendents
* to provide meaningful semantics in <code>case</code> statements.
*/
VALUE
rb_equal(VALUE obj1, VALUE obj2)
{
VALUE result;
if (obj1 == obj2) return Qtrue;
result = rb_funcall(obj1, id_eq, 1, obj2);
if (RTEST(result)) return Qtrue;
return Qfalse;
}
int
rb_eql(VALUE obj1, VALUE obj2)
{
return RTEST(rb_funcall(obj1, id_eql, 1, obj2));
}
/*
* call-seq:
* obj == other => true or false
* obj.equal?(other) => true or false
* obj.eql?(other) => true or false
*
* Equality---At the <code>Object</code> level, <code>==</code> returns
* <code>true</code> only if <i>obj</i> and <i>other</i> are the
* same object. Typically, this method is overridden in descendent
* classes to provide class-specific meaning.
*
* Unlike <code>==</code>, the <code>equal?</code> method should never be
* overridden by subclasses: it is used to determine object identity
* (that is, <code>a.equal?(b)</code> iff <code>a</code> is the same
* object as <code>b</code>).
*
* The <code>eql?</code> method returns <code>true</code> if
* <i>obj</i> and <i>anObject</i> have the same value. Used by
* <code>Hash</code> to test members for equality. For objects of
* class <code>Object</code>, <code>eql?</code> is synonymous with
* <code>==</code>. Subclasses normally continue this tradition, but
* there are exceptions. <code>Numeric</code> types, for example,
* perform type conversion across <code>==</code>, but not across
* <code>eql?</code>, so:
*
* 1 == 1.0 #=> true
* 1.eql? 1.0 #=> false
*/
VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
if (obj1 == obj2) return Qtrue;
return Qfalse;
}
VALUE
rb_obj_hash(VALUE obj)
{
VALUE oid = rb_obj_id(obj);
unsigned h = rb_hash_end(rb_hash_start(NUM2LONG(oid)));
return LONG2NUM(h);
}
/*
* call-seq:
* !obj => true or false
*
* Boolean negate.
*/
VALUE
rb_obj_not(VALUE obj)
{
return RTEST(obj) ? Qfalse : Qtrue;
}
/*
* call-seq:
* obj != other => true or false
*
* Returns true if two objects are not-equal, otherwise false.
*/
VALUE
rb_obj_not_equal(VALUE obj1, VALUE obj2)
{
VALUE result = rb_funcall(obj1, id_eq, 1, obj2);
return RTEST(result) ? Qfalse : Qtrue;
}
VALUE
rb_class_real(VALUE cl)
{
if (cl == 0)
return 0;
while ((RBASIC(cl)->flags & FL_SINGLETON) || BUILTIN_TYPE(cl) == T_ICLASS) {
cl = RCLASS_SUPER(cl);
}
return cl;
}
/*
* call-seq:
* obj.class => class
*
* Returns the class of <i>obj</i>, now preferred over
* <code>Object#type</code>, as an object's type in Ruby is only
* loosely tied to that object's class. This method must always be
* called with an explicit receiver, as <code>class</code> is also a
* reserved word in Ruby.
*
* 1.class #=> Fixnum
* self.class #=> Object
*/
VALUE
rb_obj_class(VALUE obj)
{
return rb_class_real(CLASS_OF(obj));
}
static void
init_copy(VALUE dest, VALUE obj)
{
if (OBJ_FROZEN(dest)) {
rb_raise(rb_eTypeError, "[bug] frozen object (%s) allocated", rb_obj_classname(dest));
}
RBASIC(dest)->flags &= ~(T_MASK|FL_EXIVAR);
RBASIC(dest)->flags |= RBASIC(obj)->flags & (T_MASK|FL_EXIVAR|FL_TAINT|FL_UNTRUSTED);
rb_copy_generic_ivar(dest, obj);
rb_gc_copy_finalizer(dest, obj);
switch (TYPE(obj)) {
case T_OBJECT:
if (!(RBASIC(dest)->flags & ROBJECT_EMBED) && ROBJECT_IVPTR(dest)) {
xfree(ROBJECT_IVPTR(dest));
ROBJECT(dest)->as.heap.ivptr = 0;
ROBJECT(dest)->as.heap.numiv = 0;
ROBJECT(dest)->as.heap.iv_index_tbl = 0;
}
if (RBASIC(obj)->flags & ROBJECT_EMBED) {
MEMCPY(ROBJECT(dest)->as.ary, ROBJECT(obj)->as.ary, VALUE, ROBJECT_EMBED_LEN_MAX);
RBASIC(dest)->flags |= ROBJECT_EMBED;
}
else {
long len = ROBJECT(obj)->as.heap.numiv;
VALUE *ptr = ALLOC_N(VALUE, len);
MEMCPY(ptr, ROBJECT(obj)->as.heap.ivptr, VALUE, len);
ROBJECT(dest)->as.heap.ivptr = ptr;
ROBJECT(dest)->as.heap.numiv = len;
ROBJECT(dest)->as.heap.iv_index_tbl = ROBJECT(obj)->as.heap.iv_index_tbl;
RBASIC(dest)->flags &= ~ROBJECT_EMBED;
}
break;
case T_CLASS:
case T_MODULE:
if (RCLASS_IV_TBL(dest)) {
st_free_table(RCLASS_IV_TBL(dest));
RCLASS_IV_TBL(dest) = 0;
}
if (RCLASS_IV_TBL(obj)) {
RCLASS_IV_TBL(dest) = st_copy(RCLASS_IV_TBL(obj));
}
break;
}
rb_funcall(dest, id_init_copy, 1, obj);
}
/*
* call-seq:
* obj.clone -> an_object
*
* Produces a shallow copy of <i>obj</i>---the instance variables of
* <i>obj</i> are copied, but not the objects they reference. Copies
* the frozen and tainted state of <i>obj</i>. See also the discussion
* under <code>Object#dup</code>.
*
* class Klass
* attr_accessor :str
* end
* s1 = Klass.new #=> #<Klass:0x401b3a38>
* s1.str = "Hello" #=> "Hello"
* s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello">
* s2.str[1,4] = "i" #=> "i"
* s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">"
* s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
*
* This method may have class-specific behavior. If so, that
* behavior will be documented under the #+initialize_copy+ method of
* the class.
*/
VALUE
rb_obj_clone(VALUE obj)
{
VALUE clone;
if (rb_special_const_p(obj)) {
rb_raise(rb_eTypeError, "can't clone %s", rb_obj_classname(obj));
}
clone = rb_obj_alloc(rb_obj_class(obj));
RBASIC(clone)->klass = rb_singleton_class_clone(obj);
RBASIC(clone)->flags = (RBASIC(obj)->flags | FL_TEST(clone, FL_TAINT) | FL_TEST(clone, FL_UNTRUSTED)) & ~(FL_FREEZE|FL_FINALIZE);
init_copy(clone, obj);
RBASIC(clone)->flags |= RBASIC(obj)->flags & FL_FREEZE;
return clone;
}
/*
* call-seq:
* obj.dup -> an_object
*
* Produces a shallow copy of <i>obj</i>---the instance variables of
* <i>obj</i> are copied, but not the objects they reference.
* <code>dup</code> copies the tainted state of <i>obj</i>. See also
* the discussion under <code>Object#clone</code>. In general,
* <code>clone</code> and <code>dup</code> may have different semantics
* in descendent classes. While <code>clone</code> is used to duplicate
* an object, including its internal state, <code>dup</code> typically
* uses the class of the descendent object to create the new instance.
*
* This method may have class-specific behavior. If so, that
* behavior will be documented under the #+initialize_copy+ method of
* the class.
*/
VALUE
rb_obj_dup(VALUE obj)
{
VALUE dup;
if (rb_special_const_p(obj)) {
rb_raise(rb_eTypeError, "can't dup %s", rb_obj_classname(obj));
}
dup = rb_obj_alloc(rb_obj_class(obj));
init_copy(dup, obj);
return dup;
}
/* :nodoc: */
VALUE
rb_obj_init_copy(VALUE obj, VALUE orig)
{
if (obj == orig) return obj;
rb_check_frozen(obj);
if (TYPE(obj) != TYPE(orig) || rb_obj_class(obj) != rb_obj_class(orig)) {
rb_raise(rb_eTypeError, "initialize_copy should take same class object");
}
return obj;
}
/*
* call-seq:
* obj.to_s => string
*
* Returns a string representing <i>obj</i>. The default
* <code>to_s</code> prints the object's class and an encoding of the
* object id. As a special case, the top-level object that is the
* initial execution context of Ruby programs returns ``main.''
*/
VALUE
rb_any_to_s(VALUE obj)
{
const char *cname = rb_obj_classname(obj);
VALUE str;
str = rb_sprintf("#<%s:%p>", cname, (void*)obj);
OBJ_INFECT(str, obj);
return str;
}
VALUE
rb_inspect(VALUE obj)
{
return rb_obj_as_string(rb_funcall(obj, id_inspect, 0, 0));
}
static int
inspect_i(ID id, VALUE value, VALUE str)
{
VALUE str2;
const char *ivname;
/* need not to show internal data */
if (CLASS_OF(value) == 0) return ST_CONTINUE;
if (!rb_is_instance_id(id)) return ST_CONTINUE;
if (RSTRING_PTR(str)[0] == '-') { /* first element */
RSTRING_PTR(str)[0] = '#';
rb_str_cat2(str, " ");
}
else {
rb_str_cat2(str, ", ");
}
ivname = rb_id2name(id);
rb_str_cat2(str, ivname);
rb_str_cat2(str, "=");
str2 = rb_inspect(value);
rb_str_append(str, str2);
OBJ_INFECT(str, str2);
return ST_CONTINUE;
}
static VALUE
inspect_obj(VALUE obj, VALUE str, int recur)
{
if (recur) {
rb_str_cat2(str, " ...");
}
else {
rb_ivar_foreach(obj, inspect_i, str);
}
rb_str_cat2(str, ">");
RSTRING_PTR(str)[0] = '#';
OBJ_INFECT(str, obj);
return str;
}
/*
* call-seq:
* obj.inspect => string
*
* Returns a string containing a human-readable representation of
* <i>obj</i>. If not overridden, uses the <code>to_s</code> method to
* generate the string.
*
* [ 1, 2, 3..4, 'five' ].inspect #=> "[1, 2, 3..4, \"five\"]"
* Time.new.inspect #=> "2008-03-08 19:43:39 +0900"
*/
static VALUE
rb_obj_inspect(VALUE obj)
{
if (TYPE(obj) == T_OBJECT) {
int has_ivar = 0;
VALUE *ptr = ROBJECT_IVPTR(obj);
long len = ROBJECT_NUMIV(obj);
long i;
for (i = 0; i < len; i++) {
if (ptr[i] != Qundef) {
has_ivar = 1;
break;
}
}
if (has_ivar) {
VALUE str;
const char *c = rb_obj_classname(obj);
str = rb_sprintf("-<%s:%p", c, (void*)obj);
return rb_exec_recursive(inspect_obj, obj, str);
}
}
return rb_funcall(obj, rb_intern("to_s"), 0, 0);
}
/*
* call-seq:
* obj.instance_of?(class) => true or false
*
* Returns <code>true</code> if <i>obj</i> is an instance of the given
* class. See also <code>Object#kind_of?</code>.
*/
VALUE
rb_obj_is_instance_of(VALUE obj, VALUE c)
{
switch (TYPE(c)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
break;
default:
rb_raise(rb_eTypeError, "class or module required");
}
if (rb_obj_class(obj) == c) return Qtrue;
return Qfalse;
}
/*
* call-seq:
* obj.is_a?(class) => true or false
* obj.kind_of?(class) => true or false
*
* Returns <code>true</code> if <i>class</i> is the class of
* <i>obj</i>, or if <i>class</i> is one of the superclasses of
* <i>obj</i> or modules included in <i>obj</i>.
*
* module M; end
* class A
* include M
* end
* class B < A; end
* class C < B; end
* b = B.new
* b.instance_of? A #=> false
* b.instance_of? B #=> true
* b.instance_of? C #=> false
* b.instance_of? M #=> false
* b.kind_of? A #=> true
* b.kind_of? B #=> true
* b.kind_of? C #=> false
* b.kind_of? M #=> true
*/
VALUE
rb_obj_is_kind_of(VALUE obj, VALUE c)
{
VALUE cl = CLASS_OF(obj);
switch (TYPE(c)) {
case T_MODULE:
case T_CLASS:
case T_ICLASS:
break;
default:
rb_raise(rb_eTypeError, "class or module required");
}
while (cl) {
if (cl == c || RCLASS_M_TBL(cl) == RCLASS_M_TBL(c))
return Qtrue;
cl = RCLASS_SUPER(cl);
}
return Qfalse;
}
/*
* call-seq:
* obj.tap{|x|...} => obj
*
* Yields <code>x</code> to the block, and then returns <code>x</code>.
* The primary purpose of this method is to "tap into" a method chain,
* in order to perform operations on intermediate results within the chain.
*
* (1..10) .tap {|x| puts "original: #{x.inspect}"}
* .to_a .tap {|x| puts "array: #{x.inspect}"}
* .select {|x| x%2==0} .tap {|x| puts "evens: #{x.inspect}"}
* .map { |x| x*x } .tap {|x| puts "squares: #{x.inspect}"}
*
*/
VALUE
rb_obj_tap(VALUE obj)
{
rb_yield(obj);
return obj;
}
/*
* Document-method: inherited
*
* call-seq:
* inherited(subclass)
*
* Callback invoked whenever a subclass of the current class is created.
*
* Example:
*
* class Foo
* def self.inherited(subclass)
* puts "New subclass: #{subclass}"
* end
* end
*
* class Bar < Foo
* end
*
* class Baz < Bar
* end
*
* produces:
*
* New subclass: Bar
* New subclass: Baz
*/
/*
* Document-method: singleton_method_added
*
* call-seq:
* singleton_method_added(symbol)
*
* Invoked as a callback whenever a singleton method is added to the
* receiver.
*
* module Chatty
* def Chatty.singleton_method_added(id)
* puts "Adding #{id.id2name}"
* end
* def self.one() end
* def two() end
* def Chatty.three() end
* end
*
* <em>produces:</em>
*
* Adding singleton_method_added
* Adding one
* Adding three
*
*/
/*
* Document-method: singleton_method_removed
*
* call-seq:
* singleton_method_removed(symbol)
*
* Invoked as a callback whenever a singleton method is removed from
* the receiver.
*
* module Chatty
* def Chatty.singleton_method_removed(id)
* puts "Removing #{id.id2name}"
* end
* def self.one() end
* def two() end
* def Chatty.three() end
* class <<self
* remove_method :three
* remove_method :one
* end
* end
*
* <em>produces:</em>
*
* Removing three
* Removing one
*/
/*
* Document-method: singleton_method_undefined
*
* call-seq:
* singleton_method_undefined(symbol)
*
* Invoked as a callback whenever a singleton method is undefined in
* the receiver.
*
* module Chatty
* def Chatty.singleton_method_undefined(id)
* puts "Undefining #{id.id2name}"
* end
* def Chatty.one() end
* class << self
* undef_method(:one)
* end
* end
*
* <em>produces:</em>
*
* Undefining one
*/
/*
* Document-method: included
*
* call-seq:
* included( othermod )
*
* Callback invoked whenever the receiver is included in another
* module or class. This should be used in preference to
* <tt>Module.append_features</tt> if your code wants to perform some
* action when a module is included in another.
*
* module A
* def A.included(mod)
* puts "#{self} included in #{mod}"
* end
* end
* module Enumerable
* include A
* end
*/
/*
* Not documented
*/
static VALUE
rb_obj_dummy(void)
{
return Qnil;
}
/*
* call-seq:
* obj.tainted? => true or false
*
* Returns <code>true</code> if the object is tainted.
*/
VALUE
rb_obj_tainted(VALUE obj)
{
if (OBJ_TAINTED(obj))
return Qtrue;
return Qfalse;
}
/*
* call-seq:
* obj.taint -> obj
*
* Marks <i>obj</i> as tainted---if the <code>$SAFE</code> level is
* set appropriately, many method calls which might alter the running
* programs environment will refuse to accept tainted strings.
*/
VALUE
rb_obj_taint(VALUE obj)
{
rb_secure(4);
if (!OBJ_TAINTED(obj)) {
if (OBJ_FROZEN(obj)) {
rb_error_frozen("object");
}
OBJ_TAINT(obj);
}
return obj;
}
/*
* call-seq:
* obj.untaint => obj
*
* Removes the taint from <i>obj</i>.
*/
VALUE
rb_obj_untaint(VALUE obj)
{
rb_secure(3);
if (OBJ_TAINTED(obj)) {
if (OBJ_FROZEN(obj)) {
rb_error_frozen("object");
}
FL_UNSET(obj, FL_TAINT);
}
return obj;
}
/*
* call-seq:
* obj.untrusted? => true or false
*
* Returns <code>true</code> if the object is untrusted.
*/
VALUE
rb_obj_untrusted(VALUE obj)
{
if (OBJ_UNTRUSTED(obj))
return Qtrue;
return Qfalse;
}
/*
* call-seq:
* obj.untrust -> obj
*
* Marks <i>obj</i> as untrusted.
*/
VALUE
rb_obj_untrust(VALUE obj)
{
rb_secure(4);
if (!OBJ_UNTRUSTED(obj)) {
if (OBJ_FROZEN(obj)) {
rb_error_frozen("object");
}
OBJ_UNTRUST(obj);
}
return obj;
}
/*
* call-seq:
* obj.trust => obj
*
* Removes the untrusted mark from <i>obj</i>.
*/
VALUE
rb_obj_trust(VALUE obj)
{
rb_secure(3);
if (OBJ_UNTRUSTED(obj)) {
if (OBJ_FROZEN(obj)) {
rb_error_frozen("object");
}
FL_UNSET(obj, FL_UNTRUSTED);
}
return obj;
}
void
rb_obj_infect(VALUE obj1, VALUE obj2)
{
OBJ_INFECT(obj1, obj2);
}
static st_table *immediate_frozen_tbl = 0;
/*
* call-seq:
* obj.freeze => obj
*
* Prevents further modifications to <i>obj</i>. A
* <code>RuntimeError</code> will be raised if modification is attempted.
* There is no way to unfreeze a frozen object. See also
* <code>Object#frozen?</code>.
*
* This method returns self.
*
* a = [ "a", "b", "c" ]
* a.freeze
* a << "z"
*
* <em>produces:</em>
*
* prog.rb:3:in `<<': can't modify frozen array (RuntimeError)
* from prog.rb:3
*/
VALUE
rb_obj_freeze(VALUE obj)
{
if (!OBJ_FROZEN(obj)) {
if (rb_safe_level() >= 4 && !OBJ_UNTRUSTED(obj)) {
rb_raise(rb_eSecurityError, "Insecure: can't freeze object");
}
OBJ_FREEZE(obj);
if (SPECIAL_CONST_P(obj)) {
if (!immediate_frozen_tbl) {
immediate_frozen_tbl = st_init_numtable();
}
st_insert(immediate_frozen_tbl, obj, (st_data_t)Qtrue);
}
}
return obj;
}
/*
* call-seq:
* obj.frozen? => true or false
*
* Returns the freeze status of <i>obj</i>.
*
* a = [ "a", "b", "c" ]
* a.freeze #=> ["a", "b", "c"]
* a.frozen? #=> true
*/
VALUE
rb_obj_frozen_p(VALUE obj)
{
if (OBJ_FROZEN(obj)) return Qtrue;
if (SPECIAL_CONST_P(obj)) {
if (!immediate_frozen_tbl) return Qfalse;
if (st_lookup(immediate_frozen_tbl, obj, 0)) return Qtrue;
}
return Qfalse;
}
/*
* Document-class: NilClass
*
* The class of the singleton object <code>nil</code>.
*/
/*
* call-seq:
* nil.to_i => 0
*
* Always returns zero.
*
* nil.to_i #=> 0
*/
static VALUE
nil_to_i(VALUE obj)
{
return INT2FIX(0);
}
/*
* call-seq:
* nil.to_f => 0.0
*
* Always returns zero.
*
* nil.to_f #=> 0.0
*/
static VALUE
nil_to_f(VALUE obj)
{
return DBL2NUM(0.0);
}
/*
* call-seq:
* nil.to_s => ""
*
* Always returns the empty string.
*/
static VALUE
nil_to_s(VALUE obj)
{
return rb_usascii_str_new(0, 0);
}
/*
* Document-method: to_a
*
* call-seq:
* nil.to_a => []
*
* Always returns an empty array.
*
* nil.to_a #=> []
*/
static VALUE
nil_to_a(VALUE obj)
{
return rb_ary_new2(0);
}
/*
* call-seq:
* nil.inspect => "nil"
*
* Always returns the string "nil".
*/
static VALUE
nil_inspect(VALUE obj)
{
return rb_usascii_str_new2("nil");
}
/***********************************************************************
* Document-class: TrueClass
*
* The global value <code>true</code> is the only instance of class
* <code>TrueClass</code> and represents a logically true value in
* boolean expressions. The class provides operators allowing
* <code>true</code> to be used in logical expressions.
*/
/*
* call-seq:
* true.to_s => "true"
*
* The string representation of <code>true</code> is "true".
*/
static VALUE
true_to_s(VALUE obj)
{
return rb_usascii_str_new2("true");
}
/*
* call-seq:
* true & obj => true or false
*
* And---Returns <code>false</code> if <i>obj</i> is
* <code>nil</code> or <code>false</code>, <code>true</code> otherwise.
*/
static VALUE
true_and(VALUE obj, VALUE obj2)
{
return RTEST(obj2)?Qtrue:Qfalse;
}
/*
* call-seq:
* true | obj => true
*
* Or---Returns <code>true</code>. As <i>anObject</i> is an argument to
* a method call, it is always evaluated; there is no short-circuit
* evaluation in this case.
*
* true | puts("or")
* true || puts("logical or")
*
* <em>produces:</em>
*
* or
*/
static VALUE
true_or(VALUE obj, VALUE obj2)
{
return Qtrue;
}
/*
* call-seq:
* true ^ obj => !obj
*
* Exclusive Or---Returns <code>true</code> if <i>obj</i> is
* <code>nil</code> or <code>false</code>, <code>false</code>
* otherwise.
*/
static VALUE
true_xor(VALUE obj, VALUE obj2)
{
return RTEST(obj2)?Qfalse:Qtrue;
}
/*
* Document-class: FalseClass
*
* The global value <code>false</code> is the only instance of class
* <code>FalseClass</code> and represents a logically false value in
* boolean expressions. The class provides operators allowing
* <code>false</code> to participate correctly in logical expressions.
*
*/
/*
* call-seq:
* false.to_s => "false"
*
* 'nuf said...
*/
static VALUE
false_to_s(VALUE obj)
{
return rb_usascii_str_new2("false");
}
/*
* call-seq:
* false & obj => false
* nil & obj => false
*
* And---Returns <code>false</code>. <i>obj</i> is always
* evaluated as it is the argument to a method call---there is no
* short-circuit evaluation in this case.
*/
static VALUE
false_and(VALUE obj, VALUE obj2)
{
return Qfalse;
}
/*
* call-seq:
* false | obj => true or false
* nil | obj => true or false
*
* Or---Returns <code>false</code> if <i>obj</i> is
* <code>nil</code> or <code>false</code>; <code>true</code> otherwise.
*/
static VALUE
false_or(VALUE obj, VALUE obj2)
{
return RTEST(obj2)?Qtrue:Qfalse;
}
/*
* call-seq:
* false ^ obj => true or false
* nil ^ obj => true or false
*
* Exclusive Or---If <i>obj</i> is <code>nil</code> or
* <code>false</code>, returns <code>false</code>; otherwise, returns
* <code>true</code>.
*
*/
static VALUE
false_xor(VALUE obj, VALUE obj2)
{
return RTEST(obj2)?Qtrue:Qfalse;
}
/*
* call_seq:
* nil.nil? => true
*
* Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
*/
static VALUE
rb_true(VALUE obj)
{
return Qtrue;
}
/*
* call_seq:
* nil.nil? => true
* <anything_else>.nil? => false
*
* Only the object <i>nil</i> responds <code>true</code> to <code>nil?</code>.
*/
static VALUE
rb_false(VALUE obj)
{
return Qfalse;
}
/*
* call-seq:
* obj =~ other => nil
*
* Pattern Match---Overridden by descendents (notably
* <code>Regexp</code> and <code>String</code>) to provide meaningful
* pattern-match semantics.
*/
static VALUE
rb_obj_match(VALUE obj1, VALUE obj2)
{
return Qnil;
}
/*
* call-seq:
* obj !~ other => true or false
*
* Returns true if two objects do not match (using the <i>=~</i>
* method), otherwise false.
*/
static VALUE
rb_obj_not_match(VALUE obj1, VALUE obj2)
{
VALUE result = rb_funcall(obj1, id_match, 1, obj2);
return RTEST(result) ? Qfalse : Qtrue;
}
/***********************************************************************
*
* Document-class: Module
*
* A <code>Module</code> is a collection of methods and constants. The
* methods in a module may be instance methods or module methods.
* Instance methods appear as methods in a class when the module is
* included, module methods do not. Conversely, module methods may be
* called without creating an encapsulating object, while instance
* methods may not. (See <code>Module#module_function</code>)
*
* In the descriptions that follow, the parameter <i>syml</i> refers
* to a symbol, which is either a quoted string or a
* <code>Symbol</code> (such as <code>:name</code>).
*
* module Mod
* include Math
* CONST = 1
* def meth
* # ...
* end
* end
* Mod.class #=> Module
* Mod.constants #=> [:CONST, :PI, :E]
* Mod.instance_methods #=> [:meth]
*
*/
/*
* call-seq:
* mod.to_s => string
*
* Return a string representing this module or class. For basic
* classes and modules, this is the name. For singletons, we
* show information on the thing we're attached to as well.
*/
static VALUE
rb_mod_to_s(VALUE klass)
{
if (FL_TEST(klass, FL_SINGLETON)) {
VALUE s = rb_usascii_str_new2("#<");
VALUE v = rb_iv_get(klass, "__attached__");
rb_str_cat2(s, "Class:");
switch (TYPE(v)) {
case T_CLASS: case T_MODULE:
rb_str_append(s, rb_inspect(v));
break;
default:
rb_str_append(s, rb_any_to_s(v));
break;
}
rb_str_cat2(s, ">");
return s;
}
return rb_str_dup(rb_class_name(klass));
}
/*
* call-seq:
* mod.freeze => mod
*
* Prevents further modifications to <i>mod</i>.
*
* This method returns self.
*/
static VALUE
rb_mod_freeze(VALUE mod)
{
rb_class_name(mod);
return rb_obj_freeze(mod);
}
/*
* call-seq:
* mod === obj => true or false
*
* Case Equality---Returns <code>true</code> if <i>anObject</i> is an
* instance of <i>mod</i> or one of <i>mod</i>'s descendents. Of
* limited use for modules, but can be used in <code>case</code>
* statements to classify objects by class.
*/
static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
return rb_obj_is_kind_of(arg, mod);
}
/*
* call-seq:
* mod <= other => true, false, or nil
*
* Returns true if <i>mod</i> is a subclass of <i>other</i> or
* is the same as <i>other</i>. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A<B" implies "A<B").
*
*/
VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
VALUE start = mod;
if (mod == arg) return Qtrue;
switch (TYPE(arg)) {
case T_MODULE:
case T_CLASS:
break;
default:
rb_raise(rb_eTypeError, "compared with non class/module");
}
while (mod) {
if (RCLASS_M_TBL(mod) == RCLASS_M_TBL(arg))
return Qtrue;
mod = RCLASS_SUPER(mod);
}
/* not mod < arg; check if mod > arg */
while (arg) {
if (RCLASS_M_TBL(arg) == RCLASS_M_TBL(start))
return Qfalse;
arg = RCLASS_SUPER(arg);
}
return Qnil;
}
/*
* call-seq:
* mod < other => true, false, or nil
*
* Returns true if <i>mod</i> is a subclass of <i>other</i>. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A<B" implies "A<B").
*
*/
static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_class_inherited_p(mod, arg);
}
/*
* call-seq:
* mod >= other => true, false, or nil
*
* Returns true if <i>mod</i> is an ancestor of <i>other</i>, or the
* two modules are the same. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A<B" implies "B>A").
*
*/
static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
switch (TYPE(arg)) {
case T_MODULE:
case T_CLASS:
break;
default:
rb_raise(rb_eTypeError, "compared with non class/module");
}
return rb_class_inherited_p(arg, mod);
}
/*
* call-seq:
* mod > other => true, false, or nil
*
* Returns true if <i>mod</i> is an ancestor of <i>other</i>. Returns
* <code>nil</code> if there's no relationship between the two.
* (Think of the relationship in terms of the class definition:
* "class A<B" implies "B>A").
*
*/
static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
if (mod == arg) return Qfalse;
return rb_mod_ge(mod, arg);
}
/*
* call-seq:
* mod <=> other_mod => -1, 0, +1, or nil
*
* Comparison---Returns -1 if <i>mod</i> includes <i>other_mod</i>, 0 if
* <i>mod</i> is the same as <i>other_mod</i>, and +1 if <i>mod</i> is
* included by <i>other_mod</i>. Returns <code>nil</code> if <i>mod</i>
* has no relationship with <i>other_mod</i> or if <i>other_mod</i> is
* not a module.
*/
static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
VALUE cmp;
if (mod == arg) return INT2FIX(0);
switch (TYPE(arg)) {
case T_MODULE:
case T_CLASS:
break;
default:
return Qnil;
}
cmp = rb_class_inherited_p(mod, arg);
if (NIL_P(cmp)) return Qnil;
if (cmp) {
return INT2FIX(-1);
}
return INT2FIX(1);
}
static VALUE
rb_module_s_alloc(VALUE klass)
{
VALUE mod = rb_module_new();
RBASIC(mod)->klass = klass;
return mod;
}
static VALUE
rb_class_s_alloc(VALUE klass)
{
return rb_class_boot(0);
}
/*
* call-seq:
* Module.new => mod
* Module.new {|mod| block } => mod
*
* Creates a new anonymous module. If a block is given, it is passed
* the module object, and the block is evaluated in the context of this
* module using <code>module_eval</code>.
*
* Fred = Module.new do
* def meth1
* "hello"
* end
* def meth2
* "bye"
* end
* end
* a = "my string"
* a.extend(Fred) #=> "my string"
* a.meth1 #=> "hello"
* a.meth2 #=> "bye"
*/
static VALUE
rb_mod_initialize(VALUE module)
{
extern VALUE rb_mod_module_exec(int argc, VALUE *argv, VALUE mod);
if (rb_block_given_p()) {
rb_mod_module_exec(1, &module, module);
}
return Qnil;
}
/*
* call-seq:
* Class.new(super_class=Object) => a_class
*
* Creates a new anonymous (unnamed) class with the given superclass
* (or <code>Object</code> if no parameter is given). You can give a
* class a name by assigning the class object to a constant.
*
*/
static VALUE
rb_class_initialize(int argc, VALUE *argv, VALUE klass)
{
VALUE super;
if (RCLASS_SUPER(klass) != 0) {
rb_raise(rb_eTypeError, "already initialized class");
}
if (argc == 0) {
super = rb_cObject;
}
else {
rb_scan_args(argc, argv, "01", &super);
rb_check_inheritable(super);
}
RCLASS_SUPER(klass) = super;
rb_make_metaclass(klass, RBASIC(super)->klass);
rb_class_inherited(super, klass);
rb_mod_initialize(klass);
return klass;
}
/*
* call-seq:
* class.allocate() => obj
*
* Allocates space for a new object of <i>class</i>'s class and does not
* call initialize on the new instance. The returned object must be an
* instance of <i>class</i>.
*
* klass = Class.new do
* def initialize(*args)
* @initialized = true
* end
*
* def initialized?
* @initialized || false
* end
* end
*
* klass.allocate.initialized? #=> false
*
*/
VALUE
rb_obj_alloc(VALUE klass)
{
VALUE obj;
if (RCLASS_SUPER(klass) == 0 && klass != rb_cBasicObject) {
rb_raise(rb_eTypeError, "can't instantiate uninitialized class");
}
if (FL_TEST(klass, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "can't create instance of singleton class");
}
obj = rb_funcall(klass, ID_ALLOCATOR, 0, 0);
if (rb_obj_class(obj) != rb_class_real(klass)) {
rb_raise(rb_eTypeError, "wrong instance allocation");
}
return obj;
}
static VALUE
rb_class_allocate_instance(VALUE klass)
{
NEWOBJ(obj, struct RObject);
OBJSETUP(obj, klass, T_OBJECT);
return (VALUE)obj;
}
/*
* call-seq:
* class.new(args, ...) => obj
*
* Calls <code>allocate</code> to create a new object of
* <i>class</i>'s class, then invokes that object's
* <code>initialize</code> method, passing it <i>args</i>.
* This is the method that ends up getting called whenever
* an object is constructed using .new.
*
*/
VALUE
rb_class_new_instance(int argc, VALUE *argv, VALUE klass)
{
VALUE obj;
obj = rb_obj_alloc(klass);
rb_obj_call_init(obj, argc, argv);
return obj;
}
/*
* call-seq:
* class.superclass -> a_super_class or nil
*
* Returns the superclass of <i>class</i>, or <code>nil</code>.
*
* File.superclass #=> IO
* IO.superclass #=> Object
* Object.superclass #=> BasicObject
* class Foo; end
* class Bar < Foo; end
* Bar.superclass #=> Foo
*
* returns nil when the given class hasn't a parent class:
*
* BasicObject.superclass #=> nil
*
*/
static VALUE
rb_class_superclass(VALUE klass)
{
VALUE super = RCLASS_SUPER(klass);
if (!super) {
if (klass == rb_cBasicObject) return Qnil;
rb_raise(rb_eTypeError, "uninitialized class");
}
while (TYPE(super) == T_ICLASS) {
super = RCLASS_SUPER(super);
}
if (!super) {
return Qnil;
}
return super;
}
/*
* call-seq:
* attr_reader(symbol, ...) => nil
* attr(symbol, ...) => nil
*
* Creates instance variables and corresponding methods that return the
* value of each instance variable. Equivalent to calling
* ``<code>attr</code><i>:name</i>'' on each name in turn.
*/
static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), Qtrue, Qfalse, Qtrue);
}
return Qnil;
}
VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
rb_warning("optional boolean argument is obsoleted");
rb_attr(klass, rb_to_id(argv[0]), 1, RTEST(argv[1]), Qtrue);
return Qnil;
}
return rb_mod_attr_reader(argc, argv, klass);
}
/*
* call-seq:
* attr_writer(symbol, ...) => nil
*
* Creates an accessor method to allow assignment to the attribute
* <i>aSymbol</i><code>.id2name</code>.
*/
static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), Qfalse, Qtrue, Qtrue);
}
return Qnil;
}
/*
* call-seq:
* attr_accessor(symbol, ...) => nil
*
* Defines a named attribute for this module, where the name is
* <i>symbol.</i><code>id2name</code>, creating an instance variable
* (<code>@name</code>) and a corresponding access method to read it.
* Also creates a method called <code>name=</code> to set the attribute.
*
* module Mod
* attr_accessor(:one, :two)
* end
* Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
*/
static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
int i;
for (i=0; i<argc; i++) {
rb_attr(klass, rb_to_id(argv[i]), Qtrue, Qtrue, Qtrue);
}
return Qnil;
}
/*
* call-seq:
* mod.const_get(sym, inherit=true) => obj
*
* Returns the value of the named constant in <i>mod</i>.
*
* Math.const_get(:PI) #=> 3.14159265358979
*
* If the constant is not defined or is defined by the ancestors and
* +inherit+ is false, +NameError+ will be raised.
*/
static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
ID id;
if (argc == 1) {
name = argv[0];
recur = Qtrue;
}
else {
rb_scan_args(argc, argv, "11", &name, &recur);
}
id = rb_to_id(name);
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %s", rb_id2name(id));
}
return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
}
/*
* call-seq:
* mod.const_set(sym, obj) => obj
*
* Sets the named constant to the given object, returning that object.
* Creates a new constant if no constant with the given name previously
* existed.
*
* Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714
* Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
*/
static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
ID id = rb_to_id(name);
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %s", rb_id2name(id));
}
rb_const_set(mod, id, value);
return value;
}
/*
* call-seq:
* mod.const_defined?(sym, inherit=true) => true or false
*
* Returns <code>true</code> if a constant with the given name is
* defined by <i>mod</i>, or its ancestors if +inherit+ is not false.
*
* Math.const_defined? "PI" #=> true
* IO.const_defined? "SYNC" #=> true
* IO.const_defined? "SYNC", false #=> false
*/
static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
VALUE name, recur;
ID id;
if (argc == 1) {
name = argv[0];
recur = Qtrue;
}
else {
rb_scan_args(argc, argv, "11", &name, &recur);
}
id = rb_to_id(name);
if (!rb_is_const_id(id)) {
rb_name_error(id, "wrong constant name %s", rb_id2name(id));
}
return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
}
/*
* call-seq:
* obj.methods => array
*
* Returns a list of the names of methods publicly accessible in
* <i>obj</i>. This will include all the methods accessible in
* <i>obj</i>'s ancestors.
*
* class Klass
* def kMethod()
* end
* end
* k = Klass.new
* k.methods[0..9] #=> ["kMethod", "freeze", "nil?", "is_a?",
* # "class", "instance_variable_set",
* # "methods", "extend", "__send__", "instance_eval"]
* k.methods.length #=> 42
*/
static VALUE
rb_obj_methods(int argc, VALUE *argv, VALUE obj)
{
retry:
if (argc == 0) {
VALUE args[1];
args[0] = Qtrue;
return rb_class_instance_methods(1, args, CLASS_OF(obj));
}
else {
VALUE recur;
rb_scan_args(argc, argv, "1", &recur);
if (RTEST(recur)) {
argc = 0;
goto retry;
}
return rb_obj_singleton_methods(argc, argv, obj);
}
}
/*
* call-seq:
* obj.protected_methods(all=true) => array
*
* Returns the list of protected methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
static VALUE
rb_obj_protected_methods(int argc, VALUE *argv, VALUE obj)
{
if (argc == 0) { /* hack to stop warning */
VALUE args[1];
args[0] = Qtrue;
return rb_class_protected_instance_methods(1, args, CLASS_OF(obj));
}
return rb_class_protected_instance_methods(argc, argv, CLASS_OF(obj));
}
/*
* call-seq:
* obj.private_methods(all=true) => array
*
* Returns the list of private methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
static VALUE
rb_obj_private_methods(int argc, VALUE *argv, VALUE obj)
{
if (argc == 0) { /* hack to stop warning */
VALUE args[1];
args[0] = Qtrue;
return rb_class_private_instance_methods(1, args, CLASS_OF(obj));
}
return rb_class_private_instance_methods(argc, argv, CLASS_OF(obj));
}
/*
* call-seq:
* obj.public_methods(all=true) => array
*
* Returns the list of public methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
static VALUE
rb_obj_public_methods(int argc, VALUE *argv, VALUE obj)
{
if (argc == 0) { /* hack to stop warning */
VALUE args[1];
args[0] = Qtrue;
return rb_class_public_instance_methods(1, args, CLASS_OF(obj));
}
return rb_class_public_instance_methods(argc, argv, CLASS_OF(obj));
}
/*
* call-seq:
* obj.instance_variable_get(symbol) => obj
*
* Returns the value of the given instance variable, or nil if the
* instance variable is not set. The <code>@</code> part of the
* variable name should be included for regular instance
* variables. Throws a <code>NameError</code> exception if the
* supplied symbol is not valid as an instance variable name.
*
* class Fred
* def initialize(p1, p2)
* @a, @b = p1, p2
* end
* end
* fred = Fred.new('cat', 99)
* fred.instance_variable_get(:@a) #=> "cat"
* fred.instance_variable_get("@b") #=> 99
*/
static VALUE
rb_obj_ivar_get(VALUE obj, VALUE iv)
{
ID id = rb_to_id(iv);
if (!rb_is_instance_id(id)) {
rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
}
return rb_ivar_get(obj, id);
}
/*
* call-seq:
* obj.instance_variable_set(symbol, obj) => obj
*
* Sets the instance variable names by <i>symbol</i> to
* <i>object</i>, thereby frustrating the efforts of the class's
* author to attempt to provide proper encapsulation. The variable
* did not have to exist prior to this call.
*
* class Fred
* def initialize(p1, p2)
* @a, @b = p1, p2
* end
* end
* fred = Fred.new('cat', 99)
* fred.instance_variable_set(:@a, 'dog') #=> "dog"
* fred.instance_variable_set(:@c, 'cat') #=> "cat"
* fred.inspect #=> "#<Fred:0x401b3da8 @a=\"dog\", @b=99, @c=\"cat\">"
*/
static VALUE
rb_obj_ivar_set(VALUE obj, VALUE iv, VALUE val)
{
ID id = rb_to_id(iv);
if (!rb_is_instance_id(id)) {
rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
}
return rb_ivar_set(obj, id, val);
}
/*
* call-seq:
* obj.instance_variable_defined?(symbol) => true or false
*
* Returns <code>true</code> if the given instance variable is
* defined in <i>obj</i>.
*
* class Fred
* def initialize(p1, p2)
* @a, @b = p1, p2
* end
* end
* fred = Fred.new('cat', 99)
* fred.instance_variable_defined?(:@a) #=> true
* fred.instance_variable_defined?("@b") #=> true
* fred.instance_variable_defined?("@c") #=> false
*/
static VALUE
rb_obj_ivar_defined(VALUE obj, VALUE iv)
{
ID id = rb_to_id(iv);
if (!rb_is_instance_id(id)) {
rb_name_error(id, "`%s' is not allowed as an instance variable name", rb_id2name(id));
}
return rb_ivar_defined(obj, id);
}
/*
* call-seq:
* mod.class_variable_get(symbol) => obj
*
* Returns the value of the given class variable (or throws a
* <code>NameError</code> exception). The <code>@@</code> part of the
* variable name should be included for regular class variables
*
* class Fred
* @@foo = 99
* end
* Fred.class_variable_get(:@@foo) #=> 99
*/
static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
ID id = rb_to_id(iv);
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
}
return rb_cvar_get(obj, id);
}
/*
* call-seq:
* obj.class_variable_set(symbol, obj) => obj
*
* Sets the class variable names by <i>symbol</i> to
* <i>object</i>.
*
* class Fred
* @@foo = 99
* def foo
* @@foo
* end
* end
* Fred.class_variable_set(:@@foo, 101) #=> 101
* Fred.new.foo #=> 101
*/
static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
ID id = rb_to_id(iv);
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
}
rb_cvar_set(obj, id, val);
return val;
}
/*
* call-seq:
* obj.class_variable_defined?(symbol) => true or false
*
* Returns <code>true</code> if the given class variable is defined
* in <i>obj</i>.
*
* class Fred
* @@foo = 99
* end
* Fred.class_variable_defined?(:@@foo) #=> true
* Fred.class_variable_defined?(:@@bar) #=> false
*/
static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
ID id = rb_to_id(iv);
if (!rb_is_class_id(id)) {
rb_name_error(id, "`%s' is not allowed as a class variable name", rb_id2name(id));
}
return rb_cvar_defined(obj, id);
}
static struct conv_method_tbl {
const char *method;
ID id;
} conv_method_names[] = {
{"to_int", 0},
{"to_ary", 0},
{"to_str", 0},
{"to_sym", 0},
{"to_hash", 0},
{"to_proc", 0},
{"to_io", 0},
{"to_a", 0},
{"to_s", 0},
{NULL, 0}
};
static VALUE
convert_type(VALUE val, const char *tname, const char *method, int raise)
{
ID m = 0;
int i;
for (i=0; conv_method_names[i].method; i++) {
if (conv_method_names[i].method[0] == method[0] &&
strcmp(conv_method_names[i].method, method) == 0) {
m = conv_method_names[i].id;
break;
}
}
if (!m) m = rb_intern(method);
if (!rb_respond_to(val, m)) {
if (raise) {
rb_raise(rb_eTypeError, "can't convert %s into %s",
NIL_P(val) ? "nil" :
val == Qtrue ? "true" :
val == Qfalse ? "false" :
rb_obj_classname(val),
tname);
}
else {
return Qnil;
}
}
return rb_funcall(val, m, 0);
}
VALUE
rb_convert_type(VALUE val, int type, const char *tname, const char *method)
{
VALUE v;
if (TYPE(val) == type) return val;
v = convert_type(val, tname, method, Qtrue);
if (TYPE(v) != type) {
const char *cname = rb_obj_classname(val);
rb_raise(rb_eTypeError, "can't convert %s to %s (%s#%s gives %s)",
cname, tname, cname, method, rb_obj_classname(v));
}
return v;
}
VALUE
rb_check_convert_type(VALUE val, int type, const char *tname, const char *method)
{
VALUE v;
/* always convert T_DATA */
if (TYPE(val) == type && type != T_DATA) return val;
v = convert_type(val, tname, method, Qfalse);
if (NIL_P(v)) return Qnil;
if (TYPE(v) != type) {
const char *cname = rb_obj_classname(val);
rb_raise(rb_eTypeError, "can't convert %s to %s (%s#%s gives %s)",
cname, tname, cname, method, rb_obj_classname(v));
}
return v;
}
static VALUE
rb_to_integer(VALUE val, const char *method)
{
VALUE v;
if (FIXNUM_P(val)) return val;
if (TYPE(val) == T_BIGNUM) return val;
v = convert_type(val, "Integer", method, Qtrue);
if (!rb_obj_is_kind_of(v, rb_cInteger)) {
const char *cname = rb_obj_classname(val);
rb_raise(rb_eTypeError, "can't convert %s to Integer (%s#%s gives %s)",
cname, cname, method, rb_obj_classname(v));
}
return v;
}
VALUE
rb_check_to_integer(VALUE val, const char *method)
{
VALUE v;
if (FIXNUM_P(val)) return val;
if (TYPE(val) == T_BIGNUM) return val;
v = convert_type(val, "Integer", method, Qfalse);
if (!rb_obj_is_kind_of(v, rb_cInteger)) {
return Qnil;
}
return v;
}
VALUE
rb_to_int(VALUE val)
{
return rb_to_integer(val, "to_int");
}
VALUE
rb_Integer(VALUE val)
{
VALUE tmp;
switch (TYPE(val)) {
case T_FLOAT:
if (RFLOAT_VALUE(val) <= (double)FIXNUM_MAX
&& RFLOAT_VALUE(val) >= (double)FIXNUM_MIN) {
break;
}
return rb_dbl2big(RFLOAT_VALUE(val));
case T_FIXNUM:
case T_BIGNUM:
return val;
case T_STRING:
return rb_str_to_inum(val, 0, Qtrue);
case T_NIL:
rb_raise(rb_eTypeError, "can't convert nil into Integer");
break;
default:
break;
}
tmp = convert_type(val, "Integer", "to_int", Qfalse);
if (NIL_P(tmp)) {
return rb_to_integer(val, "to_i");
}
return tmp;
}
/*
* call-seq:
* Integer(arg) => integer
*
* Converts <i>arg</i> to a <code>Fixnum</code> or <code>Bignum</code>.
* Numeric types are converted directly (with floating point numbers
* being truncated). If <i>arg</i> is a <code>String</code>, leading
* radix indicators (<code>0</code>, <code>0b</code>, and
* <code>0x</code>) are honored. Others are converted using
* <code>to_int</code> and <code>to_i</code>. This behavior is
* different from that of <code>String#to_i</code>.
*
* Integer(123.999) #=> 123
* Integer("0x1a") #=> 26
* Integer(Time.new) #=> 1204973019
*/
static VALUE
rb_f_integer(VALUE obj, VALUE arg)
{
return rb_Integer(arg);
}
double
rb_cstr_to_dbl(const char *p, int badcheck)
{
const char *q;
char *end;
double d;
const char *ellipsis = "";
int w;
#define OutOfRange() (((w = end - p) > 20) ? (w = 20, ellipsis = "...") : (ellipsis = ""))
if (!p) return 0.0;
q = p;
while (ISSPACE(*p)) p++;
d = strtod(p, &end);
if (errno == ERANGE) {
OutOfRange();
rb_warning("Float %.*s%s out of range", w, p, ellipsis);
errno = 0;
}
if (p == end) {
if (badcheck) {
bad:
rb_invalid_str(q, "Float()");
}
return d;
}
if (*end) {
char buf[DBL_DIG * 4 + 10];
char *n = buf;
char *e = buf + sizeof(buf) - 1;
char prev = 0;
while (p < end && n < e) prev = *n++ = *p++;
while (*p) {
if (*p == '_') {
/* remove underscores between digits */
if (badcheck) {
if (n == buf || !ISDIGIT(prev)) goto bad;
++p;
if (!ISDIGIT(*p)) goto bad;
}
else {
while (*++p == '_');
continue;
}
}
prev = *p++;
if (n < e) *n++ = prev;
}
*n = '\0';
p = buf;
d = strtod(p, &end);
if (errno == ERANGE) {
OutOfRange();
rb_warning("Float %.*s%s out of range", w, p, ellipsis);
errno = 0;
}
if (badcheck) {
if (!end || p == end) goto bad;
while (*end && ISSPACE(*end)) end++;
if (*end) goto bad;
}
}
if (errno == ERANGE) {
errno = 0;
OutOfRange();
rb_raise(rb_eArgError, "Float %.*s%s out of range", w, q, ellipsis);
}
return d;
}
double
rb_str_to_dbl(VALUE str, int badcheck)
{
char *s;
long len;
StringValue(str);
s = RSTRING_PTR(str);
len = RSTRING_LEN(str);
if (s) {
if (s[len]) { /* no sentinel somehow */
char *p = ALLOCA_N(char, len+1);
MEMCPY(p, s, char, len);
p[len] = '\0';
s = p;
}
if (badcheck && len != strlen(s)) {
rb_raise(rb_eArgError, "string for Float contains null byte");
}
}
return rb_cstr_to_dbl(s, badcheck);
}
VALUE
rb_Float(VALUE val)
{
switch (TYPE(val)) {
case T_FIXNUM:
return DBL2NUM((double)FIX2LONG(val));
case T_FLOAT:
return val;
case T_BIGNUM:
return DBL2NUM(rb_big2dbl(val));
case T_STRING:
return DBL2NUM(rb_str_to_dbl(val, Qtrue));
case T_NIL:
rb_raise(rb_eTypeError, "can't convert nil into Float");
break;
default:
return rb_convert_type(val, T_FLOAT, "Float", "to_f");
}
}
/*
* call-seq:
* Float(arg) => float
*
* Returns <i>arg</i> converted to a float. Numeric types are converted
* directly, the rest are converted using <i>arg</i>.to_f. As of Ruby
* 1.8, converting <code>nil</code> generates a <code>TypeError</code>.
*
* Float(1) #=> 1.0
* Float("123.456") #=> 123.456
*/
static VALUE
rb_f_float(VALUE obj, VALUE arg)
{
return rb_Float(arg);
}
VALUE
rb_to_float(VALUE val)
{
if (TYPE(val) == T_FLOAT) return val;
if (!rb_obj_is_kind_of(val, rb_cNumeric)) {
rb_raise(rb_eTypeError, "can't convert %s into Float",
NIL_P(val) ? "nil" :
val == Qtrue ? "true" :
val == Qfalse ? "false" :
rb_obj_classname(val));
}
return rb_convert_type(val, T_FLOAT, "Float", "to_f");
}
double
rb_num2dbl(VALUE val)
{
switch (TYPE(val)) {
case T_FLOAT:
return RFLOAT_VALUE(val);
case T_STRING:
rb_raise(rb_eTypeError, "no implicit conversion to float from string");
break;
case T_NIL:
rb_raise(rb_eTypeError, "no implicit conversion to float from nil");
break;
default:
break;
}
return RFLOAT_VALUE(rb_Float(val));
}
VALUE
rb_String(VALUE val)
{
return rb_convert_type(val, T_STRING, "String", "to_s");
}
/*
* call-seq:
* String(arg) => string
*
* Converts <i>arg</i> to a <code>String</code> by calling its
* <code>to_s</code> method.
*
* String(self) #=> "main"
* String(self.class) #=> "Object"
* String(123456) #=> "123456"
*/
static VALUE
rb_f_string(VALUE obj, VALUE arg)
{
return rb_String(arg);
}
VALUE
rb_Array(VALUE val)
{
VALUE tmp = rb_check_array_type(val);
if (NIL_P(tmp)) {
tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_a");
if (NIL_P(tmp)) {
return rb_ary_new3(1, val);
}
}
return tmp;
}
/*
* call-seq:
* Array(arg) => array
*
* Returns <i>arg</i> as an <code>Array</code>. First tries to call
* <i>arg</i><code>.to_ary</code>, then <i>arg</i><code>.to_a</code>.
*
* Array(1..5) #=> [1, 2, 3, 4, 5]
*/
static VALUE
rb_f_array(VALUE obj, VALUE arg)
{
return rb_Array(arg);
}
static VALUE
boot_defclass(const char *name, VALUE super)
{
extern st_table *rb_class_tbl;
VALUE obj = rb_class_boot(super);
ID id = rb_intern(name);
rb_name_class(obj, id);
st_add_direct(rb_class_tbl, id, obj);
rb_const_set((rb_cObject ? rb_cObject : obj), id, obj);
return obj;
}
static void
boot_defmetametaclass(VALUE klass, VALUE metametaclass)
{
RBASIC(RBASIC(klass)->klass)->klass = metametaclass;
}
/*
* Document-class: Class
*
* Classes in Ruby are first-class objects---each is an instance of
* class <code>Class</code>.
*
* When a new class is created (typically using <code>class Name ...
* end</code>), an object of type <code>Class</code> is created and
* assigned to a global constant (<code>Name</code> in this case). When
* <code>Name.new</code> is called to create a new object, the
* <code>new</code> method in <code>Class</code> is run by default.
* This can be demonstrated by overriding <code>new</code> in
* <code>Class</code>:
*
* class Class
* alias oldNew new
* def new(*args)
* print "Creating a new ", self.name, "\n"
* oldNew(*args)
* end
* end
*
*
* class Name
* end
*
*
* n = Name.new
*
* <em>produces:</em>
*
* Creating a new Name
*
* Classes, modules, and objects are interrelated. In the diagram
* that follows, the vertical arrows represent inheritance, and the
* parentheses meta-classes. All metaclasses are instances
* of the class `Class'.
* +---------+ +-...
* | | |
* BasicObject-----|-->(BasicObject)-------|-...
* ^ | ^ |
* | | | |
* Object---------|----->(Object)---------|-...
* ^ | ^ |
* | | | |
* +-------+ | +--------+ |
* | | | | | |
* | Module-|---------|--->(Module)-|-...
* | ^ | | ^ |
* | | | | | |
* | Class-|---------|---->(Class)-|-...
* | ^ | | ^ |
* | +---+ | +----+
* | |
* obj--->OtherClass---------->(OtherClass)-----------...
*
*/
/*!
* Initializes the world of objects and classes.
*
* At first, the function bootstraps the class hierarchy.
* It initializes the most fundamental classes and their metaclasses.
* - \c BasicObject
* - \c Object
* - \c Module
* - \c Class
* After the bootstrap step, the class hierarchy becomes as the following
* diagram.
*
* \image html boottime-classes.png
*
* Then, the function defines classes, modules and methods as usual.
* \ingroup class
*/
/*
*
* <code>BasicObject</code> is the parent class of all classes in Ruby.
* It's an explicit blank class. <code>Object</code>, the root of Ruby's
* class hierarchy is a direct subclass of <code>BasicObject</code>. Its
* methods are therefore available to all objects unless explicitly
* overridden.
*
* <code>Object</code> mixes in the <code>Kernel</code> module, making
* the built-in kernel functions globally accessible. Although the
* instance methods of <code>Object</code> are defined by the
* <code>Kernel</code> module, we have chosen to document them here for
* clarity.
*
* In the descriptions of Object's methods, the parameter <i>symbol</i> refers
* to a symbol, which is either a quoted string or a
* <code>Symbol</code> (such as <code>:name</code>).
*/
void
Init_Object(void)
{
int i;
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
VALUE metaclass;
rb_cBasicObject = boot_defclass("BasicObject", 0);
rb_cObject = boot_defclass("Object", rb_cBasicObject);
rb_cModule = boot_defclass("Module", rb_cObject);
rb_cClass = boot_defclass("Class", rb_cModule);
metaclass = rb_make_metaclass(rb_cBasicObject, rb_cClass);
metaclass = rb_make_metaclass(rb_cObject, metaclass);
metaclass = rb_make_metaclass(rb_cModule, metaclass);
metaclass = rb_make_metaclass(rb_cClass, metaclass);
boot_defmetametaclass(rb_cModule, metaclass);
boot_defmetametaclass(rb_cObject, metaclass);
boot_defmetametaclass(rb_cBasicObject, metaclass);
rb_define_private_method(rb_cBasicObject, "initialize", rb_obj_dummy, 0);
rb_define_alloc_func(rb_cBasicObject, rb_class_allocate_instance);
rb_define_method(rb_cBasicObject, "==", rb_obj_equal, 1);
rb_define_method(rb_cBasicObject, "equal?", rb_obj_equal, 1);
rb_define_method(rb_cBasicObject, "!", rb_obj_not, 0);
rb_define_method(rb_cBasicObject, "!=", rb_obj_not_equal, 1);
rb_define_private_method(rb_cBasicObject, "singleton_method_added", rb_obj_dummy, 1);
rb_define_private_method(rb_cBasicObject, "singleton_method_removed", rb_obj_dummy, 1);
rb_define_private_method(rb_cBasicObject, "singleton_method_undefined", rb_obj_dummy, 1);
rb_mKernel = rb_define_module("Kernel");
rb_include_module(rb_cObject, rb_mKernel);
rb_define_private_method(rb_cClass, "inherited", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "included", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "extended", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "method_added", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "method_removed", rb_obj_dummy, 1);
rb_define_private_method(rb_cModule, "method_undefined", rb_obj_dummy, 1);
rb_define_method(rb_mKernel, "nil?", rb_false, 0);
rb_define_method(rb_mKernel, "===", rb_equal, 1);
rb_define_method(rb_mKernel, "=~", rb_obj_match, 1);
rb_define_method(rb_mKernel, "!~", rb_obj_not_match, 1);
rb_define_method(rb_mKernel, "eql?", rb_obj_equal, 1);
rb_define_method(rb_mKernel, "hash", rb_obj_hash, 0);
rb_define_method(rb_mKernel, "class", rb_obj_class, 0);
rb_define_method(rb_mKernel, "clone", rb_obj_clone, 0);
rb_define_method(rb_mKernel, "dup", rb_obj_dup, 0);
rb_define_method(rb_mKernel, "initialize_copy", rb_obj_init_copy, 1);
rb_define_method(rb_mKernel, "taint", rb_obj_taint, 0);
rb_define_method(rb_mKernel, "tainted?", rb_obj_tainted, 0);
rb_define_method(rb_mKernel, "untaint", rb_obj_untaint, 0);
rb_define_method(rb_mKernel, "untrust", rb_obj_untrust, 0);
rb_define_method(rb_mKernel, "untrusted?", rb_obj_untrusted, 0);
rb_define_method(rb_mKernel, "trust", rb_obj_trust, 0);
rb_define_method(rb_mKernel, "freeze", rb_obj_freeze, 0);
rb_define_method(rb_mKernel, "frozen?", rb_obj_frozen_p, 0);
rb_define_method(rb_mKernel, "to_s", rb_any_to_s, 0);
rb_define_method(rb_mKernel, "inspect", rb_obj_inspect, 0);
rb_define_method(rb_mKernel, "methods", rb_obj_methods, -1);
rb_define_method(rb_mKernel, "singleton_methods", rb_obj_singleton_methods, -1); /* in class.c */
rb_define_method(rb_mKernel, "protected_methods", rb_obj_protected_methods, -1);
rb_define_method(rb_mKernel, "private_methods", rb_obj_private_methods, -1);
rb_define_method(rb_mKernel, "public_methods", rb_obj_public_methods, -1);
rb_define_method(rb_mKernel, "instance_variables", rb_obj_instance_variables, 0); /* in variable.c */
rb_define_method(rb_mKernel, "instance_variable_get", rb_obj_ivar_get, 1);
rb_define_method(rb_mKernel, "instance_variable_set", rb_obj_ivar_set, 2);
rb_define_method(rb_mKernel, "instance_variable_defined?", rb_obj_ivar_defined, 1);
rb_define_private_method(rb_mKernel, "remove_instance_variable",
rb_obj_remove_instance_variable, 1); /* in variable.c */
rb_define_method(rb_mKernel, "instance_of?", rb_obj_is_instance_of, 1);
rb_define_method(rb_mKernel, "kind_of?", rb_obj_is_kind_of, 1);
rb_define_method(rb_mKernel, "is_a?", rb_obj_is_kind_of, 1);
rb_define_method(rb_mKernel, "tap", rb_obj_tap, 0);
rb_define_global_function("sprintf", rb_f_sprintf, -1); /* in sprintf.c */
rb_define_global_function("format", rb_f_sprintf, -1); /* in sprintf.c */
rb_define_global_function("Integer", rb_f_integer, 1);
rb_define_global_function("Float", rb_f_float, 1);
rb_define_global_function("String", rb_f_string, 1);
rb_define_global_function("Array", rb_f_array, 1);
rb_cNilClass = rb_define_class("NilClass", rb_cObject);
rb_define_method(rb_cNilClass, "to_i", nil_to_i, 0);
rb_define_method(rb_cNilClass, "to_f", nil_to_f, 0);
rb_define_method(rb_cNilClass, "to_s", nil_to_s, 0);
rb_define_method(rb_cNilClass, "to_a", nil_to_a, 0);
rb_define_method(rb_cNilClass, "inspect", nil_inspect, 0);
rb_define_method(rb_cNilClass, "&", false_and, 1);
rb_define_method(rb_cNilClass, "|", false_or, 1);
rb_define_method(rb_cNilClass, "^", false_xor, 1);
rb_define_method(rb_cNilClass, "nil?", rb_true, 0);
rb_undef_alloc_func(rb_cNilClass);
rb_undef_method(CLASS_OF(rb_cNilClass), "new");
rb_define_global_const("NIL", Qnil);
rb_define_method(rb_cModule, "freeze", rb_mod_freeze, 0);
rb_define_method(rb_cModule, "===", rb_mod_eqq, 1);
rb_define_method(rb_cModule, "==", rb_obj_equal, 1);
rb_define_method(rb_cModule, "<=>", rb_mod_cmp, 1);
rb_define_method(rb_cModule, "<", rb_mod_lt, 1);
rb_define_method(rb_cModule, "<=", rb_class_inherited_p, 1);
rb_define_method(rb_cModule, ">", rb_mod_gt, 1);
rb_define_method(rb_cModule, ">=", rb_mod_ge, 1);
rb_define_method(rb_cModule, "initialize_copy", rb_mod_init_copy, 1); /* in class.c */
rb_define_method(rb_cModule, "to_s", rb_mod_to_s, 0);
rb_define_method(rb_cModule, "included_modules", rb_mod_included_modules, 0); /* in class.c */
rb_define_method(rb_cModule, "include?", rb_mod_include_p, 1); /* in class.c */
rb_define_method(rb_cModule, "name", rb_mod_name, 0); /* in variable.c */
rb_define_method(rb_cModule, "ancestors", rb_mod_ancestors, 0); /* in class.c */
rb_define_private_method(rb_cModule, "attr", rb_mod_attr, -1);
rb_define_private_method(rb_cModule, "attr_reader", rb_mod_attr_reader, -1);
rb_define_private_method(rb_cModule, "attr_writer", rb_mod_attr_writer, -1);
rb_define_private_method(rb_cModule, "attr_accessor", rb_mod_attr_accessor, -1);
rb_define_alloc_func(rb_cModule, rb_module_s_alloc);
rb_define_method(rb_cModule, "initialize", rb_mod_initialize, 0);
rb_define_method(rb_cModule, "instance_methods", rb_class_instance_methods, -1); /* in class.c */
rb_define_method(rb_cModule, "public_instance_methods",
rb_class_public_instance_methods, -1); /* in class.c */
rb_define_method(rb_cModule, "protected_instance_methods",
rb_class_protected_instance_methods, -1); /* in class.c */
rb_define_method(rb_cModule, "private_instance_methods",
rb_class_private_instance_methods, -1); /* in class.c */
rb_define_method(rb_cModule, "constants", rb_mod_constants, -1); /* in variable.c */
rb_define_method(rb_cModule, "const_get", rb_mod_const_get, -1);
rb_define_method(rb_cModule, "const_set", rb_mod_const_set, 2);
rb_define_method(rb_cModule, "const_defined?", rb_mod_const_defined, -1);
rb_define_private_method(rb_cModule, "remove_const",
rb_mod_remove_const, 1); /* in variable.c */
rb_define_method(rb_cModule, "const_missing",
rb_mod_const_missing, 1); /* in variable.c */
rb_define_method(rb_cModule, "class_variables",
rb_mod_class_variables, 0); /* in variable.c */
rb_define_method(rb_cModule, "remove_class_variable",
rb_mod_remove_cvar, 1); /* in variable.c */
rb_define_method(rb_cModule, "class_variable_get", rb_mod_cvar_get, 1);
rb_define_method(rb_cModule, "class_variable_set", rb_mod_cvar_set, 2);
rb_define_method(rb_cModule, "class_variable_defined?", rb_mod_cvar_defined, 1);
rb_define_method(rb_cClass, "allocate", rb_obj_alloc, 0);
rb_define_method(rb_cClass, "new", rb_class_new_instance, -1);
rb_define_method(rb_cClass, "initialize", rb_class_initialize, -1);
rb_define_method(rb_cClass, "initialize_copy", rb_class_init_copy, 1); /* in class.c */
rb_define_method(rb_cClass, "superclass", rb_class_superclass, 0);
rb_define_alloc_func(rb_cClass, rb_class_s_alloc);
rb_undef_method(rb_cClass, "extend_object");
rb_undef_method(rb_cClass, "append_features");
rb_cData = rb_define_class("Data", rb_cObject);
rb_undef_alloc_func(rb_cData);
rb_cTrueClass = rb_define_class("TrueClass", rb_cObject);
rb_define_method(rb_cTrueClass, "to_s", true_to_s, 0);
rb_define_method(rb_cTrueClass, "&", true_and, 1);
rb_define_method(rb_cTrueClass, "|", true_or, 1);
rb_define_method(rb_cTrueClass, "^", true_xor, 1);
rb_undef_alloc_func(rb_cTrueClass);
rb_undef_method(CLASS_OF(rb_cTrueClass), "new");
rb_define_global_const("TRUE", Qtrue);
rb_cFalseClass = rb_define_class("FalseClass", rb_cObject);
rb_define_method(rb_cFalseClass, "to_s", false_to_s, 0);
rb_define_method(rb_cFalseClass, "&", false_and, 1);
rb_define_method(rb_cFalseClass, "|", false_or, 1);
rb_define_method(rb_cFalseClass, "^", false_xor, 1);
rb_undef_alloc_func(rb_cFalseClass);
rb_undef_method(CLASS_OF(rb_cFalseClass), "new");
rb_define_global_const("FALSE", Qfalse);
id_eq = rb_intern("==");
id_eql = rb_intern("eql?");
id_match = rb_intern("=~");
id_inspect = rb_intern("inspect");
id_init_copy = rb_intern("initialize_copy");
for (i=0; conv_method_names[i].method; i++) {
conv_method_names[i].id = rb_intern(conv_method_names[i].method);
}
}