ruby/ext/openssl/ossl_pkey_dsa.c

665 строки
16 KiB
C

/*
* 'OpenSSL for Ruby' project
* Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
* All rights reserved.
*/
/*
* This program is licensed under the same licence as Ruby.
* (See the file 'LICENCE'.)
*/
#include "ossl.h"
#if !defined(OPENSSL_NO_DSA)
#define GetPKeyDSA(obj, pkey) do { \
GetPKey((obj), (pkey)); \
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_DSA) { /* PARANOIA? */ \
ossl_raise(rb_eRuntimeError, "THIS IS NOT A DSA!"); \
} \
} while (0)
#define GetDSA(obj, dsa) do { \
EVP_PKEY *_pkey; \
GetPKeyDSA((obj), _pkey); \
(dsa) = EVP_PKEY_get0_DSA(_pkey); \
} while (0)
static inline int
DSA_HAS_PRIVATE(DSA *dsa)
{
const BIGNUM *bn;
DSA_get0_key(dsa, NULL, &bn);
return !!bn;
}
static inline int
DSA_PRIVATE(VALUE obj, DSA *dsa)
{
return DSA_HAS_PRIVATE(dsa) || OSSL_PKEY_IS_PRIVATE(obj);
}
/*
* Classes
*/
VALUE cDSA;
VALUE eDSAError;
/*
* Public
*/
static VALUE
dsa_instance(VALUE klass, DSA *dsa)
{
EVP_PKEY *pkey;
VALUE obj;
if (!dsa) {
return Qfalse;
}
obj = NewPKey(klass);
if (!(pkey = EVP_PKEY_new())) {
return Qfalse;
}
if (!EVP_PKEY_assign_DSA(pkey, dsa)) {
EVP_PKEY_free(pkey);
return Qfalse;
}
SetPKey(obj, pkey);
return obj;
}
VALUE
ossl_dsa_new(EVP_PKEY *pkey)
{
VALUE obj;
if (!pkey) {
obj = dsa_instance(cDSA, DSA_new());
} else {
obj = NewPKey(cDSA);
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_DSA) {
ossl_raise(rb_eTypeError, "Not a DSA key!");
}
SetPKey(obj, pkey);
}
if (obj == Qfalse) {
ossl_raise(eDSAError, NULL);
}
return obj;
}
/*
* Private
*/
struct dsa_blocking_gen_arg {
DSA *dsa;
int size;
int *counter;
unsigned long *h;
BN_GENCB *cb;
int result;
};
static void *
dsa_blocking_gen(void *arg)
{
struct dsa_blocking_gen_arg *gen = (struct dsa_blocking_gen_arg *)arg;
gen->result = DSA_generate_parameters_ex(gen->dsa, gen->size, NULL, 0,
gen->counter, gen->h, gen->cb);
return 0;
}
static DSA *
dsa_generate(int size)
{
struct ossl_generate_cb_arg cb_arg = { 0 };
struct dsa_blocking_gen_arg gen_arg;
DSA *dsa = DSA_new();
BN_GENCB *cb = BN_GENCB_new();
int counter;
unsigned long h;
if (!dsa || !cb) {
DSA_free(dsa);
BN_GENCB_free(cb);
return NULL;
}
if (rb_block_given_p())
cb_arg.yield = 1;
BN_GENCB_set(cb, ossl_generate_cb_2, &cb_arg);
gen_arg.dsa = dsa;
gen_arg.size = size;
gen_arg.counter = &counter;
gen_arg.h = &h;
gen_arg.cb = cb;
if (cb_arg.yield == 1) {
/* we cannot release GVL when callback proc is supplied */
dsa_blocking_gen(&gen_arg);
} else {
/* there's a chance to unblock */
rb_thread_call_without_gvl(dsa_blocking_gen, &gen_arg, ossl_generate_cb_stop, &cb_arg);
}
BN_GENCB_free(cb);
if (!gen_arg.result) {
DSA_free(dsa);
if (cb_arg.state) {
/* Clear OpenSSL error queue before re-raising. By the way, the
* documentation of DSA_generate_parameters_ex() says the error code
* can be obtained by ERR_get_error(), but the default
* implementation, dsa_builtin_paramgen() doesn't put any error... */
ossl_clear_error();
rb_jump_tag(cb_arg.state);
}
return NULL;
}
if (!DSA_generate_key(dsa)) {
DSA_free(dsa);
return NULL;
}
return dsa;
}
/*
* call-seq:
* DSA.generate(size) -> dsa
*
* Creates a new DSA instance by generating a private/public key pair
* from scratch.
*
* === Parameters
* * _size_ is an integer representing the desired key size.
*
*/
static VALUE
ossl_dsa_s_generate(VALUE klass, VALUE size)
{
DSA *dsa = dsa_generate(NUM2INT(size)); /* err handled by dsa_instance */
VALUE obj = dsa_instance(klass, dsa);
if (obj == Qfalse) {
DSA_free(dsa);
ossl_raise(eDSAError, NULL);
}
return obj;
}
/*
* call-seq:
* DSA.new -> dsa
* DSA.new(size) -> dsa
* DSA.new(string [, pass]) -> dsa
*
* Creates a new DSA instance by reading an existing key from _string_.
*
* === Parameters
* * _size_ is an integer representing the desired key size.
* * _string_ contains a DER or PEM encoded key.
* * _pass_ is a string that contains an optional password.
*
* === Examples
* DSA.new -> dsa
* DSA.new(1024) -> dsa
* DSA.new(File.read('dsa.pem')) -> dsa
* DSA.new(File.read('dsa.pem'), 'mypassword') -> dsa
*
*/
static VALUE
ossl_dsa_initialize(int argc, VALUE *argv, VALUE self)
{
EVP_PKEY *pkey;
DSA *dsa;
BIO *in;
VALUE arg, pass;
GetPKey(self, pkey);
if(rb_scan_args(argc, argv, "02", &arg, &pass) == 0) {
dsa = DSA_new();
}
else if (RB_INTEGER_TYPE_P(arg)) {
if (!(dsa = dsa_generate(NUM2INT(arg)))) {
ossl_raise(eDSAError, NULL);
}
}
else {
pass = ossl_pem_passwd_value(pass);
arg = ossl_to_der_if_possible(arg);
in = ossl_obj2bio(&arg);
dsa = PEM_read_bio_DSAPrivateKey(in, NULL, ossl_pem_passwd_cb, (void *)pass);
if (!dsa) {
OSSL_BIO_reset(in);
dsa = PEM_read_bio_DSA_PUBKEY(in, NULL, NULL, NULL);
}
if (!dsa) {
OSSL_BIO_reset(in);
dsa = d2i_DSAPrivateKey_bio(in, NULL);
}
if (!dsa) {
OSSL_BIO_reset(in);
dsa = d2i_DSA_PUBKEY_bio(in, NULL);
}
if (!dsa) {
OSSL_BIO_reset(in);
#define PEM_read_bio_DSAPublicKey(bp,x,cb,u) (DSA *)PEM_ASN1_read_bio( \
(d2i_of_void *)d2i_DSAPublicKey, PEM_STRING_DSA_PUBLIC, (bp), (void **)(x), (cb), (u))
dsa = PEM_read_bio_DSAPublicKey(in, NULL, NULL, NULL);
#undef PEM_read_bio_DSAPublicKey
}
BIO_free(in);
if (!dsa) {
ossl_clear_error();
ossl_raise(eDSAError, "Neither PUB key nor PRIV key");
}
}
if (!EVP_PKEY_assign_DSA(pkey, dsa)) {
DSA_free(dsa);
ossl_raise(eDSAError, NULL);
}
return self;
}
static VALUE
ossl_dsa_initialize_copy(VALUE self, VALUE other)
{
EVP_PKEY *pkey;
DSA *dsa, *dsa_new;
GetPKey(self, pkey);
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_NONE)
ossl_raise(eDSAError, "DSA already initialized");
GetDSA(other, dsa);
dsa_new = ASN1_dup((i2d_of_void *)i2d_DSAPrivateKey, (d2i_of_void *)d2i_DSAPrivateKey, (char *)dsa);
if (!dsa_new)
ossl_raise(eDSAError, "ASN1_dup");
EVP_PKEY_assign_DSA(pkey, dsa_new);
return self;
}
/*
* call-seq:
* dsa.public? -> true | false
*
* Indicates whether this DSA instance has a public key associated with it or
* not. The public key may be retrieved with DSA#public_key.
*/
static VALUE
ossl_dsa_is_public(VALUE self)
{
DSA *dsa;
const BIGNUM *bn;
GetDSA(self, dsa);
DSA_get0_key(dsa, &bn, NULL);
return bn ? Qtrue : Qfalse;
}
/*
* call-seq:
* dsa.private? -> true | false
*
* Indicates whether this DSA instance has a private key associated with it or
* not. The private key may be retrieved with DSA#private_key.
*/
static VALUE
ossl_dsa_is_private(VALUE self)
{
DSA *dsa;
GetDSA(self, dsa);
return DSA_PRIVATE(self, dsa) ? Qtrue : Qfalse;
}
/*
* call-seq:
* dsa.export([cipher, password]) -> aString
* dsa.to_pem([cipher, password]) -> aString
* dsa.to_s([cipher, password]) -> aString
*
* Encodes this DSA to its PEM encoding.
*
* === Parameters
* * _cipher_ is an OpenSSL::Cipher.
* * _password_ is a string containing your password.
*
* === Examples
* DSA.to_pem -> aString
* DSA.to_pem(cipher, 'mypassword') -> aString
*
*/
static VALUE
ossl_dsa_export(int argc, VALUE *argv, VALUE self)
{
DSA *dsa;
BIO *out;
const EVP_CIPHER *ciph = NULL;
VALUE cipher, pass, str;
GetDSA(self, dsa);
rb_scan_args(argc, argv, "02", &cipher, &pass);
if (!NIL_P(cipher)) {
ciph = ossl_evp_get_cipherbyname(cipher);
pass = ossl_pem_passwd_value(pass);
}
if (!(out = BIO_new(BIO_s_mem()))) {
ossl_raise(eDSAError, NULL);
}
if (DSA_HAS_PRIVATE(dsa)) {
if (!PEM_write_bio_DSAPrivateKey(out, dsa, ciph, NULL, 0,
ossl_pem_passwd_cb, (void *)pass)){
BIO_free(out);
ossl_raise(eDSAError, NULL);
}
} else {
if (!PEM_write_bio_DSA_PUBKEY(out, dsa)) {
BIO_free(out);
ossl_raise(eDSAError, NULL);
}
}
str = ossl_membio2str(out);
return str;
}
/*
* call-seq:
* dsa.to_der -> aString
*
* Encodes this DSA to its DER encoding.
*
*/
static VALUE
ossl_dsa_to_der(VALUE self)
{
DSA *dsa;
int (*i2d_func)(DSA *, unsigned char **);
unsigned char *p;
long len;
VALUE str;
GetDSA(self, dsa);
if(DSA_HAS_PRIVATE(dsa))
i2d_func = (int (*)(DSA *,unsigned char **))i2d_DSAPrivateKey;
else
i2d_func = i2d_DSA_PUBKEY;
if((len = i2d_func(dsa, NULL)) <= 0)
ossl_raise(eDSAError, NULL);
str = rb_str_new(0, len);
p = (unsigned char *)RSTRING_PTR(str);
if(i2d_func(dsa, &p) < 0)
ossl_raise(eDSAError, NULL);
ossl_str_adjust(str, p);
return str;
}
/*
* call-seq:
* dsa.params -> hash
*
* Stores all parameters of key to the hash
* INSECURE: PRIVATE INFORMATIONS CAN LEAK OUT!!!
* Don't use :-)) (I's up to you)
*/
static VALUE
ossl_dsa_get_params(VALUE self)
{
DSA *dsa;
VALUE hash;
const BIGNUM *p, *q, *g, *pub_key, *priv_key;
GetDSA(self, dsa);
DSA_get0_pqg(dsa, &p, &q, &g);
DSA_get0_key(dsa, &pub_key, &priv_key);
hash = rb_hash_new();
rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p));
rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q));
rb_hash_aset(hash, rb_str_new2("g"), ossl_bn_new(g));
rb_hash_aset(hash, rb_str_new2("pub_key"), ossl_bn_new(pub_key));
rb_hash_aset(hash, rb_str_new2("priv_key"), ossl_bn_new(priv_key));
return hash;
}
/*
* call-seq:
* dsa.to_text -> aString
*
* Prints all parameters of key to buffer
* INSECURE: PRIVATE INFORMATIONS CAN LEAK OUT!!!
* Don't use :-)) (I's up to you)
*/
static VALUE
ossl_dsa_to_text(VALUE self)
{
DSA *dsa;
BIO *out;
VALUE str;
GetDSA(self, dsa);
if (!(out = BIO_new(BIO_s_mem()))) {
ossl_raise(eDSAError, NULL);
}
if (!DSA_print(out, dsa, 0)) { /* offset = 0 */
BIO_free(out);
ossl_raise(eDSAError, NULL);
}
str = ossl_membio2str(out);
return str;
}
/*
* call-seq:
* dsa.public_key -> aDSA
*
* Returns a new DSA instance that carries just the public key information.
* If the current instance has also private key information, this will no
* longer be present in the new instance. This feature is helpful for
* publishing the public key information without leaking any of the private
* information.
*
* === Example
* dsa = OpenSSL::PKey::DSA.new(2048) # has public and private information
* pub_key = dsa.public_key # has only the public part available
* pub_key_der = pub_key.to_der # it's safe to publish this
*
*
*/
static VALUE
ossl_dsa_to_public_key(VALUE self)
{
EVP_PKEY *pkey;
DSA *dsa;
VALUE obj;
GetPKeyDSA(self, pkey);
/* err check performed by dsa_instance */
#define DSAPublicKey_dup(dsa) (DSA *)ASN1_dup( \
(i2d_of_void *)i2d_DSAPublicKey, (d2i_of_void *)d2i_DSAPublicKey, (char *)(dsa))
dsa = DSAPublicKey_dup(EVP_PKEY_get0_DSA(pkey));
#undef DSAPublicKey_dup
obj = dsa_instance(rb_obj_class(self), dsa);
if (obj == Qfalse) {
DSA_free(dsa);
ossl_raise(eDSAError, NULL);
}
return obj;
}
/*
* call-seq:
* dsa.syssign(string) -> aString
*
* Computes and returns the DSA signature of _string_, where _string_ is
* expected to be an already-computed message digest of the original input
* data. The signature is issued using the private key of this DSA instance.
*
* === Parameters
* * _string_ is a message digest of the original input data to be signed.
*
* === Example
* dsa = OpenSSL::PKey::DSA.new(2048)
* doc = "Sign me"
* digest = OpenSSL::Digest::SHA1.digest(doc)
* sig = dsa.syssign(digest)
*
*
*/
static VALUE
ossl_dsa_sign(VALUE self, VALUE data)
{
DSA *dsa;
const BIGNUM *dsa_q;
unsigned int buf_len;
VALUE str;
GetDSA(self, dsa);
DSA_get0_pqg(dsa, NULL, &dsa_q, NULL);
if (!dsa_q)
ossl_raise(eDSAError, "incomplete DSA");
if (!DSA_PRIVATE(self, dsa))
ossl_raise(eDSAError, "Private DSA key needed!");
StringValue(data);
str = rb_str_new(0, DSA_size(dsa));
if (!DSA_sign(0, (unsigned char *)RSTRING_PTR(data), RSTRING_LENINT(data),
(unsigned char *)RSTRING_PTR(str),
&buf_len, dsa)) { /* type is ignored (0) */
ossl_raise(eDSAError, NULL);
}
rb_str_set_len(str, buf_len);
return str;
}
/*
* call-seq:
* dsa.sysverify(digest, sig) -> true | false
*
* Verifies whether the signature is valid given the message digest input. It
* does so by validating _sig_ using the public key of this DSA instance.
*
* === Parameters
* * _digest_ is a message digest of the original input data to be signed
* * _sig_ is a DSA signature value
*
* === Example
* dsa = OpenSSL::PKey::DSA.new(2048)
* doc = "Sign me"
* digest = OpenSSL::Digest::SHA1.digest(doc)
* sig = dsa.syssign(digest)
* puts dsa.sysverify(digest, sig) # => true
*
*/
static VALUE
ossl_dsa_verify(VALUE self, VALUE digest, VALUE sig)
{
DSA *dsa;
int ret;
GetDSA(self, dsa);
StringValue(digest);
StringValue(sig);
/* type is ignored (0) */
ret = DSA_verify(0, (unsigned char *)RSTRING_PTR(digest), RSTRING_LENINT(digest),
(unsigned char *)RSTRING_PTR(sig), RSTRING_LENINT(sig), dsa);
if (ret < 0) {
ossl_raise(eDSAError, NULL);
}
else if (ret == 1) {
return Qtrue;
}
return Qfalse;
}
/*
* Document-method: OpenSSL::PKey::DSA#set_pqg
* call-seq:
* dsa.set_pqg(p, q, g) -> self
*
* Sets _p_, _q_, _g_ to the DSA instance.
*/
OSSL_PKEY_BN_DEF3(dsa, DSA, pqg, p, q, g)
/*
* Document-method: OpenSSL::PKey::DSA#set_key
* call-seq:
* dsa.set_key(pub_key, priv_key) -> self
*
* Sets _pub_key_ and _priv_key_ for the DSA instance. _priv_key_ may be +nil+.
*/
OSSL_PKEY_BN_DEF2(dsa, DSA, key, pub_key, priv_key)
/*
* INIT
*/
void
Init_ossl_dsa(void)
{
#if 0
mPKey = rb_define_module_under(mOSSL, "PKey");
cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);
ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);
#endif
/* Document-class: OpenSSL::PKey::DSAError
*
* Generic exception that is raised if an operation on a DSA PKey
* fails unexpectedly or in case an instantiation of an instance of DSA
* fails due to non-conformant input data.
*/
eDSAError = rb_define_class_under(mPKey, "DSAError", ePKeyError);
/* Document-class: OpenSSL::PKey::DSA
*
* DSA, the Digital Signature Algorithm, is specified in NIST's
* FIPS 186-3. It is an asymmetric public key algorithm that may be used
* similar to e.g. RSA.
*/
cDSA = rb_define_class_under(mPKey, "DSA", cPKey);
rb_define_singleton_method(cDSA, "generate", ossl_dsa_s_generate, 1);
rb_define_method(cDSA, "initialize", ossl_dsa_initialize, -1);
rb_define_method(cDSA, "initialize_copy", ossl_dsa_initialize_copy, 1);
rb_define_method(cDSA, "public?", ossl_dsa_is_public, 0);
rb_define_method(cDSA, "private?", ossl_dsa_is_private, 0);
rb_define_method(cDSA, "to_text", ossl_dsa_to_text, 0);
rb_define_method(cDSA, "export", ossl_dsa_export, -1);
rb_define_alias(cDSA, "to_pem", "export");
rb_define_alias(cDSA, "to_s", "export");
rb_define_method(cDSA, "to_der", ossl_dsa_to_der, 0);
rb_define_method(cDSA, "public_key", ossl_dsa_to_public_key, 0);
rb_define_method(cDSA, "syssign", ossl_dsa_sign, 1);
rb_define_method(cDSA, "sysverify", ossl_dsa_verify, 2);
DEF_OSSL_PKEY_BN(cDSA, dsa, p);
DEF_OSSL_PKEY_BN(cDSA, dsa, q);
DEF_OSSL_PKEY_BN(cDSA, dsa, g);
DEF_OSSL_PKEY_BN(cDSA, dsa, pub_key);
DEF_OSSL_PKEY_BN(cDSA, dsa, priv_key);
rb_define_method(cDSA, "set_pqg", ossl_dsa_set_pqg, 3);
rb_define_method(cDSA, "set_key", ossl_dsa_set_key, 2);
rb_define_method(cDSA, "params", ossl_dsa_get_params, 0);
}
#else /* defined NO_DSA */
void
Init_ossl_dsa(void)
{
}
#endif /* NO_DSA */