ruby/spec/syntax_suggest/fixtures/syntax_tree.rb.txt

9235 строки
212 KiB
Plaintext
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

# frozen_string_literal: true
require 'ripper'
require_relative 'syntax_tree/version'
class SyntaxTree < Ripper
# Represents a line in the source. If this class is being used, it means that
# every character in the string is 1 byte in length, so we can just return the
# start of the line + the index.
class SingleByteString
def initialize(start)
@start = start
end
def [](byteindex)
@start + byteindex
end
end
# Represents a line in the source. If this class is being used, it means that
# there are characters in the string that are multi-byte, so we will build up
# an array of indices, such that array[byteindex] will be equal to the index
# of the character within the string.
class MultiByteString
def initialize(start, line)
@indices = []
line
.each_char
.with_index(start) do |char, index|
char.bytesize.times { @indices << index }
end
end
def [](byteindex)
@indices[byteindex]
end
end
# Represents the location of a node in the tree from the source code.
class Location
attr_reader :start_line, :start_char, :end_line, :end_char
def initialize(start_line:, start_char:, end_line:, end_char:)
@start_line = start_line
@start_char = start_char
@end_line = end_line
@end_char = end_char
end
def ==(other)
other.is_a?(Location) && start_line == other.start_line &&
start_char == other.start_char && end_line == other.end_line &&
end_char == other.end_char
end
def to(other)
Location.new(
start_line: start_line,
start_char: start_char,
end_line: other.end_line,
end_char: other.end_char
)
end
def to_json(*opts)
[start_line, start_char, end_line, end_char].to_json(*opts)
end
def self.token(line:, char:, size:)
new(
start_line: line,
start_char: char,
end_line: line,
end_char: char + size
)
end
def self.fixed(line:, char:)
new(start_line: line, start_char: char, end_line: line, end_char: char)
end
end
# A special parser error so that we can get nice syntax displays on the error
# message when prettier prints out the results.
class ParseError < StandardError
attr_reader :lineno, :column
def initialize(error, lineno, column)
super(error)
@lineno = lineno
@column = column
end
end
attr_reader :source, :lines, :tokens
# This is an attr_accessor so Stmts objects can grab comments out of this
# array and attach them to themselves.
attr_accessor :comments
def initialize(source, *)
super
# We keep the source around so that we can refer back to it when we're
# generating the AST. Sometimes it's easier to just reference the source
# string when you want to check if it contains a certain character, for
# example.
@source = source
# Similarly, we keep the lines of the source string around to be able to
# check if certain lines contain certain characters. For example, we'll use
# this to generate the content that goes after the __END__ keyword. Or we'll
# use this to check if a comment has other content on its line.
@lines = source.split("\n")
# This is the full set of comments that have been found by the parser. It's
# a running list. At the end of every block of statements, they will go in
# and attempt to grab any comments that are on their own line and turn them
# into regular statements. So at the end of parsing the only comments left
# in here will be comments on lines that also contain code.
@comments = []
# This is the current embdoc (comments that start with =begin and end with
# =end). Since they can't be nested, there's no need for a stack here, as
# there can only be one active. These end up getting dumped into the
# comments list before getting picked up by the statements that surround
# them.
@embdoc = nil
# This is an optional node that can be present if the __END__ keyword is
# used in the file. In that case, this will represent the content after that
# keyword.
@__end__ = nil
# Heredocs can actually be nested together if you're using interpolation, so
# this is a stack of heredoc nodes that are currently being created. When we
# get to the token that finishes off a heredoc node, we pop the top
# one off. If there are others surrounding it, then the body events will now
# be added to the correct nodes.
@heredocs = []
# This is a running list of tokens that have fired. It's useful
# mostly for maintaining location information. For example, if you're inside
# the handle of a def event, then in order to determine where the AST node
# started, you need to look backward in the tokens to find a def
# keyword. Most of the time, when a parser event consumes one of these
# events, it will be deleted from the list. So ideally, this list stays
# pretty short over the course of parsing a source string.
@tokens = []
# Here we're going to build up a list of SingleByteString or MultiByteString
# objects. They're each going to represent a string in the source. They are
# used by the `char_pos` method to determine where we are in the source
# string.
@line_counts = []
last_index = 0
@source.lines.each do |line|
if line.size == line.bytesize
@line_counts << SingleByteString.new(last_index)
else
@line_counts << MultiByteString.new(last_index, line)
end
last_index += line.size
end
end
def self.parse(source)
parser = new(source)
response = parser.parse
response unless parser.error?
end
private
# ----------------------------------------------------------------------------
# :section: Helper methods
# The following methods are used by the ripper event handlers to either
# determine their bounds or query other nodes.
# ----------------------------------------------------------------------------
# This represents the current place in the source string that we've gotten to
# so far. We have a memoized line_counts object that we can use to get the
# number of characters that we've had to go through to get to the beginning of
# this line, then we add the number of columns into this line that we've gone
# through.
def char_pos
@line_counts[lineno - 1][column]
end
# As we build up a list of tokens, we'll periodically need to go backwards and
# find the ones that we've already hit in order to determine the location
# information for nodes that use them. For example, if you have a module node
# then you'll look backward for a kw token to determine your start location.
#
# This works with nesting since we're deleting tokens from the list once
# they've been used up. For example if you had nested module declarations then
# the innermost declaration would grab the last kw node that matches "module"
# (which would happen to be the innermost keyword). Then the outer one would
# only be able to grab the first one. In this way all of the tokens act as
# their own stack.
def find_token(type, value = :any, consume: true)
index =
tokens.rindex do |token|
token.is_a?(type) && (value == :any || (token.value == value))
end
if consume
# If we're expecting to be able to find a token and consume it,
# but can't actually find it, then we need to raise an error. This is
# _usually_ caused by a syntax error in the source that we're printing. It
# could also be caused by accidentally attempting to consume a token twice
# by two different parser event handlers.
unless index
message = "Cannot find expected #{value == :any ? type : value}"
raise ParseError.new(message, lineno, column)
end
tokens.delete_at(index)
elsif index
tokens[index]
end
end
# A helper function to find a :: operator. We do special handling instead of
# using find_token here because we don't pop off all of the ::
# operators so you could end up getting the wrong information if you have for
# instance ::X::Y::Z.
def find_colon2_before(const)
index =
tokens.rindex do |token|
token.is_a?(Op) && token.value == '::' &&
token.location.start_char < const.location.start_char
end
tokens[index]
end
# Finds the next position in the source string that begins a statement. This
# is used to bind statements lists and make sure they don't include a
# preceding comment. For example, we want the following comment to be attached
# to the class node and not the statement node:
#
# class Foo # :nodoc:
# ...
# end
#
# By finding the next non-space character, we can make sure that the bounds of
# the statement list are correct.
def find_next_statement_start(position)
remaining = source[position..-1]
if remaining.sub(/\A +/, '')[0] == '#'
return position + remaining.index("\n")
end
position
end
# ----------------------------------------------------------------------------
# :section: Ripper event handlers
# The following methods all handle a dispatched ripper event.
# ----------------------------------------------------------------------------
# BEGINBlock represents the use of the +BEGIN+ keyword, which hooks into the
# lifecycle of the interpreter. Whatever is inside the block will get executed
# when the program starts.
#
# BEGIN {
# }
#
# Interestingly, the BEGIN keyword doesn't allow the do and end keywords for
# the block. Only braces are permitted.
class BEGINBlock
# [LBrace] the left brace that is seen after the keyword
attr_reader :lbrace
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(lbrace:, statements:, location:)
@lbrace = lbrace
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('BEGIN')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :BEGIN,
lbrace: lbrace,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_BEGIN: (Statements statements) -> BEGINBlock
def on_BEGIN(statements)
lbrace = find_token(LBrace)
rbrace = find_token(RBrace)
statements.bind(
find_next_statement_start(lbrace.location.end_char),
rbrace.location.start_char
)
keyword = find_token(Kw, 'BEGIN')
BEGINBlock.new(
lbrace: lbrace,
statements: statements,
location: keyword.location.to(rbrace.location)
)
end
# CHAR irepresents a single codepoint in the script encoding.
#
# ?a
#
# In the example above, the CHAR node represents the string literal "a". You
# can use control characters with this as well, as in ?\C-a.
class CHAR
# [String] the value of the character literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('CHAR')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :CHAR, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_CHAR: (String value) -> CHAR
def on_CHAR(value)
node =
CHAR.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# ENDBlock represents the use of the +END+ keyword, which hooks into the
# lifecycle of the interpreter. Whatever is inside the block will get executed
# when the program ends.
#
# END {
# }
#
# Interestingly, the END keyword doesn't allow the do and end keywords for the
# block. Only braces are permitted.
class ENDBlock
# [LBrace] the left brace that is seen after the keyword
attr_reader :lbrace
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(lbrace:, statements:, location:)
@lbrace = lbrace
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('END')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{ type: :END, lbrace: lbrace, stmts: statements, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_END: (Statements statements) -> ENDBlock
def on_END(statements)
lbrace = find_token(LBrace)
rbrace = find_token(RBrace)
statements.bind(
find_next_statement_start(lbrace.location.end_char),
rbrace.location.start_char
)
keyword = find_token(Kw, 'END')
ENDBlock.new(
lbrace: lbrace,
statements: statements,
location: keyword.location.to(rbrace.location)
)
end
# EndContent represents the use of __END__ syntax, which allows individual
# scripts to keep content after the main ruby code that can be read through
# the DATA constant.
#
# puts DATA.read
#
# __END__
# some other content that is not executed by the program
#
class EndContent
# [String] the content after the script
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('__end__')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :__end__, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on___end__: (String value) -> EndContent
def on___end__(value)
@__end__ =
EndContent.new(
value: lines[lineno..-1].join("\n"),
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
end
# Alias represents the use of the +alias+ keyword with regular arguments (not
# global variables). The +alias+ keyword is used to make a method respond to
# another name as well as the current one.
#
# alias aliased_name name
#
# For the example above, in the current context you can now call aliased_name
# and it will execute the name method. When you're aliasing two methods, you
# can either provide bare words (like the example above) or you can provide
# symbols (note that this includes dynamic symbols like
# :"left-#{middle}-right").
class Alias
# [DynaSymbol | SymbolLiteral] the new name of the method
attr_reader :left
# [DynaSymbol | SymbolLiteral] the old name of the method
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('alias')
q.breakable
q.pp(left)
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{ type: :alias, left: left, right: right, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_alias: (
# (DynaSymbol | SymbolLiteral) left,
# (DynaSymbol | SymbolLiteral) right
# ) -> Alias
def on_alias(left, right)
keyword = find_token(Kw, 'alias')
Alias.new(
left: left,
right: right,
location: keyword.location.to(right.location)
)
end
# ARef represents when you're pulling a value out of a collection at a
# specific index. Put another way, it's any time you're calling the method
# #[].
#
# collection[index]
#
# The nodes usually contains two children, the collection and the index. In
# some cases, you don't necessarily have the second child node, because you
# can call procs with a pretty esoteric syntax. In the following example, you
# wouldn't have a second child node:
#
# collection[]
#
class ARef
# [untyped] the value being indexed
attr_reader :collection
# [nil | Args | ArgsAddBlock] the value being passed within the brackets
attr_reader :index
# [Location] the location of this node
attr_reader :location
def initialize(collection:, index:, location:)
@collection = collection
@index = index
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('aref')
q.breakable
q.pp(collection)
q.breakable
q.pp(index)
end
end
def to_json(*opts)
{
type: :aref,
collection: collection,
index: index,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_aref: (untyped collection, (nil | Args | ArgsAddBlock) index) -> ARef
def on_aref(collection, index)
find_token(LBracket)
rbracket = find_token(RBracket)
ARef.new(
collection: collection,
index: index,
location: collection.location.to(rbracket.location)
)
end
# ARefField represents assigning values into collections at specific indices.
# Put another way, it's any time you're calling the method #[]=. The
# ARefField node itself is just the left side of the assignment, and they're
# always wrapped in assign nodes.
#
# collection[index] = value
#
class ARefField
# [untyped] the value being indexed
attr_reader :collection
# [nil | ArgsAddBlock] the value being passed within the brackets
attr_reader :index
# [Location] the location of this node
attr_reader :location
def initialize(collection:, index:, location:)
@collection = collection
@index = index
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('aref_field')
q.breakable
q.pp(collection)
q.breakable
q.pp(index)
end
end
def to_json(*opts)
{
type: :aref_field,
collection: collection,
index: index,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_aref_field: (
# untyped collection,
# (nil | ArgsAddBlock) index
# ) -> ARefField
def on_aref_field(collection, index)
find_token(LBracket)
rbracket = find_token(RBracket)
ARefField.new(
collection: collection,
index: index,
location: collection.location.to(rbracket.location)
)
end
# def on_arg_ambiguous(value)
# value
# end
# ArgParen represents wrapping arguments to a method inside a set of
# parentheses.
#
# method(argument)
#
# In the example above, there would be an ArgParen node around the
# ArgsAddBlock node that represents the set of arguments being sent to the
# method method. The argument child node can be +nil+ if no arguments were
# passed, as in:
#
# method()
#
class ArgParen
# [nil | Args | ArgsAddBlock | ArgsForward] the arguments inside the
# parentheses
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('arg_paren')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :arg_paren, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_arg_paren: (
# (nil | Args | ArgsAddBlock | ArgsForward) arguments
# ) -> ArgParen
def on_arg_paren(arguments)
lparen = find_token(LParen)
rparen = find_token(RParen)
# If the arguments exceed the ending of the parentheses, then we know we
# have a heredoc in the arguments, and we need to use the bounds of the
# arguments to determine how large the arg_paren is.
ending =
if arguments && arguments.location.end_line > rparen.location.end_line
arguments
else
rparen
end
ArgParen.new(
arguments: arguments,
location: lparen.location.to(ending.location)
)
end
# Args represents a list of arguments being passed to a method call or array
# literal.
#
# method(first, second, third)
#
class Args
# [Array[ untyped ]] the arguments that this node wraps
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('args')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :args, parts: parts, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_args_add: (Args arguments, untyped argument) -> Args
def on_args_add(arguments, argument)
if arguments.parts.empty?
# If this is the first argument being passed into the list of arguments,
# then we're going to use the bounds of the argument to override the
# parent node's location since this will be more accurate.
Args.new(parts: [argument], location: argument.location)
else
# Otherwise we're going to update the existing list with the argument
# being added as well as the new end bounds.
Args.new(
parts: arguments.parts << argument,
location: arguments.location.to(argument.location)
)
end
end
# ArgsAddBlock represents a list of arguments and potentially a block
# argument. ArgsAddBlock is commonly seen being passed to any method where you
# use parentheses (wrapped in an ArgParen node). Its also used to pass
# arguments to the various control-flow keywords like +return+.
#
# method(argument, &block)
#
class ArgsAddBlock
# [Args] the arguments before the optional block
attr_reader :arguments
# [nil | untyped] the optional block argument
attr_reader :block
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, block:, location:)
@arguments = arguments
@block = block
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('args_add_block')
q.breakable
q.pp(arguments)
q.breakable
q.pp(block)
end
end
def to_json(*opts)
{
type: :args_add_block,
args: arguments,
block: block,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_args_add_block: (
# Args arguments,
# (false | untyped) block
# ) -> ArgsAddBlock
def on_args_add_block(arguments, block)
ending = block || arguments
ArgsAddBlock.new(
arguments: arguments,
block: block || nil,
location: arguments.location.to(ending.location)
)
end
# Star represents using a splat operator on an expression.
#
# method(*arguments)
#
class ArgStar
# [untyped] the expression being splatted
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('arg_star')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :arg_star, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_args_add_star: (Args arguments, untyped star) -> Args
def on_args_add_star(arguments, argument)
beginning = find_token(Op, '*')
ending = argument || beginning
location =
if arguments.parts.empty?
ending.location
else
arguments.location.to(ending.location)
end
arg_star =
ArgStar.new(
value: argument,
location: beginning.location.to(ending.location)
)
Args.new(parts: arguments.parts << arg_star, location: location)
end
# ArgsForward represents forwarding all kinds of arguments onto another method
# call.
#
# def request(method, path, **headers, &block); end
#
# def get(...)
# request(:GET, ...)
# end
#
# def post(...)
# request(:POST, ...)
# end
#
# In the example above, both the get and post methods are forwarding all of
# their arguments (positional, keyword, and block) on to the request method.
# The ArgsForward node appears in both the caller (the request method calls)
# and the callee (the get and post definitions).
class ArgsForward
# [String] the value of the operator
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('args_forward')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :args_forward, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_args_forward: () -> ArgsForward
def on_args_forward
op = find_token(Op, '...')
ArgsForward.new(value: op.value, location: op.location)
end
# :call-seq:
# on_args_new: () -> Args
def on_args_new
Args.new(parts: [], location: Location.fixed(line: lineno, char: char_pos))
end
# ArrayLiteral represents any form of an array literal, and contains myriad
# child nodes because of the special array literal syntax like %w and %i.
#
# []
# [one, two, three]
# [*one_two_three]
# %i[one two three]
# %w[one two three]
# %I[one two three]
# %W[one two three]
#
# Every line in the example above produces an ArrayLiteral node. In order, the
# child contents node of this ArrayLiteral node would be nil, Args, QSymbols,
# QWords, Symbols, and Words.
class ArrayLiteral
# [nil | Args | QSymbols | QWords | Symbols | Words] the
# contents of the array
attr_reader :contents
# [Location] the location of this node
attr_reader :location
def initialize(contents:, location:)
@contents = contents
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('array')
q.breakable
q.pp(contents)
end
end
def to_json(*opts)
{ type: :array, cnts: contents, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_array: (
# (nil | Args | QSymbols | QWords | Symbols | Words) contents
# ) -> ArrayLiteral
def on_array(contents)
if !contents || contents.is_a?(Args)
lbracket = find_token(LBracket)
rbracket = find_token(RBracket)
ArrayLiteral.new(
contents: contents,
location: lbracket.location.to(rbracket.location)
)
else
tstring_end = find_token(TStringEnd)
contents =
contents.class.new(
elements: contents.elements,
location: contents.location.to(tstring_end.location)
)
ArrayLiteral.new(contents: contents, location: contents.location)
end
end
# AryPtn represents matching against an array pattern using the Ruby 2.7+
# pattern matching syntax. Its one of the more complicated nodes, because
# the four parameters that it accepts can almost all be nil.
#
# case [1, 2, 3]
# in [Integer, Integer]
# "matched"
# in Container[Integer, Integer]
# "matched"
# in [Integer, *, Integer]
# "matched"
# end
#
# An AryPtn node is created with four parameters: an optional constant
# wrapper, an array of positional matches, an optional splat with identifier,
# and an optional array of positional matches that occur after the splat.
# All of the in clauses above would create an AryPtn node.
class AryPtn
# [nil | VarRef] the optional constant wrapper
attr_reader :constant
# [Array[ untyped ]] the regular positional arguments that this array
# pattern is matching against
attr_reader :requireds
# [nil | VarField] the optional starred identifier that grabs up a list of
# positional arguments
attr_reader :rest
# [Array[ untyped ]] the list of positional arguments occurring after the
# optional star if there is one
attr_reader :posts
# [Location] the location of this node
attr_reader :location
def initialize(constant:, requireds:, rest:, posts:, location:)
@constant = constant
@requireds = requireds
@rest = rest
@posts = posts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('aryptn')
if constant
q.breakable
q.pp(constant)
end
if requireds.any?
q.breakable
q.group(2, '(', ')') do
q.seplist(requireds) { |required| q.pp(required) }
end
end
if rest
q.breakable
q.pp(rest)
end
if posts.any?
q.breakable
q.group(2, '(', ')') { q.seplist(posts) { |post| q.pp(post) } }
end
end
end
def to_json(*opts)
{
type: :aryptn,
constant: constant,
reqs: requireds,
rest: rest,
posts: posts,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_aryptn: (
# (nil | VarRef) constant,
# (nil | Array[untyped]) requireds,
# (nil | VarField) rest,
# (nil | Array[untyped]) posts
# ) -> AryPtn
def on_aryptn(constant, requireds, rest, posts)
parts = [constant, *requireds, rest, *posts].compact
AryPtn.new(
constant: constant,
requireds: requireds || [],
rest: rest,
posts: posts || [],
location: parts[0].location.to(parts[-1].location)
)
end
# Assign represents assigning something to a variable or constant. Generally,
# the left side of the assignment is going to be any node that ends with the
# name "Field".
#
# variable = value
#
class Assign
# [ARefField | ConstPathField | Field | TopConstField | VarField] the target
# to assign the result of the expression to
attr_reader :target
# [untyped] the expression to be assigned
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(target:, value:, location:)
@target = target
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('assign')
q.breakable
q.pp(target)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :assign, target: target, value: value, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_assign: (
# (ARefField | ConstPathField | Field | TopConstField | VarField) target,
# untyped value
# ) -> Assign
def on_assign(target, value)
Assign.new(
target: target,
value: value,
location: target.location.to(value.location)
)
end
# Assoc represents a key-value pair within a hash. It is a child node of
# either an AssocListFromArgs or a BareAssocHash.
#
# { key1: value1, key2: value2 }
#
# In the above example, the would be two AssocNew nodes.
class Assoc
# [untyped] the key of this pair
attr_reader :key
# [untyped] the value of this pair
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(key:, value:, location:)
@key = key
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('assoc')
q.breakable
q.pp(key)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :assoc, key: key, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_assoc_new: (untyped key, untyped value) -> Assoc
def on_assoc_new(key, value)
Assoc.new(
key: key,
value: value,
location: key.location.to(value.location)
)
end
# AssocSplat represents double-splatting a value into a hash (either a hash
# literal or a bare hash in a method call).
#
# { **pairs }
#
class AssocSplat
# [untyped] the expression that is being splatted
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('assoc_splat')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :assoc_splat, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_assoc_splat: (untyped value) -> AssocSplat
def on_assoc_splat(value)
operator = find_token(Op, '**')
AssocSplat.new(value: value, location: operator.location.to(value.location))
end
# AssocListFromArgs represents the key-value pairs of a hash literal. Its
# parent node is always a hash.
#
# { key1: value1, key2: value2 }
#
class AssocListFromArgs
# [Array[ AssocNew | AssocSplat ]]
attr_reader :assocs
# [Location] the location of this node
attr_reader :location
def initialize(assocs:, location:)
@assocs = assocs
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('assoclist_from_args')
q.breakable
q.group(2, '(', ')') { q.seplist(assocs) { |assoc| q.pp(assoc) } }
end
end
def to_json(*opts)
{ type: :assoclist_from_args, assocs: assocs, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_assoclist_from_args: (
# Array[AssocNew | AssocSplat] assocs
# ) -> AssocListFromArgs
def on_assoclist_from_args(assocs)
AssocListFromArgs.new(
assocs: assocs,
location: assocs[0].location.to(assocs[-1].location)
)
end
# Backref represents a global variable referencing a matched value. It comes
# in the form of a $ followed by a positive integer.
#
# $1
#
class Backref
# [String] the name of the global backreference variable
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('backref')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :backref, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_backref: (String value) -> Backref
def on_backref(value)
node =
Backref.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Backtick represents the use of the ` operator. It's usually found being used
# for an XStringLiteral, but could also be found as the name of a method being
# defined.
class Backtick
# [String] the backtick in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('backtick')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :backtick, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_backtick: (String value) -> Backtick
def on_backtick(value)
node =
Backtick.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# BareAssocHash represents a hash of contents being passed as a method
# argument (and therefore has omitted braces). It's very similar to an
# AssocListFromArgs node.
#
# method(key1: value1, key2: value2)
#
class BareAssocHash
# [Array[ AssocNew | AssocSplat ]]
attr_reader :assocs
# [Location] the location of this node
attr_reader :location
def initialize(assocs:, location:)
@assocs = assocs
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('bare_assoc_hash')
q.breakable
q.group(2, '(', ')') { q.seplist(assocs) { |assoc| q.pp(assoc) } }
end
end
def to_json(*opts)
{ type: :bare_assoc_hash, assocs: assocs, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_bare_assoc_hash: (Array[AssocNew | AssocSplat] assocs) -> BareAssocHash
def on_bare_assoc_hash(assocs)
BareAssocHash.new(
assocs: assocs,
location: assocs[0].location.to(assocs[-1].location)
)
end
# Begin represents a begin..end chain.
#
# begin
# value
# end
#
class Begin
# [BodyStmt] the bodystmt that contains the contents of this begin block
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(bodystmt:, location:)
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('begin')
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{ type: :begin, bodystmt: bodystmt, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_begin: (BodyStmt bodystmt) -> Begin
def on_begin(bodystmt)
keyword = find_token(Kw, 'begin')
end_char =
if bodystmt.rescue_clause || bodystmt.ensure_clause ||
bodystmt.else_clause
bodystmt.location.end_char
else
find_token(Kw, 'end').location.end_char
end
bodystmt.bind(keyword.location.end_char, end_char)
Begin.new(
bodystmt: bodystmt,
location: keyword.location.to(bodystmt.location)
)
end
# Binary represents any expression that involves two sub-expressions with an
# operator in between. This can be something that looks like a mathematical
# operation:
#
# 1 + 1
#
# but can also be something like pushing a value onto an array:
#
# array << value
#
class Binary
# [untyped] the left-hand side of the expression
attr_reader :left
# [String] the operator used between the two expressions
attr_reader :operator
# [untyped] the right-hand side of the expression
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, operator:, right:, location:)
@left = left
@operator = operator
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('binary')
q.breakable
q.pp(left)
q.breakable
q.text(operator)
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{
type: :binary,
left: left,
op: operator,
right: right,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_binary: (untyped left, (Op | Symbol) operator, untyped right) -> Binary
def on_binary(left, operator, right)
# On most Ruby implementations, operator is a Symbol that represents that
# operation being performed. For instance in the example `1 < 2`, the
# `operator` object would be `:<`. However, on JRuby, it's an `@op` node,
# so here we're going to explicitly convert it into the same normalized
# form.
operator = tokens.delete(operator).value unless operator.is_a?(Symbol)
Binary.new(
left: left,
operator: operator,
right: right,
location: left.location.to(right.location)
)
end
# BlockVar represents the parameters being declared for a block. Effectively
# this node is everything contained within the pipes. This includes all of the
# various parameter types, as well as block-local variable declarations.
#
# method do |positional, optional = value, keyword:, &block; local|
# end
#
class BlockVar
# [Params] the parameters being declared with the block
attr_reader :params
# [Array[ Ident ]] the list of block-local variable declarations
attr_reader :locals
# [Location] the location of this node
attr_reader :location
def initialize(params:, locals:, location:)
@params = params
@locals = locals
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('block_var')
q.breakable
q.pp(params)
if locals.any?
q.breakable
q.group(2, '(', ')') { q.seplist(locals) { |local| q.pp(local) } }
end
end
end
def to_json(*opts)
{
type: :block_var,
params: params,
locals: locals,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_block_var: (Params params, (nil | Array[Ident]) locals) -> BlockVar
def on_block_var(params, locals)
index =
tokens.rindex do |node|
node.is_a?(Op) && %w[| ||].include?(node.value) &&
node.location.start_char < params.location.start_char
end
beginning = tokens[index]
ending = tokens[-1]
BlockVar.new(
params: params,
locals: locals || [],
location: beginning.location.to(ending.location)
)
end
# BlockArg represents declaring a block parameter on a method definition.
#
# def method(&block); end
#
class BlockArg
# [Ident] the name of the block argument
attr_reader :name
# [Location] the location of this node
attr_reader :location
def initialize(name:, location:)
@name = name
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('blockarg')
q.breakable
q.pp(name)
end
end
def to_json(*opts)
{ type: :blockarg, name: name, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_blockarg: (Ident name) -> BlockArg
def on_blockarg(name)
operator = find_token(Op, '&')
BlockArg.new(name: name, location: operator.location.to(name.location))
end
# bodystmt can't actually determine its bounds appropriately because it
# doesn't necessarily know where it started. So the parent node needs to
# report back down into this one where it goes.
class BodyStmt
# [Statements] the list of statements inside the begin clause
attr_reader :statements
# [nil | Rescue] the optional rescue chain attached to the begin clause
attr_reader :rescue_clause
# [nil | Statements] the optional set of statements inside the else clause
attr_reader :else_clause
# [nil | Ensure] the optional ensure clause
attr_reader :ensure_clause
# [Location] the location of this node
attr_reader :location
def initialize(
statements:,
rescue_clause:,
else_clause:,
ensure_clause:,
location:
)
@statements = statements
@rescue_clause = rescue_clause
@else_clause = else_clause
@ensure_clause = ensure_clause
@location = location
end
def bind(start_char, end_char)
@location =
Location.new(
start_line: location.start_line,
start_char: start_char,
end_line: location.end_line,
end_char: end_char
)
parts = [rescue_clause, else_clause, ensure_clause]
# Here we're going to determine the bounds for the statements
consequent = parts.compact.first
statements.bind(
start_char,
consequent ? consequent.location.start_char : end_char
)
# Next we're going to determine the rescue clause if there is one
if rescue_clause
consequent = parts.drop(1).compact.first
rescue_clause.bind_end(
consequent ? consequent.location.start_char : end_char
)
end
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('bodystmt')
q.breakable
q.pp(statements)
if rescue_clause
q.breakable
q.pp(rescue_clause)
end
if else_clause
q.breakable
q.pp(else_clause)
end
if ensure_clause
q.breakable
q.pp(ensure_clause)
end
end
end
def to_json(*opts)
{
type: :bodystmt,
stmts: statements,
rsc: rescue_clause,
els: else_clause,
ens: ensure_clause,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_bodystmt: (
# Statements statements,
# (nil | Rescue) rescue_clause,
# (nil | Statements) else_clause,
# (nil | Ensure) ensure_clause
# ) -> BodyStmt
def on_bodystmt(statements, rescue_clause, else_clause, ensure_clause)
BodyStmt.new(
statements: statements,
rescue_clause: rescue_clause,
else_clause: else_clause,
ensure_clause: ensure_clause,
location: Location.fixed(line: lineno, char: char_pos)
)
end
# BraceBlock represents passing a block to a method call using the { }
# operators.
#
# method { |variable| variable + 1 }
#
class BraceBlock
# [LBrace] the left brace that opens this block
attr_reader :lbrace
# [nil | BlockVar] the optional set of parameters to the block
attr_reader :block_var
# [Statements] the list of expressions to evaluate within the block
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(lbrace:, block_var:, statements:, location:)
@lbrace = lbrace
@block_var = block_var
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('brace_block')
if block_var
q.breakable
q.pp(block_var)
end
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :brace_block,
lbrace: lbrace,
block_var: block_var,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_brace_block: (
# (nil | BlockVar) block_var,
# Statements statements
# ) -> BraceBlock
def on_brace_block(block_var, statements)
lbrace = find_token(LBrace)
rbrace = find_token(RBrace)
statements.bind(
find_next_statement_start((block_var || lbrace).location.end_char),
rbrace.location.start_char
)
location =
Location.new(
start_line: lbrace.location.start_line,
start_char: lbrace.location.start_char,
end_line: [rbrace.location.end_line, statements.location.end_line].max,
end_char: rbrace.location.end_char
)
BraceBlock.new(
lbrace: lbrace,
block_var: block_var,
statements: statements,
location: location
)
end
# Break represents using the +break+ keyword.
#
# break
#
# It can also optionally accept arguments, as in:
#
# break 1
#
class Break
# [Args | ArgsAddBlock] the arguments being sent to the keyword
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('break')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :break, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_break: ((Args | ArgsAddBlock) arguments) -> Break
def on_break(arguments)
keyword = find_token(Kw, 'break')
location = keyword.location
location = location.to(arguments.location) unless arguments.is_a?(Args)
Break.new(arguments: arguments, location: location)
end
# Call represents a method call. This node doesn't contain the arguments being
# passed (if arguments are passed, this node will get nested under a
# MethodAddArg node).
#
# receiver.message
#
class Call
# [untyped] the receiver of the method call
attr_reader :receiver
# [:"::" | Op | Period] the operator being used to send the message
attr_reader :operator
# [:call | Backtick | Const | Ident | Op] the message being sent
attr_reader :message
# [Location] the location of this node
attr_reader :location
def initialize(receiver:, operator:, message:, location:)
@receiver = receiver
@operator = operator
@message = message
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('call')
q.breakable
q.pp(receiver)
q.breakable
q.pp(operator)
q.breakable
q.pp(message)
end
end
def to_json(*opts)
{
type: :call,
receiver: receiver,
op: operator,
message: message,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_call: (
# untyped receiver,
# (:"::" | Op | Period) operator,
# (:call | Backtick | Const | Ident | Op) message
# ) -> Call
def on_call(receiver, operator, message)
ending = message
ending = operator if message == :call
Call.new(
receiver: receiver,
operator: operator,
message: message,
location:
Location.new(
start_line: receiver.location.start_line,
start_char: receiver.location.start_char,
end_line: [ending.location.end_line, receiver.location.end_line].max,
end_char: ending.location.end_char
)
)
end
# Case represents the beginning of a case chain.
#
# case value
# when 1
# "one"
# when 2
# "two"
# else
# "number"
# end
#
class Case
# [nil | untyped] optional value being switched on
attr_reader :value
# [In | When] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(value:, consequent:, location:)
@value = value
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('case')
if value
q.breakable
q.pp(value)
end
q.breakable
q.pp(consequent)
end
end
def to_json(*opts)
{ type: :case, value: value, cons: consequent, loc: location }.to_json(
*opts
)
end
end
# RAssign represents a single-line pattern match.
#
# value in pattern
# value => pattern
#
class RAssign
# [untyped] the left-hand expression
attr_reader :value
# [Kw | Op] the operator being used to match against the pattern, which is
# either => or in
attr_reader :operator
# [untyped] the pattern on the right-hand side of the expression
attr_reader :pattern
# [Location] the location of this node
attr_reader :location
def initialize(value:, operator:, pattern:, location:)
@value = value
@operator = operator
@pattern = pattern
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rassign')
q.breakable
q.pp(value)
q.breakable
q.pp(operator)
q.breakable
q.pp(pattern)
end
end
def to_json(*opts)
{
type: :rassign,
value: value,
op: operator,
pattern: pattern,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_case: (untyped value, untyped consequent) -> Case | RAssign
def on_case(value, consequent)
if keyword = find_token(Kw, 'case', consume: false)
tokens.delete(keyword)
Case.new(
value: value,
consequent: consequent,
location: keyword.location.to(consequent.location)
)
else
operator = find_token(Kw, 'in', consume: false) || find_token(Op, '=>')
RAssign.new(
value: value,
operator: operator,
pattern: consequent,
location: value.location.to(consequent.location)
)
end
end
# Class represents defining a class using the +class+ keyword.
#
# class Container
# end
#
# Classes can have path names as their class name in case it's being nested
# under a namespace, as in:
#
# class Namespace::Container
# end
#
# Classes can also be defined as a top-level path, in the case that it's
# already in a namespace but you want to define it at the top-level instead,
# as in:
#
# module OtherNamespace
# class ::Namespace::Container
# end
# end
#
# All of these declarations can also have an optional superclass reference, as
# in:
#
# class Child < Parent
# end
#
# That superclass can actually be any Ruby expression, it doesn't necessarily
# need to be a constant, as in:
#
# class Child < method
# end
#
class ClassDeclaration
# [ConstPathRef | ConstRef | TopConstRef] the name of the class being
# defined
attr_reader :constant
# [nil | untyped] the optional superclass declaration
attr_reader :superclass
# [BodyStmt] the expressions to execute within the context of the class
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(constant:, superclass:, bodystmt:, location:)
@constant = constant
@superclass = superclass
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('class')
q.breakable
q.pp(constant)
if superclass
q.breakable
q.pp(superclass)
end
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :class,
constant: constant,
superclass: superclass,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_class: (
# (ConstPathRef | ConstRef | TopConstRef) constant,
# untyped superclass,
# BodyStmt bodystmt
# ) -> ClassDeclaration
def on_class(constant, superclass, bodystmt)
beginning = find_token(Kw, 'class')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start((superclass || constant).location.end_char),
ending.location.start_char
)
ClassDeclaration.new(
constant: constant,
superclass: superclass,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# Comma represents the use of the , operator.
class Comma
# [String] the comma in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_comma: (String value) -> Comma
def on_comma(value)
node =
Comma.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Command represents a method call with arguments and no parentheses. Note
# that Command nodes only happen when there is no explicit receiver for this
# method.
#
# method argument
#
class Command
# [Const | Ident] the message being sent to the implicit receiver
attr_reader :message
# [Args | ArgsAddBlock] the arguments being sent with the message
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(message:, arguments:, location:)
@message = message
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('command')
q.breakable
q.pp(message)
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{
type: :command,
message: message,
args: arguments,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_command: (
# (Const | Ident) message,
# (Args | ArgsAddBlock) arguments
# ) -> Command
def on_command(message, arguments)
Command.new(
message: message,
arguments: arguments,
location: message.location.to(arguments.location)
)
end
# CommandCall represents a method call on an object with arguments and no
# parentheses.
#
# object.method argument
#
class CommandCall
# [untyped] the receiver of the message
attr_reader :receiver
# [:"::" | Op | Period] the operator used to send the message
attr_reader :operator
# [Const | Ident | Op] the message being send
attr_reader :message
# [Args | ArgsAddBlock] the arguments going along with the message
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(receiver:, operator:, message:, arguments:, location:)
@receiver = receiver
@operator = operator
@message = message
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('command_call')
q.breakable
q.pp(receiver)
q.breakable
q.pp(operator)
q.breakable
q.pp(message)
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{
type: :command_call,
receiver: receiver,
op: operator,
message: message,
args: arguments,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_command_call: (
# untyped receiver,
# (:"::" | Op | Period) operator,
# (Const | Ident | Op) message,
# (Args | ArgsAddBlock) arguments
# ) -> CommandCall
def on_command_call(receiver, operator, message, arguments)
ending = arguments || message
CommandCall.new(
receiver: receiver,
operator: operator,
message: message,
arguments: arguments,
location: receiver.location.to(ending.location)
)
end
# Comment represents a comment in the source.
#
# # comment
#
class Comment
# [String] the contents of the comment
attr_reader :value
# [boolean] whether or not there is code on the same line as this comment.
# If there is, then inline will be true.
attr_reader :inline
alias inline? inline
# [Location] the location of this node
attr_reader :location
def initialize(value:, inline:, location:)
@value = value
@inline = inline
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('comment')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :comment,
value: value.force_encoding('UTF-8'),
inline: inline,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_comment: (String value) -> Comment
def on_comment(value)
line = lineno
comment =
Comment.new(
value: value[1..-1].chomp,
inline: value.strip != lines[line - 1],
location:
Location.token(line: line, char: char_pos, size: value.size - 1)
)
@comments << comment
comment
end
# Const represents a literal value that _looks_ like a constant. This could
# actually be a reference to a constant:
#
# Constant
#
# It could also be something that looks like a constant in another context, as
# in a method call to a capitalized method:
#
# object.Constant
#
# or a symbol that starts with a capital letter:
#
# :Constant
#
class Const
# [String] the name of the constant
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('const')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :const, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_const: (String value) -> Const
def on_const(value)
node =
Const.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# ConstPathField represents the child node of some kind of assignment. It
# represents when you're assigning to a constant that is being referenced as
# a child of another variable.
#
# object::Const = value
#
class ConstPathField
# [untyped] the source of the constant
attr_reader :parent
# [Const] the constant itself
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(parent:, constant:, location:)
@parent = parent
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('const_path_field')
q.breakable
q.pp(parent)
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{
type: :const_path_field,
parent: parent,
constant: constant,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_const_path_field: (untyped parent, Const constant) -> ConstPathField
def on_const_path_field(parent, constant)
ConstPathField.new(
parent: parent,
constant: constant,
location: parent.location.to(constant.location)
)
end
# ConstPathRef represents referencing a constant by a path.
#
# object::Const
#
class ConstPathRef
# [untyped] the source of the constant
attr_reader :parent
# [Const] the constant itself
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(parent:, constant:, location:)
@parent = parent
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('const_path_ref')
q.breakable
q.pp(parent)
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{
type: :const_path_ref,
parent: parent,
constant: constant,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_const_path_ref: (untyped parent, Const constant) -> ConstPathRef
def on_const_path_ref(parent, constant)
ConstPathRef.new(
parent: parent,
constant: constant,
location: parent.location.to(constant.location)
)
end
# ConstRef represents the name of the constant being used in a class or module
# declaration.
#
# class Container
# end
#
class ConstRef
# [Const] the constant itself
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(constant:, location:)
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('const_ref')
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{ type: :const_ref, constant: constant, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_const_ref: (Const constant) -> ConstRef
def on_const_ref(constant)
ConstRef.new(constant: constant, location: constant.location)
end
# CVar represents the use of a class variable.
#
# @@variable
#
class CVar
# [String] the name of the class variable
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('cvar')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :cvar, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_cvar: (String value) -> CVar
def on_cvar(value)
node =
CVar.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Def represents defining a regular method on the current self object.
#
# def method(param) result end
#
class Def
# [Backtick | Const | Ident | Kw | Op] the name of the method
attr_reader :name
# [Params | Paren] the parameter declaration for the method
attr_reader :params
# [BodyStmt] the expressions to be executed by the method
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(name:, params:, bodystmt:, location:)
@name = name
@params = params
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('def')
q.breakable
q.pp(name)
q.breakable
q.pp(params)
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :def,
name: name,
params: params,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# DefEndless represents defining a single-line method since Ruby 3.0+.
#
# def method = result
#
class DefEndless
# [Backtick | Const | Ident | Kw | Op] the name of the method
attr_reader :name
# [Paren] the parameter declaration for the method
attr_reader :paren
# [untyped] the expression to be executed by the method
attr_reader :statement
# [Location] the location of this node
attr_reader :location
def initialize(name:, paren:, statement:, location:)
@name = name
@paren = paren
@statement = statement
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('def_endless')
q.breakable
q.pp(name)
q.breakable
q.pp(paren)
q.breakable
q.pp(statement)
end
end
def to_json(*opts)
{
type: :def_endless,
name: name,
paren: paren,
stmt: statement,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_def: (
# (Backtick | Const | Ident | Kw | Op) name,
# (Params | Paren) params,
# untyped bodystmt
# ) -> Def | DefEndless
def on_def(name, params, bodystmt)
# Make sure to delete this token in case you're defining something like def
# class which would lead to this being a kw and causing all kinds of trouble
tokens.delete(name)
# Find the beginning of the method definition, which works for single-line
# and normal method definitions.
beginning = find_token(Kw, 'def')
# If we don't have a bodystmt node, then we have a single-line method
unless bodystmt.is_a?(BodyStmt)
node =
DefEndless.new(
name: name,
paren: params,
statement: bodystmt,
location: beginning.location.to(bodystmt.location)
)
return node
end
# If there aren't any params then we need to correct the params node
# location information
if params.is_a?(Params) && params.empty?
end_char = name.location.end_char
location =
Location.new(
start_line: params.location.start_line,
start_char: end_char,
end_line: params.location.end_line,
end_char: end_char
)
params = Params.new(location: location)
end
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start(params.location.end_char),
ending.location.start_char
)
Def.new(
name: name,
params: params,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# Defined represents the use of the +defined?+ operator. It can be used with
# and without parentheses.
#
# defined?(variable)
#
class Defined
# [untyped] the value being sent to the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('defined')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :defined, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_defined: (untyped value) -> Defined
def on_defined(value)
beginning = find_token(Kw, 'defined?')
ending = value
range = beginning.location.end_char...value.location.start_char
if source[range].include?('(')
find_token(LParen)
ending = find_token(RParen)
end
Defined.new(value: value, location: beginning.location.to(ending.location))
end
# Defs represents defining a singleton method on an object.
#
# def object.method(param) result end
#
class Defs
# [untyped] the target where the method is being defined
attr_reader :target
# [Op | Period] the operator being used to declare the method
attr_reader :operator
# [Backtick | Const | Ident | Kw | Op] the name of the method
attr_reader :name
# [Params | Paren] the parameter declaration for the method
attr_reader :params
# [BodyStmt] the expressions to be executed by the method
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(target:, operator:, name:, params:, bodystmt:, location:)
@target = target
@operator = operator
@name = name
@params = params
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('defs')
q.breakable
q.pp(target)
q.breakable
q.pp(operator)
q.breakable
q.pp(name)
q.breakable
q.pp(params)
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :defs,
target: target,
op: operator,
name: name,
params: params,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_defs: (
# untyped target,
# (Op | Period) operator,
# (Backtick | Const | Ident | Kw | Op) name,
# (Params | Paren) params,
# BodyStmt bodystmt
# ) -> Defs
def on_defs(target, operator, name, params, bodystmt)
# Make sure to delete this token in case you're defining something
# like def class which would lead to this being a kw and causing all kinds
# of trouble
tokens.delete(name)
# If there aren't any params then we need to correct the params node
# location information
if params.is_a?(Params) && params.empty?
end_char = name.location.end_char
location =
Location.new(
start_line: params.location.start_line,
start_char: end_char,
end_line: params.location.end_line,
end_char: end_char
)
params = Params.new(location: location)
end
beginning = find_token(Kw, 'def')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start(params.location.end_char),
ending.location.start_char
)
Defs.new(
target: target,
operator: operator,
name: name,
params: params,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# DoBlock represents passing a block to a method call using the +do+ and +end+
# keywords.
#
# method do |value|
# end
#
class DoBlock
# [Kw] the do keyword that opens this block
attr_reader :keyword
# [nil | BlockVar] the optional variable declaration within this block
attr_reader :block_var
# [BodyStmt] the expressions to be executed within this block
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(keyword:, block_var:, bodystmt:, location:)
@keyword = keyword
@block_var = block_var
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('do_block')
if block_var
q.breakable
q.pp(block_var)
end
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :do_block,
keyword: keyword,
block_var: block_var,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_do_block: (BlockVar block_var, BodyStmt bodystmt) -> DoBlock
def on_do_block(block_var, bodystmt)
beginning = find_token(Kw, 'do')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start((block_var || beginning).location.end_char),
ending.location.start_char
)
DoBlock.new(
keyword: beginning,
block_var: block_var,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# Dot2 represents using the .. operator between two expressions. Usually this
# is to create a range object.
#
# 1..2
#
# Sometimes this operator is used to create a flip-flop.
#
# if value == 5 .. value == 10
# end
#
# One of the sides of the expression may be nil, but not both.
class Dot2
# [nil | untyped] the left side of the expression
attr_reader :left
# [nil | untyped] the right side of the expression
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('dot2')
if left
q.breakable
q.pp(left)
end
if right
q.breakable
q.pp(right)
end
end
end
def to_json(*opts)
{ type: :dot2, left: left, right: right, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_dot2: ((nil | untyped) left, (nil | untyped) right) -> Dot2
def on_dot2(left, right)
operator = find_token(Op, '..')
beginning = left || operator
ending = right || operator
Dot2.new(
left: left,
right: right,
location: beginning.location.to(ending.location)
)
end
# Dot3 represents using the ... operator between two expressions. Usually this
# is to create a range object. It's effectively the same event as the Dot2
# node but with this operator you're asking Ruby to omit the final value.
#
# 1...2
#
# Like Dot2 it can also be used to create a flip-flop.
#
# if value == 5 ... value == 10
# end
#
# One of the sides of the expression may be nil, but not both.
class Dot3
# [nil | untyped] the left side of the expression
attr_reader :left
# [nil | untyped] the right side of the expression
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('dot3')
if left
q.breakable
q.pp(left)
end
if right
q.breakable
q.pp(right)
end
end
end
def to_json(*opts)
{ type: :dot3, left: left, right: right, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_dot3: ((nil | untyped) left, (nil | untyped) right) -> Dot3
def on_dot3(left, right)
operator = find_token(Op, '...')
beginning = left || operator
ending = right || operator
Dot3.new(
left: left,
right: right,
location: beginning.location.to(ending.location)
)
end
# DynaSymbol represents a symbol literal that uses quotes to dynamically
# define its value.
#
# :"#{variable}"
#
# They can also be used as a special kind of dynamic hash key, as in:
#
# { "#{key}": value }
#
class DynaSymbol
# [Array[ StringDVar | StringEmbExpr | TStringContent ]] the parts of the
# dynamic symbol
attr_reader :parts
# [String] the quote used to delimit the dynamic symbol
attr_reader :quote
# [Location] the location of this node
attr_reader :location
def initialize(parts:, quote:, location:)
@parts = parts
@quote = quote
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('dyna_symbol')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :dyna_symbol, parts: parts, quote: quote, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_dyna_symbol: (StringContent string_content) -> DynaSymbol
def on_dyna_symbol(string_content)
if find_token(SymBeg, consume: false)
# A normal dynamic symbol
symbeg = find_token(SymBeg)
tstring_end = find_token(TStringEnd)
DynaSymbol.new(
quote: symbeg.value,
parts: string_content.parts,
location: symbeg.location.to(tstring_end.location)
)
else
# A dynamic symbol as a hash key
tstring_beg = find_token(TStringBeg)
label_end = find_token(LabelEnd)
DynaSymbol.new(
parts: string_content.parts,
quote: label_end.value[0],
location: tstring_beg.location.to(label_end.location)
)
end
end
# Else represents the end of an +if+, +unless+, or +case+ chain.
#
# if variable
# else
# end
#
class Else
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(statements:, location:)
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('else')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{ type: :else, stmts: statements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_else: (Statements statements) -> Else
def on_else(statements)
beginning = find_token(Kw, 'else')
# else can either end with an end keyword (in which case we'll want to
# consume that event) or it can end with an ensure keyword (in which case
# we'll leave that to the ensure to handle).
index =
tokens.rindex do |token|
token.is_a?(Kw) && %w[end ensure].include?(token.value)
end
node = tokens[index]
ending = node.value == 'end' ? tokens.delete_at(index) : node
statements.bind(beginning.location.end_char, ending.location.start_char)
Else.new(
statements: statements,
location: beginning.location.to(ending.location)
)
end
# Elsif represents another clause in an +if+ or +unless+ chain.
#
# if variable
# elsif other_variable
# end
#
class Elsif
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [nil | Elsif | Else] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, consequent:, location:)
@predicate = predicate
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('elsif')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :elsif,
pred: predicate,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_elsif: (
# untyped predicate,
# Statements statements,
# (nil | Elsif | Else) consequent
# ) -> Elsif
def on_elsif(predicate, statements, consequent)
beginning = find_token(Kw, 'elsif')
ending = consequent || find_token(Kw, 'end')
statements.bind(predicate.location.end_char, ending.location.start_char)
Elsif.new(
predicate: predicate,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# EmbDoc represents a multi-line comment.
#
# =begin
# first line
# second line
# =end
#
class EmbDoc
# [String] the contents of the comment
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def inline?
false
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('embdoc')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :embdoc, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_embdoc: (String value) -> EmbDoc
def on_embdoc(value)
@embdoc.value << value
@embdoc
end
# :call-seq:
# on_embdoc_beg: (String value) -> EmbDoc
def on_embdoc_beg(value)
@embdoc =
EmbDoc.new(
value: value,
location: Location.fixed(line: lineno, char: char_pos)
)
end
# :call-seq:
# on_embdoc_end: (String value) -> EmbDoc
def on_embdoc_end(value)
location = @embdoc.location
embdoc =
EmbDoc.new(
value: @embdoc.value << value.chomp,
location:
Location.new(
start_line: location.start_line,
start_char: location.start_char,
end_line: lineno,
end_char: char_pos + value.length - 1
)
)
@comments << embdoc
@embdoc = nil
embdoc
end
# EmbExprBeg represents the beginning token for using interpolation inside of
# a parent node that accepts string content (like a string or regular
# expression).
#
# "Hello, #{person}!"
#
class EmbExprBeg
# [String] the #{ used in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_embexpr_beg: (String value) -> EmbExprBeg
def on_embexpr_beg(value)
node =
EmbExprBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# EmbExprEnd represents the ending token for using interpolation inside of a
# parent node that accepts string content (like a string or regular
# expression).
#
# "Hello, #{person}!"
#
class EmbExprEnd
# [String] the } used in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_embexpr_end: (String value) -> EmbExprEnd
def on_embexpr_end(value)
node =
EmbExprEnd.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# EmbVar represents the use of shorthand interpolation for an instance, class,
# or global variable into a parent node that accepts string content (like a
# string or regular expression).
#
# "#@variable"
#
# In the example above, an EmbVar node represents the # because it forces
# @variable to be interpolated.
class EmbVar
# [String] the # used in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_embvar: (String value) -> EmbVar
def on_embvar(value)
node =
EmbVar.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Ensure represents the use of the +ensure+ keyword and its subsequent
# statements.
#
# begin
# ensure
# end
#
class Ensure
# [Kw] the ensure keyword that began this node
attr_reader :keyword
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(keyword:, statements:, location:)
@keyword = keyword
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('ensure')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :ensure,
keyword: keyword,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_ensure: (Statements statements) -> Ensure
def on_ensure(statements)
keyword = find_token(Kw, 'ensure')
# We don't want to consume the :@kw event, because that would break
# def..ensure..end chains.
ending = find_token(Kw, 'end', consume: false)
statements.bind(
find_next_statement_start(keyword.location.end_char),
ending.location.start_char
)
Ensure.new(
keyword: keyword,
statements: statements,
location: keyword.location.to(ending.location)
)
end
# ExcessedComma represents a trailing comma in a list of block parameters. It
# changes the block parameters such that they will destructure.
#
# [[1, 2, 3], [2, 3, 4]].each do |first, second,|
# end
#
# In the above example, an ExcessedComma node would appear in the third
# position of the Params node that is used to declare that block. The third
# position typically represents a rest-type parameter, but in this case is
# used to indicate that a trailing comma was used.
class ExcessedComma
# [String] the comma
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('excessed_comma')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :excessed_comma, value: value, loc: location }.to_json(*opts)
end
end
# The handler for this event accepts no parameters (though in previous
# versions of Ruby it accepted a string literal with a value of ",").
#
# :call-seq:
# on_excessed_comma: () -> ExcessedComma
def on_excessed_comma(*)
comma = find_token(Comma)
ExcessedComma.new(value: comma.value, location: comma.location)
end
# FCall represents the piece of a method call that comes before any arguments
# (i.e., just the name of the method). It is used in places where the parser
# is sure that it is a method call and not potentially a local variable.
#
# method(argument)
#
# In the above example, it's referring to the +method+ segment.
class FCall
# [Const | Ident] the name of the method
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('fcall')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :fcall, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_fcall: ((Const | Ident) value) -> FCall
def on_fcall(value)
FCall.new(value: value, location: value.location)
end
# Field is always the child of an assignment. It represents assigning to a
# “field” on an object.
#
# object.variable = value
#
class Field
# [untyped] the parent object that owns the field being assigned
attr_reader :parent
# [:"::" | Op | Period] the operator being used for the assignment
attr_reader :operator
# [Const | Ident] the name of the field being assigned
attr_reader :name
# [Location] the location of this node
attr_reader :location
def initialize(parent:, operator:, name:, location:)
@parent = parent
@operator = operator
@name = name
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('field')
q.breakable
q.pp(parent)
q.breakable
q.pp(operator)
q.breakable
q.pp(name)
end
end
def to_json(*opts)
{
type: :field,
parent: parent,
op: operator,
name: name,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_field: (
# untyped parent,
# (:"::" | Op | Period) operator
# (Const | Ident) name
# ) -> Field
def on_field(parent, operator, name)
Field.new(
parent: parent,
operator: operator,
name: name,
location: parent.location.to(name.location)
)
end
# FloatLiteral represents a floating point number literal.
#
# 1.0
#
class FloatLiteral
# [String] the value of the floating point number literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('float')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :float, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_float: (String value) -> FloatLiteral
def on_float(value)
node =
FloatLiteral.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# FndPtn represents matching against a pattern where you find a pattern in an
# array using the Ruby 3.0+ pattern matching syntax.
#
# case value
# in [*, 7, *]
# end
#
class FndPtn
# [nil | untyped] the optional constant wrapper
attr_reader :constant
# [VarField] the splat on the left-hand side
attr_reader :left
# [Array[ untyped ]] the list of positional expressions in the pattern that
# are being matched
attr_reader :values
# [VarField] the splat on the right-hand side
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(constant:, left:, values:, right:, location:)
@constant = constant
@left = left
@values = values
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('fndptn')
if constant
q.breakable
q.pp(constant)
end
q.breakable
q.pp(left)
q.breakable
q.group(2, '(', ')') { q.seplist(values) { |value| q.pp(value) } }
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{
type: :fndptn,
constant: constant,
left: left,
values: values,
right: right,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_fndptn: (
# (nil | untyped) constant,
# VarField left,
# Array[untyped] values,
# VarField right
# ) -> FndPtn
def on_fndptn(constant, left, values, right)
beginning = constant || find_token(LBracket)
ending = find_token(RBracket)
FndPtn.new(
constant: constant,
left: left,
values: values,
right: right,
location: beginning.location.to(ending.location)
)
end
# For represents using a +for+ loop.
#
# for value in list do
# end
#
class For
# [MLHS | MLHSAddStar | VarField] the variable declaration being used to
# pull values out of the object being enumerated
attr_reader :index
# [untyped] the object being enumerated in the loop
attr_reader :collection
# [Statements] the statements to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(index:, collection:, statements:, location:)
@index = index
@collection = collection
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('for')
q.breakable
q.pp(index)
q.breakable
q.pp(collection)
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :for,
index: index,
collection: collection,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_for: (
# (MLHS | MLHSAddStar | VarField) value,
# untyped collection,
# Statements statements
# ) -> For
def on_for(index, collection, statements)
beginning = find_token(Kw, 'for')
ending = find_token(Kw, 'end')
# Consume the do keyword if it exists so that it doesn't get confused for
# some other block
keyword = find_token(Kw, 'do', consume: false)
if keyword && keyword.location.start_char > collection.location.end_char &&
keyword.location.end_char < ending.location.start_char
tokens.delete(keyword)
end
statements.bind(
(keyword || collection).location.end_char,
ending.location.start_char
)
For.new(
index: index,
collection: collection,
statements: statements,
location: beginning.location.to(ending.location)
)
end
# GVar represents a global variable literal.
#
# $variable
#
class GVar
# [String] the name of the global variable
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('gvar')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :gvar, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_gvar: (String value) -> GVar
def on_gvar(value)
node =
GVar.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# HashLiteral represents a hash literal.
#
# { key => value }
#
class HashLiteral
# [nil | AssocListFromArgs] the contents of the hash
attr_reader :contents
# [Location] the location of this node
attr_reader :location
def initialize(contents:, location:)
@contents = contents
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('hash')
q.breakable
q.pp(contents)
end
end
def to_json(*opts)
{ type: :hash, cnts: contents, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_hash: ((nil | AssocListFromArgs) contents) -> HashLiteral
def on_hash(contents)
lbrace = find_token(LBrace)
rbrace = find_token(RBrace)
if contents
# Here we're going to expand out the location information for the contents
# node so that it can grab up any remaining comments inside the hash.
location =
Location.new(
start_line: contents.location.start_line,
start_char: lbrace.location.end_char,
end_line: contents.location.end_line,
end_char: rbrace.location.start_char
)
contents = contents.class.new(assocs: contents.assocs, location: location)
end
HashLiteral.new(
contents: contents,
location: lbrace.location.to(rbrace.location)
)
end
# Heredoc represents a heredoc string literal.
#
# <<~DOC
# contents
# DOC
#
class Heredoc
# [HeredocBeg] the opening of the heredoc
attr_reader :beginning
# [String] the ending of the heredoc
attr_reader :ending
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# heredoc string literal
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(beginning:, ending: nil, parts: [], location:)
@beginning = beginning
@ending = ending
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('heredoc')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{
type: :heredoc,
beging: beginning,
ending: ending,
parts: parts,
loc: location
}.to_json(*opts)
end
end
# HeredocBeg represents the beginning declaration of a heredoc.
#
# <<~DOC
# contents
# DOC
#
# In the example above the HeredocBeg node represents <<~DOC.
class HeredocBeg
# [String] the opening declaration of the heredoc
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('heredoc_beg')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :heredoc_beg, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_heredoc_beg: (String value) -> HeredocBeg
def on_heredoc_beg(value)
location =
Location.token(line: lineno, char: char_pos, size: value.size + 1)
# Here we're going to artificially create an extra node type so that if
# there are comments after the declaration of a heredoc, they get printed.
beginning = HeredocBeg.new(value: value, location: location)
@heredocs << Heredoc.new(beginning: beginning, location: location)
beginning
end
# :call-seq:
# on_heredoc_dedent: (StringContent string, Integer width) -> Heredoc
def on_heredoc_dedent(string, width)
heredoc = @heredocs[-1]
@heredocs[-1] =
Heredoc.new(
beginning: heredoc.beginning,
ending: heredoc.ending,
parts: string.parts,
location: heredoc.location
)
end
# :call-seq:
# on_heredoc_end: (String value) -> Heredoc
def on_heredoc_end(value)
heredoc = @heredocs[-1]
@heredocs[-1] =
Heredoc.new(
beginning: heredoc.beginning,
ending: value.chomp,
parts: heredoc.parts,
location:
Location.new(
start_line: heredoc.location.start_line,
start_char: heredoc.location.start_char,
end_line: lineno,
end_char: char_pos
)
)
end
# HshPtn represents matching against a hash pattern using the Ruby 2.7+
# pattern matching syntax.
#
# case value
# in { key: }
# end
#
class HshPtn
# [nil | untyped] the optional constant wrapper
attr_reader :constant
# [Array[ [Label, untyped] ]] the set of tuples representing the keywords
# that should be matched against in the pattern
attr_reader :keywords
# [nil | VarField] an optional parameter to gather up all remaining keywords
attr_reader :keyword_rest
# [Location] the location of this node
attr_reader :location
def initialize(constant:, keywords:, keyword_rest:, location:)
@constant = constant
@keywords = keywords
@keyword_rest = keyword_rest
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('hshptn')
if constant
q.breakable
q.pp(constant)
end
if keywords.any?
q.breakable
q.group(2, '(', ')') do
q.seplist(keywords) { |keyword| q.pp(keyword) }
end
end
if keyword_rest
q.breakable
q.pp(keyword_rest)
end
end
end
def to_json(*opts)
{
type: :hshptn,
constant: constant,
keywords: keywords,
kwrest: keyword_rest,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_hshptn: (
# (nil | untyped) constant,
# Array[[Label, untyped]] keywords,
# (nil | VarField) keyword_rest
# ) -> HshPtn
def on_hshptn(constant, keywords, keyword_rest)
parts = [constant, keywords, keyword_rest].flatten(2).compact
HshPtn.new(
constant: constant,
keywords: keywords,
keyword_rest: keyword_rest,
location: parts[0].location.to(parts[-1].location)
)
end
# Ident represents an identifier anywhere in code. It can represent a very
# large number of things, depending on where it is in the syntax tree.
#
# value
#
class Ident
# [String] the value of the identifier
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('ident')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :ident,
value: value.force_encoding('UTF-8'),
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_ident: (String value) -> Ident
def on_ident(value)
node =
Ident.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# If represents the first clause in an +if+ chain.
#
# if predicate
# end
#
class If
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [nil, Elsif, Else] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, consequent:, location:)
@predicate = predicate
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('if')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :if,
pred: predicate,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_if: (
# untyped predicate,
# Statements statements,
# (nil | Elsif | Else) consequent
# ) -> If
def on_if(predicate, statements, consequent)
beginning = find_token(Kw, 'if')
ending = consequent || find_token(Kw, 'end')
statements.bind(predicate.location.end_char, ending.location.start_char)
If.new(
predicate: predicate,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# IfOp represents a ternary clause.
#
# predicate ? truthy : falsy
#
class IfOp
# [untyped] the expression to be checked
attr_reader :predicate
# [untyped] the expression to be executed if the predicate is truthy
attr_reader :truthy
# [untyped] the expression to be executed if the predicate is falsy
attr_reader :falsy
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, truthy:, falsy:, location:)
@predicate = predicate
@truthy = truthy
@falsy = falsy
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('ifop')
q.breakable
q.pp(predicate)
q.breakable
q.pp(truthy)
q.breakable
q.pp(falsy)
end
end
def to_json(*opts)
{
type: :ifop,
pred: predicate,
tthy: truthy,
flsy: falsy,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_ifop: (untyped predicate, untyped truthy, untyped falsy) -> IfOp
def on_ifop(predicate, truthy, falsy)
IfOp.new(
predicate: predicate,
truthy: truthy,
falsy: falsy,
location: predicate.location.to(falsy.location)
)
end
# IfMod represents the modifier form of an +if+ statement.
#
# expression if predicate
#
class IfMod
# [untyped] the expression to be executed
attr_reader :statement
# [untyped] the expression to be checked
attr_reader :predicate
# [Location] the location of this node
attr_reader :location
def initialize(statement:, predicate:, location:)
@statement = statement
@predicate = predicate
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('if_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(predicate)
end
end
def to_json(*opts)
{
type: :if_mod,
stmt: statement,
pred: predicate,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_if_mod: (untyped predicate, untyped statement) -> IfMod
def on_if_mod(predicate, statement)
find_token(Kw, 'if')
IfMod.new(
statement: statement,
predicate: predicate,
location: statement.location.to(predicate.location)
)
end
# def on_ignored_nl(value)
# value
# end
# def on_ignored_sp(value)
# value
# end
# Imaginary represents an imaginary number literal.
#
# 1i
#
class Imaginary
# [String] the value of the imaginary number literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('imaginary')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :imaginary, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_imaginary: (String value) -> Imaginary
def on_imaginary(value)
node =
Imaginary.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# In represents using the +in+ keyword within the Ruby 2.7+ pattern matching
# syntax.
#
# case value
# in pattern
# end
#
class In
# [untyped] the pattern to check against
attr_reader :pattern
# [Statements] the expressions to execute if the pattern matched
attr_reader :statements
# [nil | In | Else] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(pattern:, statements:, consequent:, location:)
@pattern = pattern
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('in')
q.breakable
q.pp(pattern)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :in,
pattern: pattern,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_in: (RAssign pattern, nil statements, nil consequent) -> RAssign
# | (
# untyped pattern,
# Statements statements,
# (nil | In | Else) consequent
# ) -> In
def on_in(pattern, statements, consequent)
# Here we have a rightward assignment
return pattern unless statements
beginning = find_token(Kw, 'in')
ending = consequent || find_token(Kw, 'end')
statements.bind(beginning.location.end_char, ending.location.start_char)
In.new(
pattern: pattern,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# Int represents an integer number literal.
#
# 1
#
class Int
# [String] the value of the integer
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('int')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :int, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_int: (String value) -> Int
def on_int(value)
node =
Int.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# IVar represents an instance variable literal.
#
# @variable
#
class IVar
# [String] the name of the instance variable
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('ivar')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :ivar, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_ivar: (String value) -> IVar
def on_ivar(value)
node =
IVar.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Kw represents the use of a keyword. It can be almost anywhere in the syntax
# tree, so you end up seeing it quite a lot.
#
# if value
# end
#
# In the above example, there would be two Kw nodes: one for the if and one
# for the end. Note that anything that matches the list of keywords in Ruby
# will use a Kw, so if you use a keyword in a symbol literal for instance:
#
# :if
#
# then the contents of the symbol node will contain a Kw node.
class Kw
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('kw')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :kw, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_kw: (String value) -> Kw
def on_kw(value)
node =
Kw.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# KwRestParam represents defining a parameter in a method definition that
# accepts all remaining keyword parameters.
#
# def method(**kwargs) end
#
class KwRestParam
# [nil | Ident] the name of the parameter
attr_reader :name
# [Location] the location of this node
attr_reader :location
def initialize(name:, location:)
@name = name
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('kwrest_param')
q.breakable
q.pp(name)
end
end
def to_json(*opts)
{ type: :kwrest_param, name: name, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_kwrest_param: ((nil | Ident) name) -> KwRestParam
def on_kwrest_param(name)
location = find_token(Op, '**').location
location = location.to(name.location) if name
KwRestParam.new(name: name, location: location)
end
# Label represents the use of an identifier to associate with an object. You
# can find it in a hash key, as in:
#
# { key: value }
#
# In this case "key:" would be the body of the label. You can also find it in
# pattern matching, as in:
#
# case value
# in key:
# end
#
# In this case "key:" would be the body of the label.
class Label
# [String] the value of the label
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('label')
q.breakable
q.text(':')
q.text(value[0...-1])
end
end
def to_json(*opts)
{ type: :label, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_label: (String value) -> Label
def on_label(value)
node =
Label.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# LabelEnd represents the end of a dynamic symbol.
#
# { "key": value }
#
# In the example above, LabelEnd represents the "\":" token at the end of the
# hash key. This node is important for determining the type of quote being
# used by the label.
class LabelEnd
# [String] the end of the label
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_label_end: (String value) -> LabelEnd
def on_label_end(value)
node =
LabelEnd.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Lambda represents using a lambda literal (not the lambda method call).
#
# ->(value) { value * 2 }
#
class Lambda
# [Params | Paren] the parameter declaration for this lambda
attr_reader :params
# [BodyStmt | Statements] the expressions to be executed in this lambda
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(params:, statements:, location:)
@params = params
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('lambda')
q.breakable
q.pp(params)
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :lambda,
params: params,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_lambda: (
# (Params | Paren) params,
# (BodyStmt | Statements) statements
# ) -> Lambda
def on_lambda(params, statements)
beginning = find_token(TLambda)
if token = find_token(TLamBeg, consume: false)
opening = tokens.delete(token)
closing = find_token(RBrace)
else
opening = find_token(Kw, 'do')
closing = find_token(Kw, 'end')
end
statements.bind(opening.location.end_char, closing.location.start_char)
Lambda.new(
params: params,
statements: statements,
location: beginning.location.to(closing.location)
)
end
# LBrace represents the use of a left brace, i.e., {.
class LBrace
# [String] the left brace
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('lbrace')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :lbrace, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_lbrace: (String value) -> LBrace
def on_lbrace(value)
node =
LBrace.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# LBracket represents the use of a left bracket, i.e., [.
class LBracket
# [String] the left bracket
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_lbracket: (String value) -> LBracket
def on_lbracket(value)
node =
LBracket.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# LParen represents the use of a left parenthesis, i.e., (.
class LParen
# [String] the left parenthesis
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('lparen')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :lparen, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_lparen: (String value) -> LParen
def on_lparen(value)
node =
LParen.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# def on_magic_comment(key, value)
# [key, value]
# end
# MAssign is a parent node of any kind of multiple assignment. This includes
# splitting out variables on the left like:
#
# first, second, third = value
#
# as well as splitting out variables on the right, as in:
#
# value = first, second, third
#
# Both sides support splats, as well as variables following them. There's also
# destructuring behavior that you can achieve with the following:
#
# first, = value
#
class MAssign
# [Mlhs | MlhsAddPost | MlhsAddStar | MlhsParen] the target of the multiple
# assignment
attr_reader :target
# [untyped] the value being assigned
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(target:, value:, location:)
@target = target
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('massign')
q.breakable
q.pp(target)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :massign, target: target, value: value, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_massign: (
# (Mlhs | MlhsAddPost | MlhsAddStar | MlhsParen) target,
# untyped value
# ) -> MAssign
def on_massign(target, value)
comma_range = target.location.end_char...value.location.start_char
target.comma = true if source[comma_range].strip.start_with?(',')
MAssign.new(
target: target,
value: value,
location: target.location.to(value.location)
)
end
# MethodAddArg represents a method call with arguments and parentheses.
#
# method(argument)
#
# MethodAddArg can also represent with a method on an object, as in:
#
# object.method(argument)
#
# Finally, MethodAddArg can represent calling a method with no receiver that
# ends in a ?. In this case, the parser knows it's a method call and not a
# local variable, so it uses a MethodAddArg node as opposed to a VCall node,
# as in:
#
# method?
#
class MethodAddArg
# [Call | FCall] the method call
attr_reader :call
# [ArgParen | Args | ArgsAddBlock] the arguments to the method call
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(call:, arguments:, location:)
@call = call
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('method_add_arg')
q.breakable
q.pp(call)
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{
type: :method_add_arg,
call: call,
args: arguments,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_method_add_arg: (
# (Call | FCall) call,
# (ArgParen | Args | ArgsAddBlock) arguments
# ) -> MethodAddArg
def on_method_add_arg(call, arguments)
location = call.location
location = location.to(arguments.location) unless arguments.is_a?(Args)
MethodAddArg.new(call: call, arguments: arguments, location: location)
end
# MethodAddBlock represents a method call with a block argument.
#
# method {}
#
class MethodAddBlock
# [Call | Command | CommandCall | FCall | MethodAddArg] the method call
attr_reader :call
# [BraceBlock | DoBlock] the block being sent with the method call
attr_reader :block
# [Location] the location of this node
attr_reader :location
def initialize(call:, block:, location:)
@call = call
@block = block
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('method_add_block')
q.breakable
q.pp(call)
q.breakable
q.pp(block)
end
end
def to_json(*opts)
{
type: :method_add_block,
call: call,
block: block,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_method_add_block: (
# (Call | Command | CommandCall | FCall | MethodAddArg) call,
# (BraceBlock | DoBlock) block
# ) -> MethodAddBlock
def on_method_add_block(call, block)
MethodAddBlock.new(
call: call,
block: block,
location: call.location.to(block.location)
)
end
# MLHS represents a list of values being destructured on the left-hand side
# of a multiple assignment.
#
# first, second, third = value
#
class MLHS
# Array[ARefField | Field | Ident | MlhsParen | VarField] the parts of
# the left-hand side of a multiple assignment
attr_reader :parts
# [boolean] whether or not there is a trailing comma at the end of this
# list, which impacts destructuring. It's an attr_accessor so that while
# the syntax tree is being built it can be set by its parent node
attr_accessor :comma
# [Location] the location of this node
attr_reader :location
def initialize(parts:, comma: false, location:)
@parts = parts
@comma = comma
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mlhs')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :mlhs, parts: parts, comma: comma, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_mlhs_add: (
# MLHS mlhs,
# (ARefField | Field | Ident | MlhsParen | VarField) part
# ) -> MLHS
def on_mlhs_add(mlhs, part)
if mlhs.parts.empty?
MLHS.new(parts: [part], location: part.location)
else
MLHS.new(
parts: mlhs.parts << part,
location: mlhs.location.to(part.location)
)
end
end
# MLHSAddPost represents adding another set of variables onto a list of
# assignments after a splat variable within a multiple assignment.
#
# left, *middle, right = values
#
class MLHSAddPost
# [MlhsAddStar] the value being starred
attr_reader :star
# [Mlhs] the values after the star
attr_reader :mlhs
# [Location] the location of this node
attr_reader :location
def initialize(star:, mlhs:, location:)
@star = star
@mlhs = mlhs
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mlhs_add_post')
q.breakable
q.pp(star)
q.breakable
q.pp(mlhs)
end
end
def to_json(*opts)
{ type: :mlhs_add_post, star: star, mlhs: mlhs, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_mlhs_add_post: (MLHSAddStar star, MLHS mlhs) -> MLHSAddPost
def on_mlhs_add_post(star, mlhs)
MLHSAddPost.new(
star: star,
mlhs: mlhs,
location: star.location.to(mlhs.location)
)
end
# MLHSAddStar represents a splatted variable inside of a multiple assignment
# on the left hand side.
#
# first, *rest = values
#
class MLHSAddStar
# [MLHS] the values before the starred expression
attr_reader :mlhs
# [nil | ARefField | Field | Ident | VarField] the expression being
# splatted
attr_reader :star
# [Location] the location of this node
attr_reader :location
def initialize(mlhs:, star:, location:)
@mlhs = mlhs
@star = star
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mlhs_add_star')
q.breakable
q.pp(mlhs)
q.breakable
q.pp(star)
end
end
def to_json(*opts)
{ type: :mlhs_add_star, mlhs: mlhs, star: star, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_mlhs_add_star: (
# MLHS mlhs,
# (nil | ARefField | Field | Ident | VarField) part
# ) -> MLHSAddStar
def on_mlhs_add_star(mlhs, part)
beginning = find_token(Op, '*')
ending = part || beginning
MLHSAddStar.new(
mlhs: mlhs,
star: part,
location: beginning.location.to(ending.location)
)
end
# :call-seq:
# on_mlhs_new: () -> MLHS
def on_mlhs_new
MLHS.new(parts: [], location: Location.fixed(line: lineno, char: char_pos))
end
# MLHSParen represents parentheses being used to destruct values in a multiple
# assignment on the left hand side.
#
# (left, right) = value
#
class MLHSParen
# [Mlhs | MlhsAddPost | MlhsAddStar | MlhsParen] the contents inside of the
# parentheses
attr_reader :contents
# [Location] the location of this node
attr_reader :location
def initialize(contents:, location:)
@contents = contents
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mlhs_paren')
q.breakable
q.pp(contents)
end
end
def to_json(*opts)
{ type: :mlhs_paren, cnts: contents, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_mlhs_paren: (
# (Mlhs | MlhsAddPost | MlhsAddStar | MlhsParen) contents
# ) -> MLHSParen
def on_mlhs_paren(contents)
lparen = find_token(LParen)
rparen = find_token(RParen)
comma_range = lparen.location.end_char...rparen.location.start_char
contents.comma = true if source[comma_range].strip.end_with?(',')
MLHSParen.new(
contents: contents,
location: lparen.location.to(rparen.location)
)
end
# ModuleDeclaration represents defining a module using the +module+ keyword.
#
# module Namespace
# end
#
class ModuleDeclaration
# [ConstPathRef | ConstRef | TopConstRef] the name of the module
attr_reader :constant
# [BodyStmt] the expressions to be executed in the context of the module
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(constant:, bodystmt:, location:)
@constant = constant
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('module')
q.breakable
q.pp(constant)
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :module,
constant: constant,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_module: (
# (ConstPathRef | ConstRef | TopConstRef) constant,
# BodyStmt bodystmt
# ) -> ModuleDeclaration
def on_module(constant, bodystmt)
beginning = find_token(Kw, 'module')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start(constant.location.end_char),
ending.location.start_char
)
ModuleDeclaration.new(
constant: constant,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# MRHS represents the values that are being assigned on the right-hand side of
# a multiple assignment.
#
# values = first, second, third
#
class MRHS
# Array[untyped] the parts that are being assigned
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mrhs')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :mrhs, parts: parts, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_mrhs_new: () -> MRHS
def on_mrhs_new
MRHS.new(parts: [], location: Location.fixed(line: lineno, char: char_pos))
end
# :call-seq:
# on_mrhs_add: (MRHS mrhs, untyped part) -> MRHS
def on_mrhs_add(mrhs, part)
if mrhs.is_a?(MRHSNewFromArgs)
MRHS.new(
parts: [*mrhs.arguments.parts, part],
location: mrhs.location.to(part.location)
)
elsif mrhs.parts.empty?
MRHS.new(parts: [part], location: mrhs.location)
else
MRHS.new(parts: mrhs.parts << part, loc: mrhs.location.to(part.location))
end
end
# MRHSAddStar represents using the splat operator to expand out a value on the
# right hand side of a multiple assignment.
#
# values = first, *rest
#
class MRHSAddStar
# [MRHS | MRHSNewFromArgs] the values before the splatted expression
attr_reader :mrhs
# [untyped] the splatted expression
attr_reader :star
# [Location] the location of this node
attr_reader :location
def initialize(mrhs:, star:, location:)
@mrhs = mrhs
@star = star
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mrhs_add_star')
q.breakable
q.pp(mrhs)
q.breakable
q.pp(star)
end
end
def to_json(*opts)
{ type: :mrhs_add_star, mrhs: mrhs, star: star, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_mrhs_add_star: (
# (MRHS | MRHSNewFromArgs) mrhs,
# untyped star
# ) -> MRHSAddStar
def on_mrhs_add_star(mrhs, star)
beginning = find_token(Op, '*')
ending = star || beginning
MRHSAddStar.new(
mrhs: mrhs,
star: star,
location: beginning.location.to(ending.location)
)
end
# MRHSNewFromArgs represents the shorthand of a multiple assignment that
# allows you to assign values using just commas as opposed to assigning from
# an array.
#
# values = first, second, third
#
class MRHSNewFromArgs
# [Args] the arguments being used in the assignment
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mrhs_new_from_args')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :mrhs_new_from_args, args: arguments, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_mrhs_new_from_args: (Args arguments) -> MRHSNewFromArgs
def on_mrhs_new_from_args(arguments)
MRHSNewFromArgs.new(arguments: arguments, location: arguments.location)
end
# Next represents using the +next+ keyword.
#
# next
#
# The +next+ keyword can also optionally be called with an argument:
#
# next value
#
# +next+ can even be called with multiple arguments, but only if parentheses
# are omitted, as in:
#
# next first, second, third
#
# If a single value is being given, parentheses can be used, as in:
#
# next(value)
#
class Next
# [Args | ArgsAddBlock] the arguments passed to the next keyword
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('next')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :next, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_next: ((Args | ArgsAddBlock) arguments) -> Next
def on_next(arguments)
keyword = find_token(Kw, 'next')
location = keyword.location
location = location.to(arguments.location) unless arguments.is_a?(Args)
Next.new(arguments: arguments, location: location)
end
# def on_nl(value)
# value
# end
# def on_nokw_param(value)
# value
# end
# Op represents an operator literal in the source.
#
# 1 + 2
#
# In the example above, the Op node represents the + operator.
class Op
# [String] the operator
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('op')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :op, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_op: (String value) -> Op
def on_op(value)
node =
Op.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# OpAssign represents assigning a value to a variable or constant using an
# operator like += or ||=.
#
# variable += value
#
class OpAssign
# [ARefField | ConstPathField | Field | TopConstField | VarField] the target
# to assign the result of the expression to
attr_reader :target
# [Op] the operator being used for the assignment
attr_reader :operator
# [untyped] the expression to be assigned
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(target:, operator:, value:, location:)
@target = target
@operator = operator
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('opassign')
q.breakable
q.pp(target)
q.breakable
q.pp(operator)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :opassign,
target: target,
op: operator,
value: value,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_opassign: (
# (ARefField | ConstPathField | Field | TopConstField | VarField) target,
# Op operator,
# untyped value
# ) -> OpAssign
def on_opassign(target, operator, value)
OpAssign.new(
target: target,
operator: operator,
value: value,
location: target.location.to(value.location)
)
end
# def on_operator_ambiguous(value)
# value
# end
# Params represents defining parameters on a method or lambda.
#
# def method(param) end
#
class Params
# [Array[ Ident ]] any required parameters
attr_reader :requireds
# [Array[ [ Ident, untyped ] ]] any optional parameters and their default
# values
attr_reader :optionals
# [nil | ArgsForward | ExcessedComma | RestParam] the optional rest
# parameter
attr_reader :rest
# [Array[ Ident ]] any positional parameters that exist after a rest
# parameter
attr_reader :posts
# [Array[ [ Ident, nil | untyped ] ]] any keyword parameters and their
# optional default values
attr_reader :keywords
# [nil | :nil | KwRestParam] the optional keyword rest parameter
attr_reader :keyword_rest
# [nil | BlockArg] the optional block parameter
attr_reader :block
# [Location] the location of this node
attr_reader :location
def initialize(
requireds: [],
optionals: [],
rest: nil,
posts: [],
keywords: [],
keyword_rest: nil,
block: nil,
location:
)
@requireds = requireds
@optionals = optionals
@rest = rest
@posts = posts
@keywords = keywords
@keyword_rest = keyword_rest
@block = block
@location = location
end
# Params nodes are the most complicated in the tree. Occasionally you want
# to know if they are "empty", which means not having any parameters
# declared. This logic accesses every kind of parameter and determines if
# it's missing.
def empty?
requireds.empty? && optionals.empty? && !rest && posts.empty? &&
keywords.empty? && !keyword_rest && !block
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('params')
if requireds.any?
q.breakable
q.group(2, '(', ')') { q.seplist(requireds) { |name| q.pp(name) } }
end
if optionals.any?
q.breakable
q.group(2, '(', ')') do
q.seplist(optionals) do |(name, default)|
q.pp(name)
q.text('=')
q.group(2) do
q.breakable('')
q.pp(default)
end
end
end
end
if rest
q.breakable
q.pp(rest)
end
if posts.any?
q.breakable
q.group(2, '(', ')') { q.seplist(posts) { |value| q.pp(value) } }
end
if keywords.any?
q.breakable
q.group(2, '(', ')') do
q.seplist(keywords) do |(name, default)|
q.pp(name)
if default
q.text('=')
q.group(2) do
q.breakable('')
q.pp(default)
end
end
end
end
end
if keyword_rest
q.breakable
q.pp(keyword_rest)
end
if block
q.breakable
q.pp(block)
end
end
end
def to_json(*opts)
{
type: :params,
reqs: requireds,
opts: optionals,
rest: rest,
posts: posts,
keywords: keywords,
kwrest: keyword_rest,
block: block,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_params: (
# (nil | Array[Ident]) requireds,
# (nil | Array[[Ident, untyped]]) optionals,
# (nil | ArgsForward | ExcessedComma | RestParam) rest,
# (nil | Array[Ident]) posts,
# (nil | Array[[Ident, nil | untyped]]) keywords,
# (nil | :nil | KwRestParam) keyword_rest,
# (nil | BlockArg) block
# ) -> Params
def on_params(
requireds,
optionals,
rest,
posts,
keywords,
keyword_rest,
block
)
parts = [
*requireds,
*optionals&.flatten(1),
rest,
*posts,
*keywords&.flat_map { |(key, value)| [key, value || nil] },
(keyword_rest if keyword_rest != :nil),
block
].compact
location =
if parts.any?
parts[0].location.to(parts[-1].location)
else
Location.fixed(line: lineno, char: char_pos)
end
Params.new(
requireds: requireds || [],
optionals: optionals || [],
rest: rest,
posts: posts || [],
keywords: keywords || [],
keyword_rest: keyword_rest,
block: block,
location: location
)
end
# Paren represents using balanced parentheses in a couple places in a Ruby
# program. In general parentheses can be used anywhere a Ruby expression can
# be used.
#
# (1 + 2)
#
class Paren
# [LParen] the left parenthesis that opened this statement
attr_reader :lparen
# [untyped] the expression inside the parentheses
attr_reader :contents
# [Location] the location of this node
attr_reader :location
def initialize(lparen:, contents:, location:)
@lparen = lparen
@contents = contents
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('paren')
q.breakable
q.pp(contents)
end
end
def to_json(*opts)
{ type: :paren, lparen: lparen, cnts: contents, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_paren: (untyped contents) -> Paren
def on_paren(contents)
lparen = find_token(LParen)
rparen = find_token(RParen)
if contents && contents.is_a?(Params)
location = contents.location
location =
Location.new(
start_line: location.start_line,
start_char: find_next_statement_start(lparen.location.end_char),
end_line: location.end_line,
end_char: rparen.location.start_char
)
contents =
Params.new(
requireds: contents.requireds,
optionals: contents.optionals,
rest: contents.rest,
posts: contents.posts,
keywords: contents.keywords,
keyword_rest: contents.keyword_rest,
block: contents.block,
location: location
)
end
Paren.new(
lparen: lparen,
contents: contents,
location: lparen.location.to(rparen.location)
)
end
# If we encounter a parse error, just immediately bail out so that our runner
# can catch it.
def on_parse_error(error, *)
raise ParseError.new(error, lineno, column)
end
alias on_alias_error on_parse_error
alias on_assign_error on_parse_error
alias on_class_name_error on_parse_error
alias on_param_error on_parse_error
# Period represents the use of the +.+ operator. It is usually found in method
# calls.
class Period
# [String] the period
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('period')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :period, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_period: (String value) -> Period
def on_period(value)
Period.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
end
# Program represents the overall syntax tree.
class Program
# [Statements] the top-level expressions of the program
attr_reader :statements
# [Array[ Comment | EmbDoc ]] the comments inside the program
attr_reader :comments
# [Location] the location of this node
attr_reader :location
def initialize(statements:, comments:, location:)
@statements = statements
@comments = comments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('program')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :program,
stmts: statements,
comments: comments,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_program: (Statements statements) -> Program
def on_program(statements)
location =
Location.new(
start_line: 1,
start_char: 0,
end_line: lines.length,
end_char: source.length
)
statements.body << @__end__ if @__end__
statements.bind(0, source.length)
Program.new(statements: statements, comments: @comments, location: location)
end
# QSymbols represents a symbol literal array without interpolation.
#
# %i[one two three]
#
class QSymbols
# [Array[ TStringContent ]] the elements of the array
attr_reader :elements
# [Location] the location of this node
attr_reader :location
def initialize(elements:, location:)
@elements = elements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('qsymbols')
q.breakable
q.group(2, '(', ')') { q.seplist(elements) { |element| q.pp(element) } }
end
end
def to_json(*opts)
{ type: :qsymbols, elems: elements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_qsymbols_add: (QSymbols qsymbols, TStringContent element) -> QSymbols
def on_qsymbols_add(qsymbols, element)
QSymbols.new(
elements: qsymbols.elements << element,
location: qsymbols.location.to(element.location)
)
end
# QSymbolsBeg represents the beginning of a symbol literal array.
#
# %i[one two three]
#
# In the snippet above, QSymbolsBeg represents the "%i[" token. Note that
# these kinds of arrays can start with a lot of different delimiter types
# (e.g., %i| or %i<).
class QSymbolsBeg
# [String] the beginning of the array literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_qsymbols_beg: (String value) -> QSymbolsBeg
def on_qsymbols_beg(value)
node =
QSymbolsBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# :call-seq:
# on_qsymbols_new: () -> QSymbols
def on_qsymbols_new
qsymbols_beg = find_token(QSymbolsBeg)
QSymbols.new(elements: [], location: qsymbols_beg.location)
end
# QWords represents a string literal array without interpolation.
#
# %w[one two three]
#
class QWords
# [Array[ TStringContent ]] the elements of the array
attr_reader :elements
# [Location] the location of this node
attr_reader :location
def initialize(elements:, location:)
@elements = elements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('qwords')
q.breakable
q.group(2, '(', ')') { q.seplist(elements) { |element| q.pp(element) } }
end
end
def to_json(*opts)
{ type: :qwords, elems: elements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_qwords_add: (QWords qwords, TStringContent element) -> QWords
def on_qwords_add(qwords, element)
QWords.new(
elements: qwords.elements << element,
location: qwords.location.to(element.location)
)
end
# QWordsBeg represents the beginning of a string literal array.
#
# %w[one two three]
#
# In the snippet above, QWordsBeg represents the "%w[" token. Note that these
# kinds of arrays can start with a lot of different delimiter types (e.g.,
# %w| or %w<).
class QWordsBeg
# [String] the beginning of the array literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_qwords_beg: (String value) -> QWordsBeg
def on_qwords_beg(value)
node =
QWordsBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# :call-seq:
# on_qwords_new: () -> QWords
def on_qwords_new
qwords_beg = find_token(QWordsBeg)
QWords.new(elements: [], location: qwords_beg.location)
end
# RationalLiteral represents the use of a rational number literal.
#
# 1r
#
class RationalLiteral
# [String] the rational number literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rational')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :rational, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_rational: (String value) -> RationalLiteral
def on_rational(value)
node =
RationalLiteral.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# RBrace represents the use of a right brace, i.e., +++.
class RBrace
# [String] the right brace
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_rbrace: (String value) -> RBrace
def on_rbrace(value)
node =
RBrace.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# RBracket represents the use of a right bracket, i.e., +]+.
class RBracket
# [String] the right bracket
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_rbracket: (String value) -> RBracket
def on_rbracket(value)
node =
RBracket.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Redo represents the use of the +redo+ keyword.
#
# redo
#
class Redo
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('redo')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :redo, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_redo: () -> Redo
def on_redo
keyword = find_token(Kw, 'redo')
Redo.new(value: keyword.value, location: keyword.location)
end
# RegexpContent represents the body of a regular expression.
#
# /.+ #{pattern} .+/
#
# In the example above, a RegexpContent node represents everything contained
# within the forward slashes.
class RegexpContent
# [String] the opening of the regular expression
attr_reader :beginning
# [Array[ StringDVar | StringEmbExpr | TStringContent ]] the parts of the
# regular expression
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(beginning:, parts:, location:)
@beginning = beginning
@parts = parts
@location = location
end
end
# :call-seq:
# on_regexp_add: (
# RegexpContent regexp_content,
# (StringDVar | StringEmbExpr | TStringContent) part
# ) -> RegexpContent
def on_regexp_add(regexp_content, part)
RegexpContent.new(
beginning: regexp_content.beginning,
parts: regexp_content.parts << part,
location: regexp_content.location.to(part.location)
)
end
# RegexpBeg represents the start of a regular expression literal.
#
# /.+/
#
# In the example above, RegexpBeg represents the first / token. Regular
# expression literals can also be declared using the %r syntax, as in:
#
# %r{.+}
#
class RegexpBeg
# [String] the beginning of the regular expression
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_regexp_beg: (String value) -> RegexpBeg
def on_regexp_beg(value)
node =
RegexpBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# RegexpEnd represents the end of a regular expression literal.
#
# /.+/m
#
# In the example above, the RegexpEnd event represents the /m at the end of
# the regular expression literal. You can also declare regular expression
# literals using %r, as in:
#
# %r{.+}m
#
class RegexpEnd
# [String] the end of the regular expression
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_regexp_end: (String value) -> RegexpEnd
def on_regexp_end(value)
RegexpEnd.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
end
# RegexpLiteral represents a regular expression literal.
#
# /.+/
#
class RegexpLiteral
# [String] the beginning of the regular expression literal
attr_reader :beginning
# [String] the ending of the regular expression literal
attr_reader :ending
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# regular expression literal
attr_reader :parts
# [Locatione] the location of this node
attr_reader :location
def initialize(beginning:, ending:, parts:, location:)
@beginning = beginning
@ending = ending
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('regexp_literal')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{
type: :regexp_literal,
beging: beginning,
ending: ending,
parts: parts,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_regexp_literal: (
# RegexpContent regexp_content,
# RegexpEnd ending
# ) -> RegexpLiteral
def on_regexp_literal(regexp_content, ending)
RegexpLiteral.new(
beginning: regexp_content.beginning,
ending: ending.value,
parts: regexp_content.parts,
location: regexp_content.location.to(ending.location)
)
end
# :call-seq:
# on_regexp_new: () -> RegexpContent
def on_regexp_new
regexp_beg = find_token(RegexpBeg)
RegexpContent.new(
beginning: regexp_beg.value,
parts: [],
location: regexp_beg.location
)
end
# RescueEx represents the list of exceptions being rescued in a rescue clause.
#
# begin
# rescue Exception => exception
# end
#
class RescueEx
# [untyped] the list of exceptions being rescued
attr_reader :exceptions
# [nil | Field | VarField] the expression being used to capture the raised
# exception
attr_reader :variable
# [Location] the location of this node
attr_reader :location
def initialize(exceptions:, variable:, location:)
@exceptions = exceptions
@variable = variable
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rescue_ex')
q.breakable
q.pp(exceptions)
q.breakable
q.pp(variable)
end
end
def to_json(*opts)
{
type: :rescue_ex,
extns: exceptions,
var: variable,
loc: location
}.to_json(*opts)
end
end
# Rescue represents the use of the rescue keyword inside of a BodyStmt node.
#
# begin
# rescue
# end
#
class Rescue
# [RescueEx] the exceptions being rescued
attr_reader :exception
# [Statements] the expressions to evaluate when an error is rescued
attr_reader :statements
# [nil | Rescue] the optional next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(exception:, statements:, consequent:, location:)
@exception = exception
@statements = statements
@consequent = consequent
@location = location
end
def bind_end(end_char)
@location =
Location.new(
start_line: location.start_line,
start_char: location.start_char,
end_line: location.end_line,
end_char: end_char
)
if consequent
consequent.bind_end(end_char)
statements.bind_end(consequent.location.start_char)
else
statements.bind_end(end_char)
end
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rescue')
if exception
q.breakable
q.pp(exception)
end
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :rescue,
extn: exception,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_rescue: (
# (nil | [untyped] | MRHS | MRHSAddStar) exceptions,
# (nil | Field | VarField) variable,
# Statements statements,
# (nil | Rescue) consequent
# ) -> Rescue
def on_rescue(exceptions, variable, statements, consequent)
keyword = find_token(Kw, 'rescue')
exceptions = exceptions[0] if exceptions.is_a?(Array)
last_node = variable || exceptions || keyword
statements.bind(
find_next_statement_start(last_node.location.end_char),
char_pos
)
# We add an additional inner node here that ripper doesn't provide so that
# we have a nice place to attach inline comments. But we only need it if we
# have an exception or a variable that we're rescuing.
rescue_ex =
if exceptions || variable
RescueEx.new(
exceptions: exceptions,
variable: variable,
location:
Location.new(
start_line: keyword.location.start_line,
start_char: keyword.location.end_char + 1,
end_line: last_node.location.end_line,
end_char: last_node.location.end_char
)
)
end
Rescue.new(
exception: rescue_ex,
statements: statements,
consequent: consequent,
location:
Location.new(
start_line: keyword.location.start_line,
start_char: keyword.location.start_char,
end_line: lineno,
end_char: char_pos
)
)
end
# RescueMod represents the use of the modifier form of a +rescue+ clause.
#
# expression rescue value
#
class RescueMod
# [untyped] the expression to execute
attr_reader :statement
# [untyped] the value to use if the executed expression raises an error
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(statement:, value:, location:)
@statement = statement
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rescue_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :rescue_mod,
stmt: statement,
value: value,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_rescue_mod: (untyped statement, untyped value) -> RescueMod
def on_rescue_mod(statement, value)
find_token(Kw, 'rescue')
RescueMod.new(
statement: statement,
value: value,
location: statement.location.to(value.location)
)
end
# RestParam represents defining a parameter in a method definition that
# accepts all remaining positional parameters.
#
# def method(*rest) end
#
class RestParam
# [nil | Ident] the name of the parameter
attr_reader :name
# [Location] the location of this node
attr_reader :location
def initialize(name:, location:)
@name = name
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rest_param')
q.breakable
q.pp(name)
end
end
def to_json(*opts)
{ type: :rest_param, name: name, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_rest_param: ((nil | Ident) name) -> RestParam
def on_rest_param(name)
location = find_token(Op, '*').location
location = location.to(name.location) if name
RestParam.new(name: name, location: location)
end
# Retry represents the use of the +retry+ keyword.
#
# retry
#
class Retry
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('retry')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :retry, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_retry: () -> Retry
def on_retry
keyword = find_token(Kw, 'retry')
Retry.new(value: keyword.value, location: keyword.location)
end
# Return represents using the +return+ keyword with arguments.
#
# return value
#
class Return
# [Args | ArgsAddBlock] the arguments being passed to the keyword
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('return')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :return, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_return: ((Args | ArgsAddBlock) arguments) -> Return
def on_return(arguments)
keyword = find_token(Kw, 'return')
Return.new(
arguments: arguments,
location: keyword.location.to(arguments.location)
)
end
# Return0 represents the bare +return+ keyword with no arguments.
#
# return
#
class Return0
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('return0')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :return0, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_return0: () -> Return0
def on_return0
keyword = find_token(Kw, 'return')
Return0.new(value: keyword.value, location: keyword.location)
end
# RParen represents the use of a right parenthesis, i.e., +)+.
class RParen
# [String] the parenthesis
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_rparen: (String value) -> RParen
def on_rparen(value)
node =
RParen.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# SClass represents a block of statements that should be evaluated within the
# context of the singleton class of an object. It's frequently used to define
# singleton methods.
#
# class << self
# end
#
class SClass
# [untyped] the target of the singleton class to enter
attr_reader :target
# [BodyStmt] the expressions to be executed
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(target:, bodystmt:, location:)
@target = target
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('sclass')
q.breakable
q.pp(target)
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :sclass,
target: target,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_sclass: (untyped target, BodyStmt bodystmt) -> SClass
def on_sclass(target, bodystmt)
beginning = find_token(Kw, 'class')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start(target.location.end_char),
ending.location.start_char
)
SClass.new(
target: target,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# def on_semicolon(value)
# value
# end
# def on_sp(value)
# value
# end
# stmts_add is a parser event that represents a single statement inside a
# list of statements within any lexical block. It accepts as arguments the
# parent stmts node as well as an stmt which can be any expression in
# Ruby.
def on_stmts_add(statements, statement)
statements << statement
end
# Everything that has a block of code inside of it has a list of statements.
# Normally we would just track those as a node that has an array body, but we
# have some special handling in order to handle empty statement lists. They
# need to have the right location information, so all of the parent node of
# stmts nodes will report back down the location information. We then
# propagate that onto void_stmt nodes inside the stmts in order to make sure
# all comments get printed appropriately.
class Statements
# [SyntaxTree] the parser that created this node
attr_reader :parser
# [Array[ untyped ]] the list of expressions contained within this node
attr_reader :body
# [Location] the location of this node
attr_reader :location
def initialize(parser:, body:, location:)
@parser = parser
@body = body
@location = location
end
def bind(start_char, end_char)
@location =
Location.new(
start_line: location.start_line,
start_char: start_char,
end_line: location.end_line,
end_char: end_char
)
if body[0].is_a?(VoidStmt)
location = body[0].location
location =
Location.new(
start_line: location.start_line,
start_char: start_char,
end_line: location.end_line,
end_char: start_char
)
body[0] = VoidStmt.new(location: location)
end
attach_comments(start_char, end_char)
end
def bind_end(end_char)
@location =
Location.new(
start_line: location.start_line,
start_char: location.start_char,
end_line: location.end_line,
end_char: end_char
)
end
def <<(statement)
@location =
body.any? ? location.to(statement.location) : statement.location
body << statement
self
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('statements')
q.breakable
q.seplist(body) { |statement| q.pp(statement) }
end
end
def to_json(*opts)
{ type: :statements, body: body, loc: location }.to_json(*opts)
end
private
def attach_comments(start_char, end_char)
attachable =
parser.comments.select do |comment|
!comment.inline? && start_char <= comment.location.start_char &&
end_char >= comment.location.end_char &&
!comment.value.include?('prettier-ignore')
end
return if attachable.empty?
parser.comments -= attachable
@body = (body + attachable).sort_by! { |node| node.location.start_char }
end
end
# :call-seq:
# on_stmts_new: () -> Statements
def on_stmts_new
Statements.new(
parser: self,
body: [],
location: Location.fixed(line: lineno, char: char_pos)
)
end
# StringContent represents the contents of a string-like value.
#
# "string"
#
class StringContent
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# string
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
end
# :call-seq:
# on_string_add: (
# String string,
# (StringEmbExpr | StringDVar | TStringContent) part
# ) -> StringContent
def on_string_add(string, part)
location =
string.parts.any? ? string.location.to(part.location) : part.location
StringContent.new(parts: string.parts << part, location: location)
end
# StringConcat represents concatenating two strings together using a backward
# slash.
#
# "first" \
# "second"
#
class StringConcat
# [StringConcat | StringLiteral] the left side of the concatenation
attr_reader :left
# [StringLiteral] the right side of the concatenation
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('string_concat')
q.breakable
q.pp(left)
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{ type: :string_concat, left: left, right: right, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_string_concat: (
# (StringConcat | StringLiteral) left,
# StringLiteral right
# ) -> StringConcat
def on_string_concat(left, right)
StringConcat.new(
left: left,
right: right,
location: left.location.to(right.location)
)
end
# :call-seq:
# on_string_content: () -> StringContent
def on_string_content
StringContent.new(
parts: [],
location: Location.fixed(line: lineno, char: char_pos)
)
end
# StringDVar represents shorthand interpolation of a variable into a string.
# It allows you to take an instance variable, class variable, or global
# variable and omit the braces when interpolating.
#
# "#@variable"
#
class StringDVar
# [Backref | VarRef] the variable being interpolated
attr_reader :variable
# [Location] the location of this node
attr_reader :location
def initialize(variable:, location:)
@variable = variable
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('string_dvar')
q.breakable
q.pp(variable)
end
end
def to_json(*opts)
{ type: :string_dvar, var: variable, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_string_dvar: ((Backref | VarRef) variable) -> StringDVar
def on_string_dvar(variable)
embvar = find_token(EmbVar)
StringDVar.new(
variable: variable,
location: embvar.location.to(variable.location)
)
end
# StringEmbExpr represents interpolated content. It can be contained within a
# couple of different parent nodes, including regular expressions, strings,
# and dynamic symbols.
#
# "string #{expression}"
#
class StringEmbExpr
# [Statements] the expressions to be interpolated
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(statements:, location:)
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('string_embexpr')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{ type: :string_embexpr, stmts: statements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_string_embexpr: (Statements statements) -> StringEmbExpr
def on_string_embexpr(statements)
embexpr_beg = find_token(EmbExprBeg)
embexpr_end = find_token(EmbExprEnd)
statements.bind(
embexpr_beg.location.end_char,
embexpr_end.location.start_char
)
StringEmbExpr.new(
statements: statements,
location: embexpr_beg.location.to(embexpr_end.location)
)
end
# StringLiteral represents a string literal.
#
# "string"
#
class StringLiteral
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# string literal
attr_reader :parts
# [String] which quote was used by the string literal
attr_reader :quote
# [Location] the location of this node
attr_reader :location
def initialize(parts:, quote:, location:)
@parts = parts
@quote = quote
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('string_literal')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{
type: :string_literal,
parts: parts,
quote: quote,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_string_literal: (String string) -> Heredoc | StringLiteral
def on_string_literal(string)
heredoc = @heredocs[-1]
if heredoc && heredoc.ending
heredoc = @heredocs.pop
Heredoc.new(
beginning: heredoc.beginning,
ending: heredoc.ending,
parts: string.parts,
location: heredoc.location
)
else
tstring_beg = find_token(TStringBeg)
tstring_end = find_token(TStringEnd)
StringLiteral.new(
parts: string.parts,
quote: tstring_beg.value,
location: tstring_beg.location.to(tstring_end.location)
)
end
end
# Super represents using the +super+ keyword with arguments. It can optionally
# use parentheses.
#
# super(value)
#
class Super
# [ArgParen | Args | ArgsAddBlock] the arguments to the keyword
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('super')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :super, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_super: ((ArgParen | Args | ArgsAddBlock) arguments) -> Super
def on_super(arguments)
keyword = find_token(Kw, 'super')
Super.new(
arguments: arguments,
location: keyword.location.to(arguments.location)
)
end
# SymBeg represents the beginning of a symbol literal.
#
# :symbol
#
# SymBeg is also used for dynamic symbols, as in:
#
# :"symbol"
#
# Finally, SymBeg is also used for symbols using the %s syntax, as in:
#
# %s[symbol]
#
# The value of this node is a string. In most cases (as in the first example
# above) it will contain just ":". In the case of dynamic symbols it will
# contain ":'" or ":\"". In the case of %s symbols, it will contain the start
# of the symbol including the %s and the delimiter.
class SymBeg
# [String] the beginning of the symbol
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# symbeg is a token that represents the beginning of a symbol literal.
# In most cases it will contain just ":" as in the value, but if its a dynamic
# symbol being defined it will contain ":'" or ":\"".
def on_symbeg(value)
node =
SymBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# SymbolContent represents symbol contents and is always the child of a
# SymbolLiteral node.
#
# :symbol
#
class SymbolContent
# [Backtick | Const | CVar | GVar | Ident | IVar | Kw | Op] the value of the
# symbol
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_symbol: (
# (Backtick | Const | CVar | GVar | Ident | IVar | Kw | Op) value
# ) -> SymbolContent
def on_symbol(value)
tokens.pop
SymbolContent.new(value: value, location: value.location)
end
# SymbolLiteral represents a symbol in the system with no interpolation
# (as opposed to a DynaSymbol which has interpolation).
#
# :symbol
#
class SymbolLiteral
# [Backtick | Const | CVar | GVar | Ident | IVar | Kw | Op] the value of the
# symbol
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('symbol_literal')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :symbol_literal, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_symbol_literal: (
# (
# Backtick | Const | CVar | GVar | Ident |
# IVar | Kw | Op | SymbolContent
# ) value
# ) -> SymbolLiteral
def on_symbol_literal(value)
if tokens[-1] == value
SymbolLiteral.new(value: tokens.pop, location: value.location)
else
symbeg = find_token(SymBeg)
SymbolLiteral.new(
value: value.value,
location: symbeg.location.to(value.location)
)
end
end
# Symbols represents a symbol array literal with interpolation.
#
# %I[one two three]
#
class Symbols
# [Array[ Word ]] the words in the symbol array literal
attr_reader :elements
# [Location] the location of this node
attr_reader :location
def initialize(elements:, location:)
@elements = elements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('symbols')
q.breakable
q.group(2, '(', ')') { q.seplist(elements) { |element| q.pp(element) } }
end
end
def to_json(*opts)
{ type: :symbols, elems: elements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_symbols_add: (Symbols symbols, Word word) -> Symbols
def on_symbols_add(symbols, word)
Symbols.new(
elements: symbols.elements << word,
location: symbols.location.to(word.location)
)
end
# SymbolsBeg represents the start of a symbol array literal with
# interpolation.
#
# %I[one two three]
#
# In the snippet above, SymbolsBeg represents the "%I[" token. Note that these
# kinds of arrays can start with a lot of different delimiter types
# (e.g., %I| or %I<).
class SymbolsBeg
# [String] the beginning of the symbol literal array
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_symbols_beg: (String value) -> SymbolsBeg
def on_symbols_beg(value)
node =
SymbolsBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# :call-seq:
# on_symbols_new: () -> Symbols
def on_symbols_new
symbols_beg = find_token(SymbolsBeg)
Symbols.new(elements: [], location: symbols_beg.location)
end
# TLambda represents the beginning of a lambda literal.
#
# -> { value }
#
# In the example above the TLambda represents the +->+ operator.
class TLambda
# [String] the beginning of the lambda literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_tlambda: (String value) -> TLambda
def on_tlambda(value)
node =
TLambda.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# TLamBeg represents the beginning of the body of a lambda literal using
# braces.
#
# -> { value }
#
# In the example above the TLamBeg represents the +{+ operator.
class TLamBeg
# [String] the beginning of the body of the lambda literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_tlambeg: (String value) -> TLamBeg
def on_tlambeg(value)
node =
TLamBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# TopConstField is always the child node of some kind of assignment. It
# represents when you're assigning to a constant that is being referenced at
# the top level.
#
# ::Constant = value
#
class TopConstField
# [Const] the constant being assigned
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(constant:, location:)
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('top_const_field')
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{ type: :top_const_field, constant: constant, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_top_const_field: (Const constant) -> TopConstRef
def on_top_const_field(constant)
operator = find_colon2_before(constant)
TopConstField.new(
constant: constant,
location: operator.location.to(constant.location)
)
end
# TopConstRef is very similar to TopConstField except that it is not involved
# in an assignment.
#
# ::Constant
#
class TopConstRef
# [Const] the constant being referenced
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(constant:, location:)
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('top_const_ref')
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{ type: :top_const_ref, constant: constant, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_top_const_ref: (Const constant) -> TopConstRef
def on_top_const_ref(constant)
operator = find_colon2_before(constant)
TopConstRef.new(
constant: constant,
location: operator.location.to(constant.location)
)
end
# TStringBeg represents the beginning of a string literal.
#
# "string"
#
# In the example above, TStringBeg represents the first set of quotes. Strings
# can also use single quotes. They can also be declared using the +%q+ and
# +%Q+ syntax, as in:
#
# %q{string}
#
class TStringBeg
# [String] the beginning of the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_tstring_beg: (String value) -> TStringBeg
def on_tstring_beg(value)
node =
TStringBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# TStringContent represents plain characters inside of an entity that accepts
# string content like a string, heredoc, command string, or regular
# expression.
#
# "string"
#
# In the example above, TStringContent represents the +string+ token contained
# within the string.
class TStringContent
# [String] the content of the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('tstring_content')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :tstring_content,
value: value.force_encoding('UTF-8'),
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_tstring_content: (String value) -> TStringContent
def on_tstring_content(value)
TStringContent.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
end
# TStringEnd represents the end of a string literal.
#
# "string"
#
# In the example above, TStringEnd represents the second set of quotes.
# Strings can also use single quotes. They can also be declared using the +%q+
# and +%Q+ syntax, as in:
#
# %q{string}
#
class TStringEnd
# [String] the end of the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_tstring_end: (String value) -> TStringEnd
def on_tstring_end(value)
node =
TStringEnd.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Not represents the unary +not+ method being called on an expression.
#
# not value
#
class Not
# [untyped] the statement on which to operate
attr_reader :statement
# [boolean] whether or not parentheses were used
attr_reader :parentheses
# [Location] the location of this node
attr_reader :location
def initialize(statement:, parentheses:, location:)
@statement = statement
@parentheses = parentheses
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('not')
q.breakable
q.pp(statement)
end
end
def to_json(*opts)
{
type: :not,
value: statement,
paren: parentheses,
loc: location
}.to_json(*opts)
end
end
# Unary represents a unary method being called on an expression, as in +!+ or
# +~+.
#
# !value
#
class Unary
# [String] the operator being used
attr_reader :operator
# [untyped] the statement on which to operate
attr_reader :statement
# [Location] the location of this node
attr_reader :location
def initialize(operator:, statement:, location:)
@operator = operator
@statement = statement
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('unary')
q.breakable
q.pp(operator)
q.breakable
q.pp(statement)
end
end
def to_json(*opts)
{ type: :unary, op: operator, value: statement, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_unary: (:not operator, untyped statement) -> Not
# | (Symbol operator, untyped statement) -> Unary
def on_unary(operator, statement)
if operator == :not
# We have somewhat special handling of the not operator since if it has
# parentheses they don't get reported as a paren node for some reason.
beginning = find_token(Kw, 'not')
ending = statement
range = beginning.location.end_char...statement.location.start_char
paren = source[range].include?('(')
if paren
find_token(LParen)
ending = find_token(RParen)
end
Not.new(
statement: statement,
parentheses: paren,
location: beginning.location.to(ending.location)
)
else
# Special case instead of using find_token here. It turns out that
# if you have a range that goes from a negative number to a negative
# number then you can end up with a .. or a ... that's higher in the
# stack. So we need to explicitly disallow those operators.
index =
tokens.rindex do |token|
token.is_a?(Op) &&
token.location.start_char < statement.location.start_char &&
!%w[.. ...].include?(token.value)
end
beginning = tokens.delete_at(index)
Unary.new(
operator: operator[0], # :+@ -> "+"
statement: statement,
location: beginning.location.to(statement.location)
)
end
end
# Undef represents the use of the +undef+ keyword.
#
# undef method
#
class Undef
# [Array[ DynaSymbol | SymbolLiteral ]] the symbols to undefine
attr_reader :symbols
# [Location] the location of this node
attr_reader :location
def initialize(symbols:, location:)
@symbols = symbols
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('undef')
q.breakable
q.group(2, '(', ')') { q.seplist(symbols) { |symbol| q.pp(symbol) } }
end
end
def to_json(*opts)
{ type: :undef, syms: symbols, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_undef: (Array[DynaSymbol | SymbolLiteral] symbols) -> Undef
def on_undef(symbols)
keyword = find_token(Kw, 'undef')
Undef.new(
symbols: symbols,
location: keyword.location.to(symbols.last.location)
)
end
# Unless represents the first clause in an +unless+ chain.
#
# unless predicate
# end
#
class Unless
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [nil, Elsif, Else] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, consequent:, location:)
@predicate = predicate
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('unless')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :unless,
pred: predicate,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_unless: (
# untyped predicate,
# Statements statements,
# ((nil | Elsif | Else) consequent)
# ) -> Unless
def on_unless(predicate, statements, consequent)
beginning = find_token(Kw, 'unless')
ending = consequent || find_token(Kw, 'end')
statements.bind(predicate.location.end_char, ending.location.start_char)
Unless.new(
predicate: predicate,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# UnlessMod represents the modifier form of an +unless+ statement.
#
# expression unless predicate
#
class UnlessMod
# [untyped] the expression to be executed
attr_reader :statement
# [untyped] the expression to be checked
attr_reader :predicate
# [Location] the location of this node
attr_reader :location
def initialize(statement:, predicate:, location:)
@statement = statement
@predicate = predicate
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('unless_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(predicate)
end
end
def to_json(*opts)
{
type: :unless_mod,
stmt: statement,
pred: predicate,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_unless_mod: (untyped predicate, untyped statement) -> UnlessMod
def on_unless_mod(predicate, statement)
find_token(Kw, 'unless')
UnlessMod.new(
statement: statement,
predicate: predicate,
location: statement.location.to(predicate.location)
)
end
# Until represents an +until+ loop.
#
# until predicate
# end
#
class Until
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, location:)
@predicate = predicate
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('until')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :until,
pred: predicate,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_until: (untyped predicate, Statements statements) -> Until
def on_until(predicate, statements)
beginning = find_token(Kw, 'until')
ending = find_token(Kw, 'end')
# Consume the do keyword if it exists so that it doesn't get confused for
# some other block
keyword = find_token(Kw, 'do', consume: false)
if keyword && keyword.location.start_char > predicate.location.end_char &&
keyword.location.end_char < ending.location.start_char
tokens.delete(keyword)
end
# Update the Statements location information
statements.bind(predicate.location.end_char, ending.location.start_char)
Until.new(
predicate: predicate,
statements: statements,
location: beginning.location.to(ending.location)
)
end
# UntilMod represents the modifier form of a +until+ loop.
#
# expression until predicate
#
class UntilMod
# [untyped] the expression to be executed
attr_reader :statement
# [untyped] the expression to be checked
attr_reader :predicate
# [Location] the location of this node
attr_reader :location
def initialize(statement:, predicate:, location:)
@statement = statement
@predicate = predicate
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('until_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(predicate)
end
end
def to_json(*opts)
{
type: :until_mod,
stmt: statement,
pred: predicate,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_until_mod: (untyped predicate, untyped statement) -> UntilMod
def on_until_mod(predicate, statement)
find_token(Kw, 'until')
UntilMod.new(
statement: statement,
predicate: predicate,
location: statement.location.to(predicate.location)
)
end
# VarAlias represents when you're using the +alias+ keyword with global
# variable arguments.
#
# alias $new $old
#
class VarAlias
# [GVar] the new alias of the variable
attr_reader :left
# [Backref | GVar] the current name of the variable to be aliased
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('var_alias')
q.breakable
q.pp(left)
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{ type: :var_alias, left: left, right: right, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_var_alias: (GVar left, (Backref | GVar) right) -> VarAlias
def on_var_alias(left, right)
keyword = find_token(Kw, 'alias')
VarAlias.new(
left: left,
right: right,
location: keyword.location.to(right.location)
)
end
# VarField represents a variable that is being assigned a value. As such, it
# is always a child of an assignment type node.
#
# variable = value
#
# In the example above, the VarField node represents the +variable+ token.
class VarField
# [nil | Const | CVar | GVar | Ident | IVar] the target of this node
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('var_field')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :var_field, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_var_field: (
# (nil | Const | CVar | GVar | Ident | IVar) value
# ) -> VarField
def on_var_field(value)
location =
if value
value.location
else
# You can hit this pattern if you're assigning to a splat using pattern
# matching syntax in Ruby 2.7+
Location.fixed(line: lineno, char: char_pos)
end
VarField.new(value: value, location: location)
end
# VarRef represents a variable reference.
#
# true
#
# This can be a plain local variable like the example above. It can also be a
# constant, a class variable, a global variable, an instance variable, a
# keyword (like +self+, +nil+, +true+, or +false+), or a numbered block
# variable.
class VarRef
# [Const | CVar | GVar | Ident | IVar | Kw] the value of this node
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('var_ref')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :var_ref, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_var_ref: ((Const | CVar | GVar | Ident | IVar | Kw) value) -> VarRef
def on_var_ref(value)
VarRef.new(value: value, location: value.location)
end
# AccessCtrl represents a call to a method visibility control, i.e., +public+,
# +protected+, or +private+.
#
# private
#
class AccessCtrl
# [Ident] the value of this expression
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('access_ctrl')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :access_ctrl, value: value, loc: location }.to_json(*opts)
end
end
# VCall represent any plain named object with Ruby that could be either a
# local variable or a method call.
#
# variable
#
class VCall
# [Ident] the value of this expression
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('vcall')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :vcall, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_vcall: (Ident ident) -> AccessCtrl | VCall
def on_vcall(ident)
@controls ||= %w[private protected public].freeze
if @controls.include?(ident.value) && ident.value == lines[lineno - 1].strip
# Access controls like private, protected, and public are reported as
# vcall nodes since they're technically method calls. We want to be able
# add new lines around them as necessary, so here we're going to
# explicitly track those as a different node type.
AccessCtrl.new(value: ident, location: ident.location)
else
VCall.new(value: ident, location: ident.location)
end
end
# VoidStmt represents an empty lexical block of code.
#
# ;;
#
class VoidStmt
# [Location] the location of this node
attr_reader :location
def initialize(location:)
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') { q.text('void_stmt') }
end
def to_json(*opts)
{ type: :void_stmt, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_void_stmt: () -> VoidStmt
def on_void_stmt
VoidStmt.new(location: Location.fixed(line: lineno, char: char_pos))
end
# When represents a +when+ clause in a +case+ chain.
#
# case value
# when predicate
# end
#
class When
# [untyped] the arguments to the when clause
attr_reader :arguments
# [Statements] the expressions to be executed
attr_reader :statements
# [nil | Else | When] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, statements:, consequent:, location:)
@arguments = arguments
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('when')
q.breakable
q.pp(arguments)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :when,
args: arguments,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_when: (
# untyped arguments,
# Statements statements,
# (nil | Else | When) consequent
# ) -> When
def on_when(arguments, statements, consequent)
beginning = find_token(Kw, 'when')
ending = consequent || find_token(Kw, 'end')
statements.bind(arguments.location.end_char, ending.location.start_char)
When.new(
arguments: arguments,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# While represents a +while+ loop.
#
# while predicate
# end
#
class While
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, location:)
@predicate = predicate
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('while')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :while,
pred: predicate,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_while: (untyped predicate, Statements statements) -> While
def on_while(predicate, statements)
beginning = find_token(Kw, 'while')
ending = find_token(Kw, 'end')
# Consume the do keyword if it exists so that it doesn't get confused for
# some other block
keyword = find_token(Kw, 'do', consume: false)
if keyword && keyword.location.start_char > predicate.location.end_char &&
keyword.location.end_char < ending.location.start_char
tokens.delete(keyword)
end
# Update the Statements location information
statements.bind(predicate.location.end_char, ending.location.start_char)
While.new(
predicate: predicate,
statements: statements,
location: beginning.location.to(ending.location)
)
end
# WhileMod represents the modifier form of a +while+ loop.
#
# expression while predicate
#
class WhileMod
# [untyped] the expression to be executed
attr_reader :statement
# [untyped] the expression to be checked
attr_reader :predicate
# [Location] the location of this node
attr_reader :location
def initialize(statement:, predicate:, location:)
@statement = statement
@predicate = predicate
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('while_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(predicate)
end
end
def to_json(*opts)
{
type: :while_mod,
stmt: statement,
pred: predicate,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_while_mod: (untyped predicate, untyped statement) -> WhileMod
def on_while_mod(predicate, statement)
find_token(Kw, 'while')
WhileMod.new(
statement: statement,
predicate: predicate,
location: statement.location.to(predicate.location)
)
end
# Word represents an element within a special array literal that accepts
# interpolation.
#
# %W[a#{b}c xyz]
#
# In the example above, there would be two Word nodes within a parent Words
# node.
class Word
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# word
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('word')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :word, parts: parts, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_word_add: (
# Word word,
# (StringEmbExpr | StringDVar | TStringContent) part
# ) -> Word
def on_word_add(word, part)
location =
word.parts.empty? ? part.location : word.location.to(part.location)
Word.new(parts: word.parts << part, location: location)
end
# :call-seq:
# on_word_new: () -> Word
def on_word_new
Word.new(parts: [], location: Location.fixed(line: lineno, char: char_pos))
end
# Words represents a string literal array with interpolation.
#
# %W[one two three]
#
class Words
# [Array[ Word ]] the elements of this array
attr_reader :elements
# [Location] the location of this node
attr_reader :location
def initialize(elements:, location:)
@elements = elements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('words')
q.breakable
q.group(2, '(', ')') { q.seplist(elements) { |element| q.pp(element) } }
end
end
def to_json(*opts)
{ type: :words, elems: elements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_words_add: (Words words, Word word) -> Words
def on_words_add(words, word)
Words.new(
elements: words.elements << word,
location: words.location.to(word.location)
)
end
# WordsBeg represents the beginning of a string literal array with
# interpolation.
#
# %W[one two three]
#
# In the snippet above, a WordsBeg would be created with the value of "%W[".
# Note that these kinds of arrays can start with a lot of different delimiter
# types (e.g., %W| or %W<).
class WordsBeg
# [String] the start of the word literal array
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_words_beg: (String value) -> WordsBeg
def on_words_beg(value)
node =
WordsBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# :call-seq:
# on_words_new: () -> Words
def on_words_new
words_beg = find_token(WordsBeg)
Words.new(elements: [], location: words_beg.location)
end
# def on_words_sep(value)
# value
# end
# XString represents the contents of an XStringLiteral.
#
# `ls`
#
class XString
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# xstring
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
end
# :call-seq:
# on_xstring_add: (
# XString xstring,
# (StringEmbExpr | StringDVar | TStringContent) part
# ) -> XString
def on_xstring_add(xstring, part)
XString.new(
parts: xstring.parts << part,
location: xstring.location.to(part.location)
)
end
# :call-seq:
# on_xstring_new: () -> XString
def on_xstring_new
heredoc = @heredocs[-1]
location =
if heredoc && heredoc.beginning.value.include?('`')
heredoc.location
else
find_token(Backtick).location
end
XString.new(parts: [], location: location)
end
# XStringLiteral represents a string that gets executed.
#
# `ls`
#
class XStringLiteral
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# xstring
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('xstring_literal')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :xstring_literal, parts: parts, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_xstring_literal: (XString xstring) -> Heredoc | XStringLiteral
def on_xstring_literal(xstring)
heredoc = @heredocs[-1]
if heredoc && heredoc.beginning.value.include?('`')
Heredoc.new(
beginning: heredoc.beginning,
ending: heredoc.ending,
parts: xstring.parts,
location: heredoc.location
)
else
ending = find_token(TStringEnd)
XStringLiteral.new(
parts: xstring.parts,
location: xstring.location.to(ending.location)
)
end
end
# Yield represents using the +yield+ keyword with arguments.
#
# yield value
#
class Yield
# [ArgsAddBlock | Paren] the arguments passed to the yield
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('yield')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :yield, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_yield: ((ArgsAddBlock | Paren) arguments) -> Yield
def on_yield(arguments)
keyword = find_token(Kw, 'yield')
Yield.new(
arguments: arguments,
location: keyword.location.to(arguments.location)
)
end
# Yield0 represents the bare +yield+ keyword with no arguments.
#
# yield
#
class Yield0
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('yield0')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :yield0, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_yield0: () -> Yield0
def on_yield0
keyword = find_token(Kw, 'yield')
Yield0.new(value: keyword.value, location: keyword.location)
end
# ZSuper represents the bare +super+ keyword with no arguments.
#
# super
#
class ZSuper
# [String] the value of the keyword
attr_reader :value
# [Location] the location of the node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('zsuper')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :zsuper, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_zsuper: () -> ZSuper
def on_zsuper
keyword = find_token(Kw, 'super')
ZSuper.new(value: keyword.value, location: keyword.location)
end
end