ruby/process.c

9560 строки
259 KiB
C

/**********************************************************************
process.c -
$Author$
created at: Tue Aug 10 14:30:50 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/internal/config.h"
#include "ruby/fiber/scheduler.h"
#include <ctype.h>
#include <errno.h>
#include <signal.h>
#include <stdarg.h>
#include <stdio.h>
#include <time.h>
#ifdef HAVE_STDLIB_H
# include <stdlib.h>
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef HAVE_FCNTL_H
# include <fcntl.h>
#endif
#ifdef HAVE_PROCESS_H
# include <process.h>
#endif
#ifndef EXIT_SUCCESS
# define EXIT_SUCCESS 0
#endif
#ifndef EXIT_FAILURE
# define EXIT_FAILURE 1
#endif
#ifdef HAVE_SYS_WAIT_H
# include <sys/wait.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
# include <sys/resource.h>
#endif
#ifdef HAVE_VFORK_H
# include <vfork.h>
#endif
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifndef MAXPATHLEN
# define MAXPATHLEN 1024
#endif
#include <sys/stat.h>
#ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
#endif
#ifdef HAVE_SYS_TIMES_H
# include <sys/times.h>
#endif
#ifdef HAVE_PWD_H
# include <pwd.h>
#endif
#ifdef HAVE_GRP_H
# include <grp.h>
# ifdef __CYGWIN__
int initgroups(const char *, rb_gid_t);
# endif
#endif
#ifdef HAVE_SYS_ID_H
# include <sys/id.h>
#endif
#ifdef __APPLE__
# include <mach/mach_time.h>
#endif
#include "dln.h"
#include "hrtime.h"
#include "internal.h"
#include "internal/bits.h"
#include "internal/dir.h"
#include "internal/error.h"
#include "internal/eval.h"
#include "internal/hash.h"
#include "internal/io.h"
#include "internal/numeric.h"
#include "internal/object.h"
#include "internal/process.h"
#include "internal/thread.h"
#include "internal/variable.h"
#include "internal/warnings.h"
#include "rjit.h"
#include "ruby/io.h"
#include "ruby/st.h"
#include "ruby/thread.h"
#include "ruby/util.h"
#include "vm_core.h"
#include "vm_sync.h"
#include "ruby/ractor.h"
/* define system APIs */
#ifdef _WIN32
#undef open
#define open rb_w32_uopen
#endif
#if defined(HAVE_TIMES) || defined(_WIN32)
/*********************************************************************
*
* Document-class: Process::Tms
*
* Placeholder for rusage
*/
static VALUE rb_cProcessTms;
#endif
#ifndef WIFEXITED
#define WIFEXITED(w) (((w) & 0xff) == 0)
#endif
#ifndef WIFSIGNALED
#define WIFSIGNALED(w) (((w) & 0x7f) > 0 && (((w) & 0x7f) < 0x7f))
#endif
#ifndef WIFSTOPPED
#define WIFSTOPPED(w) (((w) & 0xff) == 0x7f)
#endif
#ifndef WEXITSTATUS
#define WEXITSTATUS(w) (((w) >> 8) & 0xff)
#endif
#ifndef WTERMSIG
#define WTERMSIG(w) ((w) & 0x7f)
#endif
#ifndef WSTOPSIG
#define WSTOPSIG WEXITSTATUS
#endif
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__)
#define HAVE_44BSD_SETUID 1
#define HAVE_44BSD_SETGID 1
#endif
#ifdef __NetBSD__
#undef HAVE_SETRUID
#undef HAVE_SETRGID
#endif
#ifdef BROKEN_SETREUID
#define setreuid ruby_setreuid
int setreuid(rb_uid_t ruid, rb_uid_t euid);
#endif
#ifdef BROKEN_SETREGID
#define setregid ruby_setregid
int setregid(rb_gid_t rgid, rb_gid_t egid);
#endif
#if defined(HAVE_44BSD_SETUID) || defined(__APPLE__)
#if !defined(USE_SETREUID) && !defined(BROKEN_SETREUID)
#define OBSOLETE_SETREUID 1
#endif
#if !defined(USE_SETREGID) && !defined(BROKEN_SETREGID)
#define OBSOLETE_SETREGID 1
#endif
#endif
static void check_uid_switch(void);
static void check_gid_switch(void);
static int exec_async_signal_safe(const struct rb_execarg *, char *, size_t);
VALUE rb_envtbl(void);
VALUE rb_env_to_hash(void);
#if 1
#define p_uid_from_name p_uid_from_name
#define p_gid_from_name p_gid_from_name
#endif
#if defined(HAVE_UNISTD_H)
# if defined(HAVE_GETLOGIN_R)
# define USE_GETLOGIN_R 1
# define GETLOGIN_R_SIZE_DEFAULT 0x100
# define GETLOGIN_R_SIZE_LIMIT 0x1000
# if defined(_SC_LOGIN_NAME_MAX)
# define GETLOGIN_R_SIZE_INIT sysconf(_SC_LOGIN_NAME_MAX)
# else
# define GETLOGIN_R_SIZE_INIT GETLOGIN_R_SIZE_DEFAULT
# endif
# elif defined(HAVE_GETLOGIN)
# define USE_GETLOGIN 1
# endif
#endif
#if defined(HAVE_PWD_H)
# if defined(HAVE_GETPWUID_R)
# define USE_GETPWUID_R 1
# elif defined(HAVE_GETPWUID)
# define USE_GETPWUID 1
# endif
# if defined(HAVE_GETPWNAM_R)
# define USE_GETPWNAM_R 1
# elif defined(HAVE_GETPWNAM)
# define USE_GETPWNAM 1
# endif
# if defined(HAVE_GETPWNAM_R) || defined(HAVE_GETPWUID_R)
# define GETPW_R_SIZE_DEFAULT 0x1000
# define GETPW_R_SIZE_LIMIT 0x10000
# if defined(_SC_GETPW_R_SIZE_MAX)
# define GETPW_R_SIZE_INIT sysconf(_SC_GETPW_R_SIZE_MAX)
# else
# define GETPW_R_SIZE_INIT GETPW_R_SIZE_DEFAULT
# endif
# endif
# ifdef USE_GETPWNAM_R
# define PREPARE_GETPWNAM \
VALUE getpw_buf = 0
# define FINISH_GETPWNAM \
(getpw_buf ? (void)rb_str_resize(getpw_buf, 0) : (void)0)
# define OBJ2UID1(id) obj2uid((id), &getpw_buf)
# define OBJ2UID(id) obj2uid0(id)
static rb_uid_t obj2uid(VALUE id, VALUE *getpw_buf);
static inline rb_uid_t
obj2uid0(VALUE id)
{
rb_uid_t uid;
PREPARE_GETPWNAM;
uid = OBJ2UID1(id);
FINISH_GETPWNAM;
return uid;
}
# else
# define PREPARE_GETPWNAM /* do nothing */
# define FINISH_GETPWNAM /* do nothing */
# define OBJ2UID1(id) obj2uid((id))
# define OBJ2UID(id) obj2uid((id))
static rb_uid_t obj2uid(VALUE id);
# endif
#else
# define PREPARE_GETPWNAM /* do nothing */
# define FINISH_GETPWNAM /* do nothing */
# define OBJ2UID1(id) NUM2UIDT(id)
# define OBJ2UID(id) NUM2UIDT(id)
# ifdef p_uid_from_name
# undef p_uid_from_name
# define p_uid_from_name rb_f_notimplement
# endif
#endif
#if defined(HAVE_GRP_H)
# if defined(HAVE_GETGRNAM_R) && defined(_SC_GETGR_R_SIZE_MAX)
# define USE_GETGRNAM_R
# define GETGR_R_SIZE_INIT sysconf(_SC_GETGR_R_SIZE_MAX)
# define GETGR_R_SIZE_DEFAULT 0x1000
# define GETGR_R_SIZE_LIMIT 0x10000
# endif
# ifdef USE_GETGRNAM_R
# define PREPARE_GETGRNAM \
VALUE getgr_buf = 0
# define FINISH_GETGRNAM \
(getgr_buf ? (void)rb_str_resize(getgr_buf, 0) : (void)0)
# define OBJ2GID1(id) obj2gid((id), &getgr_buf)
# define OBJ2GID(id) obj2gid0(id)
static rb_gid_t obj2gid(VALUE id, VALUE *getgr_buf);
static inline rb_gid_t
obj2gid0(VALUE id)
{
rb_gid_t gid;
PREPARE_GETGRNAM;
gid = OBJ2GID1(id);
FINISH_GETGRNAM;
return gid;
}
static rb_gid_t obj2gid(VALUE id, VALUE *getgr_buf);
# else
# define PREPARE_GETGRNAM /* do nothing */
# define FINISH_GETGRNAM /* do nothing */
# define OBJ2GID1(id) obj2gid((id))
# define OBJ2GID(id) obj2gid((id))
static rb_gid_t obj2gid(VALUE id);
# endif
#else
# define PREPARE_GETGRNAM /* do nothing */
# define FINISH_GETGRNAM /* do nothing */
# define OBJ2GID1(id) NUM2GIDT(id)
# define OBJ2GID(id) NUM2GIDT(id)
# ifdef p_gid_from_name
# undef p_gid_from_name
# define p_gid_from_name rb_f_notimplement
# endif
#endif
#if SIZEOF_CLOCK_T == SIZEOF_INT
typedef unsigned int unsigned_clock_t;
#elif SIZEOF_CLOCK_T == SIZEOF_LONG
typedef unsigned long unsigned_clock_t;
#elif defined(HAVE_LONG_LONG) && SIZEOF_CLOCK_T == SIZEOF_LONG_LONG
typedef unsigned LONG_LONG unsigned_clock_t;
#endif
#ifndef HAVE_SIG_T
typedef void (*sig_t) (int);
#endif
#define id_exception idException
static ID id_in, id_out, id_err, id_pid, id_uid, id_gid;
static ID id_close, id_child;
#ifdef HAVE_SETPGID
static ID id_pgroup;
#endif
#ifdef _WIN32
static ID id_new_pgroup;
#endif
static ID id_unsetenv_others, id_chdir, id_umask, id_close_others;
static ID id_nanosecond, id_microsecond, id_millisecond, id_second;
static ID id_float_microsecond, id_float_millisecond, id_float_second;
static ID id_GETTIMEOFDAY_BASED_CLOCK_REALTIME, id_TIME_BASED_CLOCK_REALTIME;
#ifdef CLOCK_REALTIME
static ID id_CLOCK_REALTIME;
# define RUBY_CLOCK_REALTIME ID2SYM(id_CLOCK_REALTIME)
#endif
#ifdef CLOCK_MONOTONIC
static ID id_CLOCK_MONOTONIC;
# define RUBY_CLOCK_MONOTONIC ID2SYM(id_CLOCK_MONOTONIC)
#endif
#ifdef CLOCK_PROCESS_CPUTIME_ID
static ID id_CLOCK_PROCESS_CPUTIME_ID;
# define RUBY_CLOCK_PROCESS_CPUTIME_ID ID2SYM(id_CLOCK_PROCESS_CPUTIME_ID)
#endif
#ifdef CLOCK_THREAD_CPUTIME_ID
static ID id_CLOCK_THREAD_CPUTIME_ID;
# define RUBY_CLOCK_THREAD_CPUTIME_ID ID2SYM(id_CLOCK_THREAD_CPUTIME_ID)
#endif
#ifdef HAVE_TIMES
static ID id_TIMES_BASED_CLOCK_MONOTONIC;
static ID id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID;
#endif
#ifdef RUSAGE_SELF
static ID id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID;
#endif
static ID id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID;
#ifdef __APPLE__
static ID id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC;
# define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
#endif
static ID id_hertz;
static rb_pid_t cached_pid;
/* execv and execl are async-signal-safe since SUSv4 (POSIX.1-2008, XPG7) */
#if defined(__sun) && !defined(_XPG7) /* Solaris 10, 9, ... */
#define execv(path, argv) (rb_async_bug_errno("unreachable: async-signal-unsafe execv() is called", 0))
#define execl(path, arg0, arg1, arg2, term) do { extern char **environ; execle((path), (arg0), (arg1), (arg2), (term), (environ)); } while (0)
#define ALWAYS_NEED_ENVP 1
#else
#define ALWAYS_NEED_ENVP 0
#endif
static void
assert_close_on_exec(int fd)
{
#if VM_CHECK_MODE > 0
#if defined(HAVE_FCNTL) && defined(F_GETFD) && defined(FD_CLOEXEC)
int flags = fcntl(fd, F_GETFD);
if (flags == -1) {
static const char m[] = "reserved FD closed unexpectedly?\n";
(void)!write(2, m, sizeof(m) - 1);
return;
}
if (flags & FD_CLOEXEC) return;
rb_bug("reserved FD did not have close-on-exec set");
#else
rb_bug("reserved FD without close-on-exec support");
#endif /* FD_CLOEXEC */
#endif /* VM_CHECK_MODE */
}
static inline int
close_unless_reserved(int fd)
{
if (rb_reserved_fd_p(fd)) { /* async-signal-safe */
assert_close_on_exec(fd);
return 0;
}
return close(fd); /* async-signal-safe */
}
/*#define DEBUG_REDIRECT*/
#if defined(DEBUG_REDIRECT)
static void
ttyprintf(const char *fmt, ...)
{
va_list ap;
FILE *tty;
int save = errno;
#ifdef _WIN32
tty = fopen("con", "w");
#else
tty = fopen("/dev/tty", "w");
#endif
if (!tty)
return;
va_start(ap, fmt);
vfprintf(tty, fmt, ap);
va_end(ap);
fclose(tty);
errno = save;
}
static int
redirect_dup(int oldfd)
{
int ret;
ret = dup(oldfd);
ttyprintf("dup(%d) => %d\n", oldfd, ret);
return ret;
}
static int
redirect_dup2(int oldfd, int newfd)
{
int ret;
ret = dup2(oldfd, newfd);
ttyprintf("dup2(%d, %d) => %d\n", oldfd, newfd, ret);
return ret;
}
static int
redirect_cloexec_dup(int oldfd)
{
int ret;
ret = rb_cloexec_dup(oldfd);
ttyprintf("cloexec_dup(%d) => %d\n", oldfd, ret);
return ret;
}
static int
redirect_cloexec_dup2(int oldfd, int newfd)
{
int ret;
ret = rb_cloexec_dup2(oldfd, newfd);
ttyprintf("cloexec_dup2(%d, %d) => %d\n", oldfd, newfd, ret);
return ret;
}
static int
redirect_close(int fd)
{
int ret;
ret = close_unless_reserved(fd);
ttyprintf("close(%d) => %d\n", fd, ret);
return ret;
}
static int
parent_redirect_open(const char *pathname, int flags, mode_t perm)
{
int ret;
ret = rb_cloexec_open(pathname, flags, perm);
ttyprintf("parent_open(\"%s\", 0x%x, 0%o) => %d\n", pathname, flags, perm, ret);
return ret;
}
static int
parent_redirect_close(int fd)
{
int ret;
ret = close_unless_reserved(fd);
ttyprintf("parent_close(%d) => %d\n", fd, ret);
return ret;
}
#else
#define redirect_dup(oldfd) dup(oldfd)
#define redirect_dup2(oldfd, newfd) dup2((oldfd), (newfd))
#define redirect_cloexec_dup(oldfd) rb_cloexec_dup(oldfd)
#define redirect_cloexec_dup2(oldfd, newfd) rb_cloexec_dup2((oldfd), (newfd))
#define redirect_close(fd) close_unless_reserved(fd)
#define parent_redirect_open(pathname, flags, perm) rb_cloexec_open((pathname), (flags), (perm))
#define parent_redirect_close(fd) close_unless_reserved(fd)
#endif
static VALUE
get_pid(void)
{
if (UNLIKELY(!cached_pid)) { /* 0 is not a valid pid */
cached_pid = getpid();
}
/* pid should be likely POSFIXABLE() */
return PIDT2NUM(cached_pid);
}
#if defined HAVE_WORKING_FORK || defined HAVE_DAEMON
static void
clear_pid_cache(void)
{
cached_pid = 0;
}
#endif
/*
* call-seq:
* Process.pid -> integer
*
* Returns the process ID of the current process:
*
* Process.pid # => 15668
*
*/
static VALUE
proc_get_pid(VALUE _)
{
return get_pid();
}
static VALUE
get_ppid(void)
{
return PIDT2NUM(getppid());
}
/*
* call-seq:
* Process.ppid -> integer
*
* Returns the process ID of the parent of the current process:
*
* puts "Pid is #{Process.pid}."
* fork { puts "Parent pid is #{Process.ppid}." }
*
* Output:
*
* Pid is 271290.
* Parent pid is 271290.
*
* May not return a trustworthy value on certain platforms.
*/
static VALUE
proc_get_ppid(VALUE _)
{
return get_ppid();
}
/*********************************************************************
*
* Document-class: Process::Status
*
* A Process::Status contains information about a system process.
*
* Thread-local variable <tt>$?</tt> is initially +nil+.
* Some methods assign to it a Process::Status object
* that represents a system process (either running or terminated):
*
* `ruby -e "exit 99"`
* stat = $? # => #<Process::Status: pid 1262862 exit 99>
* stat.class # => Process::Status
* stat.to_i # => 25344
* stat >> 8 # => 99
* stat.stopped? # => false
* stat.exited? # => true
* stat.exitstatus # => 99
*
*/
static VALUE rb_cProcessStatus;
struct rb_process_status {
rb_pid_t pid;
int status;
int error;
};
static const rb_data_type_t rb_process_status_type = {
.wrap_struct_name = "Process::Status",
.function = {
.dfree = RUBY_DEFAULT_FREE,
},
.data = NULL,
.flags = RUBY_TYPED_FREE_IMMEDIATELY,
};
static VALUE
rb_process_status_allocate(VALUE klass)
{
struct rb_process_status *data = NULL;
return TypedData_Make_Struct(klass, struct rb_process_status, &rb_process_status_type, data);
}
VALUE
rb_last_status_get(void)
{
return GET_THREAD()->last_status;
}
/*
* call-seq:
* Process.last_status -> Process::Status or nil
*
* Returns a Process::Status object representing the most recently exited
* child process in the current thread, or +nil+ if none:
*
* Process.spawn('ruby', '-e', 'exit 13')
* Process.wait
* Process.last_status # => #<Process::Status: pid 14396 exit 13>
*
* Process.spawn('ruby', '-e', 'exit 14')
* Process.wait
* Process.last_status # => #<Process::Status: pid 4692 exit 14>
*
* Process.spawn('ruby', '-e', 'exit 15')
* # 'exit 15' has not been reaped by #wait.
* Process.last_status # => #<Process::Status: pid 4692 exit 14>
* Process.wait
* Process.last_status # => #<Process::Status: pid 1380 exit 15>
*
*/
static VALUE
proc_s_last_status(VALUE mod)
{
return rb_last_status_get();
}
VALUE
rb_process_status_new(rb_pid_t pid, int status, int error)
{
VALUE last_status = rb_process_status_allocate(rb_cProcessStatus);
struct rb_process_status *data = RTYPEDDATA_DATA(last_status);
data->pid = pid;
data->status = status;
data->error = error;
rb_obj_freeze(last_status);
return last_status;
}
static VALUE
process_status_dump(VALUE status)
{
VALUE dump = rb_class_new_instance(0, 0, rb_cObject);
struct rb_process_status *data = RTYPEDDATA_DATA(status);
if (data->pid) {
rb_ivar_set(dump, id_status, INT2NUM(data->status));
rb_ivar_set(dump, id_pid, PIDT2NUM(data->pid));
}
return dump;
}
static VALUE
process_status_load(VALUE real_obj, VALUE load_obj)
{
struct rb_process_status *data = rb_check_typeddata(real_obj, &rb_process_status_type);
VALUE status = rb_attr_get(load_obj, id_status);
VALUE pid = rb_attr_get(load_obj, id_pid);
data->pid = NIL_P(pid) ? 0 : NUM2PIDT(pid);
data->status = NIL_P(status) ? 0 : NUM2INT(status);
return real_obj;
}
void
rb_last_status_set(int status, rb_pid_t pid)
{
GET_THREAD()->last_status = rb_process_status_new(pid, status, 0);
}
void
rb_last_status_clear(void)
{
GET_THREAD()->last_status = Qnil;
}
static rb_pid_t
pst_pid(VALUE pst)
{
struct rb_process_status *data = RTYPEDDATA_DATA(pst);
return data->pid;
}
static int
pst_status(VALUE pst)
{
struct rb_process_status *data = RTYPEDDATA_DATA(pst);
return data->status;
}
/*
* call-seq:
* to_i -> integer
*
* Returns the system-dependent integer status of +self+:
*
* `cat /nop`
* $?.to_i # => 256
*/
static VALUE
pst_to_i(VALUE self)
{
int status = pst_status(self);
return RB_INT2NUM(status);
}
#define PST2INT(st) pst_status(st)
/*
* call-seq:
* pid -> integer
*
* Returns the process ID of the process:
*
* system("false")
* $?.pid # => 1247002
*
*/
static VALUE
pst_pid_m(VALUE self)
{
rb_pid_t pid = pst_pid(self);
return PIDT2NUM(pid);
}
static VALUE pst_message_status(VALUE str, int status);
static void
pst_message(VALUE str, rb_pid_t pid, int status)
{
rb_str_catf(str, "pid %ld", (long)pid);
pst_message_status(str, status);
}
static VALUE
pst_message_status(VALUE str, int status)
{
if (WIFSTOPPED(status)) {
int stopsig = WSTOPSIG(status);
const char *signame = ruby_signal_name(stopsig);
if (signame) {
rb_str_catf(str, " stopped SIG%s (signal %d)", signame, stopsig);
}
else {
rb_str_catf(str, " stopped signal %d", stopsig);
}
}
if (WIFSIGNALED(status)) {
int termsig = WTERMSIG(status);
const char *signame = ruby_signal_name(termsig);
if (signame) {
rb_str_catf(str, " SIG%s (signal %d)", signame, termsig);
}
else {
rb_str_catf(str, " signal %d", termsig);
}
}
if (WIFEXITED(status)) {
rb_str_catf(str, " exit %d", WEXITSTATUS(status));
}
#ifdef WCOREDUMP
if (WCOREDUMP(status)) {
rb_str_cat2(str, " (core dumped)");
}
#endif
return str;
}
/*
* call-seq:
* to_s -> string
*
* Returns a string representation of +self+:
*
* `cat /nop`
* $?.to_s # => "pid 1262141 exit 1"
*
*
*/
static VALUE
pst_to_s(VALUE st)
{
rb_pid_t pid;
int status;
VALUE str;
pid = pst_pid(st);
status = PST2INT(st);
str = rb_str_buf_new(0);
pst_message(str, pid, status);
return str;
}
/*
* call-seq:
* inspect -> string
*
* Returns a string representation of +self+:
*
* system("false")
* $?.inspect # => "#<Process::Status: pid 1303494 exit 1>"
*
*/
static VALUE
pst_inspect(VALUE st)
{
rb_pid_t pid;
int status;
VALUE str;
pid = pst_pid(st);
if (!pid) {
return rb_sprintf("#<%s: uninitialized>", rb_class2name(CLASS_OF(st)));
}
status = PST2INT(st);
str = rb_sprintf("#<%s: ", rb_class2name(CLASS_OF(st)));
pst_message(str, pid, status);
rb_str_cat2(str, ">");
return str;
}
/*
* call-seq:
* stat == other -> true or false
*
* Returns whether the value of #to_i == +other+:
*
* `cat /nop`
* stat = $? # => #<Process::Status: pid 1170366 exit 1>
* sprintf('%x', stat.to_i) # => "100"
* stat == 0x100 # => true
*
*/
static VALUE
pst_equal(VALUE st1, VALUE st2)
{
if (st1 == st2) return Qtrue;
return rb_equal(pst_to_i(st1), st2);
}
/*
* call-seq:
* stat & mask -> integer
*
* This method is deprecated; use other attribute methods.
*
* Returns the logical AND of the value of #to_i with +mask+:
*
* `cat /nop`
* stat = $? # => #<Process::Status: pid 1155508 exit 1>
* sprintf('%x', stat.to_i) # => "100"
* stat & 0x00 # => 0
*
* ArgumentError is raised if +mask+ is negative.
*/
static VALUE
pst_bitand(VALUE st1, VALUE st2)
{
int status = PST2INT(st1);
int mask = NUM2INT(st2);
if (mask < 0) {
rb_raise(rb_eArgError, "negative mask value: %d", mask);
}
#define WARN_SUGGEST(suggest) \
rb_warn_deprecated_to_remove_at(3.4, "Process::Status#&", suggest)
switch (mask) {
case 0x80:
WARN_SUGGEST("Process::Status#coredump?");
break;
case 0x7f:
WARN_SUGGEST("Process::Status#signaled? or Process::Status#termsig");
break;
case 0xff:
WARN_SUGGEST("Process::Status#exited?, Process::Status#stopped? or Process::Status#coredump?");
break;
case 0xff00:
WARN_SUGGEST("Process::Status#exitstatus or Process::Status#stopsig");
break;
default:
WARN_SUGGEST("other Process::Status predicates");
break;
}
#undef WARN_SUGGEST
status &= mask;
return INT2NUM(status);
}
/*
* call-seq:
* stat >> places -> integer
*
* This method is deprecated; use other predicate methods.
*
* Returns the value of #to_i, shifted +places+ to the right:
*
* `cat /nop`
* stat = $? # => #<Process::Status: pid 1155508 exit 1>
* stat.to_i # => 256
* stat >> 1 # => 128
* stat >> 2 # => 64
*
* ArgumentError is raised if +places+ is negative.
*/
static VALUE
pst_rshift(VALUE st1, VALUE st2)
{
int status = PST2INT(st1);
int places = NUM2INT(st2);
if (places < 0) {
rb_raise(rb_eArgError, "negative shift value: %d", places);
}
#define WARN_SUGGEST(suggest) \
rb_warn_deprecated_to_remove_at(3.4, "Process::Status#>>", suggest)
switch (places) {
case 7:
WARN_SUGGEST("Process::Status#coredump?");
break;
case 8:
WARN_SUGGEST("Process::Status#exitstatus or Process::Status#stopsig");
break;
default:
WARN_SUGGEST("other Process::Status attributes");
break;
}
#undef WARN_SUGGEST
status >>= places;
return INT2NUM(status);
}
/*
* call-seq:
* stopped? -> true or false
*
* Returns +true+ if this process is stopped,
* and if the corresponding #wait call had the Process::WUNTRACED flag set,
* +false+ otherwise.
*/
static VALUE
pst_wifstopped(VALUE st)
{
int status = PST2INT(st);
return RBOOL(WIFSTOPPED(status));
}
/*
* call-seq:
* stopsig -> integer or nil
*
* Returns the number of the signal that caused the process to stop,
* or +nil+ if the process is not stopped.
*/
static VALUE
pst_wstopsig(VALUE st)
{
int status = PST2INT(st);
if (WIFSTOPPED(status))
return INT2NUM(WSTOPSIG(status));
return Qnil;
}
/*
* call-seq:
* signaled? -> true or false
*
* Returns +true+ if the process terminated because of an uncaught signal,
* +false+ otherwise.
*/
static VALUE
pst_wifsignaled(VALUE st)
{
int status = PST2INT(st);
return RBOOL(WIFSIGNALED(status));
}
/*
* call-seq:
* termsig -> integer or nil
*
* Returns the number of the signal that caused the process to terminate
* or +nil+ if the process was not terminated by an uncaught signal.
*/
static VALUE
pst_wtermsig(VALUE st)
{
int status = PST2INT(st);
if (WIFSIGNALED(status))
return INT2NUM(WTERMSIG(status));
return Qnil;
}
/*
* call-seq:
* exited? -> true or false
*
* Returns +true+ if the process exited normally
* (for example using an <code>exit()</code> call or finishing the
* program), +false+ if not.
*/
static VALUE
pst_wifexited(VALUE st)
{
int status = PST2INT(st);
return RBOOL(WIFEXITED(status));
}
/*
* call-seq:
* exitstatus -> integer or nil
*
* Returns the least significant eight bits of the return code
* of the process if it has exited;
* +nil+ otherwise:
*
* `exit 99`
* $?.exitstatus # => 99
*
*/
static VALUE
pst_wexitstatus(VALUE st)
{
int status = PST2INT(st);
if (WIFEXITED(status))
return INT2NUM(WEXITSTATUS(status));
return Qnil;
}
/*
* call-seq:
* success? -> true, false, or nil
*
* Returns:
*
* - +true+ if the process has completed successfully and exited.
* - +false+ if the process has completed unsuccessfully and exited.
* - +nil+ if the process has not exited.
*
*/
static VALUE
pst_success_p(VALUE st)
{
int status = PST2INT(st);
if (!WIFEXITED(status))
return Qnil;
return RBOOL(WEXITSTATUS(status) == EXIT_SUCCESS);
}
/*
* call-seq:
* coredump? -> true or false
*
* Returns +true+ if the process generated a coredump
* when it terminated, +false+ if not.
*
* Not available on all platforms.
*/
static VALUE
pst_wcoredump(VALUE st)
{
#ifdef WCOREDUMP
int status = PST2INT(st);
return RBOOL(WCOREDUMP(status));
#else
return Qfalse;
#endif
}
static rb_pid_t
do_waitpid(rb_pid_t pid, int *st, int flags)
{
#if defined HAVE_WAITPID
return waitpid(pid, st, flags);
#elif defined HAVE_WAIT4
return wait4(pid, st, flags, NULL);
#else
# error waitpid or wait4 is required.
#endif
}
struct waitpid_state {
struct ccan_list_node wnode;
rb_execution_context_t *ec;
rb_nativethread_cond_t *cond;
rb_pid_t ret;
rb_pid_t pid;
int status;
int options;
int errnum;
};
static void
waitpid_state_init(struct waitpid_state *w, rb_pid_t pid, int options)
{
w->ret = 0;
w->pid = pid;
w->options = options;
w->errnum = 0;
w->status = 0;
}
static void *
waitpid_blocking_no_SIGCHLD(void *x)
{
struct waitpid_state *w = x;
w->ret = do_waitpid(w->pid, &w->status, w->options);
return 0;
}
static void
waitpid_no_SIGCHLD(struct waitpid_state *w)
{
if (w->options & WNOHANG) {
w->ret = do_waitpid(w->pid, &w->status, w->options);
}
else {
do {
rb_thread_call_without_gvl(waitpid_blocking_no_SIGCHLD, w, RUBY_UBF_PROCESS, 0);
} while (w->ret < 0 && errno == EINTR && (RUBY_VM_CHECK_INTS(w->ec),1));
}
if (w->ret == -1)
w->errnum = errno;
}
VALUE
rb_process_status_wait(rb_pid_t pid, int flags)
{
// We only enter the scheduler if we are "blocking":
if (!(flags & WNOHANG)) {
VALUE scheduler = rb_fiber_scheduler_current();
VALUE result = rb_fiber_scheduler_process_wait(scheduler, pid, flags);
if (!UNDEF_P(result)) return result;
}
struct waitpid_state waitpid_state;
waitpid_state_init(&waitpid_state, pid, flags);
waitpid_state.ec = GET_EC();
waitpid_no_SIGCHLD(&waitpid_state);
if (waitpid_state.ret == 0) return Qnil;
return rb_process_status_new(waitpid_state.ret, waitpid_state.status, waitpid_state.errnum);
}
/*
* call-seq:
* Process::Status.wait(pid = -1, flags = 0) -> Process::Status
*
* Like Process.wait, but returns a Process::Status object
* (instead of an integer pid or nil);
* see Process.wait for the values of +pid+ and +flags+.
*
* If there are child processes,
* waits for a child process to exit and returns a Process::Status object
* containing information on that process;
* sets thread-local variable <tt>$?</tt>:
*
* Process.spawn('cat /nop') # => 1155880
* Process::Status.wait # => #<Process::Status: pid 1155880 exit 1>
* $? # => #<Process::Status: pid 1155508 exit 1>
*
* If there is no child process,
* returns an "empty" Process::Status object
* that does not represent an actual process;
* does not set thread-local variable <tt>$?</tt>:
*
* Process::Status.wait # => #<Process::Status: pid -1 exit 0>
* $? # => #<Process::Status: pid 1155508 exit 1> # Unchanged.
*
* May invoke the scheduler hook Fiber::Scheduler#process_wait.
*
* Not available on all platforms.
*/
static VALUE
rb_process_status_waitv(int argc, VALUE *argv, VALUE _)
{
rb_check_arity(argc, 0, 2);
rb_pid_t pid = -1;
int flags = 0;
if (argc >= 1) {
pid = NUM2PIDT(argv[0]);
}
if (argc >= 2) {
flags = RB_NUM2INT(argv[1]);
}
return rb_process_status_wait(pid, flags);
}
rb_pid_t
rb_waitpid(rb_pid_t pid, int *st, int flags)
{
VALUE status = rb_process_status_wait(pid, flags);
if (NIL_P(status)) return 0;
struct rb_process_status *data = rb_check_typeddata(status, &rb_process_status_type);
pid = data->pid;
if (st) *st = data->status;
if (pid == -1) {
errno = data->error;
}
else {
GET_THREAD()->last_status = status;
}
return pid;
}
static VALUE
proc_wait(int argc, VALUE *argv)
{
rb_pid_t pid;
int flags, status;
flags = 0;
if (rb_check_arity(argc, 0, 2) == 0) {
pid = -1;
}
else {
VALUE vflags;
pid = NUM2PIDT(argv[0]);
if (argc == 2 && !NIL_P(vflags = argv[1])) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
/* [MG]:FIXME: I wasn't sure how this should be done, since ::wait()
has historically been documented as if it didn't take any arguments
despite the fact that it's just an alias for ::waitpid(). The way I
have it below is more truthful, but a little confusing.
I also took the liberty of putting in the pid values, as they're
pretty useful, and it looked as if the original 'ri' output was
supposed to contain them after "[...]depending on the value of
aPid:".
The 'ansi' and 'bs' formats of the ri output don't display the
definition list for some reason, but the plain text one does.
*/
/*
* call-seq:
* Process.wait(pid = -1, flags = 0) -> integer
*
* Waits for a suitable child process to exit, returns its process ID,
* and sets <tt>$?</tt> to a Process::Status object
* containing information on that process.
* Which child it waits for depends on the value of the given +pid+:
*
* - Positive integer: Waits for the child process whose process ID is +pid+:
*
* pid0 = Process.spawn('ruby', '-e', 'exit 13') # => 230866
* pid1 = Process.spawn('ruby', '-e', 'exit 14') # => 230891
* Process.wait(pid0) # => 230866
* $? # => #<Process::Status: pid 230866 exit 13>
* Process.wait(pid1) # => 230891
* $? # => #<Process::Status: pid 230891 exit 14>
* Process.wait(pid0) # Raises Errno::ECHILD
*
* - <tt>0</tt>: Waits for any child process whose group ID
* is the same as that of the current process:
*
* parent_pgpid = Process.getpgid(Process.pid)
* puts "Parent process group ID is #{parent_pgpid}."
* child0_pid = fork do
* puts "Child 0 pid is #{Process.pid}"
* child0_pgid = Process.getpgid(Process.pid)
* puts "Child 0 process group ID is #{child0_pgid} (same as parent's)."
* end
* child1_pid = fork do
* puts "Child 1 pid is #{Process.pid}"
* Process.setpgid(0, Process.pid)
* child1_pgid = Process.getpgid(Process.pid)
* puts "Child 1 process group ID is #{child1_pgid} (different from parent's)."
* end
* retrieved_pid = Process.wait(0)
* puts "Process.wait(0) returned pid #{retrieved_pid}, which is child 0 pid."
* begin
* Process.wait(0)
* rescue Errno::ECHILD => x
* puts "Raised #{x.class}, because child 1 process group ID differs from parent process group ID."
* end
*
* Output:
*
* Parent process group ID is 225764.
* Child 0 pid is 225788
* Child 0 process group ID is 225764 (same as parent's).
* Child 1 pid is 225789
* Child 1 process group ID is 225789 (different from parent's).
* Process.wait(0) returned pid 225788, which is child 0 pid.
* Raised Errno::ECHILD, because child 1 process group ID differs from parent process group ID.
*
* - <tt>-1</tt> (default): Waits for any child process:
*
* parent_pgpid = Process.getpgid(Process.pid)
* puts "Parent process group ID is #{parent_pgpid}."
* child0_pid = fork do
* puts "Child 0 pid is #{Process.pid}"
* child0_pgid = Process.getpgid(Process.pid)
* puts "Child 0 process group ID is #{child0_pgid} (same as parent's)."
* end
* child1_pid = fork do
* puts "Child 1 pid is #{Process.pid}"
* Process.setpgid(0, Process.pid)
* child1_pgid = Process.getpgid(Process.pid)
* puts "Child 1 process group ID is #{child1_pgid} (different from parent's)."
* sleep 3 # To force child 1 to exit later than child 0 exit.
* end
* child_pids = [child0_pid, child1_pid]
* retrieved_pid = Process.wait(-1)
* puts child_pids.include?(retrieved_pid)
* retrieved_pid = Process.wait(-1)
* puts child_pids.include?(retrieved_pid)
*
* Output:
*
* Parent process group ID is 228736.
* Child 0 pid is 228758
* Child 0 process group ID is 228736 (same as parent's).
* Child 1 pid is 228759
* Child 1 process group ID is 228759 (different from parent's).
* true
* true
*
* - Less than <tt>-1</tt>: Waits for any child whose process group ID is <tt>-pid</tt>:
*
* parent_pgpid = Process.getpgid(Process.pid)
* puts "Parent process group ID is #{parent_pgpid}."
* child0_pid = fork do
* puts "Child 0 pid is #{Process.pid}"
* child0_pgid = Process.getpgid(Process.pid)
* puts "Child 0 process group ID is #{child0_pgid} (same as parent's)."
* end
* child1_pid = fork do
* puts "Child 1 pid is #{Process.pid}"
* Process.setpgid(0, Process.pid)
* child1_pgid = Process.getpgid(Process.pid)
* puts "Child 1 process group ID is #{child1_pgid} (different from parent's)."
* end
* sleep 1
* retrieved_pid = Process.wait(-child1_pid)
* puts "Process.wait(-child1_pid) returned pid #{retrieved_pid}, which is child 1 pid."
* begin
* Process.wait(-child1_pid)
* rescue Errno::ECHILD => x
* puts "Raised #{x.class}, because there's no longer a child with process group id #{child1_pid}."
* end
*
* Output:
*
* Parent process group ID is 230083.
* Child 0 pid is 230108
* Child 0 process group ID is 230083 (same as parent's).
* Child 1 pid is 230109
* Child 1 process group ID is 230109 (different from parent's).
* Process.wait(-child1_pid) returned pid 230109, which is child 1 pid.
* Raised Errno::ECHILD, because there's no longer a child with process group id 230109.
*
* Argument +flags+ should be given as one of the following constants,
* or as the logical OR of both:
*
* - Process::WNOHANG: Does not block if no child process is available.
* - Process:WUNTRACED: May return a stopped child process, even if not yet reported.
*
* Not all flags are available on all platforms.
*
* Raises Errno::ECHILD if there is no suitable child process.
*
* Not available on all platforms.
*
* Process.waitpid is an alias for Process.wait.
*/
static VALUE
proc_m_wait(int c, VALUE *v, VALUE _)
{
return proc_wait(c, v);
}
/*
* call-seq:
* Process.wait2(pid = -1, flags = 0) -> [pid, status]
*
* Like Process.waitpid, but returns an array
* containing the child process +pid+ and Process::Status +status+:
*
* pid = Process.spawn('ruby', '-e', 'exit 13') # => 309581
* Process.wait2(pid)
* # => [309581, #<Process::Status: pid 309581 exit 13>]
*
* Process.waitpid2 is an alias for Process.waitpid.
*/
static VALUE
proc_wait2(int argc, VALUE *argv, VALUE _)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
/*
* call-seq:
* Process.waitall -> array
*
* Waits for all children, returns an array of 2-element arrays;
* each subarray contains the integer pid and Process::Status status
* for one of the reaped child processes:
*
* pid0 = Process.spawn('ruby', '-e', 'exit 13') # => 325470
* pid1 = Process.spawn('ruby', '-e', 'exit 14') # => 325495
* Process.waitall
* # => [[325470, #<Process::Status: pid 325470 exit 13>], [325495, #<Process::Status: pid 325495 exit 14>]]
*
*/
static VALUE
proc_waitall(VALUE _)
{
VALUE result;
rb_pid_t pid;
int status;
result = rb_ary_new();
rb_last_status_clear();
for (pid = -1;;) {
pid = rb_waitpid(-1, &status, 0);
if (pid == -1) {
int e = errno;
if (e == ECHILD)
break;
rb_syserr_fail(e, 0);
}
rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
}
return result;
}
static VALUE rb_cWaiter;
static VALUE
detach_process_pid(VALUE thread)
{
return rb_thread_local_aref(thread, id_pid);
}
static VALUE
detach_process_watcher(void *arg)
{
rb_pid_t cpid, pid = (rb_pid_t)(VALUE)arg;
int status;
while ((cpid = rb_waitpid(pid, &status, 0)) == 0) {
/* wait while alive */
}
return rb_last_status_get();
}
VALUE
rb_detach_process(rb_pid_t pid)
{
VALUE watcher = rb_thread_create(detach_process_watcher, (void*)(VALUE)pid);
rb_thread_local_aset(watcher, id_pid, PIDT2NUM(pid));
RBASIC_SET_CLASS(watcher, rb_cWaiter);
return watcher;
}
/*
* call-seq:
* Process.detach(pid) -> thread
*
* Avoids the potential for a child process to become a
* {zombie process}[https://en.wikipedia.org/wiki/Zombie_process].
* Process.detach prevents this by setting up a separate Ruby thread
* whose sole job is to reap the status of the process _pid_ when it terminates.
*
* This method is needed only when the parent process will never wait
* for the child process.
*
* This example does not reap the second child process;
* that process appears as a zombie in the process status (+ps+) output:
*
* pid = Process.spawn('ruby', '-e', 'exit 13') # => 312691
* sleep(1)
* # Find zombies.
* system("ps -ho pid,state -p #{pid}")
*
* Output:
*
* 312716 Z
*
* This example also does not reap the second child process,
* but it does detach the process so that it does not become a zombie:
*
* pid = Process.spawn('ruby', '-e', 'exit 13') # => 313213
* thread = Process.detach(pid)
* sleep(1)
* # => #<Process::Waiter:0x00007f038f48b838 run>
* system("ps -ho pid,state -p #{pid}") # Finds no zombies.
*
* The waiting thread can return the pid of the detached child process:
*
* thread.join.pid # => 313262
*
*/
static VALUE
proc_detach(VALUE obj, VALUE pid)
{
return rb_detach_process(NUM2PIDT(pid));
}
/* This function should be async-signal-safe. Actually it is. */
static void
before_exec_async_signal_safe(void)
{
}
static void
before_exec_non_async_signal_safe(void)
{
/*
* On Mac OS X 10.5.x (Leopard) or earlier, exec() may return ENOTSUP
* if the process have multiple threads. Therefore we have to kill
* internal threads temporary. [ruby-core:10583]
* This is also true on Haiku. It returns Errno::EPERM against exec()
* in multiple threads.
*
* Nowadays, we always stop the timer thread completely to allow redirects.
*/
rb_thread_stop_timer_thread();
}
#define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0)
#ifdef _WIN32
int rb_w32_set_nonblock2(int fd, int nonblock);
#endif
static int
set_blocking(int fd)
{
#ifdef _WIN32
return rb_w32_set_nonblock2(fd, 0);
#elif defined(F_GETFL) && defined(F_SETFL)
int fl = fcntl(fd, F_GETFL); /* async-signal-safe */
/* EBADF ought to be possible */
if (fl == -1) return fl;
if (fl & O_NONBLOCK) {
fl &= ~O_NONBLOCK;
return fcntl(fd, F_SETFL, fl);
}
return 0;
#endif
}
static void
stdfd_clear_nonblock(void)
{
/* many programs cannot deal with non-blocking stdin/stdout/stderr */
int fd;
for (fd = 0; fd < 3; fd++) {
(void)set_blocking(fd); /* can't do much about errors anyhow */
}
}
static void
before_exec(void)
{
before_exec_non_async_signal_safe();
before_exec_async_signal_safe();
}
/* This function should be async-signal-safe. Actually it is. */
static void
after_exec_async_signal_safe(void)
{
}
static void
after_exec_non_async_signal_safe(void)
{
rb_thread_reset_timer_thread();
rb_thread_start_timer_thread();
}
static void
after_exec(void)
{
after_exec_async_signal_safe();
after_exec_non_async_signal_safe();
}
#if defined HAVE_WORKING_FORK || defined HAVE_DAEMON
static void
before_fork_ruby(void)
{
before_exec();
}
static void
after_fork_ruby(rb_pid_t pid)
{
rb_threadptr_pending_interrupt_clear(GET_THREAD());
if (pid == 0) {
clear_pid_cache();
rb_thread_atfork();
}
after_exec();
}
#endif
#if defined(HAVE_WORKING_FORK)
COMPILER_WARNING_PUSH
#if __has_warning("-Wdeprecated-declarations") || RBIMPL_COMPILER_IS(GCC)
COMPILER_WARNING_IGNORED(-Wdeprecated-declarations)
#endif
static inline rb_pid_t
rb_fork(void)
{
return fork();
}
COMPILER_WARNING_POP
/* try_with_sh and exec_with_sh should be async-signal-safe. Actually it is.*/
#define try_with_sh(err, prog, argv, envp) ((err == ENOEXEC) ? exec_with_sh((prog), (argv), (envp)) : (void)0)
static void
exec_with_sh(const char *prog, char **argv, char **envp)
{
*argv = (char *)prog;
*--argv = (char *)"sh";
if (envp)
execve("/bin/sh", argv, envp); /* async-signal-safe */
else
execv("/bin/sh", argv); /* async-signal-safe (since SUSv4) */
}
#else
#define try_with_sh(err, prog, argv, envp) (void)0
#endif
/* This function should be async-signal-safe. Actually it is. */
static int
proc_exec_cmd(const char *prog, VALUE argv_str, VALUE envp_str)
{
char **argv;
#ifndef _WIN32
char **envp;
int err;
#endif
argv = ARGVSTR2ARGV(argv_str);
if (!prog) {
return ENOENT;
}
#ifdef _WIN32
rb_w32_uaspawn(P_OVERLAY, prog, argv);
return errno;
#else
envp = envp_str ? RB_IMEMO_TMPBUF_PTR(envp_str) : NULL;
if (envp_str)
execve(prog, argv, envp); /* async-signal-safe */
else
execv(prog, argv); /* async-signal-safe (since SUSv4) */
err = errno;
try_with_sh(err, prog, argv, envp); /* try_with_sh() is async-signal-safe. */
return err;
#endif
}
/* This function should be async-signal-safe. Actually it is. */
static int
proc_exec_sh(const char *str, VALUE envp_str)
{
const char *s;
s = str;
while (*s == ' ' || *s == '\t' || *s == '\n')
s++;
if (!*s) {
return ENOENT;
}
#ifdef _WIN32
rb_w32_uspawn(P_OVERLAY, (char *)str, 0);
#elif defined(__CYGWIN32__)
{
char fbuf[MAXPATHLEN];
char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf));
int status = -1;
if (shell)
execl(shell, "sh", "-c", str, (char *) NULL);
else
status = system(str);
if (status != -1)
exit(status);
}
#else
if (envp_str)
execle("/bin/sh", "sh", "-c", str, (char *)NULL, RB_IMEMO_TMPBUF_PTR(envp_str)); /* async-signal-safe */
else
execl("/bin/sh", "sh", "-c", str, (char *)NULL); /* async-signal-safe (since SUSv4) */
#endif /* _WIN32 */
return errno;
}
int
rb_proc_exec(const char *str)
{
int ret;
before_exec();
ret = proc_exec_sh(str, Qfalse);
after_exec();
errno = ret;
return -1;
}
static void
mark_exec_arg(void *ptr)
{
struct rb_execarg *eargp = ptr;
if (eargp->use_shell)
rb_gc_mark(eargp->invoke.sh.shell_script);
else {
rb_gc_mark(eargp->invoke.cmd.command_name);
rb_gc_mark(eargp->invoke.cmd.command_abspath);
rb_gc_mark(eargp->invoke.cmd.argv_str);
rb_gc_mark(eargp->invoke.cmd.argv_buf);
}
rb_gc_mark(eargp->redirect_fds);
rb_gc_mark(eargp->envp_str);
rb_gc_mark(eargp->envp_buf);
rb_gc_mark(eargp->dup2_tmpbuf);
rb_gc_mark(eargp->rlimit_limits);
rb_gc_mark(eargp->fd_dup2);
rb_gc_mark(eargp->fd_close);
rb_gc_mark(eargp->fd_open);
rb_gc_mark(eargp->fd_dup2_child);
rb_gc_mark(eargp->env_modification);
rb_gc_mark(eargp->path_env);
rb_gc_mark(eargp->chdir_dir);
}
static size_t
memsize_exec_arg(const void *ptr)
{
return sizeof(struct rb_execarg);
}
static const rb_data_type_t exec_arg_data_type = {
"exec_arg",
{mark_exec_arg, RUBY_TYPED_DEFAULT_FREE, memsize_exec_arg},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
#ifdef _WIN32
# define DEFAULT_PROCESS_ENCODING rb_utf8_encoding()
#endif
#ifdef DEFAULT_PROCESS_ENCODING
# define EXPORT_STR(str) rb_str_export_to_enc((str), DEFAULT_PROCESS_ENCODING)
# define EXPORT_DUP(str) export_dup(str)
static VALUE
export_dup(VALUE str)
{
VALUE newstr = EXPORT_STR(str);
if (newstr == str) newstr = rb_str_dup(str);
return newstr;
}
#else
# define EXPORT_STR(str) (str)
# define EXPORT_DUP(str) rb_str_dup(str)
#endif
#if !defined(HAVE_WORKING_FORK) && defined(HAVE_SPAWNV)
# define USE_SPAWNV 1
#else
# define USE_SPAWNV 0
#endif
#ifndef P_NOWAIT
# define P_NOWAIT _P_NOWAIT
#endif
#if USE_SPAWNV
#if defined(_WIN32)
#define proc_spawn_cmd_internal(argv, prog) rb_w32_uaspawn(P_NOWAIT, (prog), (argv))
#else
static rb_pid_t
proc_spawn_cmd_internal(char **argv, char *prog)
{
char fbuf[MAXPATHLEN];
rb_pid_t status;
if (!prog)
prog = argv[0];
prog = dln_find_exe_r(prog, 0, fbuf, sizeof(fbuf));
if (!prog)
return -1;
before_exec();
status = spawnv(P_NOWAIT, prog, (const char **)argv);
if (status == -1 && errno == ENOEXEC) {
*argv = (char *)prog;
*--argv = (char *)"sh";
status = spawnv(P_NOWAIT, "/bin/sh", (const char **)argv);
after_exec();
if (status == -1) errno = ENOEXEC;
}
return status;
}
#endif
static rb_pid_t
proc_spawn_cmd(char **argv, VALUE prog, struct rb_execarg *eargp)
{
rb_pid_t pid = -1;
if (argv[0]) {
#if defined(_WIN32)
DWORD flags = 0;
if (eargp->new_pgroup_given && eargp->new_pgroup_flag) {
flags = CREATE_NEW_PROCESS_GROUP;
}
pid = rb_w32_uaspawn_flags(P_NOWAIT, prog ? RSTRING_PTR(prog) : 0, argv, flags);
#else
pid = proc_spawn_cmd_internal(argv, prog ? RSTRING_PTR(prog) : 0);
#endif
}
return pid;
}
#if defined(_WIN32)
#define proc_spawn_sh(str) rb_w32_uspawn(P_NOWAIT, (str), 0)
#else
static rb_pid_t
proc_spawn_sh(char *str)
{
char fbuf[MAXPATHLEN];
rb_pid_t status;
char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf));
before_exec();
status = spawnl(P_NOWAIT, (shell ? shell : "/bin/sh"), "sh", "-c", str, (char*)NULL);
after_exec();
return status;
}
#endif
#endif
static VALUE
hide_obj(VALUE obj)
{
RBASIC_CLEAR_CLASS(obj);
return obj;
}
static VALUE
check_exec_redirect_fd(VALUE v, int iskey)
{
VALUE tmp;
int fd;
if (FIXNUM_P(v)) {
fd = FIX2INT(v);
}
else if (SYMBOL_P(v)) {
ID id = rb_check_id(&v);
if (id == id_in)
fd = 0;
else if (id == id_out)
fd = 1;
else if (id == id_err)
fd = 2;
else
goto wrong;
}
else if (!NIL_P(tmp = rb_io_check_io(v))) {
rb_io_t *fptr;
GetOpenFile(tmp, fptr);
if (fptr->tied_io_for_writing)
rb_raise(rb_eArgError, "duplex IO redirection");
fd = fptr->fd;
}
else {
goto wrong;
}
if (fd < 0) {
rb_raise(rb_eArgError, "negative file descriptor");
}
#ifdef _WIN32
else if (fd >= 3 && iskey) {
rb_raise(rb_eArgError, "wrong file descriptor (%d)", fd);
}
#endif
return INT2FIX(fd);
wrong:
rb_raise(rb_eArgError, "wrong exec redirect");
UNREACHABLE_RETURN(Qundef);
}
static VALUE
check_exec_redirect1(VALUE ary, VALUE key, VALUE param)
{
if (ary == Qfalse) {
ary = hide_obj(rb_ary_new());
}
if (!RB_TYPE_P(key, T_ARRAY)) {
VALUE fd = check_exec_redirect_fd(key, !NIL_P(param));
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param)));
}
else {
int i;
for (i = 0 ; i < RARRAY_LEN(key); i++) {
VALUE v = RARRAY_AREF(key, i);
VALUE fd = check_exec_redirect_fd(v, !NIL_P(param));
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param)));
}
}
return ary;
}
static void
check_exec_redirect(VALUE key, VALUE val, struct rb_execarg *eargp)
{
VALUE param;
VALUE path, flags, perm;
VALUE tmp;
ID id;
switch (TYPE(val)) {
case T_SYMBOL:
id = rb_check_id(&val);
if (id == id_close) {
param = Qnil;
eargp->fd_close = check_exec_redirect1(eargp->fd_close, key, param);
}
else if (id == id_in) {
param = INT2FIX(0);
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param);
}
else if (id == id_out) {
param = INT2FIX(1);
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param);
}
else if (id == id_err) {
param = INT2FIX(2);
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param);
}
else {
rb_raise(rb_eArgError, "wrong exec redirect symbol: %"PRIsVALUE,
val);
}
break;
case T_FILE:
io:
val = check_exec_redirect_fd(val, 0);
/* fall through */
case T_FIXNUM:
param = val;
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param);
break;
case T_ARRAY:
path = rb_ary_entry(val, 0);
if (RARRAY_LEN(val) == 2 && SYMBOL_P(path) &&
path == ID2SYM(id_child)) {
param = check_exec_redirect_fd(rb_ary_entry(val, 1), 0);
eargp->fd_dup2_child = check_exec_redirect1(eargp->fd_dup2_child, key, param);
}
else {
FilePathValue(path);
flags = rb_ary_entry(val, 1);
if (NIL_P(flags))
flags = INT2NUM(O_RDONLY);
else if (RB_TYPE_P(flags, T_STRING))
flags = INT2NUM(rb_io_modestr_oflags(StringValueCStr(flags)));
else
flags = rb_to_int(flags);
perm = rb_ary_entry(val, 2);
perm = NIL_P(perm) ? INT2FIX(0644) : rb_to_int(perm);
param = hide_obj(rb_ary_new3(4, hide_obj(EXPORT_DUP(path)),
flags, perm, Qnil));
eargp->fd_open = check_exec_redirect1(eargp->fd_open, key, param);
}
break;
case T_STRING:
path = val;
FilePathValue(path);
if (RB_TYPE_P(key, T_FILE))
key = check_exec_redirect_fd(key, 1);
if (FIXNUM_P(key) && (FIX2INT(key) == 1 || FIX2INT(key) == 2))
flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC);
else if (RB_TYPE_P(key, T_ARRAY)) {
int i;
for (i = 0; i < RARRAY_LEN(key); i++) {
VALUE v = RARRAY_AREF(key, i);
VALUE fd = check_exec_redirect_fd(v, 1);
if (FIX2INT(fd) != 1 && FIX2INT(fd) != 2) break;
}
if (i == RARRAY_LEN(key))
flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC);
else
flags = INT2NUM(O_RDONLY);
}
else
flags = INT2NUM(O_RDONLY);
perm = INT2FIX(0644);
param = hide_obj(rb_ary_new3(4, hide_obj(EXPORT_DUP(path)),
flags, perm, Qnil));
eargp->fd_open = check_exec_redirect1(eargp->fd_open, key, param);
break;
default:
tmp = val;
val = rb_io_check_io(tmp);
if (!NIL_P(val)) goto io;
rb_raise(rb_eArgError, "wrong exec redirect action");
}
}
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
static int rlimit_type_by_sym(VALUE key);
static void
rb_execarg_addopt_rlimit(struct rb_execarg *eargp, int rtype, VALUE val)
{
VALUE ary = eargp->rlimit_limits;
VALUE tmp, softlim, hardlim;
if (eargp->rlimit_limits == Qfalse)
ary = eargp->rlimit_limits = hide_obj(rb_ary_new());
else
ary = eargp->rlimit_limits;
tmp = rb_check_array_type(val);
if (!NIL_P(tmp)) {
if (RARRAY_LEN(tmp) == 1)
softlim = hardlim = rb_to_int(rb_ary_entry(tmp, 0));
else if (RARRAY_LEN(tmp) == 2) {
softlim = rb_to_int(rb_ary_entry(tmp, 0));
hardlim = rb_to_int(rb_ary_entry(tmp, 1));
}
else {
rb_raise(rb_eArgError, "wrong exec rlimit option");
}
}
else {
softlim = hardlim = rb_to_int(val);
}
tmp = hide_obj(rb_ary_new3(3, INT2NUM(rtype), softlim, hardlim));
rb_ary_push(ary, tmp);
}
#endif
#define TO_BOOL(val, name) (NIL_P(val) ? 0 : rb_bool_expected((val), name, TRUE))
int
rb_execarg_addopt(VALUE execarg_obj, VALUE key, VALUE val)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
ID id;
switch (TYPE(key)) {
case T_SYMBOL:
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
{
int rtype = rlimit_type_by_sym(key);
if (rtype != -1) {
rb_execarg_addopt_rlimit(eargp, rtype, val);
RB_GC_GUARD(execarg_obj);
return ST_CONTINUE;
}
}
#endif
if (!(id = rb_check_id(&key))) return ST_STOP;
#ifdef HAVE_SETPGID
if (id == id_pgroup) {
rb_pid_t pgroup;
if (eargp->pgroup_given) {
rb_raise(rb_eArgError, "pgroup option specified twice");
}
if (!RTEST(val))
pgroup = -1; /* asis(-1) means "don't call setpgid()". */
else if (val == Qtrue)
pgroup = 0; /* new process group. */
else {
pgroup = NUM2PIDT(val);
if (pgroup < 0) {
rb_raise(rb_eArgError, "negative process group ID : %ld", (long)pgroup);
}
}
eargp->pgroup_given = 1;
eargp->pgroup_pgid = pgroup;
}
else
#endif
#ifdef _WIN32
if (id == id_new_pgroup) {
if (eargp->new_pgroup_given) {
rb_raise(rb_eArgError, "new_pgroup option specified twice");
}
eargp->new_pgroup_given = 1;
eargp->new_pgroup_flag = TO_BOOL(val, "new_pgroup");
}
else
#endif
if (id == id_unsetenv_others) {
if (eargp->unsetenv_others_given) {
rb_raise(rb_eArgError, "unsetenv_others option specified twice");
}
eargp->unsetenv_others_given = 1;
eargp->unsetenv_others_do = TO_BOOL(val, "unsetenv_others");
}
else if (id == id_chdir) {
if (eargp->chdir_given) {
rb_raise(rb_eArgError, "chdir option specified twice");
}
FilePathValue(val);
val = rb_str_encode_ospath(val);
eargp->chdir_given = 1;
eargp->chdir_dir = hide_obj(EXPORT_DUP(val));
}
else if (id == id_umask) {
mode_t cmask = NUM2MODET(val);
if (eargp->umask_given) {
rb_raise(rb_eArgError, "umask option specified twice");
}
eargp->umask_given = 1;
eargp->umask_mask = cmask;
}
else if (id == id_close_others) {
if (eargp->close_others_given) {
rb_raise(rb_eArgError, "close_others option specified twice");
}
eargp->close_others_given = 1;
eargp->close_others_do = TO_BOOL(val, "close_others");
}
else if (id == id_in) {
key = INT2FIX(0);
goto redirect;
}
else if (id == id_out) {
key = INT2FIX(1);
goto redirect;
}
else if (id == id_err) {
key = INT2FIX(2);
goto redirect;
}
else if (id == id_uid) {
#ifdef HAVE_SETUID
if (eargp->uid_given) {
rb_raise(rb_eArgError, "uid option specified twice");
}
check_uid_switch();
{
eargp->uid = OBJ2UID(val);
eargp->uid_given = 1;
}
#else
rb_raise(rb_eNotImpError,
"uid option is unimplemented on this machine");
#endif
}
else if (id == id_gid) {
#ifdef HAVE_SETGID
if (eargp->gid_given) {
rb_raise(rb_eArgError, "gid option specified twice");
}
check_gid_switch();
{
eargp->gid = OBJ2GID(val);
eargp->gid_given = 1;
}
#else
rb_raise(rb_eNotImpError,
"gid option is unimplemented on this machine");
#endif
}
else if (id == id_exception) {
if (eargp->exception_given) {
rb_raise(rb_eArgError, "exception option specified twice");
}
eargp->exception_given = 1;
eargp->exception = TO_BOOL(val, "exception");
}
else {
return ST_STOP;
}
break;
case T_FIXNUM:
case T_FILE:
case T_ARRAY:
redirect:
check_exec_redirect(key, val, eargp);
break;
default:
return ST_STOP;
}
RB_GC_GUARD(execarg_obj);
return ST_CONTINUE;
}
static int
check_exec_options_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE execarg_obj = (VALUE)arg;
if (rb_execarg_addopt(execarg_obj, key, val) != ST_CONTINUE) {
if (SYMBOL_P(key))
rb_raise(rb_eArgError, "wrong exec option symbol: % "PRIsVALUE,
key);
rb_raise(rb_eArgError, "wrong exec option");
}
return ST_CONTINUE;
}
static int
check_exec_options_i_extract(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE *args = (VALUE *)arg;
VALUE execarg_obj = args[0];
if (rb_execarg_addopt(execarg_obj, key, val) != ST_CONTINUE) {
VALUE nonopts = args[1];
if (NIL_P(nonopts)) args[1] = nonopts = rb_hash_new();
rb_hash_aset(nonopts, key, val);
}
return ST_CONTINUE;
}
static int
check_exec_fds_1(struct rb_execarg *eargp, VALUE h, int maxhint, VALUE ary)
{
long i;
if (ary != Qfalse) {
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int fd = FIX2INT(RARRAY_AREF(elt, 0));
if (RTEST(rb_hash_lookup(h, INT2FIX(fd)))) {
rb_raise(rb_eArgError, "fd %d specified twice", fd);
}
if (ary == eargp->fd_dup2)
rb_hash_aset(h, INT2FIX(fd), Qtrue);
else if (ary == eargp->fd_dup2_child)
rb_hash_aset(h, INT2FIX(fd), RARRAY_AREF(elt, 1));
else /* ary == eargp->fd_close */
rb_hash_aset(h, INT2FIX(fd), INT2FIX(-1));
if (maxhint < fd)
maxhint = fd;
if (ary == eargp->fd_dup2 || ary == eargp->fd_dup2_child) {
fd = FIX2INT(RARRAY_AREF(elt, 1));
if (maxhint < fd)
maxhint = fd;
}
}
}
return maxhint;
}
static VALUE
check_exec_fds(struct rb_execarg *eargp)
{
VALUE h = rb_hash_new();
VALUE ary;
int maxhint = -1;
long i;
maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_dup2);
maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_close);
maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_dup2_child);
if (eargp->fd_dup2_child) {
ary = eargp->fd_dup2_child;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int newfd = FIX2INT(RARRAY_AREF(elt, 0));
int oldfd = FIX2INT(RARRAY_AREF(elt, 1));
int lastfd = oldfd;
VALUE val = rb_hash_lookup(h, INT2FIX(lastfd));
long depth = 0;
while (FIXNUM_P(val) && 0 <= FIX2INT(val)) {
lastfd = FIX2INT(val);
val = rb_hash_lookup(h, val);
if (RARRAY_LEN(ary) < depth)
rb_raise(rb_eArgError, "cyclic child fd redirection from %d", oldfd);
depth++;
}
if (val != Qtrue)
rb_raise(rb_eArgError, "child fd %d is not redirected", oldfd);
if (oldfd != lastfd) {
VALUE val2;
rb_ary_store(elt, 1, INT2FIX(lastfd));
rb_hash_aset(h, INT2FIX(newfd), INT2FIX(lastfd));
val = INT2FIX(oldfd);
while (FIXNUM_P(val2 = rb_hash_lookup(h, val))) {
rb_hash_aset(h, val, INT2FIX(lastfd));
val = val2;
}
}
}
}
eargp->close_others_maxhint = maxhint;
return h;
}
static void
rb_check_exec_options(VALUE opthash, VALUE execarg_obj)
{
if (RHASH_EMPTY_P(opthash))
return;
rb_hash_stlike_foreach(opthash, check_exec_options_i, (st_data_t)execarg_obj);
}
VALUE
rb_execarg_extract_options(VALUE execarg_obj, VALUE opthash)
{
VALUE args[2];
if (RHASH_EMPTY_P(opthash))
return Qnil;
args[0] = execarg_obj;
args[1] = Qnil;
rb_hash_stlike_foreach(opthash, check_exec_options_i_extract, (st_data_t)args);
return args[1];
}
#ifdef ENV_IGNORECASE
#define ENVMATCH(s1, s2) (STRCASECMP((s1), (s2)) == 0)
#else
#define ENVMATCH(n1, n2) (strcmp((n1), (n2)) == 0)
#endif
static int
check_exec_env_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE env = ((VALUE *)arg)[0];
VALUE *path = &((VALUE *)arg)[1];
char *k;
k = StringValueCStr(key);
if (strchr(k, '='))
rb_raise(rb_eArgError, "environment name contains a equal : %"PRIsVALUE, key);
if (!NIL_P(val))
StringValueCStr(val);
key = EXPORT_STR(key);
if (!NIL_P(val)) val = EXPORT_STR(val);
if (ENVMATCH(k, PATH_ENV)) {
*path = val;
}
rb_ary_push(env, hide_obj(rb_assoc_new(key, val)));
return ST_CONTINUE;
}
static VALUE
rb_check_exec_env(VALUE hash, VALUE *path)
{
VALUE env[2];
env[0] = hide_obj(rb_ary_new());
env[1] = Qfalse;
rb_hash_stlike_foreach(hash, check_exec_env_i, (st_data_t)env);
*path = env[1];
return env[0];
}
static VALUE
rb_check_argv(int argc, VALUE *argv)
{
VALUE tmp, prog;
int i;
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
prog = 0;
tmp = rb_check_array_type(argv[0]);
if (!NIL_P(tmp)) {
if (RARRAY_LEN(tmp) != 2) {
rb_raise(rb_eArgError, "wrong first argument");
}
prog = RARRAY_AREF(tmp, 0);
argv[0] = RARRAY_AREF(tmp, 1);
SafeStringValue(prog);
StringValueCStr(prog);
prog = rb_str_new_frozen(prog);
}
for (i = 0; i < argc; i++) {
SafeStringValue(argv[i]);
argv[i] = rb_str_new_frozen(argv[i]);
StringValueCStr(argv[i]);
}
return prog;
}
static VALUE
check_hash(VALUE obj)
{
if (RB_SPECIAL_CONST_P(obj)) return Qnil;
switch (RB_BUILTIN_TYPE(obj)) {
case T_STRING:
case T_ARRAY:
return Qnil;
default:
break;
}
return rb_check_hash_type(obj);
}
static VALUE
rb_exec_getargs(int *argc_p, VALUE **argv_p, int accept_shell, VALUE *env_ret, VALUE *opthash_ret)
{
VALUE hash, prog;
if (0 < *argc_p) {
hash = check_hash((*argv_p)[*argc_p-1]);
if (!NIL_P(hash)) {
*opthash_ret = hash;
(*argc_p)--;
}
}
if (0 < *argc_p) {
hash = check_hash((*argv_p)[0]);
if (!NIL_P(hash)) {
*env_ret = hash;
(*argc_p)--;
(*argv_p)++;
}
}
prog = rb_check_argv(*argc_p, *argv_p);
if (!prog) {
prog = (*argv_p)[0];
if (accept_shell && *argc_p == 1) {
*argc_p = 0;
*argv_p = 0;
}
}
return prog;
}
#ifndef _WIN32
struct string_part {
const char *ptr;
size_t len;
};
static int
compare_posix_sh(const void *key, const void *el)
{
const struct string_part *word = key;
int ret = strncmp(word->ptr, el, word->len);
if (!ret && ((const char *)el)[word->len]) ret = -1;
return ret;
}
#endif
static void
rb_exec_fillarg(VALUE prog, int argc, VALUE *argv, VALUE env, VALUE opthash, VALUE execarg_obj)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
char fbuf[MAXPATHLEN];
MEMZERO(eargp, struct rb_execarg, 1);
if (!NIL_P(opthash)) {
rb_check_exec_options(opthash, execarg_obj);
}
if (!NIL_P(env)) {
env = rb_check_exec_env(env, &eargp->path_env);
eargp->env_modification = env;
}
prog = EXPORT_STR(prog);
eargp->use_shell = argc == 0;
if (eargp->use_shell)
eargp->invoke.sh.shell_script = prog;
else
eargp->invoke.cmd.command_name = prog;
#ifndef _WIN32
if (eargp->use_shell) {
static const char posix_sh_cmds[][9] = {
"!", /* reserved */
".", /* special built-in */
":", /* special built-in */
"break", /* special built-in */
"case", /* reserved */
"continue", /* special built-in */
"do", /* reserved */
"done", /* reserved */
"elif", /* reserved */
"else", /* reserved */
"esac", /* reserved */
"eval", /* special built-in */
"exec", /* special built-in */
"exit", /* special built-in */
"export", /* special built-in */
"fi", /* reserved */
"for", /* reserved */
"if", /* reserved */
"in", /* reserved */
"readonly", /* special built-in */
"return", /* special built-in */
"set", /* special built-in */
"shift", /* special built-in */
"then", /* reserved */
"times", /* special built-in */
"trap", /* special built-in */
"unset", /* special built-in */
"until", /* reserved */
"while", /* reserved */
};
const char *p;
struct string_part first = {0, 0};
int has_meta = 0;
/*
* meta characters:
*
* * Pathname Expansion
* ? Pathname Expansion
* {} Grouping Commands
* [] Pathname Expansion
* <> Redirection
* () Grouping Commands
* ~ Tilde Expansion
* & AND Lists, Asynchronous Lists
* | OR Lists, Pipelines
* \ Escape Character
* $ Parameter Expansion
* ; Sequential Lists
* ' Single-Quotes
* ` Command Substitution
* " Double-Quotes
* \n Lists
*
* # Comment
* = Assignment preceding command name
* % (used in Parameter Expansion)
*/
for (p = RSTRING_PTR(prog); *p; p++) {
if (*p == ' ' || *p == '\t') {
if (first.ptr && !first.len) first.len = p - first.ptr;
}
else {
if (!first.ptr) first.ptr = p;
}
if (!has_meta && strchr("*?{}[]<>()~&|\\$;'`\"\n#", *p))
has_meta = 1;
if (!first.len) {
if (*p == '=') {
has_meta = 1;
}
else if (*p == '/') {
first.len = 0x100; /* longer than any posix_sh_cmds */
}
}
if (has_meta)
break;
}
if (!has_meta && first.ptr) {
if (!first.len) first.len = p - first.ptr;
if (first.len > 0 && first.len <= sizeof(posix_sh_cmds[0]) &&
bsearch(&first, posix_sh_cmds, numberof(posix_sh_cmds), sizeof(posix_sh_cmds[0]), compare_posix_sh))
has_meta = 1;
}
if (!has_meta) {
/* avoid shell since no shell meta character found. */
eargp->use_shell = 0;
}
if (!eargp->use_shell) {
VALUE argv_buf;
argv_buf = hide_obj(rb_str_buf_new(0));
p = RSTRING_PTR(prog);
while (*p) {
while (*p == ' ' || *p == '\t')
p++;
if (*p) {
const char *w = p;
while (*p && *p != ' ' && *p != '\t')
p++;
rb_str_buf_cat(argv_buf, w, p-w);
rb_str_buf_cat(argv_buf, "", 1); /* append '\0' */
}
}
eargp->invoke.cmd.argv_buf = argv_buf;
eargp->invoke.cmd.command_name =
hide_obj(rb_str_subseq(argv_buf, 0, strlen(RSTRING_PTR(argv_buf))));
rb_enc_copy(eargp->invoke.cmd.command_name, prog);
}
}
#endif
if (!eargp->use_shell) {
const char *abspath;
const char *path_env = 0;
if (RTEST(eargp->path_env)) path_env = RSTRING_PTR(eargp->path_env);
abspath = dln_find_exe_r(RSTRING_PTR(eargp->invoke.cmd.command_name),
path_env, fbuf, sizeof(fbuf));
if (abspath)
eargp->invoke.cmd.command_abspath = rb_str_new_cstr(abspath);
else
eargp->invoke.cmd.command_abspath = Qnil;
}
if (!eargp->use_shell && !eargp->invoke.cmd.argv_buf) {
int i;
VALUE argv_buf;
argv_buf = rb_str_buf_new(0);
hide_obj(argv_buf);
for (i = 0; i < argc; i++) {
VALUE arg = argv[i];
const char *s = StringValueCStr(arg);
#ifdef DEFAULT_PROCESS_ENCODING
arg = EXPORT_STR(arg);
s = RSTRING_PTR(arg);
#endif
rb_str_buf_cat(argv_buf, s, RSTRING_LEN(arg) + 1); /* include '\0' */
}
eargp->invoke.cmd.argv_buf = argv_buf;
}
if (!eargp->use_shell) {
const char *p, *ep, *null=NULL;
VALUE argv_str;
argv_str = hide_obj(rb_str_buf_new(sizeof(char*) * (argc + 2)));
rb_str_buf_cat(argv_str, (char *)&null, sizeof(null)); /* place holder for /bin/sh of try_with_sh. */
p = RSTRING_PTR(eargp->invoke.cmd.argv_buf);
ep = p + RSTRING_LEN(eargp->invoke.cmd.argv_buf);
while (p < ep) {
rb_str_buf_cat(argv_str, (char *)&p, sizeof(p));
p += strlen(p) + 1;
}
rb_str_buf_cat(argv_str, (char *)&null, sizeof(null)); /* terminator for execve. */
eargp->invoke.cmd.argv_str =
rb_imemo_tmpbuf_auto_free_pointer_new_from_an_RString(argv_str);
}
RB_GC_GUARD(execarg_obj);
}
struct rb_execarg *
rb_execarg_get(VALUE execarg_obj)
{
struct rb_execarg *eargp;
TypedData_Get_Struct(execarg_obj, struct rb_execarg, &exec_arg_data_type, eargp);
return eargp;
}
static VALUE
rb_execarg_init(int argc, const VALUE *orig_argv, int accept_shell, VALUE execarg_obj)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
VALUE prog, ret;
VALUE env = Qnil, opthash = Qnil;
VALUE argv_buf;
VALUE *argv = ALLOCV_N(VALUE, argv_buf, argc);
MEMCPY(argv, orig_argv, VALUE, argc);
prog = rb_exec_getargs(&argc, &argv, accept_shell, &env, &opthash);
rb_exec_fillarg(prog, argc, argv, env, opthash, execarg_obj);
ALLOCV_END(argv_buf);
ret = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
RB_GC_GUARD(execarg_obj);
return ret;
}
VALUE
rb_execarg_new(int argc, const VALUE *argv, int accept_shell, int allow_exc_opt)
{
VALUE execarg_obj;
struct rb_execarg *eargp;
execarg_obj = TypedData_Make_Struct(0, struct rb_execarg, &exec_arg_data_type, eargp);
rb_execarg_init(argc, argv, accept_shell, execarg_obj);
if (!allow_exc_opt && eargp->exception_given) {
rb_raise(rb_eArgError, "exception option is not allowed");
}
return execarg_obj;
}
void
rb_execarg_setenv(VALUE execarg_obj, VALUE env)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
env = !NIL_P(env) ? rb_check_exec_env(env, &eargp->path_env) : Qfalse;
eargp->env_modification = env;
}
static int
fill_envp_buf_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE envp_buf = (VALUE)arg;
rb_str_buf_cat2(envp_buf, StringValueCStr(key));
rb_str_buf_cat2(envp_buf, "=");
rb_str_buf_cat2(envp_buf, StringValueCStr(val));
rb_str_buf_cat(envp_buf, "", 1); /* append '\0' */
return ST_CONTINUE;
}
static long run_exec_dup2_tmpbuf_size(long n);
struct open_struct {
VALUE fname;
int oflags;
mode_t perm;
int ret;
int err;
};
static void *
open_func(void *ptr)
{
struct open_struct *data = ptr;
const char *fname = RSTRING_PTR(data->fname);
data->ret = parent_redirect_open(fname, data->oflags, data->perm);
data->err = errno;
return NULL;
}
static void
rb_execarg_allocate_dup2_tmpbuf(struct rb_execarg *eargp, long len)
{
VALUE tmpbuf = rb_imemo_tmpbuf_auto_free_pointer();
rb_imemo_tmpbuf_set_ptr(tmpbuf, ruby_xmalloc(run_exec_dup2_tmpbuf_size(len)));
eargp->dup2_tmpbuf = tmpbuf;
}
static VALUE
rb_execarg_parent_start1(VALUE execarg_obj)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
int unsetenv_others;
VALUE envopts;
VALUE ary;
ary = eargp->fd_open;
if (ary != Qfalse) {
long i;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int fd = FIX2INT(RARRAY_AREF(elt, 0));
VALUE param = RARRAY_AREF(elt, 1);
VALUE vpath = RARRAY_AREF(param, 0);
int flags = NUM2INT(RARRAY_AREF(param, 1));
mode_t perm = NUM2MODET(RARRAY_AREF(param, 2));
VALUE fd2v = RARRAY_AREF(param, 3);
int fd2;
if (NIL_P(fd2v)) {
struct open_struct open_data;
again:
open_data.fname = vpath;
open_data.oflags = flags;
open_data.perm = perm;
open_data.ret = -1;
open_data.err = EINTR;
rb_thread_call_without_gvl2(open_func, (void *)&open_data, RUBY_UBF_IO, 0);
if (open_data.ret == -1) {
if (open_data.err == EINTR) {
rb_thread_check_ints();
goto again;
}
rb_syserr_fail_str(open_data.err, vpath);
}
fd2 = open_data.ret;
rb_update_max_fd(fd2);
RARRAY_ASET(param, 3, INT2FIX(fd2));
rb_thread_check_ints();
}
else {
fd2 = NUM2INT(fd2v);
}
rb_execarg_addopt(execarg_obj, INT2FIX(fd), INT2FIX(fd2));
}
}
eargp->redirect_fds = check_exec_fds(eargp);
ary = eargp->fd_dup2;
if (ary != Qfalse) {
rb_execarg_allocate_dup2_tmpbuf(eargp, RARRAY_LEN(ary));
}
unsetenv_others = eargp->unsetenv_others_given && eargp->unsetenv_others_do;
envopts = eargp->env_modification;
if (ALWAYS_NEED_ENVP || unsetenv_others || envopts != Qfalse) {
VALUE envtbl, envp_str, envp_buf;
char *p, *ep;
if (unsetenv_others) {
envtbl = rb_hash_new();
}
else {
envtbl = rb_env_to_hash();
}
hide_obj(envtbl);
if (envopts != Qfalse) {
st_table *stenv = RHASH_TBL_RAW(envtbl);
long i;
for (i = 0; i < RARRAY_LEN(envopts); i++) {
VALUE pair = RARRAY_AREF(envopts, i);
VALUE key = RARRAY_AREF(pair, 0);
VALUE val = RARRAY_AREF(pair, 1);
if (NIL_P(val)) {
st_data_t stkey = (st_data_t)key;
st_delete(stenv, &stkey, NULL);
}
else {
st_insert(stenv, (st_data_t)key, (st_data_t)val);
RB_OBJ_WRITTEN(envtbl, Qundef, key);
RB_OBJ_WRITTEN(envtbl, Qundef, val);
}
}
}
envp_buf = rb_str_buf_new(0);
hide_obj(envp_buf);
rb_hash_stlike_foreach(envtbl, fill_envp_buf_i, (st_data_t)envp_buf);
envp_str = rb_str_buf_new(sizeof(char*) * (RHASH_SIZE(envtbl) + 1));
hide_obj(envp_str);
p = RSTRING_PTR(envp_buf);
ep = p + RSTRING_LEN(envp_buf);
while (p < ep) {
rb_str_buf_cat(envp_str, (char *)&p, sizeof(p));
p += strlen(p) + 1;
}
p = NULL;
rb_str_buf_cat(envp_str, (char *)&p, sizeof(p));
eargp->envp_str =
rb_imemo_tmpbuf_auto_free_pointer_new_from_an_RString(envp_str);
eargp->envp_buf = envp_buf;
/*
char **tmp_envp = (char **)RSTRING_PTR(envp_str);
while (*tmp_envp) {
printf("%s\n", *tmp_envp);
tmp_envp++;
}
*/
}
RB_GC_GUARD(execarg_obj);
return Qnil;
}
void
rb_execarg_parent_start(VALUE execarg_obj)
{
int state;
rb_protect(rb_execarg_parent_start1, execarg_obj, &state);
if (state) {
rb_execarg_parent_end(execarg_obj);
rb_jump_tag(state);
}
}
static VALUE
execarg_parent_end(VALUE execarg_obj)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
int err = errno;
VALUE ary;
ary = eargp->fd_open;
if (ary != Qfalse) {
long i;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
VALUE param = RARRAY_AREF(elt, 1);
VALUE fd2v;
int fd2;
fd2v = RARRAY_AREF(param, 3);
if (!NIL_P(fd2v)) {
fd2 = FIX2INT(fd2v);
parent_redirect_close(fd2);
RARRAY_ASET(param, 3, Qnil);
}
}
}
errno = err;
return execarg_obj;
}
void
rb_execarg_parent_end(VALUE execarg_obj)
{
execarg_parent_end(execarg_obj);
RB_GC_GUARD(execarg_obj);
}
static void
rb_exec_fail(struct rb_execarg *eargp, int err, const char *errmsg)
{
if (!errmsg || !*errmsg) return;
if (strcmp(errmsg, "chdir") == 0) {
rb_sys_fail_str(eargp->chdir_dir);
}
rb_sys_fail(errmsg);
}
#if 0
void
rb_execarg_fail(VALUE execarg_obj, int err, const char *errmsg)
{
if (!errmsg || !*errmsg) return;
rb_exec_fail(rb_execarg_get(execarg_obj), err, errmsg);
RB_GC_GUARD(execarg_obj);
}
#endif
VALUE
rb_f_exec(int argc, const VALUE *argv)
{
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
#define CHILD_ERRMSG_BUFLEN 80
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
int err, state;
execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE);
eargp = rb_execarg_get(execarg_obj);
before_exec(); /* stop timer thread before redirects */
rb_protect(rb_execarg_parent_start1, execarg_obj, &state);
if (state) {
execarg_parent_end(execarg_obj);
after_exec(); /* restart timer thread */
rb_jump_tag(state);
}
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
err = exec_async_signal_safe(eargp, errmsg, sizeof(errmsg));
after_exec(); /* restart timer thread */
rb_exec_fail(eargp, err, errmsg);
RB_GC_GUARD(execarg_obj);
rb_syserr_fail_str(err, fail_str);
UNREACHABLE_RETURN(Qnil);
}
NORETURN(static VALUE f_exec(int c, const VALUE *a, VALUE _));
/*
* call-seq:
* exec([env, ] command_line, options = {})
* exec([env, ] exe_path, *args, options = {})
*
* Replaces the current process by doing one of the following:
*
* - Passing string +command_line+ to the shell.
* - Invoking the executable at +exe_path+.
*
* This method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* The new process is created using the
* {exec system call}[https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/execve.html];
* it may inherit some of its environment from the calling program
* (possibly including open file descriptors).
*
* Argument +env+, if given, is a hash that affects +ENV+ for the new process;
* see {Execution Environment}[rdoc-ref:Process@Execution+Environment].
*
* Argument +options+ is a hash of options for the new process;
* see {Execution Options}[rdoc-ref:Process@Execution+Options].
*
* The first required argument is one of the following:
*
* - +command_line+ if it is a string,
* and if it begins with a shell reserved word or special built-in,
* or if it contains one or more meta characters.
* - +exe_path+ otherwise.
*
* <b>Argument +command_line+</b>
*
* \String argument +command_line+ is a command line to be passed to a shell;
* it must begin with a shell reserved word, begin with a special built-in,
* or contain meta characters:
*
* exec('if true; then echo "Foo"; fi') # Shell reserved word.
* exec('echo') # Built-in.
* exec('date > date.tmp') # Contains meta character.
*
* The command line may also contain arguments and options for the command:
*
* exec('echo "Foo"')
*
* Output:
*
* Foo
*
* See {Execution Shell}[rdoc-ref:Process@Execution+Shell] for details about the shell.
*
* Raises an exception if the new process could not execute.
*
* <b>Argument +exe_path+</b>
*
* Argument +exe_path+ is one of the following:
*
* - The string path to an executable to be called.
* - A 2-element array containing the path to an executable
* and the string to be used as the name of the executing process.
*
* Example:
*
* exec('/usr/bin/date')
*
* Output:
*
* Sat Aug 26 09:38:00 AM CDT 2023
*
* Ruby invokes the executable directly, with no shell and no shell expansion:
*
* exec('doesnt_exist') # Raises Errno::ENOENT
*
* If one or more +args+ is given, each is an argument or option
* to be passed to the executable:
*
* exec('echo', 'C*')
* exec('echo', 'hello', 'world')
*
* Output:
*
* C*
* hello world
*
* Raises an exception if the new process could not execute.
*/
static VALUE
f_exec(int c, const VALUE *a, VALUE _)
{
rb_f_exec(c, a);
UNREACHABLE_RETURN(Qnil);
}
#define ERRMSG(str) do { if (errmsg && 0 < errmsg_buflen) strlcpy(errmsg, (str), errmsg_buflen); } while (0)
#define ERRMSG1(str, a) do { if (errmsg && 0 < errmsg_buflen) snprintf(errmsg, errmsg_buflen, (str), (a)); } while (0)
#define ERRMSG2(str, a, b) do { if (errmsg && 0 < errmsg_buflen) snprintf(errmsg, errmsg_buflen, (str), (a), (b)); } while (0)
static int fd_get_cloexec(int fd, char *errmsg, size_t errmsg_buflen);
static int fd_set_cloexec(int fd, char *errmsg, size_t errmsg_buflen);
static int fd_clear_cloexec(int fd, char *errmsg, size_t errmsg_buflen);
static int
save_redirect_fd(int fd, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
if (sargp) {
VALUE newary, redirection;
int save_fd = redirect_cloexec_dup(fd), cloexec;
if (save_fd == -1) {
if (errno == EBADF)
return 0;
ERRMSG("dup");
return -1;
}
rb_update_max_fd(save_fd);
newary = sargp->fd_dup2;
if (newary == Qfalse) {
newary = hide_obj(rb_ary_new());
sargp->fd_dup2 = newary;
}
cloexec = fd_get_cloexec(fd, errmsg, errmsg_buflen);
redirection = hide_obj(rb_assoc_new(INT2FIX(fd), INT2FIX(save_fd)));
if (cloexec) rb_ary_push(redirection, Qtrue);
rb_ary_push(newary, redirection);
newary = sargp->fd_close;
if (newary == Qfalse) {
newary = hide_obj(rb_ary_new());
sargp->fd_close = newary;
}
rb_ary_push(newary, hide_obj(rb_assoc_new(INT2FIX(save_fd), Qnil)));
}
return 0;
}
static int
intcmp(const void *a, const void *b)
{
return *(int*)a - *(int*)b;
}
static int
intrcmp(const void *a, const void *b)
{
return *(int*)b - *(int*)a;
}
struct run_exec_dup2_fd_pair {
int oldfd;
int newfd;
long older_index;
long num_newer;
int cloexec;
};
static long
run_exec_dup2_tmpbuf_size(long n)
{
return sizeof(struct run_exec_dup2_fd_pair) * n;
}
/* This function should be async-signal-safe. Actually it is. */
static int
fd_get_cloexec(int fd, char *errmsg, size_t errmsg_buflen)
{
#ifdef F_GETFD
int ret = 0;
ret = fcntl(fd, F_GETFD); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_GETFD)");
return -1;
}
if (ret & FD_CLOEXEC) return 1;
#endif
return 0;
}
/* This function should be async-signal-safe. Actually it is. */
static int
fd_set_cloexec(int fd, char *errmsg, size_t errmsg_buflen)
{
#ifdef F_GETFD
int ret = 0;
ret = fcntl(fd, F_GETFD); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_GETFD)");
return -1;
}
if (!(ret & FD_CLOEXEC)) {
ret |= FD_CLOEXEC;
ret = fcntl(fd, F_SETFD, ret); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_SETFD)");
return -1;
}
}
#endif
return 0;
}
/* This function should be async-signal-safe. Actually it is. */
static int
fd_clear_cloexec(int fd, char *errmsg, size_t errmsg_buflen)
{
#ifdef F_GETFD
int ret;
ret = fcntl(fd, F_GETFD); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_GETFD)");
return -1;
}
if (ret & FD_CLOEXEC) {
ret &= ~FD_CLOEXEC;
ret = fcntl(fd, F_SETFD, ret); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_SETFD)");
return -1;
}
}
#endif
return 0;
}
/* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */
static int
run_exec_dup2(VALUE ary, VALUE tmpbuf, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
long n, i;
int ret;
int extra_fd = -1;
struct rb_imemo_tmpbuf_struct *buf = (void *)tmpbuf;
struct run_exec_dup2_fd_pair *pairs = (void *)buf->ptr;
n = RARRAY_LEN(ary);
/* initialize oldfd and newfd: O(n) */
for (i = 0; i < n; i++) {
VALUE elt = RARRAY_AREF(ary, i);
pairs[i].oldfd = FIX2INT(RARRAY_AREF(elt, 1));
pairs[i].newfd = FIX2INT(RARRAY_AREF(elt, 0)); /* unique */
pairs[i].cloexec = RARRAY_LEN(elt) > 2 && RTEST(RARRAY_AREF(elt, 2));
pairs[i].older_index = -1;
}
/* sort the table by oldfd: O(n log n) */
if (!sargp)
qsort(pairs, n, sizeof(struct run_exec_dup2_fd_pair), intcmp); /* hopefully async-signal-safe */
else
qsort(pairs, n, sizeof(struct run_exec_dup2_fd_pair), intrcmp);
/* initialize older_index and num_newer: O(n log n) */
for (i = 0; i < n; i++) {
int newfd = pairs[i].newfd;
struct run_exec_dup2_fd_pair key, *found;
key.oldfd = newfd;
found = bsearch(&key, pairs, n, sizeof(struct run_exec_dup2_fd_pair), intcmp); /* hopefully async-signal-safe */
pairs[i].num_newer = 0;
if (found) {
while (pairs < found && (found-1)->oldfd == newfd)
found--;
while (found < pairs+n && found->oldfd == newfd) {
pairs[i].num_newer++;
found->older_index = i;
found++;
}
}
}
/* non-cyclic redirection: O(n) */
for (i = 0; i < n; i++) {
long j = i;
while (j != -1 && pairs[j].oldfd != -1 && pairs[j].num_newer == 0) {
if (save_redirect_fd(pairs[j].newfd, sargp, errmsg, errmsg_buflen) < 0) /* async-signal-safe */
goto fail;
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("dup2");
goto fail;
}
if (pairs[j].cloexec &&
fd_set_cloexec(pairs[j].newfd, errmsg, errmsg_buflen)) {
goto fail;
}
rb_update_max_fd(pairs[j].newfd); /* async-signal-safe but don't need to call it in a child process. */
pairs[j].oldfd = -1;
j = pairs[j].older_index;
if (j != -1)
pairs[j].num_newer--;
}
}
/* cyclic redirection: O(n) */
for (i = 0; i < n; i++) {
long j;
if (pairs[i].oldfd == -1)
continue;
if (pairs[i].oldfd == pairs[i].newfd) { /* self cycle */
if (fd_clear_cloexec(pairs[i].oldfd, errmsg, errmsg_buflen) == -1) /* async-signal-safe */
goto fail;
pairs[i].oldfd = -1;
continue;
}
if (extra_fd == -1) {
extra_fd = redirect_dup(pairs[i].oldfd); /* async-signal-safe */
if (extra_fd == -1) {
ERRMSG("dup");
goto fail;
}
rb_update_max_fd(extra_fd);
}
else {
ret = redirect_dup2(pairs[i].oldfd, extra_fd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("dup2");
goto fail;
}
rb_update_max_fd(extra_fd);
}
pairs[i].oldfd = extra_fd;
j = pairs[i].older_index;
pairs[i].older_index = -1;
while (j != -1) {
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("dup2");
goto fail;
}
rb_update_max_fd(ret);
pairs[j].oldfd = -1;
j = pairs[j].older_index;
}
}
if (extra_fd != -1) {
ret = redirect_close(extra_fd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("close");
goto fail;
}
}
return 0;
fail:
return -1;
}
/* This function should be async-signal-safe. Actually it is. */
static int
run_exec_close(VALUE ary, char *errmsg, size_t errmsg_buflen)
{
long i;
int ret;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int fd = FIX2INT(RARRAY_AREF(elt, 0));
ret = redirect_close(fd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("close");
return -1;
}
}
return 0;
}
/* This function should be async-signal-safe when sargp is NULL. Actually it is. */
static int
run_exec_dup2_child(VALUE ary, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
long i;
int ret;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int newfd = FIX2INT(RARRAY_AREF(elt, 0));
int oldfd = FIX2INT(RARRAY_AREF(elt, 1));
if (save_redirect_fd(newfd, sargp, errmsg, errmsg_buflen) < 0) /* async-signal-safe */
return -1;
ret = redirect_dup2(oldfd, newfd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("dup2");
return -1;
}
rb_update_max_fd(newfd);
}
return 0;
}
#ifdef HAVE_SETPGID
/* This function should be async-signal-safe when sargp is NULL. Actually it is. */
static int
run_exec_pgroup(const struct rb_execarg *eargp, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
/*
* If FD_CLOEXEC is available, rb_fork_async_signal_safe waits the child's execve.
* So setpgid is done in the child when rb_fork_async_signal_safe is returned in
* the parent.
* No race condition, even without setpgid from the parent.
* (Is there an environment which has setpgid but no FD_CLOEXEC?)
*/
int ret;
rb_pid_t pgroup;
pgroup = eargp->pgroup_pgid;
if (pgroup == -1)
return 0;
if (sargp) {
/* maybe meaningless with no fork environment... */
sargp->pgroup_given = 1;
sargp->pgroup_pgid = getpgrp();
}
if (pgroup == 0) {
pgroup = getpid(); /* async-signal-safe */
}
ret = setpgid(getpid(), pgroup); /* async-signal-safe */
if (ret == -1) ERRMSG("setpgid");
return ret;
}
#endif
#if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM)
/* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */
static int
run_exec_rlimit(VALUE ary, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
long i;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int rtype = NUM2INT(RARRAY_AREF(elt, 0));
struct rlimit rlim;
if (sargp) {
VALUE tmp, newary;
if (getrlimit(rtype, &rlim) == -1) {
ERRMSG("getrlimit");
return -1;
}
tmp = hide_obj(rb_ary_new3(3, RARRAY_AREF(elt, 0),
RLIM2NUM(rlim.rlim_cur),
RLIM2NUM(rlim.rlim_max)));
if (sargp->rlimit_limits == Qfalse)
newary = sargp->rlimit_limits = hide_obj(rb_ary_new());
else
newary = sargp->rlimit_limits;
rb_ary_push(newary, tmp);
}
rlim.rlim_cur = NUM2RLIM(RARRAY_AREF(elt, 1));
rlim.rlim_max = NUM2RLIM(RARRAY_AREF(elt, 2));
if (setrlimit(rtype, &rlim) == -1) { /* hopefully async-signal-safe */
ERRMSG("setrlimit");
return -1;
}
}
return 0;
}
#endif
#if !defined(HAVE_WORKING_FORK)
static VALUE
save_env_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
rb_ary_push(ary, hide_obj(rb_ary_dup(argv[0])));
return Qnil;
}
static void
save_env(struct rb_execarg *sargp)
{
if (!sargp)
return;
if (sargp->env_modification == Qfalse) {
VALUE env = rb_envtbl();
if (RTEST(env)) {
VALUE ary = hide_obj(rb_ary_new());
rb_block_call(env, idEach, 0, 0, save_env_i,
(VALUE)ary);
sargp->env_modification = ary;
}
sargp->unsetenv_others_given = 1;
sargp->unsetenv_others_do = 1;
}
}
#endif
#ifdef _WIN32
#undef chdir
#define chdir(p) rb_w32_uchdir(p)
#endif
/* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */
int
rb_execarg_run_options(const struct rb_execarg *eargp, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
VALUE obj;
if (sargp) {
/* assume that sargp is always NULL on fork-able environments */
MEMZERO(sargp, struct rb_execarg, 1);
sargp->redirect_fds = Qnil;
}
#ifdef HAVE_SETPGID
if (eargp->pgroup_given) {
if (run_exec_pgroup(eargp, sargp, errmsg, errmsg_buflen) == -1) /* async-signal-safe */
return -1;
}
#endif
#if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM)
obj = eargp->rlimit_limits;
if (obj != Qfalse) {
if (run_exec_rlimit(obj, sargp, errmsg, errmsg_buflen) == -1) /* hopefully async-signal-safe */
return -1;
}
#endif
#if !defined(HAVE_WORKING_FORK)
if (eargp->unsetenv_others_given && eargp->unsetenv_others_do) {
save_env(sargp);
rb_env_clear();
}
obj = eargp->env_modification;
if (obj != Qfalse) {
long i;
save_env(sargp);
for (i = 0; i < RARRAY_LEN(obj); i++) {
VALUE pair = RARRAY_AREF(obj, i);
VALUE key = RARRAY_AREF(pair, 0);
VALUE val = RARRAY_AREF(pair, 1);
if (NIL_P(val))
ruby_setenv(StringValueCStr(key), 0);
else
ruby_setenv(StringValueCStr(key), StringValueCStr(val));
}
}
#endif
if (eargp->umask_given) {
mode_t mask = eargp->umask_mask;
mode_t oldmask = umask(mask); /* never fail */ /* async-signal-safe */
if (sargp) {
sargp->umask_given = 1;
sargp->umask_mask = oldmask;
}
}
obj = eargp->fd_dup2;
if (obj != Qfalse) {
if (run_exec_dup2(obj, eargp->dup2_tmpbuf, sargp, errmsg, errmsg_buflen) == -1) /* hopefully async-signal-safe */
return -1;
}
obj = eargp->fd_close;
if (obj != Qfalse) {
if (sargp)
rb_warn("cannot close fd before spawn");
else {
if (run_exec_close(obj, errmsg, errmsg_buflen) == -1) /* async-signal-safe */
return -1;
}
}
#ifdef HAVE_WORKING_FORK
if (eargp->close_others_do) {
rb_close_before_exec(3, eargp->close_others_maxhint, eargp->redirect_fds); /* async-signal-safe */
}
#endif
obj = eargp->fd_dup2_child;
if (obj != Qfalse) {
if (run_exec_dup2_child(obj, sargp, errmsg, errmsg_buflen) == -1) /* async-signal-safe */
return -1;
}
if (eargp->chdir_given) {
if (sargp) {
sargp->chdir_given = 1;
sargp->chdir_dir = hide_obj(rb_dir_getwd_ospath());
}
if (chdir(RSTRING_PTR(eargp->chdir_dir)) == -1) { /* async-signal-safe */
ERRMSG("chdir");
return -1;
}
}
#ifdef HAVE_SETGID
if (eargp->gid_given) {
if (setgid(eargp->gid) < 0) {
ERRMSG("setgid");
return -1;
}
}
#endif
#ifdef HAVE_SETUID
if (eargp->uid_given) {
if (setuid(eargp->uid) < 0) {
ERRMSG("setuid");
return -1;
}
}
#endif
if (sargp) {
VALUE ary = sargp->fd_dup2;
if (ary != Qfalse) {
rb_execarg_allocate_dup2_tmpbuf(sargp, RARRAY_LEN(ary));
}
}
{
int preserve = errno;
stdfd_clear_nonblock();
errno = preserve;
}
return 0;
}
/* This function should be async-signal-safe. Hopefully it is. */
int
rb_exec_async_signal_safe(const struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen)
{
errno = exec_async_signal_safe(eargp, errmsg, errmsg_buflen);
return -1;
}
static int
exec_async_signal_safe(const struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen)
{
#if !defined(HAVE_WORKING_FORK)
struct rb_execarg sarg, *const sargp = &sarg;
#else
struct rb_execarg *const sargp = NULL;
#endif
int err;
if (rb_execarg_run_options(eargp, sargp, errmsg, errmsg_buflen) < 0) { /* hopefully async-signal-safe */
return errno;
}
if (eargp->use_shell) {
err = proc_exec_sh(RSTRING_PTR(eargp->invoke.sh.shell_script), eargp->envp_str); /* async-signal-safe */
}
else {
char *abspath = NULL;
if (!NIL_P(eargp->invoke.cmd.command_abspath))
abspath = RSTRING_PTR(eargp->invoke.cmd.command_abspath);
err = proc_exec_cmd(abspath, eargp->invoke.cmd.argv_str, eargp->envp_str); /* async-signal-safe */
}
#if !defined(HAVE_WORKING_FORK)
rb_execarg_run_options(sargp, NULL, errmsg, errmsg_buflen);
#endif
return err;
}
#ifdef HAVE_WORKING_FORK
/* This function should be async-signal-safe. Hopefully it is. */
static int
rb_exec_atfork(void* arg, char *errmsg, size_t errmsg_buflen)
{
return rb_exec_async_signal_safe(arg, errmsg, errmsg_buflen); /* hopefully async-signal-safe */
}
static VALUE
proc_syswait(VALUE pid)
{
rb_syswait((rb_pid_t)pid);
return Qnil;
}
static int
move_fds_to_avoid_crash(int *fdp, int n, VALUE fds)
{
int min = 0;
int i;
for (i = 0; i < n; i++) {
int ret;
while (RTEST(rb_hash_lookup(fds, INT2FIX(fdp[i])))) {
if (min <= fdp[i])
min = fdp[i]+1;
while (RTEST(rb_hash_lookup(fds, INT2FIX(min))))
min++;
ret = rb_cloexec_fcntl_dupfd(fdp[i], min);
if (ret == -1)
return -1;
rb_update_max_fd(ret);
close(fdp[i]);
fdp[i] = ret;
}
}
return 0;
}
static int
pipe_nocrash(int filedes[2], VALUE fds)
{
int ret;
ret = rb_pipe(filedes);
if (ret == -1)
return -1;
if (RTEST(fds)) {
int save = errno;
if (move_fds_to_avoid_crash(filedes, 2, fds) == -1) {
close(filedes[0]);
close(filedes[1]);
return -1;
}
errno = save;
}
return ret;
}
#ifndef O_BINARY
#define O_BINARY 0
#endif
static VALUE
rb_thread_sleep_that_takes_VALUE_as_sole_argument(VALUE n)
{
rb_thread_sleep(NUM2INT(n));
return Qundef;
}
static int
handle_fork_error(int err, struct rb_process_status *status, int *ep, volatile int *try_gc_p)
{
int state = 0;
switch (err) {
case ENOMEM:
if ((*try_gc_p)-- > 0 && !rb_during_gc()) {
rb_gc();
return 0;
}
break;
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
if (!status && !ep) {
rb_thread_sleep(1);
return 0;
}
else {
rb_protect(rb_thread_sleep_that_takes_VALUE_as_sole_argument, INT2FIX(1), &state);
if (status) status->status = state;
if (!state) return 0;
}
break;
}
if (ep) {
close(ep[0]);
close(ep[1]);
errno = err;
}
if (state && !status) rb_jump_tag(state);
return -1;
}
#define prefork() ( \
rb_io_flush(rb_stdout), \
rb_io_flush(rb_stderr) \
)
/*
* Forks child process, and returns the process ID in the parent
* process.
*
* If +status+ is given, protects from any exceptions and sets the
* jump status to it, and returns -1. If failed to fork new process
* but no exceptions occurred, sets 0 to it. Otherwise, if forked
* successfully, the value of +status+ is undetermined.
*
* In the child process, just returns 0 if +chfunc+ is +NULL+.
* Otherwise +chfunc+ will be called with +charg+, and then the child
* process exits with +EXIT_SUCCESS+ when it returned zero.
*
* In the case of the function is called and returns non-zero value,
* the child process exits with non-+EXIT_SUCCESS+ value (normally
* 127). And, on the platforms where +FD_CLOEXEC+ is available,
* +errno+ is propagated to the parent process, and this function
* returns -1 in the parent process. On the other platforms, just
* returns pid.
*
* If fds is not Qnil, internal pipe for the errno propagation is
* arranged to avoid conflicts of the hash keys in +fds+.
*
* +chfunc+ must not raise any exceptions.
*/
static ssize_t
write_retry(int fd, const void *buf, size_t len)
{
ssize_t w;
do {
w = write(fd, buf, len);
} while (w < 0 && errno == EINTR);
return w;
}
static ssize_t
read_retry(int fd, void *buf, size_t len)
{
ssize_t r;
if (set_blocking(fd) != 0) {
#ifndef _WIN32
rb_async_bug_errno("set_blocking failed reading child error", errno);
#endif
}
do {
r = read(fd, buf, len);
} while (r < 0 && errno == EINTR);
return r;
}
static void
send_child_error(int fd, char *errmsg, size_t errmsg_buflen)
{
int err;
err = errno;
if (write_retry(fd, &err, sizeof(err)) < 0) err = errno;
if (errmsg && 0 < errmsg_buflen) {
errmsg[errmsg_buflen-1] = '\0';
errmsg_buflen = strlen(errmsg);
if (errmsg_buflen > 0 && write_retry(fd, errmsg, errmsg_buflen) < 0)
err = errno;
}
}
static int
recv_child_error(int fd, int *errp, char *errmsg, size_t errmsg_buflen)
{
int err;
ssize_t size;
if ((size = read_retry(fd, &err, sizeof(err))) < 0) {
err = errno;
}
*errp = err;
if (size == sizeof(err) &&
errmsg && 0 < errmsg_buflen) {
ssize_t ret = read_retry(fd, errmsg, errmsg_buflen-1);
if (0 <= ret) {
errmsg[ret] = '\0';
}
}
close(fd);
return size != 0;
}
#ifdef HAVE_WORKING_VFORK
#if !defined(HAVE_GETRESUID) && defined(HAVE_GETUIDX)
/* AIX 7.1 */
static int
getresuid(rb_uid_t *ruid, rb_uid_t *euid, rb_uid_t *suid)
{
rb_uid_t ret;
*ruid = getuid();
*euid = geteuid();
ret = getuidx(ID_SAVED);
if (ret == (rb_uid_t)-1)
return -1;
*suid = ret;
return 0;
}
#define HAVE_GETRESUID
#endif
#if !defined(HAVE_GETRESGID) && defined(HAVE_GETGIDX)
/* AIX 7.1 */
static int
getresgid(rb_gid_t *rgid, rb_gid_t *egid, rb_gid_t *sgid)
{
rb_gid_t ret;
*rgid = getgid();
*egid = getegid();
ret = getgidx(ID_SAVED);
if (ret == (rb_gid_t)-1)
return -1;
*sgid = ret;
return 0;
}
#define HAVE_GETRESGID
#endif
static int
has_privilege(void)
{
/*
* has_privilege() is used to choose vfork() or fork().
*
* If the process has privilege, the parent process or
* the child process can change UID/GID.
* If vfork() is used to create the child process and
* the parent or child process change effective UID/GID,
* different privileged processes shares memory.
* It is a bad situation.
* So, fork() should be used.
*/
rb_uid_t ruid, euid;
rb_gid_t rgid, egid;
#if defined HAVE_ISSETUGID
if (issetugid())
return 1;
#endif
#ifdef HAVE_GETRESUID
{
int ret;
rb_uid_t suid;
ret = getresuid(&ruid, &euid, &suid);
if (ret == -1)
rb_sys_fail("getresuid(2)");
if (euid != suid)
return 1;
}
#else
ruid = getuid();
euid = geteuid();
#endif
if (euid == 0 || euid != ruid)
return 1;
#ifdef HAVE_GETRESGID
{
int ret;
rb_gid_t sgid;
ret = getresgid(&rgid, &egid, &sgid);
if (ret == -1)
rb_sys_fail("getresgid(2)");
if (egid != sgid)
return 1;
}
#else
rgid = getgid();
egid = getegid();
#endif
if (egid != rgid)
return 1;
return 0;
}
#endif
struct child_handler_disabler_state
{
sigset_t sigmask;
};
static void
disable_child_handler_before_fork(struct child_handler_disabler_state *old)
{
#ifdef HAVE_PTHREAD_SIGMASK
int ret;
sigset_t all;
ret = sigfillset(&all);
if (ret == -1)
rb_sys_fail("sigfillset");
ret = pthread_sigmask(SIG_SETMASK, &all, &old->sigmask); /* not async-signal-safe */
if (ret != 0) {
rb_syserr_fail(ret, "pthread_sigmask");
}
#else
# pragma GCC warning "pthread_sigmask on fork is not available. potentially dangerous"
#endif
}
static void
disable_child_handler_fork_parent(struct child_handler_disabler_state *old)
{
#ifdef HAVE_PTHREAD_SIGMASK
int ret;
ret = pthread_sigmask(SIG_SETMASK, &old->sigmask, NULL); /* not async-signal-safe */
if (ret != 0) {
rb_syserr_fail(ret, "pthread_sigmask");
}
#else
# pragma GCC warning "pthread_sigmask on fork is not available. potentially dangerous"
#endif
}
/* This function should be async-signal-safe. Actually it is. */
static int
disable_child_handler_fork_child(struct child_handler_disabler_state *old, char *errmsg, size_t errmsg_buflen)
{
int sig;
int ret;
for (sig = 1; sig < NSIG; sig++) {
sig_t handler = signal(sig, SIG_DFL);
if (handler == SIG_ERR && errno == EINVAL) {
continue; /* Ignore invalid signal number */
}
if (handler == SIG_ERR) {
ERRMSG("signal to obtain old action");
return -1;
}
#ifdef SIGPIPE
if (sig == SIGPIPE) {
continue;
}
#endif
/* it will be reset to SIG_DFL at execve time, instead */
if (handler == SIG_IGN) {
signal(sig, SIG_IGN);
}
}
/* non-Ruby child process, ensure cmake can see SIGCHLD */
sigemptyset(&old->sigmask);
ret = sigprocmask(SIG_SETMASK, &old->sigmask, NULL); /* async-signal-safe */
if (ret != 0) {
ERRMSG("sigprocmask");
return -1;
}
return 0;
}
static rb_pid_t
retry_fork_async_signal_safe(struct rb_process_status *status, int *ep,
int (*chfunc)(void*, char *, size_t), void *charg,
char *errmsg, size_t errmsg_buflen,
struct waitpid_state *w)
{
rb_pid_t pid;
volatile int try_gc = 1;
struct child_handler_disabler_state old;
int err;
while (1) {
prefork();
disable_child_handler_before_fork(&old);
#ifdef HAVE_WORKING_VFORK
if (!has_privilege())
pid = vfork();
else
pid = rb_fork();
#else
pid = rb_fork();
#endif
if (pid == 0) {/* fork succeed, child process */
int ret;
close(ep[0]);
ret = disable_child_handler_fork_child(&old, errmsg, errmsg_buflen); /* async-signal-safe */
if (ret == 0) {
ret = chfunc(charg, errmsg, errmsg_buflen);
if (!ret) _exit(EXIT_SUCCESS);
}
send_child_error(ep[1], errmsg, errmsg_buflen);
#if EXIT_SUCCESS == 127
_exit(EXIT_FAILURE);
#else
_exit(127);
#endif
}
err = errno;
disable_child_handler_fork_parent(&old);
if (0 < pid) /* fork succeed, parent process */
return pid;
/* fork failed */
if (handle_fork_error(err, status, ep, &try_gc))
return -1;
}
}
static rb_pid_t
fork_check_err(struct rb_process_status *status, int (*chfunc)(void*, char *, size_t), void *charg,
VALUE fds, char *errmsg, size_t errmsg_buflen,
struct rb_execarg *eargp)
{
rb_pid_t pid;
int err;
int ep[2];
int error_occurred;
struct waitpid_state *w = eargp && eargp->waitpid_state ? eargp->waitpid_state : 0;
if (status) status->status = 0;
if (pipe_nocrash(ep, fds)) return -1;
pid = retry_fork_async_signal_safe(status, ep, chfunc, charg, errmsg, errmsg_buflen, w);
if (status) status->pid = pid;
if (pid < 0) {
if (status) status->error = errno;
return pid;
}
close(ep[1]);
error_occurred = recv_child_error(ep[0], &err, errmsg, errmsg_buflen);
if (error_occurred) {
if (status) {
int state = 0;
status->error = err;
VM_ASSERT((w == 0) && "only used by extensions");
rb_protect(proc_syswait, (VALUE)pid, &state);
status->status = state;
}
else if (!w) {
rb_syswait(pid);
}
errno = err;
return -1;
}
return pid;
}
/*
* The "async_signal_safe" name is a lie, but it is used by pty.c and
* maybe other exts. fork() is not async-signal-safe due to pthread_atfork
* and future POSIX revisions will remove it from a list of signal-safe
* functions. rb_waitpid is not async-signal-safe since RJIT, either.
* For our purposes, we do not need async-signal-safety, here
*/
rb_pid_t
rb_fork_async_signal_safe(int *status,
int (*chfunc)(void*, char *, size_t), void *charg,
VALUE fds, char *errmsg, size_t errmsg_buflen)
{
struct rb_process_status process_status;
rb_pid_t result = fork_check_err(&process_status, chfunc, charg, fds, errmsg, errmsg_buflen, 0);
if (status) {
*status = process_status.status;
}
return result;
}
static rb_pid_t
rb_fork_ruby2(struct rb_process_status *status)
{
rb_pid_t pid;
int try_gc = 1, err;
struct child_handler_disabler_state old;
if (status) status->status = 0;
while (1) {
prefork();
disable_child_handler_before_fork(&old);
before_fork_ruby();
pid = rb_fork();
err = errno;
if (status) {
status->pid = pid;
status->error = err;
}
after_fork_ruby(pid);
disable_child_handler_fork_parent(&old); /* yes, bad name */
if (pid >= 0) { /* fork succeed */
return pid;
}
/* fork failed */
if (handle_fork_error(err, status, NULL, &try_gc)) {
return -1;
}
}
}
rb_pid_t
rb_fork_ruby(int *status)
{
struct rb_process_status process_status = {0};
rb_pid_t pid = rb_fork_ruby2(&process_status);
if (status) *status = process_status.status;
return pid;
}
static rb_pid_t
proc_fork_pid(void)
{
rb_pid_t pid = rb_fork_ruby(NULL);
if (pid == -1) {
rb_sys_fail("fork(2)");
}
return pid;
}
rb_pid_t
rb_call_proc__fork(void)
{
ID id__fork;
CONST_ID(id__fork, "_fork");
if (rb_method_basic_definition_p(CLASS_OF(rb_mProcess), id__fork)) {
return proc_fork_pid();
}
else {
VALUE pid = rb_funcall(rb_mProcess, id__fork, 0);
return NUM2PIDT(pid);
}
}
#endif
#if defined(HAVE_WORKING_FORK) && !defined(CANNOT_FORK_WITH_PTHREAD)
/*
* call-seq:
* Process._fork -> integer
*
* An internal API for fork. Do not call this method directly.
* Currently, this is called via Kernel#fork, Process.fork, and
* IO.popen with <tt>"-"</tt>.
*
* This method is not for casual code but for application monitoring
* libraries. You can add custom code before and after fork events
* by overriding this method.
*
* Note: Process.daemon may be implemented using fork(2) BUT does not go
* through this method.
* Thus, depending on your reason to hook into this method, you
* may also want to hook into that one.
* See {this issue}[https://bugs.ruby-lang.org/issues/18911] for a
* more detailed discussion of this.
*/
VALUE
rb_proc__fork(VALUE _obj)
{
rb_pid_t pid = proc_fork_pid();
return PIDT2NUM(pid);
}
/*
* call-seq:
* Process.fork { ... } -> integer or nil
* Process.fork -> integer or nil
*
* Creates a child process.
*
* With a block given, runs the block in the child process;
* on block exit, the child terminates with a status of zero:
*
* puts "Before the fork: #{Process.pid}"
* fork do
* puts "In the child process: #{Process.pid}"
* end # => 382141
* puts "After the fork: #{Process.pid}"
*
* Output:
*
* Before the fork: 420496
* After the fork: 420496
* In the child process: 420520
*
* With no block given, the +fork+ call returns twice:
*
* - Once in the parent process, returning the pid of the child process.
* - Once in the child process, returning +nil+.
*
* Example:
*
* puts "This is the first line before the fork (pid #{Process.pid})"
* puts fork
* puts "This is the second line after the fork (pid #{Process.pid})"
*
* Output:
*
* This is the first line before the fork (pid 420199)
* 420223
* This is the second line after the fork (pid 420199)
*
* This is the second line after the fork (pid 420223)
*
* In either case, the child process may exit using
* Kernel.exit! to avoid the call to Kernel#at_exit.
*
* To avoid zombie processes, the parent process should call either:
*
* - Process.wait, to collect the termination statuses of its children.
* - Process.detach, to register disinterest in their status.
*
* The thread calling +fork+ is the only thread in the created child process;
* +fork+ doesn't copy other threads.
*
* Note that method +fork+ is available on some platforms,
* but not on others:
*
* Process.respond_to?(:fork) # => true # Would be false on some.
*
* If not, you may use ::spawn instead of +fork+.
*/
static VALUE
rb_f_fork(VALUE obj)
{
rb_pid_t pid;
pid = rb_call_proc__fork();
if (pid == 0) {
if (rb_block_given_p()) {
int status;
rb_protect(rb_yield, Qundef, &status);
ruby_stop(status);
}
return Qnil;
}
return PIDT2NUM(pid);
}
#else
#define rb_proc__fork rb_f_notimplement
#define rb_f_fork rb_f_notimplement
#endif
static int
exit_status_code(VALUE status)
{
int istatus;
switch (status) {
case Qtrue:
istatus = EXIT_SUCCESS;
break;
case Qfalse:
istatus = EXIT_FAILURE;
break;
default:
istatus = NUM2INT(status);
#if EXIT_SUCCESS != 0
if (istatus == 0)
istatus = EXIT_SUCCESS;
#endif
break;
}
return istatus;
}
NORETURN(static VALUE rb_f_exit_bang(int argc, VALUE *argv, VALUE obj));
/*
* call-seq:
* exit!(status = false)
* Process.exit!(status = false)
*
* Exits the process immediately; no exit handlers are called.
* Returns exit status +status+ to the underlying operating system.
*
* Process.exit!(true)
*
* Values +true+ and +false+ for argument +status+
* indicate, respectively, success and failure;
* The meanings of integer values are system-dependent.
*
*/
static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
int istatus;
if (rb_check_arity(argc, 0, 1) == 1) {
istatus = exit_status_code(argv[0]);
}
else {
istatus = EXIT_FAILURE;
}
_exit(istatus);
UNREACHABLE_RETURN(Qnil);
}
void
rb_exit(int status)
{
if (GET_EC()->tag) {
VALUE args[2];
args[0] = INT2NUM(status);
args[1] = rb_str_new2("exit");
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
ruby_stop(status);
}
VALUE
rb_f_exit(int argc, const VALUE *argv)
{
int istatus;
if (rb_check_arity(argc, 0, 1) == 1) {
istatus = exit_status_code(argv[0]);
}
else {
istatus = EXIT_SUCCESS;
}
rb_exit(istatus);
UNREACHABLE_RETURN(Qnil);
}
NORETURN(static VALUE f_exit(int c, const VALUE *a, VALUE _));
/*
* call-seq:
* exit(status = true)
* Process.exit(status = true)
*
* Initiates termination of the Ruby script by raising SystemExit;
* the exception may be caught.
* Returns exit status +status+ to the underlying operating system.
*
* Values +true+ and +false+ for argument +status+
* indicate, respectively, success and failure;
* The meanings of integer values are system-dependent.
*
* Example:
*
* begin
* exit
* puts 'Never get here.'
* rescue SystemExit
* puts 'Rescued a SystemExit exception.'
* end
* puts 'After begin block.'
*
* Output:
*
* Rescued a SystemExit exception.
* After begin block.
*
* Just prior to final termination,
* Ruby executes any at-exit procedures (see Kernel::at_exit)
* and any object finalizers (see ObjectSpace::define_finalizer).
*
* Example:
*
* at_exit { puts 'In at_exit function.' }
* ObjectSpace.define_finalizer('string', proc { puts 'In finalizer.' })
* exit
*
* Output:
*
* In at_exit function.
* In finalizer.
*
*/
static VALUE
f_exit(int c, const VALUE *a, VALUE _)
{
rb_f_exit(c, a);
UNREACHABLE_RETURN(Qnil);
}
VALUE
rb_f_abort(int argc, const VALUE *argv)
{
rb_check_arity(argc, 0, 1);
if (argc == 0) {
rb_execution_context_t *ec = GET_EC();
VALUE errinfo = rb_ec_get_errinfo(ec);
if (!NIL_P(errinfo)) {
rb_ec_error_print(ec, errinfo);
}
rb_exit(EXIT_FAILURE);
}
else {
VALUE args[2];
args[1] = args[0] = argv[0];
StringValue(args[0]);
rb_io_puts(1, args, rb_ractor_stderr());
args[0] = INT2NUM(EXIT_FAILURE);
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
UNREACHABLE_RETURN(Qnil);
}
NORETURN(static VALUE f_abort(int c, const VALUE *a, VALUE _));
/*
* call-seq:
* abort
* Process.abort(msg = nil)
*
* Terminates execution immediately, effectively by calling
* <tt>Kernel.exit(false)</tt>.
*
* If string argument +msg+ is given,
* it is written to STDERR prior to termination;
* otherwise, if an exception was raised,
* prints its message and backtrace.
*/
static VALUE
f_abort(int c, const VALUE *a, VALUE _)
{
rb_f_abort(c, a);
UNREACHABLE_RETURN(Qnil);
}
void
rb_syswait(rb_pid_t pid)
{
int status;
rb_waitpid(pid, &status, 0);
}
#if !defined HAVE_WORKING_FORK && !defined HAVE_SPAWNV && !defined __EMSCRIPTEN__
char *
rb_execarg_commandline(const struct rb_execarg *eargp, VALUE *prog)
{
VALUE cmd = *prog;
if (eargp && !eargp->use_shell) {
VALUE str = eargp->invoke.cmd.argv_str;
VALUE buf = eargp->invoke.cmd.argv_buf;
char *p, **argv = ARGVSTR2ARGV(str);
long i, argc = ARGVSTR2ARGC(str);
const char *start = RSTRING_PTR(buf);
cmd = rb_str_new(start, RSTRING_LEN(buf));
p = RSTRING_PTR(cmd);
for (i = 1; i < argc; ++i) {
p[argv[i] - start - 1] = ' ';
}
*prog = cmd;
return p;
}
return StringValueCStr(*prog);
}
#endif
static rb_pid_t
rb_spawn_process(struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen)
{
rb_pid_t pid;
#if !defined HAVE_WORKING_FORK || USE_SPAWNV
VALUE prog;
struct rb_execarg sarg;
# if !defined HAVE_SPAWNV
int status;
# endif
#endif
#if defined HAVE_WORKING_FORK && !USE_SPAWNV
pid = fork_check_err(eargp->status, rb_exec_atfork, eargp, eargp->redirect_fds, errmsg, errmsg_buflen, eargp);
#else
prog = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
if (rb_execarg_run_options(eargp, &sarg, errmsg, errmsg_buflen) < 0) {
return -1;
}
if (prog && !eargp->use_shell) {
char **argv = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str);
argv[0] = RSTRING_PTR(prog);
}
# if defined HAVE_SPAWNV
if (eargp->use_shell) {
pid = proc_spawn_sh(RSTRING_PTR(prog));
}
else {
char **argv = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str);
pid = proc_spawn_cmd(argv, prog, eargp);
}
if (pid == -1) {
rb_last_status_set(0x7f << 8, pid);
}
# else
status = system(rb_execarg_commandline(eargp, &prog));
pid = 1; /* dummy */
rb_last_status_set((status & 0xff) << 8, pid);
# endif
if (eargp->waitpid_state) {
eargp->waitpid_state->pid = pid;
}
rb_execarg_run_options(&sarg, NULL, errmsg, errmsg_buflen);
#endif
return pid;
}
struct spawn_args {
VALUE execarg;
struct {
char *ptr;
size_t buflen;
} errmsg;
};
static VALUE
do_spawn_process(VALUE arg)
{
struct spawn_args *argp = (struct spawn_args *)arg;
rb_execarg_parent_start1(argp->execarg);
return (VALUE)rb_spawn_process(DATA_PTR(argp->execarg),
argp->errmsg.ptr, argp->errmsg.buflen);
}
static rb_pid_t
rb_execarg_spawn(VALUE execarg_obj, char *errmsg, size_t errmsg_buflen)
{
struct spawn_args args;
args.execarg = execarg_obj;
args.errmsg.ptr = errmsg;
args.errmsg.buflen = errmsg_buflen;
return (rb_pid_t)rb_ensure(do_spawn_process, (VALUE)&args,
execarg_parent_end, execarg_obj);
}
static rb_pid_t
rb_spawn_internal(int argc, const VALUE *argv, char *errmsg, size_t errmsg_buflen)
{
VALUE execarg_obj;
execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE);
return rb_execarg_spawn(execarg_obj, errmsg, errmsg_buflen);
}
rb_pid_t
rb_spawn_err(int argc, const VALUE *argv, char *errmsg, size_t errmsg_buflen)
{
return rb_spawn_internal(argc, argv, errmsg, errmsg_buflen);
}
rb_pid_t
rb_spawn(int argc, const VALUE *argv)
{
return rb_spawn_internal(argc, argv, NULL, 0);
}
/*
* call-seq:
* system([env, ] command_line, options = {}, exception: false) -> true, false, or nil
* system([env, ] exe_path, *args, options = {}, exception: false) -> true, false, or nil
*
* Creates a new child process by doing one of the following
* in that process:
*
* - Passing string +command_line+ to the shell.
* - Invoking the executable at +exe_path+.
*
* This method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* Returns:
*
* - +true+ if the command exits with status zero.
* - +false+ if the exit status is a non-zero integer.
* - +nil+ if the command could not execute.
*
* Raises an exception (instead of returning +false+ or +nil+)
* if keyword argument +exception+ is set to +true+.
*
* Assigns the command's error status to <tt>$?</tt>.
*
* The new process is created using the
* {system system call}[https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/system.html];
* it may inherit some of its environment from the calling program
* (possibly including open file descriptors).
*
* Argument +env+, if given, is a hash that affects +ENV+ for the new process;
* see {Execution Environment}[rdoc-ref:Process@Execution+Environment].
*
* Argument +options+ is a hash of options for the new process;
* see {Execution Options}[rdoc-ref:Process@Execution+Options].
*
* The first required argument is one of the following:
*
* - +command_line+ if it is a string,
* and if it begins with a shell reserved word or special built-in,
* or if it contains one or more meta characters.
* - +exe_path+ otherwise.
*
* <b>Argument +command_line+</b>
*
* \String argument +command_line+ is a command line to be passed to a shell;
* it must begin with a shell reserved word, begin with a special built-in,
* or contain meta characters:
*
* system('if true; then echo "Foo"; fi') # => true # Shell reserved word.
* system('echo') # => true # Built-in.
* system('date > /tmp/date.tmp') # => true # Contains meta character.
* system('date > /nop/date.tmp') # => false
* system('date > /nop/date.tmp', exception: true) # Raises RuntimeError.
*
* Assigns the command's error status to <tt>$?</tt>:
*
* system('echo') # => true # Built-in.
* $? # => #<Process::Status: pid 640610 exit 0>
* system('date > /nop/date.tmp') # => false
* $? # => #<Process::Status: pid 640742 exit 2>
*
* The command line may also contain arguments and options for the command:
*
* system('echo "Foo"') # => true
*
* Output:
*
* Foo
*
* See {Execution Shell}[rdoc-ref:Process@Execution+Shell] for details about the shell.
*
* Raises an exception if the new process could not execute.
*
* <b>Argument +exe_path+</b>
*
* Argument +exe_path+ is one of the following:
*
* - The string path to an executable to be called.
* - A 2-element array containing the path to an executable
* and the string to be used as the name of the executing process.
*
* Example:
*
* system('/usr/bin/date') # => true # Path to date on Unix-style system.
* system('foo') # => nil # Command failed.
*
* Output:
*
* Mon Aug 28 11:43:10 AM CDT 2023
*
* Assigns the command's error status to <tt>$?</tt>:
*
* system('/usr/bin/date') # => true
* $? # => #<Process::Status: pid 645605 exit 0>
* system('foo') # => nil
* $? # => #<Process::Status: pid 645608 exit 127>
*
* Ruby invokes the executable directly, with no shell and no shell expansion:
*
* system('doesnt_exist') # => nil
*
* If one or more +args+ is given, each is an argument or option
* to be passed to the executable:
*
* system('echo', 'C*') # => true
* system('echo', 'hello', 'world') # => true
*
* Output:
*
* C*
* hello world
*
* Raises an exception if the new process could not execute.
*/
static VALUE
rb_f_system(int argc, VALUE *argv, VALUE _)
{
VALUE execarg_obj = rb_execarg_new(argc, argv, TRUE, TRUE);
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
struct rb_process_status status = {0};
eargp->status = &status;
rb_last_status_clear();
// This function can set the thread's last status.
// May be different from waitpid_state.pid on exec failure.
rb_pid_t pid = rb_execarg_spawn(execarg_obj, 0, 0);
if (pid > 0) {
VALUE status = rb_process_status_wait(pid, 0);
struct rb_process_status *data = rb_check_typeddata(status, &rb_process_status_type);
// Set the last status:
rb_obj_freeze(status);
GET_THREAD()->last_status = status;
if (data->status == EXIT_SUCCESS) {
return Qtrue;
}
if (data->error != 0) {
if (eargp->exception) {
VALUE command = eargp->invoke.sh.shell_script;
RB_GC_GUARD(execarg_obj);
rb_syserr_fail_str(data->error, command);
}
else {
return Qnil;
}
}
else if (eargp->exception) {
VALUE command = eargp->invoke.sh.shell_script;
VALUE str = rb_str_new_cstr("Command failed with");
rb_str_cat_cstr(pst_message_status(str, data->status), ": ");
rb_str_append(str, command);
RB_GC_GUARD(execarg_obj);
rb_exc_raise(rb_exc_new_str(rb_eRuntimeError, str));
}
else {
return Qfalse;
}
RB_GC_GUARD(status);
}
if (eargp->exception) {
VALUE command = eargp->invoke.sh.shell_script;
RB_GC_GUARD(execarg_obj);
rb_syserr_fail_str(errno, command);
}
else {
return Qnil;
}
}
/*
* call-seq:
* spawn([env, ] command_line, options = {}) -> pid
* spawn([env, ] exe_path, *args, options = {}) -> pid
*
* Creates a new child process by doing one of the following
* in that process:
*
* - Passing string +command_line+ to the shell.
* - Invoking the executable at +exe_path+.
*
* This method has potential security vulnerabilities if called with untrusted input;
* see {Command Injection}[rdoc-ref:command_injection.rdoc].
*
* Returns the process ID (pid) of the new process,
* without waiting for it to complete.
*
* To avoid zombie processes, the parent process should call either:
*
* - Process.wait, to collect the termination statuses of its children.
* - Process.detach, to register disinterest in their status.
*
* The new process is created using the
* {exec system call}[https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/execve.html];
* it may inherit some of its environment from the calling program
* (possibly including open file descriptors).
*
* Argument +env+, if given, is a hash that affects +ENV+ for the new process;
* see {Execution Environment}[rdoc-ref:Process@Execution+Environment].
*
* Argument +options+ is a hash of options for the new process;
* see {Execution Options}[rdoc-ref:Process@Execution+Options].
*
* The first required argument is one of the following:
*
* - +command_line+ if it is a string,
* and if it begins with a shell reserved word or special built-in,
* or if it contains one or more meta characters.
* - +exe_path+ otherwise.
*
* <b>Argument +command_line+</b>
*
* \String argument +command_line+ is a command line to be passed to a shell;
* it must begin with a shell reserved word, begin with a special built-in,
* or contain meta characters:
*
* spawn('if true; then echo "Foo"; fi') # => 798847 # Shell reserved word.
* Process.wait # => 798847
* spawn('echo') # => 798848 # Built-in.
* Process.wait # => 798848
* spawn('date > /tmp/date.tmp') # => 798879 # Contains meta character.
* Process.wait # => 798849
* spawn('date > /nop/date.tmp') # => 798882 # Issues error message.
* Process.wait # => 798882
*
* The command line may also contain arguments and options for the command:
*
* spawn('echo "Foo"') # => 799031
* Process.wait # => 799031
*
* Output:
*
* Foo
*
* See {Execution Shell}[rdoc-ref:Process@Execution+Shell] for details about the shell.
*
* Raises an exception if the new process could not execute.
*
* <b>Argument +exe_path+</b>
*
* Argument +exe_path+ is one of the following:
*
* - The string path to an executable to be called.
* - A 2-element array containing the path to an executable
* and the string to be used as the name of the executing process.
*
* Example:
*
* spawn('/usr/bin/date') # => 799198 # Path to date on Unix-style system.
* Process.wait # => 799198
*
* Output:
*
* Thu Aug 31 10:06:48 AM CDT 2023
*
* Ruby invokes the executable directly, with no shell and no shell expansion.
*
* If one or more +args+ is given, each is an argument or option
* to be passed to the executable:
*
* spawn('echo', 'C*') # => 799392
* Process.wait # => 799392
* spawn('echo', 'hello', 'world') # => 799393
* Process.wait # => 799393
*
* Output:
*
* C*
* hello world
*
* Raises an exception if the new process could not execute.
*/
static VALUE
rb_f_spawn(int argc, VALUE *argv, VALUE _)
{
rb_pid_t pid;
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE);
eargp = rb_execarg_get(execarg_obj);
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg));
if (pid == -1) {
int err = errno;
rb_exec_fail(eargp, err, errmsg);
RB_GC_GUARD(execarg_obj);
rb_syserr_fail_str(err, fail_str);
}
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
return PIDT2NUM(pid);
#else
return Qnil;
#endif
}
/*
* call-seq:
* sleep(secs = nil) -> slept_secs
*
* Suspends execution of the current thread for the number of seconds
* specified by numeric argument +secs+, or forever if +secs+ is +nil+;
* returns the integer number of seconds suspended (rounded).
*
* Time.new # => 2008-03-08 19:56:19 +0900
* sleep 1.2 # => 1
* Time.new # => 2008-03-08 19:56:20 +0900
* sleep 1.9 # => 2
* Time.new # => 2008-03-08 19:56:22 +0900
*
*/
static VALUE
rb_f_sleep(int argc, VALUE *argv, VALUE _)
{
time_t beg = time(0);
VALUE scheduler = rb_fiber_scheduler_current();
if (scheduler != Qnil) {
rb_fiber_scheduler_kernel_sleepv(scheduler, argc, argv);
}
else {
if (argc == 0 || (argc == 1 && NIL_P(argv[0]))) {
rb_thread_sleep_forever();
}
else {
rb_check_arity(argc, 0, 1);
rb_thread_wait_for(rb_time_interval(argv[0]));
}
}
time_t end = time(0) - beg;
return TIMET2NUM(end);
}
#if (defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)) || defined(HAVE_GETPGID)
/*
* call-seq:
* Process.getpgrp -> integer
*
* Returns the process group ID for the current process:
*
* Process.getpgid(0) # => 25527
* Process.getpgrp # => 25527
*
*/
static VALUE
proc_getpgrp(VALUE _)
{
rb_pid_t pgrp;
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
pgrp = getpgrp();
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
pgrp = getpgid(0);
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#endif
}
#else
#define proc_getpgrp rb_f_notimplement
#endif
#if defined(HAVE_SETPGID) || (defined(HAVE_SETPGRP) && defined(SETPGRP_VOID))
/*
* call-seq:
* Process.setpgrp -> 0
*
* Equivalent to <tt>setpgid(0, 0)</tt>.
*
* Not available on all platforms.
*/
static VALUE
proc_setpgrp(VALUE _)
{
/* check for posix setpgid() first; this matches the posix */
/* getpgrp() above. It appears that configure will set SETPGRP_VOID */
/* even though setpgrp(0,0) would be preferred. The posix call avoids */
/* this confusion. */
#ifdef HAVE_SETPGID
if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
if (setpgrp() < 0) rb_sys_fail(0);
#endif
return INT2FIX(0);
}
#else
#define proc_setpgrp rb_f_notimplement
#endif
#if defined(HAVE_GETPGID)
/*
* call-seq:
* Process.getpgid(pid) -> integer
*
* Returns the process group ID for the given process ID +pid+:
*
* Process.getpgid(Process.ppid) # => 25527
*
* Not available on all platforms.
*/
static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
rb_pid_t i;
i = getpgid(NUM2PIDT(pid));
if (i < 0) rb_sys_fail(0);
return PIDT2NUM(i);
}
#else
#define proc_getpgid rb_f_notimplement
#endif
#ifdef HAVE_SETPGID
/*
* call-seq:
* Process.setpgid(pid, pgid) -> 0
*
* Sets the process group ID for the process given by process ID +pid+
* to +pgid+.
*
* Not available on all platforms.
*/
static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
rb_pid_t ipid, ipgrp;
ipid = NUM2PIDT(pid);
ipgrp = NUM2PIDT(pgrp);
if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
return INT2FIX(0);
}
#else
#define proc_setpgid rb_f_notimplement
#endif
#ifdef HAVE_GETSID
/*
* call-seq:
* Process.getsid(pid = nil) -> integer
*
* Returns the session ID of the given process ID +pid+,
* or of the current process if not given:
*
* Process.getsid # => 27422
* Process.getsid(0) # => 27422
* Process.getsid(Process.pid()) # => 27422
*
* Not available on all platforms.
*/
static VALUE
proc_getsid(int argc, VALUE *argv, VALUE _)
{
rb_pid_t sid;
rb_pid_t pid = 0;
if (rb_check_arity(argc, 0, 1) == 1 && !NIL_P(argv[0]))
pid = NUM2PIDT(argv[0]);
sid = getsid(pid);
if (sid < 0) rb_sys_fail(0);
return PIDT2NUM(sid);
}
#else
#define proc_getsid rb_f_notimplement
#endif
#if defined(HAVE_SETSID) || (defined(HAVE_SETPGRP) && defined(TIOCNOTTY))
#if !defined(HAVE_SETSID)
static rb_pid_t ruby_setsid(void);
#define setsid() ruby_setsid()
#endif
/*
* call-seq:
* Process.setsid -> integer
*
* Establishes the current process as a new session and process group leader,
* with no controlling tty;
* returns the session ID:
*
* Process.setsid # => 27422
*
* Not available on all platforms.
*/
static VALUE
proc_setsid(VALUE _)
{
rb_pid_t pid;
pid = setsid();
if (pid < 0) rb_sys_fail(0);
return PIDT2NUM(pid);
}
#if !defined(HAVE_SETSID)
#define HAVE_SETSID 1
static rb_pid_t
ruby_setsid(void)
{
rb_pid_t pid;
int ret;
pid = getpid();
#if defined(SETPGRP_VOID)
ret = setpgrp();
/* If `pid_t setpgrp(void)' is equivalent to setsid(),
`ret' will be the same value as `pid', and following open() will fail.
In Linux, `int setpgrp(void)' is equivalent to setpgid(0, 0). */
#else
ret = setpgrp(0, pid);
#endif
if (ret == -1) return -1;
if ((fd = rb_cloexec_open("/dev/tty", O_RDWR, 0)) >= 0) {
rb_update_max_fd(fd);
ioctl(fd, TIOCNOTTY, NULL);
close(fd);
}
return pid;
}
#endif
#else
#define proc_setsid rb_f_notimplement
#endif
#ifdef HAVE_GETPRIORITY
/*
* call-seq:
* Process.getpriority(kind, id) -> integer
*
* Returns the scheduling priority for specified process, process group,
* or user.
*
* Argument +kind+ is one of:
*
* - Process::PRIO_PROCESS: return priority for process.
* - Process::PRIO_PGRP: return priority for process group.
* - Process::PRIO_USER: return priority for user.
*
* Argument +id+ is the ID for the process, process group, or user;
* zero specified the current ID for +kind+.
*
* Examples:
*
* Process.getpriority(Process::PRIO_USER, 0) # => 19
* Process.getpriority(Process::PRIO_PROCESS, 0) # => 19
*
* Not available on all platforms.
*/
static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
int prio, iwhich, iwho;
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
errno = 0;
prio = getpriority(iwhich, iwho);
if (errno) rb_sys_fail(0);
return INT2FIX(prio);
}
#else
#define proc_getpriority rb_f_notimplement
#endif
#ifdef HAVE_GETPRIORITY
/*
* call-seq:
* Process.setpriority(kind, integer, priority) -> 0
*
* See Process.getpriority.
*
* Examples:
*
* Process.setpriority(Process::PRIO_USER, 0, 19) # => 0
* Process.setpriority(Process::PRIO_PROCESS, 0, 19) # => 0
* Process.getpriority(Process::PRIO_USER, 0) # => 19
* Process.getpriority(Process::PRIO_PROCESS, 0) # => 19
*
* Not available on all platforms.
*/
static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
int iwhich, iwho, iprio;
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
iprio = NUM2INT(prio);
if (setpriority(iwhich, iwho, iprio) < 0)
rb_sys_fail(0);
return INT2FIX(0);
}
#else
#define proc_setpriority rb_f_notimplement
#endif
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
static int
rlimit_resource_name2int(const char *name, long len, int casetype)
{
int resource;
const char *p;
#define RESCHECK(r) \
do { \
if (len == rb_strlen_lit(#r) && STRCASECMP(name, #r) == 0) { \
resource = RLIMIT_##r; \
goto found; \
} \
} while (0)
switch (TOUPPER(*name)) {
case 'A':
#ifdef RLIMIT_AS
RESCHECK(AS);
#endif
break;
case 'C':
#ifdef RLIMIT_CORE
RESCHECK(CORE);
#endif
#ifdef RLIMIT_CPU
RESCHECK(CPU);
#endif
break;
case 'D':
#ifdef RLIMIT_DATA
RESCHECK(DATA);
#endif
break;
case 'F':
#ifdef RLIMIT_FSIZE
RESCHECK(FSIZE);
#endif
break;
case 'M':
#ifdef RLIMIT_MEMLOCK
RESCHECK(MEMLOCK);
#endif
#ifdef RLIMIT_MSGQUEUE
RESCHECK(MSGQUEUE);
#endif
break;
case 'N':
#ifdef RLIMIT_NOFILE
RESCHECK(NOFILE);
#endif
#ifdef RLIMIT_NPROC
RESCHECK(NPROC);
#endif
#ifdef RLIMIT_NPTS
RESCHECK(NPTS);
#endif
#ifdef RLIMIT_NICE
RESCHECK(NICE);
#endif
break;
case 'R':
#ifdef RLIMIT_RSS
RESCHECK(RSS);
#endif
#ifdef RLIMIT_RTPRIO
RESCHECK(RTPRIO);
#endif
#ifdef RLIMIT_RTTIME
RESCHECK(RTTIME);
#endif
break;
case 'S':
#ifdef RLIMIT_STACK
RESCHECK(STACK);
#endif
#ifdef RLIMIT_SBSIZE
RESCHECK(SBSIZE);
#endif
#ifdef RLIMIT_SIGPENDING
RESCHECK(SIGPENDING);
#endif
break;
}
return -1;
found:
switch (casetype) {
case 0:
for (p = name; *p; p++)
if (!ISUPPER(*p))
return -1;
break;
case 1:
for (p = name; *p; p++)
if (!ISLOWER(*p))
return -1;
break;
default:
rb_bug("unexpected casetype");
}
return resource;
#undef RESCHECK
}
static int
rlimit_type_by_hname(const char *name, long len)
{
return rlimit_resource_name2int(name, len, 0);
}
static int
rlimit_type_by_lname(const char *name, long len)
{
return rlimit_resource_name2int(name, len, 1);
}
static int
rlimit_type_by_sym(VALUE key)
{
VALUE name = rb_sym2str(key);
const char *rname = RSTRING_PTR(name);
long len = RSTRING_LEN(name);
int rtype = -1;
static const char prefix[] = "rlimit_";
enum {prefix_len = sizeof(prefix)-1};
if (len > prefix_len && strncmp(prefix, rname, prefix_len) == 0) {
rtype = rlimit_type_by_lname(rname + prefix_len, len - prefix_len);
}
RB_GC_GUARD(key);
return rtype;
}
static int
rlimit_resource_type(VALUE rtype)
{
const char *name;
long len;
VALUE v;
int r;
switch (TYPE(rtype)) {
case T_SYMBOL:
v = rb_sym2str(rtype);
name = RSTRING_PTR(v);
len = RSTRING_LEN(v);
break;
default:
v = rb_check_string_type(rtype);
if (!NIL_P(v)) {
rtype = v;
case T_STRING:
name = StringValueCStr(rtype);
len = RSTRING_LEN(rtype);
break;
}
/* fall through */
case T_FIXNUM:
case T_BIGNUM:
return NUM2INT(rtype);
}
r = rlimit_type_by_hname(name, len);
if (r != -1)
return r;
rb_raise(rb_eArgError, "invalid resource name: % "PRIsVALUE, rtype);
UNREACHABLE_RETURN(-1);
}
static rlim_t
rlimit_resource_value(VALUE rval)
{
const char *name;
VALUE v;
switch (TYPE(rval)) {
case T_SYMBOL:
v = rb_sym2str(rval);
name = RSTRING_PTR(v);
break;
default:
v = rb_check_string_type(rval);
if (!NIL_P(v)) {
rval = v;
case T_STRING:
name = StringValueCStr(rval);
break;
}
/* fall through */
case T_FIXNUM:
case T_BIGNUM:
return NUM2RLIM(rval);
}
#ifdef RLIM_INFINITY
if (strcmp(name, "INFINITY") == 0) return RLIM_INFINITY;
#endif
#ifdef RLIM_SAVED_MAX
if (strcmp(name, "SAVED_MAX") == 0) return RLIM_SAVED_MAX;
#endif
#ifdef RLIM_SAVED_CUR
if (strcmp(name, "SAVED_CUR") == 0) return RLIM_SAVED_CUR;
#endif
rb_raise(rb_eArgError, "invalid resource value: %"PRIsVALUE, rval);
UNREACHABLE_RETURN((rlim_t)-1);
}
#endif
#if defined(HAVE_GETRLIMIT) && defined(RLIM2NUM)
/*
* call-seq:
* Process.getrlimit(resource) -> [cur_limit, max_limit]
*
* Returns a 2-element array of the current (soft) limit
* and maximum (hard) limit for the given +resource+.
*
* Argument +resource+ specifies the resource whose limits are to be returned;
* see Process.setrlimit.
*
* Each of the returned values +cur_limit+ and +max_limit+ is an integer;
* see Process.setrlimit.
*
* Example:
*
* Process.getrlimit(:CORE) # => [0, 18446744073709551615]
*
* See Process.setrlimit.
*
* Not available on all platforms.
*/
static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
struct rlimit rlim;
if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("getrlimit");
}
return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}
#else
#define proc_getrlimit rb_f_notimplement
#endif
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
/*
* call-seq:
* Process.setrlimit(resource, cur_limit, max_limit = cur_limit) -> nil
*
* Sets limits for the current process for the given +resource+
* to +cur_limit+ (soft limit) and +max_limit+ (hard limit);
* returns +nil+.
*
* Argument +resource+ specifies the resource whose limits are to be set;
* the argument may be given as a symbol, as a string, or as a constant
* beginning with <tt>Process::RLIMIT_</tt>
* (e.g., +:CORE+, <tt>'CORE'</tt>, or <tt>Process::RLIMIT_CORE</tt>.
*
* The resources available and supported are system-dependent,
* and may include (here expressed as symbols):
*
* - +:AS+: Total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD except 4.4BSD-Lite).
* - +:CORE+: Core size (bytes) (SUSv3).
* - +:CPU+: CPU time (seconds) (SUSv3).
* - +:DATA+: Data segment (bytes) (SUSv3).
* - +:FSIZE+: File size (bytes) (SUSv3).
* - +:MEMLOCK+: Total size for mlock(2) (bytes) (4.4BSD, GNU/Linux).
* - +:MSGQUEUE+: Allocation for POSIX message queues (bytes) (GNU/Linux).
* - +:NICE+: Ceiling on process's nice(2) value (number) (GNU/Linux).
* - +:NOFILE+: File descriptors (number) (SUSv3).
* - +:NPROC+: Number of processes for the user (number) (4.4BSD, GNU/Linux).
* - +:NPTS+: Number of pseudo terminals (number) (FreeBSD).
* - +:RSS+: Resident memory size (bytes) (4.2BSD, GNU/Linux).
* - +:RTPRIO+: Ceiling on the process's real-time priority (number) (GNU/Linux).
* - +:RTTIME+: CPU time for real-time process (us) (GNU/Linux).
* - +:SBSIZE+: All socket buffers (bytes) (NetBSD, FreeBSD).
* - +:SIGPENDING+: Number of queued signals allowed (signals) (GNU/Linux).
* - +:STACK+: Stack size (bytes) (SUSv3).
*
* Arguments +cur_limit+ and +max_limit+ may be:
*
* - Integers (+max_limit+ should not be smaller than +cur_limit+).
* - Symbol +:SAVED_MAX+, string <tt>'SAVED_MAX'</tt>,
* or constant <tt>Process::RLIM_SAVED_MAX</tt>: saved maximum limit.
* - Symbol +:SAVED_CUR+, string <tt>'SAVED_CUR'</tt>,
* or constant <tt>Process::RLIM_SAVED_CUR</tt>: saved current limit.
* - Symbol +:INFINITY+, string <tt>'INFINITY'</tt>,
* or constant <tt>Process::RLIM_INFINITY</tt>: no limit on resource.
*
* This example raises the soft limit of core size to
* the hard limit to try to make core dump possible:
*
* Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
*
* Not available on all platforms.
*/
static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
VALUE resource, rlim_cur, rlim_max;
struct rlimit rlim;
rb_check_arity(argc, 2, 3);
resource = argv[0];
rlim_cur = argv[1];
if (argc < 3 || NIL_P(rlim_max = argv[2]))
rlim_max = rlim_cur;
rlim.rlim_cur = rlimit_resource_value(rlim_cur);
rlim.rlim_max = rlimit_resource_value(rlim_max);
if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("setrlimit");
}
return Qnil;
}
#else
#define proc_setrlimit rb_f_notimplement
#endif
static int under_uid_switch = 0;
static void
check_uid_switch(void)
{
if (under_uid_switch) {
rb_raise(rb_eRuntimeError, "can't handle UID while evaluating block given to Process::UID.switch method");
}
}
static int under_gid_switch = 0;
static void
check_gid_switch(void)
{
if (under_gid_switch) {
rb_raise(rb_eRuntimeError, "can't handle GID while evaluating block given to Process::UID.switch method");
}
}
#if defined(HAVE_PWD_H)
/**
* Best-effort attempt to obtain the name of the login user, if any,
* associated with the process. Processes not descended from login(1) (or
* similar) may not have a logged-in user; returns Qnil in that case.
*/
VALUE
rb_getlogin(void)
{
#if ( !defined(USE_GETLOGIN_R) && !defined(USE_GETLOGIN) )
return Qnil;
#else
char MAYBE_UNUSED(*login) = NULL;
# ifdef USE_GETLOGIN_R
#if defined(__FreeBSD__)
typedef int getlogin_r_size_t;
#else
typedef size_t getlogin_r_size_t;
#endif
long loginsize = GETLOGIN_R_SIZE_INIT; /* maybe -1 */
if (loginsize < 0)
loginsize = GETLOGIN_R_SIZE_DEFAULT;
VALUE maybe_result = rb_str_buf_new(loginsize);
login = RSTRING_PTR(maybe_result);
loginsize = rb_str_capacity(maybe_result);
rb_str_set_len(maybe_result, loginsize);
int gle;
errno = 0;
while ((gle = getlogin_r(login, (getlogin_r_size_t)loginsize)) != 0) {
if (gle == ENOTTY || gle == ENXIO || gle == ENOENT) {
rb_str_resize(maybe_result, 0);
return Qnil;
}
if (gle != ERANGE || loginsize >= GETLOGIN_R_SIZE_LIMIT) {
rb_str_resize(maybe_result, 0);
rb_syserr_fail(gle, "getlogin_r");
}
rb_str_modify_expand(maybe_result, loginsize);
login = RSTRING_PTR(maybe_result);
loginsize = rb_str_capacity(maybe_result);
}
if (login == NULL) {
rb_str_resize(maybe_result, 0);
return Qnil;
}
return maybe_result;
# elif USE_GETLOGIN
errno = 0;
login = getlogin();
if (errno) {
if (errno == ENOTTY || errno == ENXIO || errno == ENOENT) {
return Qnil;
}
rb_syserr_fail(errno, "getlogin");
}
return login ? rb_str_new_cstr(login) : Qnil;
# endif
#endif
}
VALUE
rb_getpwdirnam_for_login(VALUE login_name)
{
#if ( !defined(USE_GETPWNAM_R) && !defined(USE_GETPWNAM) )
return Qnil;
#else
if (NIL_P(login_name)) {
/* nothing to do; no name with which to query the password database */
return Qnil;
}
char *login = RSTRING_PTR(login_name);
struct passwd *pwptr;
# ifdef USE_GETPWNAM_R
struct passwd pwdnm;
char *bufnm;
long bufsizenm = GETPW_R_SIZE_INIT; /* maybe -1 */
if (bufsizenm < 0)
bufsizenm = GETPW_R_SIZE_DEFAULT;
VALUE getpwnm_tmp = rb_str_tmp_new(bufsizenm);
bufnm = RSTRING_PTR(getpwnm_tmp);
bufsizenm = rb_str_capacity(getpwnm_tmp);
rb_str_set_len(getpwnm_tmp, bufsizenm);
int enm;
errno = 0;
while ((enm = getpwnam_r(login, &pwdnm, bufnm, bufsizenm, &pwptr)) != 0) {
if (enm == ENOENT || enm== ESRCH || enm == EBADF || enm == EPERM) {
/* not found; non-errors */
rb_str_resize(getpwnm_tmp, 0);
return Qnil;
}
if (enm != ERANGE || bufsizenm >= GETPW_R_SIZE_LIMIT) {
rb_str_resize(getpwnm_tmp, 0);
rb_syserr_fail(enm, "getpwnam_r");
}
rb_str_modify_expand(getpwnm_tmp, bufsizenm);
bufnm = RSTRING_PTR(getpwnm_tmp);
bufsizenm = rb_str_capacity(getpwnm_tmp);
}
if (pwptr == NULL) {
/* no record in the password database for the login name */
rb_str_resize(getpwnm_tmp, 0);
return Qnil;
}
/* found it */
VALUE result = rb_str_new_cstr(pwptr->pw_dir);
rb_str_resize(getpwnm_tmp, 0);
return result;
# elif USE_GETPWNAM
errno = 0;
pwptr = getpwnam(login);
if (pwptr) {
/* found it */
return rb_str_new_cstr(pwptr->pw_dir);
}
if (errno
/* avoid treating as errors errno values that indicate "not found" */
&& ( errno != ENOENT && errno != ESRCH && errno != EBADF && errno != EPERM)) {
rb_syserr_fail(errno, "getpwnam");
}
return Qnil; /* not found */
# endif
#endif
}
/**
* Look up the user's dflt home dir in the password db, by uid.
*/
VALUE
rb_getpwdiruid(void)
{
# if !defined(USE_GETPWUID_R) && !defined(USE_GETPWUID)
/* Should never happen... </famous-last-words> */
return Qnil;
# else
uid_t ruid = getuid();
struct passwd *pwptr;
# ifdef USE_GETPWUID_R
struct passwd pwdid;
char *bufid;
long bufsizeid = GETPW_R_SIZE_INIT; /* maybe -1 */
if (bufsizeid < 0)
bufsizeid = GETPW_R_SIZE_DEFAULT;
VALUE getpwid_tmp = rb_str_tmp_new(bufsizeid);
bufid = RSTRING_PTR(getpwid_tmp);
bufsizeid = rb_str_capacity(getpwid_tmp);
rb_str_set_len(getpwid_tmp, bufsizeid);
int eid;
errno = 0;
while ((eid = getpwuid_r(ruid, &pwdid, bufid, bufsizeid, &pwptr)) != 0) {
if (eid == ENOENT || eid== ESRCH || eid == EBADF || eid == EPERM) {
/* not found; non-errors */
rb_str_resize(getpwid_tmp, 0);
return Qnil;
}
if (eid != ERANGE || bufsizeid >= GETPW_R_SIZE_LIMIT) {
rb_str_resize(getpwid_tmp, 0);
rb_syserr_fail(eid, "getpwuid_r");
}
rb_str_modify_expand(getpwid_tmp, bufsizeid);
bufid = RSTRING_PTR(getpwid_tmp);
bufsizeid = rb_str_capacity(getpwid_tmp);
}
if (pwptr == NULL) {
/* no record in the password database for the uid */
rb_str_resize(getpwid_tmp, 0);
return Qnil;
}
/* found it */
VALUE result = rb_str_new_cstr(pwptr->pw_dir);
rb_str_resize(getpwid_tmp, 0);
return result;
# elif defined(USE_GETPWUID)
errno = 0;
pwptr = getpwuid(ruid);
if (pwptr) {
/* found it */
return rb_str_new_cstr(pwptr->pw_dir);
}
if (errno
/* avoid treating as errors errno values that indicate "not found" */
&& ( errno == ENOENT || errno == ESRCH || errno == EBADF || errno == EPERM)) {
rb_syserr_fail(errno, "getpwuid");
}
return Qnil; /* not found */
# endif
#endif /* !defined(USE_GETPWUID_R) && !defined(USE_GETPWUID) */
}
#endif /* HAVE_PWD_H */
/*********************************************************************
* Document-class: Process::Sys
*
* The Process::Sys module contains UID and GID
* functions which provide direct bindings to the system calls of the
* same names instead of the more-portable versions of the same
* functionality found in the Process,
* Process::UID, and Process::GID modules.
*/
#if defined(HAVE_PWD_H)
static rb_uid_t
obj2uid(VALUE id
# ifdef USE_GETPWNAM_R
, VALUE *getpw_tmp
# endif
)
{
rb_uid_t uid;
VALUE tmp;
if (FIXNUM_P(id) || NIL_P(tmp = rb_check_string_type(id))) {
uid = NUM2UIDT(id);
}
else {
const char *usrname = StringValueCStr(id);
struct passwd *pwptr;
#ifdef USE_GETPWNAM_R
struct passwd pwbuf;
char *getpw_buf;
long getpw_buf_len;
int e;
if (!*getpw_tmp) {
getpw_buf_len = GETPW_R_SIZE_INIT;
if (getpw_buf_len < 0) getpw_buf_len = GETPW_R_SIZE_DEFAULT;
*getpw_tmp = rb_str_tmp_new(getpw_buf_len);
}
getpw_buf = RSTRING_PTR(*getpw_tmp);
getpw_buf_len = rb_str_capacity(*getpw_tmp);
rb_str_set_len(*getpw_tmp, getpw_buf_len);
errno = 0;
while ((e = getpwnam_r(usrname, &pwbuf, getpw_buf, getpw_buf_len, &pwptr)) != 0) {
if (e != ERANGE || getpw_buf_len >= GETPW_R_SIZE_LIMIT) {
rb_str_resize(*getpw_tmp, 0);
rb_syserr_fail(e, "getpwnam_r");
}
rb_str_modify_expand(*getpw_tmp, getpw_buf_len);
getpw_buf = RSTRING_PTR(*getpw_tmp);
getpw_buf_len = rb_str_capacity(*getpw_tmp);
}
#else
pwptr = getpwnam(usrname);
#endif
if (!pwptr) {
#ifndef USE_GETPWNAM_R
endpwent();
#endif
rb_raise(rb_eArgError, "can't find user for %"PRIsVALUE, id);
}
uid = pwptr->pw_uid;
#ifndef USE_GETPWNAM_R
endpwent();
#endif
}
return uid;
}
# ifdef p_uid_from_name
/*
* call-seq:
* Process::UID.from_name(name) -> uid
*
* Get the user ID by the _name_.
* If the user is not found, +ArgumentError+ will be raised.
*
* Process::UID.from_name("root") #=> 0
* Process::UID.from_name("nosuchuser") #=> can't find user for nosuchuser (ArgumentError)
*/
static VALUE
p_uid_from_name(VALUE self, VALUE id)
{
return UIDT2NUM(OBJ2UID(id));
}
# endif
#endif
#if defined(HAVE_GRP_H)
static rb_gid_t
obj2gid(VALUE id
# ifdef USE_GETGRNAM_R
, VALUE *getgr_tmp
# endif
)
{
rb_gid_t gid;
VALUE tmp;
if (FIXNUM_P(id) || NIL_P(tmp = rb_check_string_type(id))) {
gid = NUM2GIDT(id);
}
else {
const char *grpname = StringValueCStr(id);
struct group *grptr;
#ifdef USE_GETGRNAM_R
struct group grbuf;
char *getgr_buf;
long getgr_buf_len;
int e;
if (!*getgr_tmp) {
getgr_buf_len = GETGR_R_SIZE_INIT;
if (getgr_buf_len < 0) getgr_buf_len = GETGR_R_SIZE_DEFAULT;
*getgr_tmp = rb_str_tmp_new(getgr_buf_len);
}
getgr_buf = RSTRING_PTR(*getgr_tmp);
getgr_buf_len = rb_str_capacity(*getgr_tmp);
rb_str_set_len(*getgr_tmp, getgr_buf_len);
errno = 0;
while ((e = getgrnam_r(grpname, &grbuf, getgr_buf, getgr_buf_len, &grptr)) != 0) {
if (e != ERANGE || getgr_buf_len >= GETGR_R_SIZE_LIMIT) {
rb_str_resize(*getgr_tmp, 0);
rb_syserr_fail(e, "getgrnam_r");
}
rb_str_modify_expand(*getgr_tmp, getgr_buf_len);
getgr_buf = RSTRING_PTR(*getgr_tmp);
getgr_buf_len = rb_str_capacity(*getgr_tmp);
}
#elif defined(HAVE_GETGRNAM)
grptr = getgrnam(grpname);
#else
grptr = NULL;
#endif
if (!grptr) {
#if !defined(USE_GETGRNAM_R) && defined(HAVE_ENDGRENT)
endgrent();
#endif
rb_raise(rb_eArgError, "can't find group for %"PRIsVALUE, id);
}
gid = grptr->gr_gid;
#if !defined(USE_GETGRNAM_R) && defined(HAVE_ENDGRENT)
endgrent();
#endif
}
return gid;
}
# ifdef p_gid_from_name
/*
* call-seq:
* Process::GID.from_name(name) -> gid
*
* Get the group ID by the _name_.
* If the group is not found, +ArgumentError+ will be raised.
*
* Process::GID.from_name("wheel") #=> 0
* Process::GID.from_name("nosuchgroup") #=> can't find group for nosuchgroup (ArgumentError)
*/
static VALUE
p_gid_from_name(VALUE self, VALUE id)
{
return GIDT2NUM(OBJ2GID(id));
}
# endif
#endif
#if defined HAVE_SETUID
/*
* call-seq:
* Process::Sys.setuid(user) -> nil
*
* Set the user ID of the current process to _user_. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setuid(VALUE obj, VALUE id)
{
check_uid_switch();
if (setuid(OBJ2UID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setuid rb_f_notimplement
#endif
#if defined HAVE_SETRUID
/*
* call-seq:
* Process::Sys.setruid(user) -> nil
*
* Set the real user ID of the calling process to _user_.
* Not available on all platforms.
*
*/
static VALUE
p_sys_setruid(VALUE obj, VALUE id)
{
check_uid_switch();
if (setruid(OBJ2UID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setruid rb_f_notimplement
#endif
#if defined HAVE_SETEUID
/*
* call-seq:
* Process::Sys.seteuid(user) -> nil
*
* Set the effective user ID of the calling process to
* _user_. Not available on all platforms.
*
*/
static VALUE
p_sys_seteuid(VALUE obj, VALUE id)
{
check_uid_switch();
if (seteuid(OBJ2UID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_seteuid rb_f_notimplement
#endif
#if defined HAVE_SETREUID
/*
* call-seq:
* Process::Sys.setreuid(rid, eid) -> nil
*
* Sets the (user) real and/or effective user IDs of the current
* process to _rid_ and _eid_, respectively. A value of
* <code>-1</code> for either means to leave that ID unchanged. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setreuid(VALUE obj, VALUE rid, VALUE eid)
{
rb_uid_t ruid, euid;
PREPARE_GETPWNAM;
check_uid_switch();
ruid = OBJ2UID1(rid);
euid = OBJ2UID1(eid);
FINISH_GETPWNAM;
if (setreuid(ruid, euid) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setreuid rb_f_notimplement
#endif
#if defined HAVE_SETRESUID
/*
* call-seq:
* Process::Sys.setresuid(rid, eid, sid) -> nil
*
* Sets the (user) real, effective, and saved user IDs of the
* current process to _rid_, _eid_, and _sid_ respectively. A
* value of <code>-1</code> for any value means to
* leave that ID unchanged. Not available on all platforms.
*
*/
static VALUE
p_sys_setresuid(VALUE obj, VALUE rid, VALUE eid, VALUE sid)
{
rb_uid_t ruid, euid, suid;
PREPARE_GETPWNAM;
check_uid_switch();
ruid = OBJ2UID1(rid);
euid = OBJ2UID1(eid);
suid = OBJ2UID1(sid);
FINISH_GETPWNAM;
if (setresuid(ruid, euid, suid) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setresuid rb_f_notimplement
#endif
/*
* call-seq:
* Process.uid -> integer
* Process::UID.rid -> integer
* Process::Sys.getuid -> integer
*
* Returns the (real) user ID of the current process.
*
* Process.uid # => 1000
*
*/
static VALUE
proc_getuid(VALUE obj)
{
rb_uid_t uid = getuid();
return UIDT2NUM(uid);
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETRUID) || defined(HAVE_SETUID)
/*
* call-seq:
* Process.uid = new_uid -> new_uid
*
* Sets the (user) user ID for the current process to +new_uid+:
*
* Process.uid = 1000 # => 1000
*
* Not available on all platforms.
*/
static VALUE
proc_setuid(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
{
if (geteuid() == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return id;
}
#else
#define proc_setuid rb_f_notimplement
#endif
/********************************************************************
*
* Document-class: Process::UID
*
* The Process::UID module contains a collection of
* module functions which can be used to portably get, set, and
* switch the current process's real, effective, and saved user IDs.
*
*/
static rb_uid_t SAVED_USER_ID = -1;
#ifdef BROKEN_SETREUID
int
setreuid(rb_uid_t ruid, rb_uid_t euid)
{
if (ruid != (rb_uid_t)-1 && ruid != getuid()) {
if (euid == (rb_uid_t)-1) euid = geteuid();
if (setuid(ruid) < 0) return -1;
}
if (euid != (rb_uid_t)-1 && euid != geteuid()) {
if (seteuid(euid) < 0) return -1;
}
return 0;
}
#endif
/*
* call-seq:
* Process::UID.change_privilege(user) -> integer
*
* Change the current process's real and effective user ID to that
* specified by _user_. Returns the new user ID. Not
* available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 0]
* Process::UID.change_privilege(31) #=> 31
* [Process.uid, Process.euid] #=> [31, 31]
*/
static VALUE
p_uid_change_privilege(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = OBJ2UID(id);
if (geteuid() == 0) { /* root-user */
#if defined(HAVE_SETRESUID)
if (setresuid(uid, uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETUID)
if (setuid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (getuid() == uid) {
if (SAVED_USER_ID == uid) {
if (setreuid(-1, uid) < 0) rb_sys_fail(0);
}
else {
if (uid == 0) { /* (r,e,s) == (root, root, x) */
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0);
if (setreuid(SAVED_USER_ID, 0) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0; /* (r,e,s) == (x, root, root) */
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
else {
if (setreuid(0, -1) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
}
}
else {
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID)
if (getuid() == uid) {
if (SAVED_USER_ID == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
}
else {
if (uid == 0) {
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (setruid(0) < 0) rb_sys_fail(0);
}
else {
if (setruid(0) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
}
}
else {
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
#else
(void)uid;
rb_notimplement();
#endif
}
else { /* unprivileged user */
#if defined(HAVE_SETRESUID)
if (setresuid((getuid() == uid)? (rb_uid_t)-1: uid,
(geteuid() == uid)? (rb_uid_t)-1: uid,
(SAVED_USER_ID == uid)? (rb_uid_t)-1: uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (SAVED_USER_ID == uid) {
if (setreuid((getuid() == uid)? (rb_uid_t)-1: uid,
(geteuid() == uid)? (rb_uid_t)-1: uid) < 0)
rb_sys_fail(0);
}
else if (getuid() != uid) {
if (setreuid(uid, (geteuid() == uid)? (rb_uid_t)-1: uid) < 0)
rb_sys_fail(0);
SAVED_USER_ID = uid;
}
else if (/* getuid() == uid && */ geteuid() != uid) {
if (setreuid(geteuid(), uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
}
else { /* getuid() == uid && geteuid() == uid */
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0);
if (setreuid(SAVED_USER_ID, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID)
if (SAVED_USER_ID == uid) {
if (geteuid() != uid && seteuid(uid) < 0) rb_sys_fail(0);
if (getuid() != uid && setruid(uid) < 0) rb_sys_fail(0);
}
else if (/* SAVED_USER_ID != uid && */ geteuid() == uid) {
if (getuid() != uid) {
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
else {
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setruid(uid) < 0) rb_sys_fail(0);
}
}
else if (/* geteuid() != uid && */ getuid() == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setruid(uid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_44BSD_SETUID
if (getuid() == uid) {
/* (r,e,s)==(uid,?,?) ==> (uid,uid,uid) */
if (setuid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_SETEUID
if (getuid() == uid && SAVED_USER_ID == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_SETUID
if (getuid() == uid && SAVED_USER_ID == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#else
rb_notimplement();
#endif
}
return id;
}
#if defined HAVE_SETGID
/*
* call-seq:
* Process::Sys.setgid(group) -> nil
*
* Set the group ID of the current process to _group_. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setgid(VALUE obj, VALUE id)
{
check_gid_switch();
if (setgid(OBJ2GID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setgid rb_f_notimplement
#endif
#if defined HAVE_SETRGID
/*
* call-seq:
* Process::Sys.setrgid(group) -> nil
*
* Set the real group ID of the calling process to _group_.
* Not available on all platforms.
*
*/
static VALUE
p_sys_setrgid(VALUE obj, VALUE id)
{
check_gid_switch();
if (setrgid(OBJ2GID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setrgid rb_f_notimplement
#endif
#if defined HAVE_SETEGID
/*
* call-seq:
* Process::Sys.setegid(group) -> nil
*
* Set the effective group ID of the calling process to
* _group_. Not available on all platforms.
*
*/
static VALUE
p_sys_setegid(VALUE obj, VALUE id)
{
check_gid_switch();
if (setegid(OBJ2GID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setegid rb_f_notimplement
#endif
#if defined HAVE_SETREGID
/*
* call-seq:
* Process::Sys.setregid(rid, eid) -> nil
*
* Sets the (group) real and/or effective group IDs of the current
* process to <em>rid</em> and <em>eid</em>, respectively. A value of
* <code>-1</code> for either means to leave that ID unchanged. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setregid(VALUE obj, VALUE rid, VALUE eid)
{
rb_gid_t rgid, egid;
check_gid_switch();
rgid = OBJ2GID(rid);
egid = OBJ2GID(eid);
if (setregid(rgid, egid) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setregid rb_f_notimplement
#endif
#if defined HAVE_SETRESGID
/*
* call-seq:
* Process::Sys.setresgid(rid, eid, sid) -> nil
*
* Sets the (group) real, effective, and saved user IDs of the
* current process to <em>rid</em>, <em>eid</em>, and <em>sid</em>
* respectively. A value of <code>-1</code> for any value means to
* leave that ID unchanged. Not available on all platforms.
*
*/
static VALUE
p_sys_setresgid(VALUE obj, VALUE rid, VALUE eid, VALUE sid)
{
rb_gid_t rgid, egid, sgid;
check_gid_switch();
rgid = OBJ2GID(rid);
egid = OBJ2GID(eid);
sgid = OBJ2GID(sid);
if (setresgid(rgid, egid, sgid) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setresgid rb_f_notimplement
#endif
#if defined HAVE_ISSETUGID
/*
* call-seq:
* Process::Sys.issetugid -> true or false
*
* Returns +true+ if the process was created as a result
* of an execve(2) system call which had either of the setuid or
* setgid bits set (and extra privileges were given as a result) or
* if it has changed any of its real, effective or saved user or
* group IDs since it began execution.
*
*/
static VALUE
p_sys_issetugid(VALUE obj)
{
return RBOOL(issetugid());
}
#else
#define p_sys_issetugid rb_f_notimplement
#endif
/*
* call-seq:
* Process.gid -> integer
* Process::GID.rid -> integer
* Process::Sys.getgid -> integer
*
* Returns the (real) group ID for the current process:
*
* Process.gid # => 1000
*
*/
static VALUE
proc_getgid(VALUE obj)
{
rb_gid_t gid = getgid();
return GIDT2NUM(gid);
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETRGID) || defined(HAVE_SETGID)
/*
* call-seq:
* Process.gid = new_gid -> new_gid
*
* Sets the group ID for the current process to +new_gid+:
*
* Process.gid = 1000 # => 1000
*
*/
static VALUE
proc_setgid(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
{
if (getegid() == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return GIDT2NUM(gid);
}
#else
#define proc_setgid rb_f_notimplement
#endif
#if defined(_SC_NGROUPS_MAX) || defined(NGROUPS_MAX)
/*
* Maximum supplementary groups are platform dependent.
* FWIW, 65536 is enough big for our supported OSs.
*
* OS Name max groups
* -----------------------------------------------
* Linux Kernel >= 2.6.3 65536
* Linux Kernel < 2.6.3 32
* IBM AIX 5.2 64
* IBM AIX 5.3 ... 6.1 128
* IBM AIX 7.1 128 (can be configured to be up to 2048)
* OpenBSD, NetBSD 16
* FreeBSD < 8.0 16
* FreeBSD >=8.0 1023
* Darwin (Mac OS X) 16
* Sun Solaris 7,8,9,10 16
* Sun Solaris 11 / OpenSolaris 1024
* Windows 1015
*/
static int _maxgroups = -1;
static int
get_sc_ngroups_max(void)
{
#ifdef _SC_NGROUPS_MAX
return (int)sysconf(_SC_NGROUPS_MAX);
#elif defined(NGROUPS_MAX)
return (int)NGROUPS_MAX;
#else
return -1;
#endif
}
static int
maxgroups(void)
{
if (_maxgroups < 0) {
_maxgroups = get_sc_ngroups_max();
if (_maxgroups < 0)
_maxgroups = RB_MAX_GROUPS;
}
return _maxgroups;
}
#endif
#ifdef HAVE_GETGROUPS
/*
* call-seq:
* Process.groups -> array
*
* Returns an array of the group IDs
* in the supplemental group access list for the current process:
*
* Process.groups # => [4, 24, 27, 30, 46, 122, 135, 136, 1000]
*
* These properties of the returned array are system-dependent:
*
* - Whether (and how) the array is sorted.
* - Whether the array includes effective group IDs.
* - Whether the array includes duplicate group IDs.
* - Whether the array size exceeds the value of Process.maxgroups.
*
* Use this call to get a sorted and unique array:
*
* Process.groups.uniq.sort
*
*/
static VALUE
proc_getgroups(VALUE obj)
{
VALUE ary, tmp;
int i, ngroups;
rb_gid_t *groups;
ngroups = getgroups(0, NULL);
if (ngroups == -1)
rb_sys_fail(0);
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
ngroups = getgroups(ngroups, groups);
if (ngroups == -1)
rb_sys_fail(0);
ary = rb_ary_new();
for (i = 0; i < ngroups; i++)
rb_ary_push(ary, GIDT2NUM(groups[i]));
ALLOCV_END(tmp);
return ary;
}
#else
#define proc_getgroups rb_f_notimplement
#endif
#ifdef HAVE_SETGROUPS
/*
* call-seq:
* Process.groups = new_groups -> new_groups
*
* Sets the supplemental group access list to the given
* array of group IDs.
*
* Process.groups # => [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
* Process.groups = [27, 6, 10, 11] # => [27, 6, 10, 11]
* Process.groups # => [27, 6, 10, 11]
*
*/
static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
int ngroups, i;
rb_gid_t *groups;
VALUE tmp;
PREPARE_GETGRNAM;
Check_Type(ary, T_ARRAY);
ngroups = RARRAY_LENINT(ary);
if (ngroups > maxgroups())
rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
for (i = 0; i < ngroups; i++) {
VALUE g = RARRAY_AREF(ary, i);
groups[i] = OBJ2GID1(g);
}
FINISH_GETGRNAM;
if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
rb_sys_fail(0);
ALLOCV_END(tmp);
return proc_getgroups(obj);
}
#else
#define proc_setgroups rb_f_notimplement
#endif
#ifdef HAVE_INITGROUPS
/*
* call-seq:
* Process.initgroups(username, gid) -> array
*
* Sets the supplemental group access list;
* the new list includes:
*
* - The group IDs of those groups to which the user given by +username+ belongs.
* - The group ID +gid+.
*
* Example:
*
* Process.groups # => [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
* Process.initgroups('me', 30) # => [30, 6, 10, 11]
* Process.groups # => [30, 6, 10, 11]
*
* Not available on all platforms.
*/
static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
if (initgroups(StringValueCStr(uname), OBJ2GID(base_grp)) != 0) {
rb_sys_fail(0);
}
return proc_getgroups(obj);
}
#else
#define proc_initgroups rb_f_notimplement
#endif
#if defined(_SC_NGROUPS_MAX) || defined(NGROUPS_MAX)
/*
* call-seq:
* Process.maxgroups -> integer
*
* Returns the maximum number of group IDs allowed
* in the supplemental group access list:
*
* Process.maxgroups # => 32
*
*/
static VALUE
proc_getmaxgroups(VALUE obj)
{
return INT2FIX(maxgroups());
}
#else
#define proc_getmaxgroups rb_f_notimplement
#endif
#ifdef HAVE_SETGROUPS
/*
* call-seq:
* Process.maxgroups = new_max -> new_max
*
* Sets the maximum number of group IDs allowed
* in the supplemental group access list.
*/
static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
int ngroups = FIX2INT(val);
int ngroups_max = get_sc_ngroups_max();
if (ngroups <= 0)
rb_raise(rb_eArgError, "maxgroups %d should be positive", ngroups);
if (ngroups > RB_MAX_GROUPS)
ngroups = RB_MAX_GROUPS;
if (ngroups_max > 0 && ngroups > ngroups_max)
ngroups = ngroups_max;
_maxgroups = ngroups;
return INT2FIX(_maxgroups);
}
#else
#define proc_setmaxgroups rb_f_notimplement
#endif
#if defined(HAVE_DAEMON) || (defined(HAVE_WORKING_FORK) && defined(HAVE_SETSID))
static int rb_daemon(int nochdir, int noclose);
/*
* call-seq:
* Process.daemon(nochdir = nil, noclose = nil) -> 0
*
* Detaches the current process from its controlling terminal
* and runs it in the background as system daemon;
* returns zero.
*
* By default:
*
* - Changes the current working directory to the root directory.
* - Redirects $stdin, $stdout, and $stderr to the null device.
*
* If optional argument +nochdir+ is +true+,
* does not change the current working directory.
*
* If optional argument +noclose+ is +true+,
* does not redirect $stdin, $stdout, or $stderr.
*/
static VALUE
proc_daemon(int argc, VALUE *argv, VALUE _)
{
int n, nochdir = FALSE, noclose = FALSE;
switch (rb_check_arity(argc, 0, 2)) {
case 2: noclose = TO_BOOL(argv[1], "noclose");
case 1: nochdir = TO_BOOL(argv[0], "nochdir");
}
prefork();
n = rb_daemon(nochdir, noclose);
if (n < 0) rb_sys_fail("daemon");
return INT2FIX(n);
}
extern const char ruby_null_device[];
static int
rb_daemon(int nochdir, int noclose)
{
int err = 0;
#ifdef HAVE_DAEMON
before_fork_ruby();
err = daemon(nochdir, noclose);
after_fork_ruby(0);
#else
int n;
switch (rb_fork_ruby(NULL)) {
case -1: return -1;
case 0: break;
default: _exit(EXIT_SUCCESS);
}
/* ignore EPERM which means already being process-leader */
if (setsid() < 0) (void)0;
if (!nochdir)
err = chdir("/");
if (!noclose && (n = rb_cloexec_open(ruby_null_device, O_RDWR, 0)) != -1) {
rb_update_max_fd(n);
(void)dup2(n, 0);
(void)dup2(n, 1);
(void)dup2(n, 2);
if (n > 2)
(void)close (n);
}
#endif
return err;
}
#else
#define proc_daemon rb_f_notimplement
#endif
/********************************************************************
*
* Document-class: Process::GID
*
* The Process::GID module contains a collection of
* module functions which can be used to portably get, set, and
* switch the current process's real, effective, and saved group IDs.
*
*/
static rb_gid_t SAVED_GROUP_ID = -1;
#ifdef BROKEN_SETREGID
int
setregid(rb_gid_t rgid, rb_gid_t egid)
{
if (rgid != (rb_gid_t)-1 && rgid != getgid()) {
if (egid == (rb_gid_t)-1) egid = getegid();
if (setgid(rgid) < 0) return -1;
}
if (egid != (rb_gid_t)-1 && egid != getegid()) {
if (setegid(egid) < 0) return -1;
}
return 0;
}
#endif
/*
* call-seq:
* Process::GID.change_privilege(group) -> integer
*
* Change the current process's real and effective group ID to that
* specified by _group_. Returns the new group ID. Not
* available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 0]
* Process::GID.change_privilege(33) #=> 33
* [Process.gid, Process.egid] #=> [33, 33]
*/
static VALUE
p_gid_change_privilege(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = OBJ2GID(id);
if (geteuid() == 0) { /* root-user */
#if defined(HAVE_SETRESGID)
if (setresgid(gid, gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined HAVE_SETGID
if (setgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (getgid() == gid) {
if (SAVED_GROUP_ID == gid) {
if (setregid(-1, gid) < 0) rb_sys_fail(0);
}
else {
if (gid == 0) { /* (r,e,s) == (root, y, x) */
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0);
if (setregid(SAVED_GROUP_ID, 0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0; /* (r,e,s) == (x, root, root) */
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
else { /* (r,e,s) == (z, y, x) */
if (setregid(0, 0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
}
}
else {
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
#elif defined(HAVE_SETRGID) && defined (HAVE_SETEGID)
if (getgid() == gid) {
if (SAVED_GROUP_ID == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
}
else {
if (gid == 0) {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setrgid(0) < 0) rb_sys_fail(0);
}
else {
if (setrgid(0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
}
}
else {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
#else
rb_notimplement();
#endif
}
else { /* unprivileged user */
#if defined(HAVE_SETRESGID)
if (setresgid((getgid() == gid)? (rb_gid_t)-1: gid,
(getegid() == gid)? (rb_gid_t)-1: gid,
(SAVED_GROUP_ID == gid)? (rb_gid_t)-1: gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (SAVED_GROUP_ID == gid) {
if (setregid((getgid() == gid)? (rb_uid_t)-1: gid,
(getegid() == gid)? (rb_uid_t)-1: gid) < 0)
rb_sys_fail(0);
}
else if (getgid() != gid) {
if (setregid(gid, (getegid() == gid)? (rb_uid_t)-1: gid) < 0)
rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
else if (/* getgid() == gid && */ getegid() != gid) {
if (setregid(getegid(), gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setregid(gid, -1) < 0) rb_sys_fail(0);
}
else { /* getgid() == gid && getegid() == gid */
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0);
if (setregid(SAVED_GROUP_ID, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setregid(gid, -1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETRGID) && defined(HAVE_SETEGID)
if (SAVED_GROUP_ID == gid) {
if (getegid() != gid && setegid(gid) < 0) rb_sys_fail(0);
if (getgid() != gid && setrgid(gid) < 0) rb_sys_fail(0);
}
else if (/* SAVED_GROUP_ID != gid && */ getegid() == gid) {
if (getgid() != gid) {
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
else {
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setrgid(gid) < 0) rb_sys_fail(0);
}
}
else if (/* getegid() != gid && */ getgid() == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setrgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_44BSD_SETGID
if (getgid() == gid) {
/* (r,e,s)==(gid,?,?) ==> (gid,gid,gid) */
if (setgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_SETEGID
if (getgid() == gid && SAVED_GROUP_ID == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_SETGID
if (getgid() == gid && SAVED_GROUP_ID == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#else
(void)gid;
rb_notimplement();
#endif
}
return id;
}
/*
* call-seq:
* Process.euid -> integer
* Process::UID.eid -> integer
* Process::Sys.geteuid -> integer
*
* Returns the effective user ID for the current process.
*
* Process.euid # => 501
*
*/
static VALUE
proc_geteuid(VALUE obj)
{
rb_uid_t euid = geteuid();
return UIDT2NUM(euid);
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID) || defined(_POSIX_SAVED_IDS)
static void
proc_seteuid(rb_uid_t uid)
{
#if defined(HAVE_SETRESUID)
if (setresuid(-1, uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(-1, uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEUID
if (seteuid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
if (uid == getuid()) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
#else
rb_notimplement();
#endif
}
#endif
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID)
/*
* call-seq:
* Process.euid = new_euid -> new_euid
*
* Sets the effective user ID for the current process.
*
* Not available on all platforms.
*/
static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
check_uid_switch();
proc_seteuid(OBJ2UID(euid));
return euid;
}
#else
#define proc_seteuid_m rb_f_notimplement
#endif
static rb_uid_t
rb_seteuid_core(rb_uid_t euid)
{
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID))
rb_uid_t uid;
#endif
check_uid_switch();
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID))
uid = getuid();
#endif
#if defined(HAVE_SETRESUID)
if (uid != euid) {
if (setresuid(-1,euid,euid) < 0) rb_sys_fail(0);
SAVED_USER_ID = euid;
}
else {
if (setresuid(-1,euid,-1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (setreuid(-1, euid) < 0) rb_sys_fail(0);
if (uid != euid) {
if (setreuid(euid,uid) < 0) rb_sys_fail(0);
if (setreuid(uid,euid) < 0) rb_sys_fail(0);
SAVED_USER_ID = euid;
}
#elif defined HAVE_SETEUID
if (seteuid(euid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
if (geteuid() == 0) rb_sys_fail(0);
if (setuid(euid) < 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return euid;
}
/*
* call-seq:
* Process::UID.grant_privilege(user) -> integer
* Process::UID.eid= user -> integer
*
* Set the effective user ID, and if possible, the saved user ID of
* the process to the given _user_. Returns the new
* effective user ID. Not available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 0]
* Process::UID.grant_privilege(31) #=> 31
* [Process.uid, Process.euid] #=> [0, 31]
*/
static VALUE
p_uid_grant_privilege(VALUE obj, VALUE id)
{
rb_seteuid_core(OBJ2UID(id));
return id;
}
/*
* call-seq:
* Process.egid -> integer
* Process::GID.eid -> integer
* Process::Sys.geteid -> integer
*
* Returns the effective group ID for the current process:
*
* Process.egid # => 500
*
* Not available on all platforms.
*/
static VALUE
proc_getegid(VALUE obj)
{
rb_gid_t egid = getegid();
return GIDT2NUM(egid);
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) || defined(_POSIX_SAVED_IDS)
/*
* call-seq:
* Process.egid = new_egid -> new_egid
*
* Sets the effective group ID for the current process.
*
* Not available on all platforms.
*/
static VALUE
proc_setegid(VALUE obj, VALUE egid)
{
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID)
rb_gid_t gid;
#endif
check_gid_switch();
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID)
gid = OBJ2GID(egid);
#endif
#if defined(HAVE_SETRESGID)
if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(-1, gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEGID
if (setegid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
if (gid == getgid()) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
#else
rb_notimplement();
#endif
return egid;
}
#endif
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID)
#define proc_setegid_m proc_setegid
#else
#define proc_setegid_m rb_f_notimplement
#endif
static rb_gid_t
rb_setegid_core(rb_gid_t egid)
{
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID))
rb_gid_t gid;
#endif
check_gid_switch();
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID))
gid = getgid();
#endif
#if defined(HAVE_SETRESGID)
if (gid != egid) {
if (setresgid(-1,egid,egid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = egid;
}
else {
if (setresgid(-1,egid,-1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (setregid(-1, egid) < 0) rb_sys_fail(0);
if (gid != egid) {
if (setregid(egid,gid) < 0) rb_sys_fail(0);
if (setregid(gid,egid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = egid;
}
#elif defined HAVE_SETEGID
if (setegid(egid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
if (geteuid() == 0 /* root user */) rb_sys_fail(0);
if (setgid(egid) < 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return egid;
}
/*
* call-seq:
* Process::GID.grant_privilege(group) -> integer
* Process::GID.eid = group -> integer
*
* Set the effective group ID, and if possible, the saved group ID of
* the process to the given _group_. Returns the new
* effective group ID. Not available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 0]
* Process::GID.grant_privilege(31) #=> 33
* [Process.gid, Process.egid] #=> [0, 33]
*/
static VALUE
p_gid_grant_privilege(VALUE obj, VALUE id)
{
rb_setegid_core(OBJ2GID(id));
return id;
}
/*
* call-seq:
* Process::UID.re_exchangeable? -> true or false
*
* Returns +true+ if the real and effective user IDs of a
* process may be exchanged on the current platform.
*
*/
static VALUE
p_uid_exchangeable(VALUE _)
{
#if defined(HAVE_SETRESUID)
return Qtrue;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
return Qtrue;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* Process::UID.re_exchange -> integer
*
* Exchange real and effective user IDs and return the new effective
* user ID. Not available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 31]
* Process::UID.re_exchange #=> 0
* [Process.uid, Process.euid] #=> [31, 0]
*/
static VALUE
p_uid_exchange(VALUE obj)
{
rb_uid_t uid;
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID))
rb_uid_t euid;
#endif
check_uid_switch();
uid = getuid();
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID))
euid = geteuid();
#endif
#if defined(HAVE_SETRESUID)
if (setresuid(euid, uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (setreuid(euid,uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#else
rb_notimplement();
#endif
return UIDT2NUM(uid);
}
/*
* call-seq:
* Process::GID.re_exchangeable? -> true or false
*
* Returns +true+ if the real and effective group IDs of a
* process may be exchanged on the current platform.
*
*/
static VALUE
p_gid_exchangeable(VALUE _)
{
#if defined(HAVE_SETRESGID)
return Qtrue;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
return Qtrue;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* Process::GID.re_exchange -> integer
*
* Exchange real and effective group IDs and return the new effective
* group ID. Not available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 33]
* Process::GID.re_exchange #=> 0
* [Process.gid, Process.egid] #=> [33, 0]
*/
static VALUE
p_gid_exchange(VALUE obj)
{
rb_gid_t gid;
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID))
rb_gid_t egid;
#endif
check_gid_switch();
gid = getgid();
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID))
egid = getegid();
#endif
#if defined(HAVE_SETRESGID)
if (setresgid(egid, gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (setregid(egid,gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#else
rb_notimplement();
#endif
return GIDT2NUM(gid);
}
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */
/*
* call-seq:
* Process::UID.sid_available? -> true or false
*
* Returns +true+ if the current platform has saved user
* ID functionality.
*
*/
static VALUE
p_uid_have_saved_id(VALUE _)
{
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS)
return Qtrue;
#else
return Qfalse;
#endif
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS)
static VALUE
p_uid_sw_ensure(VALUE i)
{
rb_uid_t id = (rb_uid_t/* narrowing */)i;
under_uid_switch = 0;
id = rb_seteuid_core(id);
return UIDT2NUM(id);
}
/*
* call-seq:
* Process::UID.switch -> integer
* Process::UID.switch {|| block} -> object
*
* Switch the effective and real user IDs of the current process. If
* a <em>block</em> is given, the user IDs will be switched back
* after the block is executed. Returns the new effective user ID if
* called without a block, and the return value of the block if one
* is given.
*
*/
static VALUE
p_uid_switch(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
if (uid != euid) {
proc_seteuid(uid);
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, SAVED_USER_ID);
}
else {
return UIDT2NUM(euid);
}
}
else if (euid != SAVED_USER_ID) {
proc_seteuid(SAVED_USER_ID);
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, euid);
}
else {
return UIDT2NUM(uid);
}
}
else {
rb_syserr_fail(EPERM, 0);
}
UNREACHABLE_RETURN(Qnil);
}
#else
static VALUE
p_uid_sw_ensure(VALUE obj)
{
under_uid_switch = 0;
return p_uid_exchange(obj);
}
static VALUE
p_uid_switch(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
if (uid == euid) {
rb_syserr_fail(EPERM, 0);
}
p_uid_exchange(obj);
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, obj);
}
else {
return UIDT2NUM(euid);
}
}
#endif
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */
/*
* call-seq:
* Process::GID.sid_available? -> true or false
*
* Returns +true+ if the current platform has saved group
* ID functionality.
*
*/
static VALUE
p_gid_have_saved_id(VALUE _)
{
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS)
return Qtrue;
#else
return Qfalse;
#endif
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS)
static VALUE
p_gid_sw_ensure(VALUE i)
{
rb_gid_t id = (rb_gid_t/* narrowing */)i;
under_gid_switch = 0;
id = rb_setegid_core(id);
return GIDT2NUM(id);
}
/*
* call-seq:
* Process::GID.switch -> integer
* Process::GID.switch {|| block} -> object
*
* Switch the effective and real group IDs of the current process. If
* a <em>block</em> is given, the group IDs will be switched back
* after the block is executed. Returns the new effective group ID if
* called without a block, and the return value of the block if one
* is given.
*
*/
static VALUE
p_gid_switch(VALUE obj)
{
rb_gid_t gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
if (gid != egid) {
proc_setegid(obj, GIDT2NUM(gid));
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, SAVED_GROUP_ID);
}
else {
return GIDT2NUM(egid);
}
}
else if (egid != SAVED_GROUP_ID) {
proc_setegid(obj, GIDT2NUM(SAVED_GROUP_ID));
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, egid);
}
else {
return GIDT2NUM(gid);
}
}
else {
rb_syserr_fail(EPERM, 0);
}
UNREACHABLE_RETURN(Qnil);
}
#else
static VALUE
p_gid_sw_ensure(VALUE obj)
{
under_gid_switch = 0;
return p_gid_exchange(obj);
}
static VALUE
p_gid_switch(VALUE obj)
{
rb_gid_t gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
if (gid == egid) {
rb_syserr_fail(EPERM, 0);
}
p_gid_exchange(obj);
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, obj);
}
else {
return GIDT2NUM(egid);
}
}
#endif
#if defined(HAVE_TIMES)
static long
get_clk_tck(void)
{
#ifdef HAVE__SC_CLK_TCK
return sysconf(_SC_CLK_TCK);
#elif defined CLK_TCK
return CLK_TCK;
#elif defined HZ
return HZ;
#else
return 60;
#endif
}
/*
* call-seq:
* Process.times -> process_tms
*
* Returns a Process::Tms structure that contains user and system CPU times
* for the current process, and for its children processes:
*
* Process.times
* # => #<struct Process::Tms utime=55.122118, stime=35.533068, cutime=0.0, cstime=0.002846>
*
*/
VALUE
rb_proc_times(VALUE obj)
{
VALUE utime, stime, cutime, cstime, ret;
#if defined(RUSAGE_SELF) && defined(RUSAGE_CHILDREN)
struct rusage usage_s, usage_c;
if (getrusage(RUSAGE_SELF, &usage_s) != 0 || getrusage(RUSAGE_CHILDREN, &usage_c) != 0)
rb_sys_fail("getrusage");
utime = DBL2NUM((double)usage_s.ru_utime.tv_sec + (double)usage_s.ru_utime.tv_usec/1e6);
stime = DBL2NUM((double)usage_s.ru_stime.tv_sec + (double)usage_s.ru_stime.tv_usec/1e6);
cutime = DBL2NUM((double)usage_c.ru_utime.tv_sec + (double)usage_c.ru_utime.tv_usec/1e6);
cstime = DBL2NUM((double)usage_c.ru_stime.tv_sec + (double)usage_c.ru_stime.tv_usec/1e6);
#else
const double hertz = (double)get_clk_tck();
struct tms buf;
times(&buf);
utime = DBL2NUM(buf.tms_utime / hertz);
stime = DBL2NUM(buf.tms_stime / hertz);
cutime = DBL2NUM(buf.tms_cutime / hertz);
cstime = DBL2NUM(buf.tms_cstime / hertz);
#endif
ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
RB_GC_GUARD(utime);
RB_GC_GUARD(stime);
RB_GC_GUARD(cutime);
RB_GC_GUARD(cstime);
return ret;
}
#else
#define rb_proc_times rb_f_notimplement
#endif
#ifdef HAVE_LONG_LONG
typedef LONG_LONG timetick_int_t;
#define TIMETICK_INT_MIN LLONG_MIN
#define TIMETICK_INT_MAX LLONG_MAX
#define TIMETICK_INT2NUM(v) LL2NUM(v)
#define MUL_OVERFLOW_TIMETICK_P(a, b) MUL_OVERFLOW_LONG_LONG_P(a, b)
#else
typedef long timetick_int_t;
#define TIMETICK_INT_MIN LONG_MIN
#define TIMETICK_INT_MAX LONG_MAX
#define TIMETICK_INT2NUM(v) LONG2NUM(v)
#define MUL_OVERFLOW_TIMETICK_P(a, b) MUL_OVERFLOW_LONG_P(a, b)
#endif
CONSTFUNC(static timetick_int_t gcd_timetick_int(timetick_int_t, timetick_int_t));
static timetick_int_t
gcd_timetick_int(timetick_int_t a, timetick_int_t b)
{
timetick_int_t t;
if (a < b) {
t = a;
a = b;
b = t;
}
while (1) {
t = a % b;
if (t == 0)
return b;
a = b;
b = t;
}
}
static void
reduce_fraction(timetick_int_t *np, timetick_int_t *dp)
{
timetick_int_t gcd = gcd_timetick_int(*np, *dp);
if (gcd != 1) {
*np /= gcd;
*dp /= gcd;
}
}
static void
reduce_factors(timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{
int i, j;
for (i = 0; i < num_numerators; i++) {
if (numerators[i] == 1)
continue;
for (j = 0; j < num_denominators; j++) {
if (denominators[j] == 1)
continue;
reduce_fraction(&numerators[i], &denominators[j]);
}
}
}
struct timetick {
timetick_int_t giga_count;
int32_t count; /* 0 .. 999999999 */
};
static VALUE
timetick2dblnum(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{
double d;
int i;
reduce_factors(numerators, num_numerators,
denominators, num_denominators);
d = ttp->giga_count * 1e9 + ttp->count;
for (i = 0; i < num_numerators; i++)
d *= numerators[i];
for (i = 0; i < num_denominators; i++)
d /= denominators[i];
return DBL2NUM(d);
}
static VALUE
timetick2dblnum_reciprocal(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{
double d;
int i;
reduce_factors(numerators, num_numerators,
denominators, num_denominators);
d = 1.0;
for (i = 0; i < num_denominators; i++)
d *= denominators[i];
for (i = 0; i < num_numerators; i++)
d /= numerators[i];
d /= ttp->giga_count * 1e9 + ttp->count;
return DBL2NUM(d);
}
#define NDIV(x,y) (-(-((x)+1)/(y))-1)
#define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
static VALUE
timetick2integer(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{
VALUE v;
int i;
reduce_factors(numerators, num_numerators,
denominators, num_denominators);
if (!MUL_OVERFLOW_SIGNED_INTEGER_P(1000000000, ttp->giga_count,
TIMETICK_INT_MIN, TIMETICK_INT_MAX-ttp->count)) {
timetick_int_t t = ttp->giga_count * 1000000000 + ttp->count;
for (i = 0; i < num_numerators; i++) {
timetick_int_t factor = numerators[i];
if (MUL_OVERFLOW_TIMETICK_P(factor, t))
goto generic;
t *= factor;
}
for (i = 0; i < num_denominators; i++) {
t = DIV(t, denominators[i]);
}
return TIMETICK_INT2NUM(t);
}
generic:
v = TIMETICK_INT2NUM(ttp->giga_count);
v = rb_funcall(v, '*', 1, LONG2FIX(1000000000));
v = rb_funcall(v, '+', 1, LONG2FIX(ttp->count));
for (i = 0; i < num_numerators; i++) {
timetick_int_t factor = numerators[i];
if (factor == 1)
continue;
v = rb_funcall(v, '*', 1, TIMETICK_INT2NUM(factor));
}
for (i = 0; i < num_denominators; i++) {
v = rb_funcall(v, '/', 1, TIMETICK_INT2NUM(denominators[i])); /* Ruby's '/' is div. */
}
return v;
}
static VALUE
make_clock_result(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators,
VALUE unit)
{
if (unit == ID2SYM(id_nanosecond)) {
numerators[num_numerators++] = 1000000000;
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_microsecond)) {
numerators[num_numerators++] = 1000000;
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_millisecond)) {
numerators[num_numerators++] = 1000;
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_second)) {
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_float_microsecond)) {
numerators[num_numerators++] = 1000000;
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_float_millisecond)) {
numerators[num_numerators++] = 1000;
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (NIL_P(unit) || unit == ID2SYM(id_float_second)) {
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators);
}
else
rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit);
}
#ifdef __APPLE__
static const mach_timebase_info_data_t *
get_mach_timebase_info(void)
{
static mach_timebase_info_data_t sTimebaseInfo;
if ( sTimebaseInfo.denom == 0 ) {
(void) mach_timebase_info(&sTimebaseInfo);
}
return &sTimebaseInfo;
}
double
ruby_real_ms_time(void)
{
const mach_timebase_info_data_t *info = get_mach_timebase_info();
uint64_t t = mach_absolute_time();
return (double)t * info->numer / info->denom / 1e6;
}
#endif
#if defined(NUM2CLOCKID)
# define NUMERIC_CLOCKID 1
#else
# define NUMERIC_CLOCKID 0
# define NUM2CLOCKID(x) 0
#endif
#define clock_failed(name, err, arg) do { \
int clock_error = (err); \
rb_syserr_fail_str(clock_error, rb_sprintf("clock_" name "(%+"PRIsVALUE")", (arg))); \
} while (0)
/*
* call-seq:
* Process.clock_gettime(clock_id, unit = :float_second) -> number
*
* Returns a clock time as determined by POSIX function
* {clock_gettime()}[https://man7.org/linux/man-pages/man3/clock_gettime.3.html]:
*
* Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID) # => 198.650379677
*
* Argument +clock_id+ should be a symbol or a constant that specifies
* the clock whose time is to be returned;
* see below.
*
* Optional argument +unit+ should be a symbol that specifies
* the unit to be used in the returned clock time;
* see below.
*
* <b>Argument +clock_id+</b>
*
* Argument +clock_id+ specifies the clock whose time is to be returned;
* it may be a constant such as <tt>Process::CLOCK_REALTIME</tt>,
* or a symbol shorthand such as +:CLOCK_REALTIME+.
*
* The supported clocks depend on the underlying operating system;
* this method supports the following clocks on the indicated platforms
* (raises Errno::EINVAL if called with an unsupported clock):
*
* - +:CLOCK_BOOTTIME+: Linux 2.6.39.
* - +:CLOCK_BOOTTIME_ALARM+: Linux 3.0.
* - +:CLOCK_MONOTONIC+: SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4, macOS 10.12, Windows-2000.
* - +:CLOCK_MONOTONIC_COARSE+: Linux 2.6.32.
* - +:CLOCK_MONOTONIC_FAST+: FreeBSD 8.1.
* - +:CLOCK_MONOTONIC_PRECISE+: FreeBSD 8.1.
* - +:CLOCK_MONOTONIC_RAW+: Linux 2.6.28, macOS 10.12.
* - +:CLOCK_MONOTONIC_RAW_APPROX+: macOS 10.12.
* - +:CLOCK_PROCESS_CPUTIME_ID+: SUSv3 to 4, Linux 2.5.63, FreeBSD 9.3, OpenBSD 5.4, macOS 10.12.
* - +:CLOCK_PROF+: FreeBSD 3.0, OpenBSD 2.1.
* - +:CLOCK_REALTIME+: SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1, macOS 10.12, Windows-8/Server-2012.
* Time.now is recommended over +:CLOCK_REALTIME:.
* - +:CLOCK_REALTIME_ALARM+: Linux 3.0.
* - +:CLOCK_REALTIME_COARSE+: Linux 2.6.32.
* - +:CLOCK_REALTIME_FAST+: FreeBSD 8.1.
* - +:CLOCK_REALTIME_PRECISE+: FreeBSD 8.1.
* - +:CLOCK_SECOND+: FreeBSD 8.1.
* - +:CLOCK_TAI+: Linux 3.10.
* - +:CLOCK_THREAD_CPUTIME_ID+: SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4, macOS 10.12.
* - +:CLOCK_UPTIME+: FreeBSD 7.0, OpenBSD 5.5.
* - +:CLOCK_UPTIME_FAST+: FreeBSD 8.1.
* - +:CLOCK_UPTIME_PRECISE+: FreeBSD 8.1.
* - +:CLOCK_UPTIME_RAW+: macOS 10.12.
* - +:CLOCK_UPTIME_RAW_APPROX+: macOS 10.12.
* - +:CLOCK_VIRTUAL+: FreeBSD 3.0, OpenBSD 2.1.
*
* Note that SUS stands for Single Unix Specification.
* SUS contains POSIX and clock_gettime is defined in the POSIX part.
* SUS defines +:CLOCK_REALTIME+ as mandatory but
* +:CLOCK_MONOTONIC+, +:CLOCK_PROCESS_CPUTIME_ID+,
* and +:CLOCK_THREAD_CPUTIME_ID+ are optional.
*
* Certain emulations are used when the given +clock_id+
* is not supported directly:
*
* - Emulations for +:CLOCK_REALTIME+:
*
* - +:GETTIMEOFDAY_BASED_CLOCK_REALTIME+:
* Use gettimeofday() defined by SUS (deprecated in SUSv4).
* The resolution is 1 microsecond.
* - +:TIME_BASED_CLOCK_REALTIME+:
* Use time() defined by ISO C.
* The resolution is 1 second.
*
* - Emulations for +:CLOCK_MONOTONIC+:
*
* - +:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC+:
* Use mach_absolute_time(), available on Darwin.
* The resolution is CPU dependent.
* - +:TIMES_BASED_CLOCK_MONOTONIC+:
* Use the result value of times() defined by POSIX, thus:
* >>>
* Upon successful completion, times() shall return the elapsed real time,
* in clock ticks, since an arbitrary point in the past
* (for example, system start-up time).
*
* For example, GNU/Linux returns a value based on jiffies and it is monotonic.
* However, 4.4BSD uses gettimeofday() and it is not monotonic.
* (FreeBSD uses +:CLOCK_MONOTONIC+ instead, though.)
*
* The resolution is the clock tick.
* "getconf CLK_TCK" command shows the clock ticks per second.
* (The clock ticks-per-second is defined by HZ macro in older systems.)
* If it is 100 and clock_t is 32 bits integer type,
* the resolution is 10 millisecond and cannot represent over 497 days.
*
* - Emulations for +:CLOCK_PROCESS_CPUTIME_ID+:
*
* - +:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID+:
* Use getrusage() defined by SUS.
* getrusage() is used with RUSAGE_SELF to obtain the time only for
* the calling process (excluding the time for child processes).
* The result is addition of user time (ru_utime) and system time (ru_stime).
* The resolution is 1 microsecond.
* - +:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID+:
* Use times() defined by POSIX.
* The result is addition of user time (tms_utime) and system time (tms_stime).
* tms_cutime and tms_cstime are ignored to exclude the time for child processes.
* The resolution is the clock tick.
* "getconf CLK_TCK" command shows the clock ticks per second.
* (The clock ticks per second is defined by HZ macro in older systems.)
* If it is 100, the resolution is 10 millisecond.
* - +:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID+:
* Use clock() defined by ISO C.
* The resolution is <tt>1/CLOCKS_PER_SEC</tt>.
* +CLOCKS_PER_SEC+ is the C-level macro defined by time.h.
* SUS defines +CLOCKS_PER_SEC+ as 1000000;
* other systems may define it differently.
* If +CLOCKS_PER_SEC+ is 1000000 (as in SUS),
* the resolution is 1 microsecond.
* If +CLOCKS_PER_SEC+ is 1000000 and clock_t is a 32-bit integer type,
* it cannot represent over 72 minutes.
*
* <b>Argument +unit+</b>
*
* Optional argument +unit+ (default +:float_second+)
* specifies the unit for the returned value.
*
* - +:float_microsecond+: Number of microseconds as a float.
* - +:float_millisecond+: Number of milliseconds as a float.
* - +:float_second+: Number of seconds as a float.
* - +:microsecond+: Number of microseconds as an integer.
* - +:millisecond+: Number of milliseconds as an integer.
* - +:nanosecond+: Number of nanoseconds as an integer.
* - +::second+: Number of seconds as an integer.
*
* Examples:
*
* Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :float_microsecond)
* # => 203605054.825
* Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :float_millisecond)
* # => 203643.696848
* Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :float_second)
* # => 203.762181929
* Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :microsecond)
* # => 204123212
* Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :millisecond)
* # => 204298
* Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :nanosecond)
* # => 204602286036
* Process.clock_gettime(:CLOCK_PROCESS_CPUTIME_ID, :second)
* # => 204
*
* The underlying function, clock_gettime(), returns a number of nanoseconds.
* Float object (IEEE 754 double) is not enough to represent
* the return value for +:CLOCK_REALTIME+.
* If the exact nanoseconds value is required, use +:nanosecond+ as the +unit+.
*
* The origin (time zero) of the returned value is system-dependent,
* and may be, for example, system start up time,
* process start up time, the Epoch, etc.
*
* The origin in +:CLOCK_REALTIME+ is defined as the Epoch:
* <tt>1970-01-01 00:00:00 UTC</tt>;
* some systems count leap seconds and others don't,
* so the result may vary across systems.
*/
static VALUE
rb_clock_gettime(int argc, VALUE *argv, VALUE _)
{
int ret;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
VALUE clk_id = argv[0];
#ifdef HAVE_CLOCK_GETTIME
clockid_t c;
#endif
if (SYMBOL_P(clk_id)) {
#ifdef CLOCK_REALTIME
if (clk_id == RUBY_CLOCK_REALTIME) {
c = CLOCK_REALTIME;
goto gettime;
}
#endif
#ifdef CLOCK_MONOTONIC
if (clk_id == RUBY_CLOCK_MONOTONIC) {
c = CLOCK_MONOTONIC;
goto gettime;
}
#endif
#ifdef CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_CLOCK_PROCESS_CPUTIME_ID) {
c = CLOCK_PROCESS_CPUTIME_ID;
goto gettime;
}
#endif
#ifdef CLOCK_THREAD_CPUTIME_ID
if (clk_id == RUBY_CLOCK_THREAD_CPUTIME_ID) {
c = CLOCK_THREAD_CPUTIME_ID;
goto gettime;
}
#endif
/*
* Non-clock_gettime clocks are provided by symbol clk_id.
*/
#ifdef HAVE_GETTIMEOFDAY
/*
* GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
* CLOCK_REALTIME if clock_gettime is not available.
*/
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
struct timeval tv;
ret = gettimeofday(&tv, 0);
if (ret != 0)
rb_sys_fail("gettimeofday");
tt.giga_count = tv.tv_sec;
tt.count = (int32_t)tv.tv_usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME)
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
time_t t;
t = time(NULL);
if (t == (time_t)-1)
rb_sys_fail("time");
tt.giga_count = t;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC \
ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC)
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
struct tms buf;
clock_t c;
unsigned_clock_t uc;
c = times(&buf);
if (c == (clock_t)-1)
rb_sys_fail("times");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = (uc / 1000000000);
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct rusage usage;
int32_t usec;
ret = getrusage(RUSAGE_SELF, &usage);
if (ret != 0)
rb_sys_fail("getrusage");
tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
if (1000000 <= usec) {
tt.giga_count++;
usec -= 1000000;
}
tt.count = usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct tms buf;
unsigned_clock_t utime, stime;
if (times(&buf) == (clock_t)-1)
rb_sys_fail("times");
utime = (unsigned_clock_t)buf.tms_utime;
stime = (unsigned_clock_t)buf.tms_stime;
tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
if (1000000000 <= tt.count) {
tt.count -= 1000000000;
tt.giga_count++;
}
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
clock_t c;
unsigned_clock_t uc;
errno = 0;
c = clock();
if (c == (clock_t)-1)
rb_sys_fail("clock");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = uc / 1000000000;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#ifdef __APPLE__
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
const mach_timebase_info_data_t *info = get_mach_timebase_info();
uint64_t t = mach_absolute_time();
tt.count = (int32_t)(t % 1000000000);
tt.giga_count = t / 1000000000;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else if (NUMERIC_CLOCKID) {
#if defined(HAVE_CLOCK_GETTIME)
struct timespec ts;
c = NUM2CLOCKID(clk_id);
gettime:
ret = clock_gettime(c, &ts);
if (ret == -1)
clock_failed("gettime", errno, clk_id);
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
else {
rb_unexpected_type(clk_id, T_SYMBOL);
}
clock_failed("gettime", EINVAL, clk_id);
success:
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
/*
* call-seq:
* Process.clock_getres(clock_id, unit = :float_second) -> number
*
* Returns a clock resolution as determined by POSIX function
* {clock_getres()}[https://man7.org/linux/man-pages/man3/clock_getres.3.html]:
*
* Process.clock_getres(:CLOCK_REALTIME) # => 1.0e-09
*
* See Process.clock_gettime for the values of +clock_id+ and +unit+.
*
* Examples:
*
* Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :float_microsecond) # => 0.001
* Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :float_millisecond) # => 1.0e-06
* Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :float_second) # => 1.0e-09
* Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :microsecond) # => 0
* Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :millisecond) # => 0
* Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :nanosecond) # => 1
* Process.clock_getres(:CLOCK_PROCESS_CPUTIME_ID, :second) # => 0
*
* In addition to the values for +unit+ supported in Process.clock_gettime,
* this method supports +:hertz+, the integer number of clock ticks per second
* (which is the reciprocal of +:float_second+):
*
* Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz) # => 100.0
* Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :float_second) # => 0.01
*
* <b>Accuracy</b>:
* Note that the returned resolution may be inaccurate on some platforms
* due to underlying bugs.
* Inaccurate resolutions have been reported for various clocks including
* +:CLOCK_MONOTONIC+ and +:CLOCK_MONOTONIC_RAW+
* on Linux, macOS, BSD or AIX platforms, when using ARM processors,
* or when using virtualization.
*/
static VALUE
rb_clock_getres(int argc, VALUE *argv, VALUE _)
{
int ret;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
#ifdef HAVE_CLOCK_GETRES
clockid_t c;
#endif
VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
VALUE clk_id = argv[0];
if (SYMBOL_P(clk_id)) {
#ifdef CLOCK_REALTIME
if (clk_id == RUBY_CLOCK_REALTIME) {
c = CLOCK_REALTIME;
goto getres;
}
#endif
#ifdef CLOCK_MONOTONIC
if (clk_id == RUBY_CLOCK_MONOTONIC) {
c = CLOCK_MONOTONIC;
goto getres;
}
#endif
#ifdef CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_CLOCK_PROCESS_CPUTIME_ID) {
c = CLOCK_PROCESS_CPUTIME_ID;
goto getres;
}
#endif
#ifdef CLOCK_THREAD_CPUTIME_ID
if (clk_id == RUBY_CLOCK_THREAD_CPUTIME_ID) {
c = CLOCK_THREAD_CPUTIME_ID;
goto getres;
}
#endif
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
tt.giga_count = 1;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#endif
#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
const mach_timebase_info_data_t *info = get_mach_timebase_info();
tt.count = 1;
tt.giga_count = 0;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else if (NUMERIC_CLOCKID) {
#if defined(HAVE_CLOCK_GETRES)
struct timespec ts;
c = NUM2CLOCKID(clk_id);
getres:
ret = clock_getres(c, &ts);
if (ret == -1)
clock_failed("getres", errno, clk_id);
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
else {
rb_unexpected_type(clk_id, T_SYMBOL);
}
clock_failed("getres", EINVAL, clk_id);
success:
if (unit == ID2SYM(id_hertz)) {
return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
}
else {
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
}
static VALUE
get_CHILD_STATUS(ID _x, VALUE *_y)
{
return rb_last_status_get();
}
static VALUE
get_PROCESS_ID(ID _x, VALUE *_y)
{
return get_pid();
}
/*
* call-seq:
* Process.kill(signal, *ids) -> count
*
* Sends a signal to each process specified by +ids+
* (which must specify at least one ID);
* returns the count of signals sent.
*
* For each given +id+, if +id+ is:
*
* - Positive, sends the signal to the process whose process ID is +id+.
* - Zero, send the signal to all processes in the current process group.
* - Negative, sends the signal to a system-dependent collection of processes.
*
* Argument +signal+ specifies the signal to be sent;
* the argument may be:
*
* - An integer signal number: e.g., +-29+, +0+, +29+.
* - A signal name (string), with or without leading <tt>'SIG'</tt>,
* and with or without a further prefixed minus sign (<tt>'-'</tt>):
* e.g.:
*
* - <tt>'SIGPOLL'</tt>.
* - <tt>'POLL'</tt>,
* - <tt>'-SIGPOLL'</tt>.
* - <tt>'-POLL'</tt>.
*
* - A signal symbol, with or without leading <tt>'SIG'</tt>,
* and with or without a further prefixed minus sign (<tt>'-'</tt>):
* e.g.:
*
* - +:SIGPOLL+.
* - +:POLL+.
* - <tt>:'-SIGPOLL'</tt>.
* - <tt>:'-POLL'</tt>.
*
* If +signal+ is:
*
* - A non-negative integer, or a signal name or symbol
* without prefixed <tt>'-'</tt>,
* each process with process ID +id+ is signalled.
* - A negative integer, or a signal name or symbol
* with prefixed <tt>'-'</tt>,
* each process group with group ID +id+ is signalled.
*
* Use method Signal.list to see which signals are supported
* by Ruby on the underlying platform;
* the method returns a hash of the string names
* and non-negative integer values of the supported signals.
* The size and content of the returned hash varies widely
* among platforms.
*
* Additionally, signal +0+ is useful to determine if the process exists.
*
* Example:
*
* pid = fork do
* Signal.trap('HUP') { puts 'Ouch!'; exit }
* # ... do some work ...
* end
* # ...
* Process.kill('HUP', pid)
* Process.wait
*
* Output:
*
* Ouch!
*
* Exceptions:
*
* - Raises Errno::EINVAL or RangeError if +signal+ is an integer
* but invalid.
* - Raises ArgumentError if +signal+ is a string or symbol
* but invalid.
* - Raises Errno::ESRCH or RangeError if one of +ids+ is invalid.
* - Raises Errno::EPERM if needed permissions are not in force.
*
* In the last two cases, signals may have been sent to some processes.
*/
static VALUE
proc_rb_f_kill(int c, const VALUE *v, VALUE _)
{
return rb_f_kill(c, v);
}
VALUE rb_mProcess;
static VALUE rb_mProcUID;
static VALUE rb_mProcGID;
static VALUE rb_mProcID_Syscall;
/*
* call-seq:
* Process.warmup -> true
*
* Notify the Ruby virtual machine that the boot sequence is finished,
* and that now is a good time to optimize the application. This is useful
* for long running applications.
*
* This method is expected to be called at the end of the application boot.
* If the application is deployed using a pre-forking model, +Process.warmup+
* should be called in the original process before the first fork.
*
* The actual optimizations performed are entirely implementation specific
* and may change in the future without notice.
*
* On CRuby, +Process.warmup+:
*
* * Performs a major GC.
* * Compacts the heap.
* * Promotes all surviving objects to the old generation.
* * Precomputes the coderange of all strings.
* * Frees all empty heap pages and increments the allocatable pages counter
* by the number of pages freed.
* * Invoke +malloc_trim+ if available to free empty malloc pages.
*/
static VALUE
proc_warmup(VALUE _)
{
RB_VM_LOCK_ENTER();
rb_gc_prepare_heap();
RB_VM_LOCK_LEAVE();
return Qtrue;
}
/*
* Document-module: Process
*
* \Module +Process+ represents a process in the underlying operating system.
* Its methods support management of the current process and its child processes.
*
* == \Process Creation
*
* Each of these methods creates a process:
*
* - Process.exec: Replaces the current process by running a given external command.
* - Process.spawn, Kernel#spawn: Executes the given command and returns its pid without waiting for completion.
* - Kernel#system: Executes the given command in a subshell.
*
* Each of these methods accepts:
*
* - An optional hash of environment variable names and values.
* - An optional hash of execution options.
*
* === Execution Environment
*
* Optional leading argument +env+ is a hash of name/value pairs,
* where each name is a string and each value is a string or +nil+;
* each name/value pair is added to ENV in the new process.
*
* Process.spawn( 'ruby -e "p ENV[\"Foo\"]"')
* Process.spawn({'Foo' => '0'}, 'ruby -e "p ENV[\"Foo\"]"')
*
* Output:
*
* nil
* "0"
*
* The effect is usually similar to that of calling ENV#update with argument +env+,
* where each named environment variable is created or updated
* (if the value is non-+nil+),
* or deleted (if the value is +nil+).
*
* However, some modifications to the calling process may remain
* if the new process fails.
* For example, hard resource limits are not restored.
*
* === Execution Options
*
* Optional trailing argument +options+ is a hash of execution options.
*
* ==== Working Directory (+:chdir+)
*
* By default, the working directory for the new process is the same as
* that of the current process:
*
* Dir.chdir('/var')
* Process.spawn('ruby -e "puts Dir.pwd"')
*
* Output:
*
* /var
*
* Use option +:chdir+ to set the working directory for the new process:
*
* Process.spawn('ruby -e "puts Dir.pwd"', {chdir: '/tmp'})
*
* Output:
*
* /tmp
*
* The working directory of the current process is not changed:
*
* Dir.pwd # => "/var"
*
* ==== \File Redirection (\File Descriptor)
*
* Use execution options for file redirection in the new process.
*
* The key for such an option may be an integer file descriptor (fd),
* specifying a source,
* or an array of fds, specifying multiple sources.
* An integer source fd may be specified as:
*
* - _n_: Specifies file descriptor _n_.
*
* There are these shorthand symbols for fds:
*
* - +:in+: Specifies file descriptor 0 (STDIN).
* - +:out+: Specifies file descriptor 1 (STDOUT).
* - +:err+: Specifies file descriptor 2 (STDERR).
*
* The value given with a source is one of:
*
* - _n_:
* Redirects to fd _n_ in the parent process.
* - +filepath+:
* Redirects from or to the file at +filepath+ via <tt>open(filepath, mode, 0644)</tt>,
* where +mode+ is <tt>'r'</tt> for source +:in+,
* or <tt>'w'</tt> for source +:out+ or +:err+.
* - <tt>[filepath]</tt>:
* Redirects from the file at +filepath+ via <tt>open(filepath, 'r', 0644)</tt>.
* - <tt>[filepath, mode]</tt>:
* Redirects from or to the file at +filepath+ via <tt>open(filepath, mode, 0644)</tt>.
* - <tt>[filepath, mode, perm]</tt>:
* Redirects from or to the file at +filepath+ via <tt>open(filepath, mode, perm)</tt>.
* - <tt>[:child, fd]</tt>:
* Redirects to the redirected +fd+.
* - +:close+: Closes the file descriptor in child process.
*
* See {Access Modes}[rdoc-ref:File@Access+Modes]
* and {File Permissions}[rdoc-ref:File@File+Permissions].
*
* ==== Environment Variables (+:unsetenv_others+)
*
* By default, the new process inherits environment variables
* from the parent process;
* use execution option key +:unsetenv_others+ with value +true+
* to clear environment variables in the new process.
*
* Any changes specified by execution option +env+ are made after the new process
* inherits or clears its environment variables;
* see {Execution Environment}[rdoc-ref:Process@Execution+Environment].
*
* ==== \File-Creation Access (+:umask+)
*
* Use execution option +:umask+ to set the file-creation access
* for the new process;
* see {Access Modes}[rdoc-ref:File@Access+Modes]:
*
* command = 'ruby -e "puts sprintf(\"0%o\", File.umask)"'
* options = {:umask => 0644}
* Process.spawn(command, options)
*
* Output:
*
* 0644
*
* ==== \Process Groups (+:pgroup+ and +:new_pgroup+)
*
* By default, the new process belongs to the same
* {process group}[https://en.wikipedia.org/wiki/Process_group]
* as the parent process.
*
* To specify a different process group.
* use execution option +:pgroup+ with one of the following values:
*
* - +true+: Create a new process group for the new process.
* - _pgid_: Create the new process in the process group
* whose id is _pgid_.
*
* On Windows only, use execution option +:new_pgroup+ with value +true+
* to create a new process group for the new process.
*
* ==== Resource Limits
*
* Use execution options to set resource limits.
*
* The keys for these options are symbols of the form
* <tt>:rlimit_<i>resource_name</i></tt>,
* where _resource_name_ is the downcased form of one of the string
* resource names described at method Process.setrlimit.
* For example, key +:rlimit_cpu+ corresponds to resource limit <tt>'CPU'</tt>.
*
* The value for such as key is one of:
*
* - An integer, specifying both the current and maximum limits.
* - A 2-element array of integers, specifying the current and maximum limits.
*
* ==== \File Descriptor Inheritance
*
* By default, the new process inherits file descriptors from the parent process.
*
* Use execution option <tt>:close_others => true</tt> to modify that inheritance
* by closing non-standard fds (3 and greater) that are not otherwise redirected.
*
* === Execution Shell
*
* On a Unix-like system, the shell invoked is <tt>/bin/sh</tt>;
* otherwise the shell invoked is determined by environment variable
* <tt>ENV['RUBYSHELL']</tt>, if defined, or <tt>ENV['COMSPEC']</tt> otherwise.
*
* Except for the +COMSPEC+ case,
* the entire string +command_line+ is passed as an argument
* to {shell option -c}[https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/utilities/sh.html].
*
* The shell performs normal shell expansion on the command line:
*
* spawn('echo C*') # => 799139
* Process.wait # => 799139
*
* Output:
*
* CONTRIBUTING.md COPYING COPYING.ja
*
* == What's Here
*
* === Current-Process Getters
*
* - ::argv0: Returns the process name as a frozen string.
* - ::egid: Returns the effective group ID.
* - ::euid: Returns the effective user ID.
* - ::getpgrp: Return the process group ID.
* - ::getrlimit: Returns the resource limit.
* - ::gid: Returns the (real) group ID.
* - ::pid: Returns the process ID.
* - ::ppid: Returns the process ID of the parent process.
* - ::uid: Returns the (real) user ID.
*
* === Current-Process Setters
*
* - ::egid=: Sets the effective group ID.
* - ::euid=: Sets the effective user ID.
* - ::gid=: Sets the (real) group ID.
* - ::setproctitle: Sets the process title.
* - ::setpgrp: Sets the process group ID of the process to zero.
* - ::setrlimit: Sets a resource limit.
* - ::setsid: Establishes the process as a new session and process group leader,
* with no controlling tty.
* - ::uid=: Sets the user ID.
*
* === Current-Process Execution
*
* - ::abort: Immediately terminates the process.
* - ::daemon: Detaches the process from its controlling terminal
* and continues running it in the background as system daemon.
* - ::exec: Replaces the process by running a given external command.
* - ::exit: Initiates process termination by raising exception SystemExit
* (which may be caught).
* - ::exit!: Immediately exits the process.
* - ::warmup: Notifies the Ruby virtual machine that the boot sequence
* for the application is completed,
* and that the VM may begin optimizing the application.
*
* === Child Processes
*
* - ::detach: Guards against a child process becoming a zombie.
* - ::fork: Creates a child process.
* - ::kill: Sends a given signal to processes.
* - ::spawn: Creates a child process.
* - ::wait, ::waitpid: Waits for a child process to exit; returns its process ID.
* - ::wait2, ::waitpid2: Waits for a child process to exit; returns its process ID and status.
* - ::waitall: Waits for all child processes to exit;
* returns their process IDs and statuses.
*
* === \Process Groups
*
* - ::getpgid: Returns the process group ID for a process.
* - ::getpriority: Returns the scheduling priority
* for a process, process group, or user.
* - ::getsid: Returns the session ID for a process.
* - ::groups: Returns an array of the group IDs
* in the supplemental group access list for this process.
* - ::groups=: Sets the supplemental group access list
* to the given array of group IDs.
* - ::initgroups: Initializes the supplemental group access list.
* - ::last_status: Returns the status of the last executed child process
* in the current thread.
* - ::maxgroups: Returns the maximum number of group IDs allowed
* in the supplemental group access list.
* - ::maxgroups=: Sets the maximum number of group IDs allowed
* in the supplemental group access list.
* - ::setpgid: Sets the process group ID of a process.
* - ::setpriority: Sets the scheduling priority
* for a process, process group, or user.
*
* === Timing
*
* - ::clock_getres: Returns the resolution of a system clock.
* - ::clock_gettime: Returns the time from a system clock.
* - ::times: Returns a Process::Tms object containing times
* for the current process and its child processes.
*
*/
void
InitVM_process(void)
{
rb_define_virtual_variable("$?", get_CHILD_STATUS, 0);
rb_define_virtual_variable("$$", get_PROCESS_ID, 0);
rb_gvar_ractor_local("$$");
rb_gvar_ractor_local("$?");
rb_define_global_function("exec", f_exec, -1);
rb_define_global_function("fork", rb_f_fork, 0);
rb_define_global_function("exit!", rb_f_exit_bang, -1);
rb_define_global_function("system", rb_f_system, -1);
rb_define_global_function("spawn", rb_f_spawn, -1);
rb_define_global_function("sleep", rb_f_sleep, -1);
rb_define_global_function("exit", f_exit, -1);
rb_define_global_function("abort", f_abort, -1);
rb_mProcess = rb_define_module("Process");
#ifdef WNOHANG
/* see Process.wait */
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(WNOHANG));
#else
/* see Process.wait */
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(0));
#endif
#ifdef WUNTRACED
/* see Process.wait */
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(WUNTRACED));
#else
/* see Process.wait */
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(0));
#endif
rb_define_singleton_method(rb_mProcess, "exec", f_exec, -1);
rb_define_singleton_method(rb_mProcess, "fork", rb_f_fork, 0);
rb_define_singleton_method(rb_mProcess, "spawn", rb_f_spawn, -1);
rb_define_singleton_method(rb_mProcess, "exit!", rb_f_exit_bang, -1);
rb_define_singleton_method(rb_mProcess, "exit", f_exit, -1);
rb_define_singleton_method(rb_mProcess, "abort", f_abort, -1);
rb_define_singleton_method(rb_mProcess, "last_status", proc_s_last_status, 0);
rb_define_singleton_method(rb_mProcess, "_fork", rb_proc__fork, 0);
rb_define_module_function(rb_mProcess, "kill", proc_rb_f_kill, -1);
rb_define_module_function(rb_mProcess, "wait", proc_m_wait, -1);
rb_define_module_function(rb_mProcess, "wait2", proc_wait2, -1);
rb_define_module_function(rb_mProcess, "waitpid", proc_m_wait, -1);
rb_define_module_function(rb_mProcess, "waitpid2", proc_wait2, -1);
rb_define_module_function(rb_mProcess, "waitall", proc_waitall, 0);
rb_define_module_function(rb_mProcess, "detach", proc_detach, 1);
/* :nodoc: */
rb_cWaiter = rb_define_class_under(rb_mProcess, "Waiter", rb_cThread);
rb_undef_alloc_func(rb_cWaiter);
rb_undef_method(CLASS_OF(rb_cWaiter), "new");
rb_define_method(rb_cWaiter, "pid", detach_process_pid, 0);
rb_cProcessStatus = rb_define_class_under(rb_mProcess, "Status", rb_cObject);
rb_define_alloc_func(rb_cProcessStatus, rb_process_status_allocate);
rb_undef_method(CLASS_OF(rb_cProcessStatus), "new");
rb_marshal_define_compat(rb_cProcessStatus, rb_cObject,
process_status_dump, process_status_load);
rb_define_singleton_method(rb_cProcessStatus, "wait", rb_process_status_waitv, -1);
rb_define_method(rb_cProcessStatus, "==", pst_equal, 1);
rb_define_method(rb_cProcessStatus, "&", pst_bitand, 1);
rb_define_method(rb_cProcessStatus, ">>", pst_rshift, 1);
rb_define_method(rb_cProcessStatus, "to_i", pst_to_i, 0);
rb_define_method(rb_cProcessStatus, "to_s", pst_to_s, 0);
rb_define_method(rb_cProcessStatus, "inspect", pst_inspect, 0);
rb_define_method(rb_cProcessStatus, "pid", pst_pid_m, 0);
rb_define_method(rb_cProcessStatus, "stopped?", pst_wifstopped, 0);
rb_define_method(rb_cProcessStatus, "stopsig", pst_wstopsig, 0);
rb_define_method(rb_cProcessStatus, "signaled?", pst_wifsignaled, 0);
rb_define_method(rb_cProcessStatus, "termsig", pst_wtermsig, 0);
rb_define_method(rb_cProcessStatus, "exited?", pst_wifexited, 0);
rb_define_method(rb_cProcessStatus, "exitstatus", pst_wexitstatus, 0);
rb_define_method(rb_cProcessStatus, "success?", pst_success_p, 0);
rb_define_method(rb_cProcessStatus, "coredump?", pst_wcoredump, 0);
rb_define_module_function(rb_mProcess, "pid", proc_get_pid, 0);
rb_define_module_function(rb_mProcess, "ppid", proc_get_ppid, 0);
rb_define_module_function(rb_mProcess, "getpgrp", proc_getpgrp, 0);
rb_define_module_function(rb_mProcess, "setpgrp", proc_setpgrp, 0);
rb_define_module_function(rb_mProcess, "getpgid", proc_getpgid, 1);
rb_define_module_function(rb_mProcess, "setpgid", proc_setpgid, 2);
rb_define_module_function(rb_mProcess, "getsid", proc_getsid, -1);
rb_define_module_function(rb_mProcess, "setsid", proc_setsid, 0);
rb_define_module_function(rb_mProcess, "getpriority", proc_getpriority, 2);
rb_define_module_function(rb_mProcess, "setpriority", proc_setpriority, 3);
rb_define_module_function(rb_mProcess, "warmup", proc_warmup, 0);
#ifdef HAVE_GETPRIORITY
/* see Process.setpriority */
rb_define_const(rb_mProcess, "PRIO_PROCESS", INT2FIX(PRIO_PROCESS));
/* see Process.setpriority */
rb_define_const(rb_mProcess, "PRIO_PGRP", INT2FIX(PRIO_PGRP));
/* see Process.setpriority */
rb_define_const(rb_mProcess, "PRIO_USER", INT2FIX(PRIO_USER));
#endif
rb_define_module_function(rb_mProcess, "getrlimit", proc_getrlimit, 1);
rb_define_module_function(rb_mProcess, "setrlimit", proc_setrlimit, -1);
#if defined(RLIM2NUM) && defined(RLIM_INFINITY)
{
VALUE inf = RLIM2NUM(RLIM_INFINITY);
#ifdef RLIM_SAVED_MAX
{
VALUE v = RLIM_INFINITY == RLIM_SAVED_MAX ? inf : RLIM2NUM(RLIM_SAVED_MAX);
/* see Process.setrlimit */
rb_define_const(rb_mProcess, "RLIM_SAVED_MAX", v);
}
#endif
/* see Process.setrlimit */
rb_define_const(rb_mProcess, "RLIM_INFINITY", inf);
#ifdef RLIM_SAVED_CUR
{
VALUE v = RLIM_INFINITY == RLIM_SAVED_CUR ? inf : RLIM2NUM(RLIM_SAVED_CUR);
/* see Process.setrlimit */
rb_define_const(rb_mProcess, "RLIM_SAVED_CUR", v);
}
#endif
}
#ifdef RLIMIT_AS
/* Maximum size of the process's virtual memory (address space) in bytes.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_AS", INT2FIX(RLIMIT_AS));
#endif
#ifdef RLIMIT_CORE
/* Maximum size of the core file.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_CORE", INT2FIX(RLIMIT_CORE));
#endif
#ifdef RLIMIT_CPU
/* CPU time limit in seconds.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_CPU", INT2FIX(RLIMIT_CPU));
#endif
#ifdef RLIMIT_DATA
/* Maximum size of the process's data segment.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_DATA", INT2FIX(RLIMIT_DATA));
#endif
#ifdef RLIMIT_FSIZE
/* Maximum size of files that the process may create.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_FSIZE", INT2FIX(RLIMIT_FSIZE));
#endif
#ifdef RLIMIT_MEMLOCK
/* Maximum number of bytes of memory that may be locked into RAM.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_MEMLOCK", INT2FIX(RLIMIT_MEMLOCK));
#endif
#ifdef RLIMIT_MSGQUEUE
/* Specifies the limit on the number of bytes that can be allocated
* for POSIX message queues for the real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_MSGQUEUE", INT2FIX(RLIMIT_MSGQUEUE));
#endif
#ifdef RLIMIT_NICE
/* Specifies a ceiling to which the process's nice value can be raised.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NICE", INT2FIX(RLIMIT_NICE));
#endif
#ifdef RLIMIT_NOFILE
/* Specifies a value one greater than the maximum file descriptor
* number that can be opened by this process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NOFILE", INT2FIX(RLIMIT_NOFILE));
#endif
#ifdef RLIMIT_NPROC
/* The maximum number of processes that can be created for the
* real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NPROC", INT2FIX(RLIMIT_NPROC));
#endif
#ifdef RLIMIT_NPTS
/* The maximum number of pseudo-terminals that can be created for the
* real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NPTS", INT2FIX(RLIMIT_NPTS));
#endif
#ifdef RLIMIT_RSS
/* Specifies the limit (in pages) of the process's resident set.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_RSS", INT2FIX(RLIMIT_RSS));
#endif
#ifdef RLIMIT_RTPRIO
/* Specifies a ceiling on the real-time priority that may be set for this process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_RTPRIO", INT2FIX(RLIMIT_RTPRIO));
#endif
#ifdef RLIMIT_RTTIME
/* Specifies limit on CPU time this process scheduled under a real-time
* scheduling policy can consume.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_RTTIME", INT2FIX(RLIMIT_RTTIME));
#endif
#ifdef RLIMIT_SBSIZE
/* Maximum size of the socket buffer.
*/
rb_define_const(rb_mProcess, "RLIMIT_SBSIZE", INT2FIX(RLIMIT_SBSIZE));
#endif
#ifdef RLIMIT_SIGPENDING
/* Specifies a limit on the number of signals that may be queued for
* the real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_SIGPENDING", INT2FIX(RLIMIT_SIGPENDING));
#endif
#ifdef RLIMIT_STACK
/* Maximum size of the stack, in bytes.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_STACK", INT2FIX(RLIMIT_STACK));
#endif
#endif
rb_define_module_function(rb_mProcess, "uid", proc_getuid, 0);
rb_define_module_function(rb_mProcess, "uid=", proc_setuid, 1);
rb_define_module_function(rb_mProcess, "gid", proc_getgid, 0);
rb_define_module_function(rb_mProcess, "gid=", proc_setgid, 1);
rb_define_module_function(rb_mProcess, "euid", proc_geteuid, 0);
rb_define_module_function(rb_mProcess, "euid=", proc_seteuid_m, 1);
rb_define_module_function(rb_mProcess, "egid", proc_getegid, 0);
rb_define_module_function(rb_mProcess, "egid=", proc_setegid_m, 1);
rb_define_module_function(rb_mProcess, "initgroups", proc_initgroups, 2);
rb_define_module_function(rb_mProcess, "groups", proc_getgroups, 0);
rb_define_module_function(rb_mProcess, "groups=", proc_setgroups, 1);
rb_define_module_function(rb_mProcess, "maxgroups", proc_getmaxgroups, 0);
rb_define_module_function(rb_mProcess, "maxgroups=", proc_setmaxgroups, 1);
rb_define_module_function(rb_mProcess, "daemon", proc_daemon, -1);
rb_define_module_function(rb_mProcess, "times", rb_proc_times, 0);
#if defined(RUBY_CLOCK_REALTIME)
#elif defined(RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
# define RUBY_CLOCK_REALTIME RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
#elif defined(RUBY_TIME_BASED_CLOCK_REALTIME)
# define RUBY_CLOCK_REALTIME RUBY_TIME_BASED_CLOCK_REALTIME
#endif
#if defined(CLOCK_REALTIME) && defined(CLOCKID2NUM)
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_REALTIME", CLOCKID2NUM(CLOCK_REALTIME));
#elif defined(RUBY_CLOCK_REALTIME)
rb_define_const(rb_mProcess, "CLOCK_REALTIME", RUBY_CLOCK_REALTIME);
#endif
#if defined(RUBY_CLOCK_MONOTONIC)
#elif defined(RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
# define RUBY_CLOCK_MONOTONIC RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
#endif
#if defined(CLOCK_MONOTONIC) && defined(CLOCKID2NUM)
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC", CLOCKID2NUM(CLOCK_MONOTONIC));
#elif defined(RUBY_CLOCK_MONOTONIC)
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC", RUBY_CLOCK_MONOTONIC);
#endif
#if defined(RUBY_CLOCK_PROCESS_CPUTIME_ID)
#elif defined(RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
# define RUBY_CLOCK_PROCESS_CPUTIME_ID RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
#endif
#if defined(CLOCK_PROCESS_CPUTIME_ID) && defined(CLOCKID2NUM)
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_PROCESS_CPUTIME_ID", CLOCKID2NUM(CLOCK_PROCESS_CPUTIME_ID));
#elif defined(RUBY_CLOCK_PROCESS_CPUTIME_ID)
rb_define_const(rb_mProcess, "CLOCK_PROCESS_CPUTIME_ID", RUBY_CLOCK_PROCESS_CPUTIME_ID);
#endif
#if defined(CLOCK_THREAD_CPUTIME_ID) && defined(CLOCKID2NUM)
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_THREAD_CPUTIME_ID", CLOCKID2NUM(CLOCK_THREAD_CPUTIME_ID));
#elif defined(RUBY_CLOCK_THREAD_CPUTIME_ID)
rb_define_const(rb_mProcess, "CLOCK_THREAD_CPUTIME_ID", RUBY_CLOCK_THREAD_CPUTIME_ID);
#endif
#ifdef CLOCKID2NUM
#ifdef CLOCK_VIRTUAL
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_VIRTUAL", CLOCKID2NUM(CLOCK_VIRTUAL));
#endif
#ifdef CLOCK_PROF
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_PROF", CLOCKID2NUM(CLOCK_PROF));
#endif
#ifdef CLOCK_REALTIME_FAST
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_REALTIME_FAST", CLOCKID2NUM(CLOCK_REALTIME_FAST));
#endif
#ifdef CLOCK_REALTIME_PRECISE
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_REALTIME_PRECISE", CLOCKID2NUM(CLOCK_REALTIME_PRECISE));
#endif
#ifdef CLOCK_REALTIME_COARSE
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_REALTIME_COARSE", CLOCKID2NUM(CLOCK_REALTIME_COARSE));
#endif
#ifdef CLOCK_REALTIME_ALARM
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_REALTIME_ALARM", CLOCKID2NUM(CLOCK_REALTIME_ALARM));
#endif
#ifdef CLOCK_MONOTONIC_FAST
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_FAST", CLOCKID2NUM(CLOCK_MONOTONIC_FAST));
#endif
#ifdef CLOCK_MONOTONIC_PRECISE
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_PRECISE", CLOCKID2NUM(CLOCK_MONOTONIC_PRECISE));
#endif
#ifdef CLOCK_MONOTONIC_RAW
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_RAW", CLOCKID2NUM(CLOCK_MONOTONIC_RAW));
#endif
#ifdef CLOCK_MONOTONIC_RAW_APPROX
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_RAW_APPROX", CLOCKID2NUM(CLOCK_MONOTONIC_RAW_APPROX));
#endif
#ifdef CLOCK_MONOTONIC_COARSE
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_COARSE", CLOCKID2NUM(CLOCK_MONOTONIC_COARSE));
#endif
#ifdef CLOCK_BOOTTIME
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_BOOTTIME", CLOCKID2NUM(CLOCK_BOOTTIME));
#endif
#ifdef CLOCK_BOOTTIME_ALARM
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_BOOTTIME_ALARM", CLOCKID2NUM(CLOCK_BOOTTIME_ALARM));
#endif
#ifdef CLOCK_UPTIME
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_UPTIME", CLOCKID2NUM(CLOCK_UPTIME));
#endif
#ifdef CLOCK_UPTIME_FAST
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_UPTIME_FAST", CLOCKID2NUM(CLOCK_UPTIME_FAST));
#endif
#ifdef CLOCK_UPTIME_PRECISE
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_UPTIME_PRECISE", CLOCKID2NUM(CLOCK_UPTIME_PRECISE));
#endif
#ifdef CLOCK_UPTIME_RAW
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_UPTIME_RAW", CLOCKID2NUM(CLOCK_UPTIME_RAW));
#endif
#ifdef CLOCK_UPTIME_RAW_APPROX
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_UPTIME_RAW_APPROX", CLOCKID2NUM(CLOCK_UPTIME_RAW_APPROX));
#endif
#ifdef CLOCK_SECOND
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_SECOND", CLOCKID2NUM(CLOCK_SECOND));
#endif
#ifdef CLOCK_TAI
/* see Process.clock_gettime */
rb_define_const(rb_mProcess, "CLOCK_TAI", CLOCKID2NUM(CLOCK_TAI));
#endif
#endif
rb_define_module_function(rb_mProcess, "clock_gettime", rb_clock_gettime, -1);
rb_define_module_function(rb_mProcess, "clock_getres", rb_clock_getres, -1);
#if defined(HAVE_TIMES) || defined(_WIN32)
rb_cProcessTms = rb_struct_define_under(rb_mProcess, "Tms", "utime", "stime", "cutime", "cstime", NULL);
#if 0 /* for RDoc */
/* user time used in this process */
rb_define_attr(rb_cProcessTms, "utime", TRUE, TRUE);
/* system time used in this process */
rb_define_attr(rb_cProcessTms, "stime", TRUE, TRUE);
/* user time used in the child processes */
rb_define_attr(rb_cProcessTms, "cutime", TRUE, TRUE);
/* system time used in the child processes */
rb_define_attr(rb_cProcessTms, "cstime", TRUE, TRUE);
#endif
#endif
SAVED_USER_ID = geteuid();
SAVED_GROUP_ID = getegid();
rb_mProcUID = rb_define_module_under(rb_mProcess, "UID");
rb_mProcGID = rb_define_module_under(rb_mProcess, "GID");
rb_define_module_function(rb_mProcUID, "rid", proc_getuid, 0);
rb_define_module_function(rb_mProcGID, "rid", proc_getgid, 0);
rb_define_module_function(rb_mProcUID, "eid", proc_geteuid, 0);
rb_define_module_function(rb_mProcGID, "eid", proc_getegid, 0);
rb_define_module_function(rb_mProcUID, "change_privilege", p_uid_change_privilege, 1);
rb_define_module_function(rb_mProcGID, "change_privilege", p_gid_change_privilege, 1);
rb_define_module_function(rb_mProcUID, "grant_privilege", p_uid_grant_privilege, 1);
rb_define_module_function(rb_mProcGID, "grant_privilege", p_gid_grant_privilege, 1);
rb_define_alias(rb_singleton_class(rb_mProcUID), "eid=", "grant_privilege");
rb_define_alias(rb_singleton_class(rb_mProcGID), "eid=", "grant_privilege");
rb_define_module_function(rb_mProcUID, "re_exchange", p_uid_exchange, 0);
rb_define_module_function(rb_mProcGID, "re_exchange", p_gid_exchange, 0);
rb_define_module_function(rb_mProcUID, "re_exchangeable?", p_uid_exchangeable, 0);
rb_define_module_function(rb_mProcGID, "re_exchangeable?", p_gid_exchangeable, 0);
rb_define_module_function(rb_mProcUID, "sid_available?", p_uid_have_saved_id, 0);
rb_define_module_function(rb_mProcGID, "sid_available?", p_gid_have_saved_id, 0);
rb_define_module_function(rb_mProcUID, "switch", p_uid_switch, 0);
rb_define_module_function(rb_mProcGID, "switch", p_gid_switch, 0);
#ifdef p_uid_from_name
rb_define_module_function(rb_mProcUID, "from_name", p_uid_from_name, 1);
#endif
#ifdef p_gid_from_name
rb_define_module_function(rb_mProcGID, "from_name", p_gid_from_name, 1);
#endif
rb_mProcID_Syscall = rb_define_module_under(rb_mProcess, "Sys");
rb_define_module_function(rb_mProcID_Syscall, "getuid", proc_getuid, 0);
rb_define_module_function(rb_mProcID_Syscall, "geteuid", proc_geteuid, 0);
rb_define_module_function(rb_mProcID_Syscall, "getgid", proc_getgid, 0);
rb_define_module_function(rb_mProcID_Syscall, "getegid", proc_getegid, 0);
rb_define_module_function(rb_mProcID_Syscall, "setuid", p_sys_setuid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setgid", p_sys_setgid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setruid", p_sys_setruid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setrgid", p_sys_setrgid, 1);
rb_define_module_function(rb_mProcID_Syscall, "seteuid", p_sys_seteuid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setegid", p_sys_setegid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setreuid", p_sys_setreuid, 2);
rb_define_module_function(rb_mProcID_Syscall, "setregid", p_sys_setregid, 2);
rb_define_module_function(rb_mProcID_Syscall, "setresuid", p_sys_setresuid, 3);
rb_define_module_function(rb_mProcID_Syscall, "setresgid", p_sys_setresgid, 3);
rb_define_module_function(rb_mProcID_Syscall, "issetugid", p_sys_issetugid, 0);
}
void
Init_process(void)
{
#define define_id(name) id_##name = rb_intern_const(#name)
define_id(in);
define_id(out);
define_id(err);
define_id(pid);
define_id(uid);
define_id(gid);
define_id(close);
define_id(child);
#ifdef HAVE_SETPGID
define_id(pgroup);
#endif
#ifdef _WIN32
define_id(new_pgroup);
#endif
define_id(unsetenv_others);
define_id(chdir);
define_id(umask);
define_id(close_others);
define_id(nanosecond);
define_id(microsecond);
define_id(millisecond);
define_id(second);
define_id(float_microsecond);
define_id(float_millisecond);
define_id(float_second);
define_id(GETTIMEOFDAY_BASED_CLOCK_REALTIME);
define_id(TIME_BASED_CLOCK_REALTIME);
#ifdef CLOCK_REALTIME
define_id(CLOCK_REALTIME);
#endif
#ifdef CLOCK_MONOTONIC
define_id(CLOCK_MONOTONIC);
#endif
#ifdef CLOCK_PROCESS_CPUTIME_ID
define_id(CLOCK_PROCESS_CPUTIME_ID);
#endif
#ifdef CLOCK_THREAD_CPUTIME_ID
define_id(CLOCK_THREAD_CPUTIME_ID);
#endif
#ifdef HAVE_TIMES
define_id(TIMES_BASED_CLOCK_MONOTONIC);
define_id(TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID);
#endif
#ifdef RUSAGE_SELF
define_id(GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID);
#endif
define_id(CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID);
#ifdef __APPLE__
define_id(MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC);
#endif
define_id(hertz);
InitVM(process);
}