ruby/darray.h

210 строки
6.4 KiB
C

#ifndef RUBY_DARRAY_H
#define RUBY_DARRAY_H
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "internal/bits.h"
// Type for a dynamic array. Use to declare a dynamic array.
// It is a pointer so it fits in st_table nicely. Designed
// to be fairly type-safe.
//
// NULL is a valid empty dynamic array.
//
// Example:
// rb_darray(char) char_array = NULL;
// rb_darray_append(&char_array, 'e');
// printf("pushed %c\n", *rb_darray_ref(char_array, 0));
// rb_darray_free(char_array);
//
#define rb_darray(T) struct { rb_darray_meta_t meta; T data[]; } *
// Copy an element out of the array. Warning: not bounds checked.
//
// T rb_darray_get(rb_darray(T) ary, size_t idx);
//
#define rb_darray_get(ary, idx) ((ary)->data[(idx)])
// Assign to an element. Warning: not bounds checked.
//
// void rb_darray_set(rb_darray(T) ary, size_t idx, T element);
//
#define rb_darray_set(ary, idx, element) ((ary)->data[(idx)] = (element))
// Get a pointer to an element. Warning: not bounds checked.
//
// T *rb_darray_ref(rb_darray(T) ary, size_t idx);
//
#define rb_darray_ref(ary, idx) (&((ary)->data[(idx)]))
/* Copy a new element into the array. ptr_to_ary is evaluated multiple times.
*
* void rb_darray_append(rb_darray(T) *ptr_to_ary, T element);
*/
#define rb_darray_append(ptr_to_ary, element) do { \
rb_darray_ensure_space((ptr_to_ary), \
sizeof(**(ptr_to_ary)), \
sizeof((*(ptr_to_ary))->data[0])); \
rb_darray_set(*(ptr_to_ary), \
(*(ptr_to_ary))->meta.size, \
(element)); \
(*(ptr_to_ary))->meta.size++; \
} while (0)
#define rb_darray_insert(ptr_to_ary, idx, element) do { \
rb_darray_ensure_space((ptr_to_ary), \
sizeof(**(ptr_to_ary)), \
sizeof((*(ptr_to_ary))->data[0])); \
MEMMOVE( \
rb_darray_ref(*(ptr_to_ary), idx + 1), \
rb_darray_ref(*(ptr_to_ary), idx), \
sizeof((*(ptr_to_ary))->data[0]), \
rb_darray_size(*(ptr_to_ary)) - idx); \
rb_darray_set(*(ptr_to_ary), idx, element); \
(*(ptr_to_ary))->meta.size++; \
} while (0)
// Iterate over items of the array in a for loop
//
#define rb_darray_foreach(ary, idx_name, elem_ptr_var) \
for (size_t idx_name = 0; idx_name < rb_darray_size(ary) && ((elem_ptr_var) = rb_darray_ref(ary, idx_name)); ++idx_name)
// Iterate over valid indices in the array in a for loop
//
#define rb_darray_for(ary, idx_name) \
for (size_t idx_name = 0; idx_name < rb_darray_size(ary); ++idx_name)
/* Make a dynamic array of a certain size. All bytes backing the elements are set to zero.
* Return 1 on success and 0 on failure.
*
* Note that NULL is a valid empty dynamic array.
*
* void rb_darray_make(rb_darray(T) *ptr_to_ary, size_t size);
*/
#define rb_darray_make(ptr_to_ary, size) \
rb_darray_make_impl((ptr_to_ary), size, sizeof(**(ptr_to_ary)), sizeof((*(ptr_to_ary))->data[0]))
/* Resize the darray to a new capacity. The new capacity must be greater than
* or equal to the size of the darray.
*
* void rb_darray_resize_capa(rb_darray(T) *ptr_to_ary, size_t capa);
*/
#define rb_darray_resize_capa(ptr_to_ary, capa) \
rb_darray_resize_capa_impl((ptr_to_ary), capa, sizeof(**(ptr_to_ary)), sizeof((*(ptr_to_ary))->data[0]))
#define rb_darray_data_ptr(ary) ((ary)->data)
typedef struct rb_darray_meta {
size_t size;
size_t capa;
} rb_darray_meta_t;
/* Set the size of the array to zero without freeing the backing memory.
* Allows reusing the same array. */
static inline void
rb_darray_clear(void *ary)
{
rb_darray_meta_t *meta = ary;
if (meta) {
meta->size = 0;
}
}
// Get the size of the dynamic array.
//
static inline size_t
rb_darray_size(const void *ary)
{
const rb_darray_meta_t *meta = ary;
return meta ? meta->size : 0;
}
static inline void
rb_darray_pop(void *ary, size_t count)
{
rb_darray_meta_t *meta = ary;
meta->size -= count;
}
// Get the capacity of the dynamic array.
//
static inline size_t
rb_darray_capa(const void *ary)
{
const rb_darray_meta_t *meta = ary;
return meta ? meta->capa : 0;
}
/* Free the dynamic array. */
static inline void
rb_darray_free(void *ary)
{
xfree(ary);
}
/* Internal function. Resizes the capacity of a darray. The new capacity must
* be greater than or equal to the size of the darray. */
static inline void
rb_darray_resize_capa_impl(void *ptr_to_ary, size_t new_capa, size_t header_size, size_t element_size)
{
rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary;
rb_darray_meta_t *meta = *ptr_to_ptr_to_meta;
rb_darray_meta_t *new_ary = xrealloc(meta, new_capa * element_size + header_size);
if (meta == NULL) {
/* First allocation. Initialize size. On subsequence allocations
* realloc takes care of carrying over the size. */
new_ary->size = 0;
}
RUBY_ASSERT(new_ary->size <= new_capa);
new_ary->capa = new_capa;
// We don't have access to the type of the dynamic array in function context.
// Write out result with memcpy to avoid strict aliasing issue.
memcpy(ptr_to_ary, &new_ary, sizeof(new_ary));
}
// Internal function
// Ensure there is space for one more element.
// Note: header_size can be bigger than sizeof(rb_darray_meta_t) when T is __int128_t, for example.
static inline void
rb_darray_ensure_space(void *ptr_to_ary, size_t header_size, size_t element_size)
{
rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary;
rb_darray_meta_t *meta = *ptr_to_ptr_to_meta;
size_t current_capa = rb_darray_capa(meta);
if (rb_darray_size(meta) < current_capa) return;
// Double the capacity
size_t new_capa = current_capa == 0 ? 1 : current_capa * 2;
rb_darray_resize_capa_impl(ptr_to_ary, new_capa, header_size, element_size);
}
static inline void
rb_darray_make_impl(void *ptr_to_ary, size_t array_size, size_t header_size, size_t element_size)
{
rb_darray_meta_t **ptr_to_ptr_to_meta = ptr_to_ary;
if (array_size == 0) {
*ptr_to_ptr_to_meta = NULL;
return;
}
rb_darray_meta_t *meta = xcalloc(array_size * element_size + header_size, 1);
meta->size = array_size;
meta->capa = array_size;
// We don't have access to the type of the dynamic array in function context.
// Write out result with memcpy to avoid strict aliasing issue.
memcpy(ptr_to_ary, &meta, sizeof(meta));
}
#endif /* RUBY_DARRAY_H */