ruby/ext/date/date_core.c

9673 строки
216 KiB
C

/*
date_core.c: Coded by Tadayoshi Funaba 2010-2014
*/
#include "ruby.h"
#include "ruby/encoding.h"
#include "ruby/util.h"
#include <math.h>
#include <time.h>
#if defined(HAVE_SYS_TIME_H)
#include <sys/time.h>
#endif
#define NDEBUG
#include <assert.h>
#ifdef RUBY_EXTCONF_H
#include RUBY_EXTCONF_H
#endif
#define USE_PACK
static ID id_cmp, id_le_p, id_ge_p, id_eqeq_p;
static VALUE cDate, cDateTime;
static VALUE half_days_in_day, day_in_nanoseconds;
static double positive_inf, negative_inf;
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
#define f_abs(x) rb_funcall(x, rb_intern("abs"), 0)
#define f_negate(x) rb_funcall(x, rb_intern("-@"), 0)
#define f_add(x,y) rb_funcall(x, '+', 1, y)
#define f_sub(x,y) rb_funcall(x, '-', 1, y)
#define f_mul(x,y) rb_funcall(x, '*', 1, y)
#define f_div(x,y) rb_funcall(x, '/', 1, y)
#define f_quo(x,y) rb_funcall(x, rb_intern("quo"), 1, y)
#define f_idiv(x,y) rb_funcall(x, rb_intern("div"), 1, y)
#define f_mod(x,y) rb_funcall(x, '%', 1, y)
#define f_remainder(x,y) rb_funcall(x, rb_intern("remainder"), 1, y)
#define f_expt(x,y) rb_funcall(x, rb_intern("**"), 1, y)
#define f_floor(x) rb_funcall(x, rb_intern("floor"), 0)
#define f_ceil(x) rb_funcall(x, rb_intern("ceil"), 0)
#define f_truncate(x) rb_funcall(x, rb_intern("truncate"), 0)
#define f_round(x) rb_funcall(x, rb_intern("round"), 0)
#define f_to_i(x) rb_funcall(x, rb_intern("to_i"), 0)
#define f_to_r(x) rb_funcall(x, rb_intern("to_r"), 0)
#define f_to_s(x) rb_funcall(x, rb_intern("to_s"), 0)
#define f_inspect(x) rb_funcall(x, rb_intern("inspect"), 0)
#define f_add3(x,y,z) f_add(f_add(x, y), z)
#define f_sub3(x,y,z) f_sub(f_sub(x, y), z)
static VALUE date_initialize(int argc, VALUE *argv, VALUE self);
static VALUE datetime_initialize(int argc, VALUE *argv, VALUE self);
inline static int
f_cmp(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
long c = FIX2LONG(x) - FIX2LONG(y);
if (c > 0)
return 1;
else if (c < 0)
return -1;
return 0;
}
return rb_cmpint(rb_funcallv(x, id_cmp, 1, &y), x, y);
}
inline static VALUE
f_lt_p(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y))
return f_boolcast(FIX2LONG(x) < FIX2LONG(y));
return rb_funcall(x, '<', 1, y);
}
inline static VALUE
f_gt_p(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y))
return f_boolcast(FIX2LONG(x) > FIX2LONG(y));
return rb_funcall(x, '>', 1, y);
}
inline static VALUE
f_le_p(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y))
return f_boolcast(FIX2LONG(x) <= FIX2LONG(y));
return rb_funcall(x, id_le_p, 1, y);
}
inline static VALUE
f_ge_p(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y))
return f_boolcast(FIX2LONG(x) >= FIX2LONG(y));
return rb_funcall(x, id_ge_p, 1, y);
}
inline static VALUE
f_eqeq_p(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y))
return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
return rb_funcall(x, id_eqeq_p, 1, y);
}
inline static VALUE
f_zero_p(VALUE x)
{
switch (TYPE(x)) {
case T_FIXNUM:
return f_boolcast(FIX2LONG(x) == 0);
case T_BIGNUM:
return Qfalse;
case T_RATIONAL:
{
VALUE num = rb_rational_num(x);
return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 0);
}
}
return rb_funcall(x, id_eqeq_p, 1, INT2FIX(0));
}
#define f_nonzero_p(x) (!f_zero_p(x))
inline static VALUE
f_negative_p(VALUE x)
{
if (FIXNUM_P(x))
return f_boolcast(FIX2LONG(x) < 0);
return rb_funcall(x, '<', 1, INT2FIX(0));
}
#define f_positive_p(x) (!f_negative_p(x))
#define f_ajd(x) rb_funcall(x, rb_intern("ajd"), 0)
#define f_jd(x) rb_funcall(x, rb_intern("jd"), 0)
#define f_year(x) rb_funcall(x, rb_intern("year"), 0)
#define f_mon(x) rb_funcall(x, rb_intern("mon"), 0)
#define f_mday(x) rb_funcall(x, rb_intern("mday"), 0)
#define f_wday(x) rb_funcall(x, rb_intern("wday"), 0)
#define f_hour(x) rb_funcall(x, rb_intern("hour"), 0)
#define f_min(x) rb_funcall(x, rb_intern("min"), 0)
#define f_sec(x) rb_funcall(x, rb_intern("sec"), 0)
/* copied from time.c */
#define NDIV(x,y) (-(-((x)+1)/(y))-1)
#define NMOD(x,y) ((y)-(-((x)+1)%(y))-1)
#define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
#define MOD(n,d) ((n)<0 ? NMOD((n),(d)) : (n)%(d))
#define HAVE_JD (1 << 0)
#define HAVE_DF (1 << 1)
#define HAVE_CIVIL (1 << 2)
#define HAVE_TIME (1 << 3)
#define COMPLEX_DAT (1 << 7)
#define have_jd_p(x) ((x)->flags & HAVE_JD)
#define have_df_p(x) ((x)->flags & HAVE_DF)
#define have_civil_p(x) ((x)->flags & HAVE_CIVIL)
#define have_time_p(x) ((x)->flags & HAVE_TIME)
#define complex_dat_p(x) ((x)->flags & COMPLEX_DAT)
#define simple_dat_p(x) (!complex_dat_p(x))
#define ITALY 2299161 /* 1582-10-15 */
#define ENGLAND 2361222 /* 1752-09-14 */
#define JULIAN positive_inf
#define GREGORIAN negative_inf
#define DEFAULT_SG ITALY
#define UNIX_EPOCH_IN_CJD INT2FIX(2440588) /* 1970-01-01 */
#define MINUTE_IN_SECONDS 60
#define HOUR_IN_SECONDS 3600
#define DAY_IN_SECONDS 86400
#define SECOND_IN_MILLISECONDS 1000
#define SECOND_IN_NANOSECONDS 1000000000
#define JC_PERIOD0 1461 /* 365.25 * 4 */
#define GC_PERIOD0 146097 /* 365.2425 * 400 */
#define CM_PERIOD0 71149239 /* (lcm 7 1461 146097) */
#define CM_PERIOD (0xfffffff / CM_PERIOD0 * CM_PERIOD0)
#define CM_PERIOD_JCY (CM_PERIOD / JC_PERIOD0 * 4)
#define CM_PERIOD_GCY (CM_PERIOD / GC_PERIOD0 * 400)
#define REFORM_BEGIN_YEAR 1582
#define REFORM_END_YEAR 1930
#define REFORM_BEGIN_JD 2298874 /* ns 1582-01-01 */
#define REFORM_END_JD 2426355 /* os 1930-12-31 */
#ifdef USE_PACK
#define SEC_WIDTH 6
#define MIN_WIDTH 6
#define HOUR_WIDTH 5
#define MDAY_WIDTH 5
#define MON_WIDTH 4
#define SEC_SHIFT 0
#define MIN_SHIFT SEC_WIDTH
#define HOUR_SHIFT (MIN_WIDTH + SEC_WIDTH)
#define MDAY_SHIFT (HOUR_WIDTH + MIN_WIDTH + SEC_WIDTH)
#define MON_SHIFT (MDAY_WIDTH + HOUR_WIDTH + MIN_WIDTH + SEC_WIDTH)
#define PK_MASK(x) ((1 << (x)) - 1)
#define EX_SEC(x) (((x) >> SEC_SHIFT) & PK_MASK(SEC_WIDTH))
#define EX_MIN(x) (((x) >> MIN_SHIFT) & PK_MASK(MIN_WIDTH))
#define EX_HOUR(x) (((x) >> HOUR_SHIFT) & PK_MASK(HOUR_WIDTH))
#define EX_MDAY(x) (((x) >> MDAY_SHIFT) & PK_MASK(MDAY_WIDTH))
#define EX_MON(x) (((x) >> MON_SHIFT) & PK_MASK(MON_WIDTH))
#define PACK5(m,d,h,min,s) \
(((m) << MON_SHIFT) | ((d) << MDAY_SHIFT) |\
((h) << HOUR_SHIFT) | ((min) << MIN_SHIFT) | ((s) << SEC_SHIFT))
#define PACK2(m,d) \
(((m) << MON_SHIFT) | ((d) << MDAY_SHIFT))
#endif
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#if defined(FLT_RADIX) && defined(FLT_MANT_DIG) && FLT_RADIX == 2 && FLT_MANT_DIG > 22
#define date_sg_t float
#else
#define date_sg_t double
#endif
/* A set of nth, jd, df and sf denote ajd + 1/2. Each ajd begin at
* noon of GMT (assume equal to UTC). However, this begins at
* midnight.
*/
struct SimpleDateData
{
unsigned flags;
int jd; /* as utc */
VALUE nth; /* not always canonicalized */
date_sg_t sg; /* 2298874..2426355 or -/+oo -- at most 22 bits */
/* decoded as utc=local */
int year; /* truncated */
#ifndef USE_PACK
int mon;
int mday;
/* hour is zero */
/* min is zero */
/* sec is zero */
#else
/* packed civil */
unsigned pc;
#endif
};
struct ComplexDateData
{
unsigned flags;
int jd; /* as utc */
VALUE nth; /* not always canonicalized */
date_sg_t sg; /* 2298874..2426355 or -/+oo -- at most 22 bits */
/* decoded as local */
int year; /* truncated */
#ifndef USE_PACK
int mon;
int mday;
int hour;
int min;
int sec;
#else
/* packed civil */
unsigned pc;
#endif
int df; /* as utc, in secs */
int of; /* in secs */
VALUE sf; /* in nano secs */
};
union DateData {
unsigned flags;
struct SimpleDateData s;
struct ComplexDateData c;
};
#define get_d1(x)\
union DateData *dat;\
TypedData_Get_Struct(x, union DateData, &d_lite_type, dat);
#define get_d1a(x)\
union DateData *adat;\
TypedData_Get_Struct(x, union DateData, &d_lite_type, adat);
#define get_d1b(x)\
union DateData *bdat;\
TypedData_Get_Struct(x, union DateData, &d_lite_type, bdat);
#define get_d2(x,y)\
union DateData *adat, *bdat;\
TypedData_Get_Struct(x, union DateData, &d_lite_type, adat);\
TypedData_Get_Struct(y, union DateData, &d_lite_type, bdat);
inline static VALUE
canon(VALUE x)
{
if (RB_TYPE_P(x, T_RATIONAL)) {
VALUE den = rb_rational_den(x);
if (FIXNUM_P(den) && FIX2LONG(den) == 1)
return rb_rational_num(x);
}
return x;
}
#ifndef USE_PACK
#define set_to_simple(obj, x, _nth, _jd ,_sg, _year, _mon, _mday, _flags) \
do {\
RB_OBJ_WRITE((obj), &(x)->nth, canon(_nth)); \
(x)->jd = _jd;\
(x)->sg = (date_sg_t)(_sg);\
(x)->year = _year;\
(x)->mon = _mon;\
(x)->mday = _mday;\
(x)->flags = (_flags) & ~COMPLEX_DAT;\
} while (0)
#else
#define set_to_simple(obj, x, _nth, _jd ,_sg, _year, _mon, _mday, _flags) \
do {\
RB_OBJ_WRITE((obj), &(x)->nth, canon(_nth)); \
(x)->jd = _jd;\
(x)->sg = (date_sg_t)(_sg);\
(x)->year = _year;\
(x)->pc = PACK2(_mon, _mday);\
(x)->flags = (_flags) & ~COMPLEX_DAT;\
} while (0)
#endif
#ifndef USE_PACK
#define set_to_complex(obj, x, _nth, _jd ,_df, _sf, _of, _sg,\
_year, _mon, _mday, _hour, _min, _sec, _flags) \
do {\
RB_OBJ_WRITE((obj), &(x)->nth, canon(_nth));\
(x)->jd = _jd;\
(x)->df = _df;\
RB_OBJ_WRITE((obj), &(x)->sf, canon(_sf));\
(x)->of = _of;\
(x)->sg = (date_sg_t)(_sg);\
(x)->year = _year;\
(x)->mon = _mon;\
(x)->mday = _mday;\
(x)->hour = _hour;\
(x)->min = _min;\
(x)->sec = _sec;\
(x)->flags = (_flags) | COMPLEX_DAT;\
} while (0)
#else
#define set_to_complex(obj, x, _nth, _jd ,_df, _sf, _of, _sg,\
_year, _mon, _mday, _hour, _min, _sec, _flags) \
do {\
RB_OBJ_WRITE((obj), &(x)->nth, canon(_nth));\
(x)->jd = _jd;\
(x)->df = _df;\
RB_OBJ_WRITE((obj), &(x)->sf, canon(_sf));\
(x)->of = _of;\
(x)->sg = (date_sg_t)(_sg);\
(x)->year = _year;\
(x)->pc = PACK5(_mon, _mday, _hour, _min, _sec);\
(x)->flags = (_flags) | COMPLEX_DAT;\
} while (0)
#endif
#ifndef USE_PACK
#define copy_simple_to_complex(obj, x, y) \
do {\
RB_OBJ_WRITE((obj), &(x)->nth, (y)->nth);\
(x)->jd = (y)->jd;\
(x)->df = 0;\
(x)->sf = INT2FIX(0);\
(x)->of = 0;\
(x)->sg = (date_sg_t)((y)->sg);\
(x)->year = (y)->year;\
(x)->mon = (y)->mon;\
(x)->mday = (y)->mday;\
(x)->hour = 0;\
(x)->min = 0;\
(x)->sec = 0;\
(x)->flags = (y)->flags;\
} while (0)
#else
#define copy_simple_to_complex(obj, x, y) \
do {\
RB_OBJ_WRITE((obj), &(x)->nth, (y)->nth);\
(x)->jd = (y)->jd;\
(x)->df = 0;\
RB_OBJ_WRITE((obj), &(x)->sf, INT2FIX(0));\
(x)->of = 0;\
(x)->sg = (date_sg_t)((y)->sg);\
(x)->year = (y)->year;\
(x)->pc = PACK5(EX_MON((y)->pc), EX_MDAY((y)->pc), 0, 0, 0);\
(x)->flags = (y)->flags;\
} while (0)
#endif
#ifndef USE_PACK
#define copy_complex_to_simple(obj, x, y) \
do {\
RB_OBJ_WRITE((obj), &(x)->nth, (y)->nth);\
(x)->jd = (y)->jd;\
(x)->sg = (date_sg_t)((y)->sg);\
(x)->year = (y)->year;\
(x)->mon = (y)->mon;\
(x)->mday = (y)->mday;\
(x)->flags = (y)->flags;\
} while (0)
#else
#define copy_complex_to_simple(obj, x, y) \
do {\
RB_OBJ_WRITE((obj), &(x)->nth, (y)->nth);\
(x)->jd = (y)->jd;\
(x)->sg = (date_sg_t)((y)->sg);\
(x)->year = (y)->year;\
(x)->pc = PACK2(EX_MON((y)->pc), EX_MDAY((y)->pc));\
(x)->flags = (y)->flags;\
} while (0)
#endif
/* base */
static int c_valid_civil_p(int, int, int, double,
int *, int *, int *, int *);
static int
c_find_fdoy(int y, double sg, int *rjd, int *ns)
{
int d, rm, rd;
for (d = 1; d < 31; d++)
if (c_valid_civil_p(y, 1, d, sg, &rm, &rd, rjd, ns))
return 1;
return 0;
}
static int
c_find_ldoy(int y, double sg, int *rjd, int *ns)
{
int i, rm, rd;
for (i = 0; i < 30; i++)
if (c_valid_civil_p(y, 12, 31 - i, sg, &rm, &rd, rjd, ns))
return 1;
return 0;
}
#ifndef NDEBUG
static int
c_find_fdom(int y, int m, double sg, int *rjd, int *ns)
{
int d, rm, rd;
for (d = 1; d < 31; d++)
if (c_valid_civil_p(y, m, d, sg, &rm, &rd, rjd, ns))
return 1;
return 0;
}
#endif
static int
c_find_ldom(int y, int m, double sg, int *rjd, int *ns)
{
int i, rm, rd;
for (i = 0; i < 30; i++)
if (c_valid_civil_p(y, m, 31 - i, sg, &rm, &rd, rjd, ns))
return 1;
return 0;
}
static void
c_civil_to_jd(int y, int m, int d, double sg, int *rjd, int *ns)
{
double a, b, jd;
if (m <= 2) {
y -= 1;
m += 12;
}
a = floor(y / 100.0);
b = 2 - a + floor(a / 4.0);
jd = floor(365.25 * (y + 4716)) +
floor(30.6001 * (m + 1)) +
d + b - 1524;
if (jd < sg) {
jd -= b;
*ns = 0;
}
else
*ns = 1;
*rjd = (int)jd;
}
static void
c_jd_to_civil(int jd, double sg, int *ry, int *rm, int *rdom)
{
double x, a, b, c, d, e, y, m, dom;
if (jd < sg)
a = jd;
else {
x = floor((jd - 1867216.25) / 36524.25);
a = jd + 1 + x - floor(x / 4.0);
}
b = a + 1524;
c = floor((b - 122.1) / 365.25);
d = floor(365.25 * c);
e = floor((b - d) / 30.6001);
dom = b - d - floor(30.6001 * e);
if (e <= 13) {
m = e - 1;
y = c - 4716;
}
else {
m = e - 13;
y = c - 4715;
}
*ry = (int)y;
*rm = (int)m;
*rdom = (int)dom;
}
static void
c_ordinal_to_jd(int y, int d, double sg, int *rjd, int *ns)
{
int ns2;
c_find_fdoy(y, sg, rjd, &ns2);
*rjd += d - 1;
*ns = (*rjd < sg) ? 0 : 1;
}
static void
c_jd_to_ordinal(int jd, double sg, int *ry, int *rd)
{
int rm2, rd2, rjd, ns;
c_jd_to_civil(jd, sg, ry, &rm2, &rd2);
c_find_fdoy(*ry, sg, &rjd, &ns);
*rd = (jd - rjd) + 1;
}
static void
c_commercial_to_jd(int y, int w, int d, double sg, int *rjd, int *ns)
{
int rjd2, ns2;
c_find_fdoy(y, sg, &rjd2, &ns2);
rjd2 += 3;
*rjd =
(rjd2 - MOD((rjd2 - 1) + 1, 7)) +
7 * (w - 1) +
(d - 1);
*ns = (*rjd < sg) ? 0 : 1;
}
static void
c_jd_to_commercial(int jd, double sg, int *ry, int *rw, int *rd)
{
int ry2, rm2, rd2, a, rjd2, ns2;
c_jd_to_civil(jd - 3, sg, &ry2, &rm2, &rd2);
a = ry2;
c_commercial_to_jd(a + 1, 1, 1, sg, &rjd2, &ns2);
if (jd >= rjd2)
*ry = a + 1;
else {
c_commercial_to_jd(a, 1, 1, sg, &rjd2, &ns2);
*ry = a;
}
*rw = 1 + DIV(jd - rjd2, 7);
*rd = MOD(jd + 1, 7);
if (*rd == 0)
*rd = 7;
}
static void
c_weeknum_to_jd(int y, int w, int d, int f, double sg, int *rjd, int *ns)
{
int rjd2, ns2;
c_find_fdoy(y, sg, &rjd2, &ns2);
rjd2 += 6;
*rjd = (rjd2 - MOD(((rjd2 - f) + 1), 7) - 7) + 7 * w + d;
*ns = (*rjd < sg) ? 0 : 1;
}
static void
c_jd_to_weeknum(int jd, int f, double sg, int *ry, int *rw, int *rd)
{
int rm, rd2, rjd, ns, j;
c_jd_to_civil(jd, sg, ry, &rm, &rd2);
c_find_fdoy(*ry, sg, &rjd, &ns);
rjd += 6;
j = jd - (rjd - MOD((rjd - f) + 1, 7)) + 7;
*rw = (int)DIV(j, 7);
*rd = (int)MOD(j, 7);
}
#ifndef NDEBUG
static void
c_nth_kday_to_jd(int y, int m, int n, int k, double sg, int *rjd, int *ns)
{
int rjd2, ns2;
if (n > 0) {
c_find_fdom(y, m, sg, &rjd2, &ns2);
rjd2 -= 1;
}
else {
c_find_ldom(y, m, sg, &rjd2, &ns2);
rjd2 += 7;
}
*rjd = (rjd2 - MOD((rjd2 - k) + 1, 7)) + 7 * n;
*ns = (*rjd < sg) ? 0 : 1;
}
#endif
inline static int
c_jd_to_wday(int jd)
{
return MOD(jd + 1, 7);
}
#ifndef NDEBUG
static void
c_jd_to_nth_kday(int jd, double sg, int *ry, int *rm, int *rn, int *rk)
{
int rd, rjd, ns2;
c_jd_to_civil(jd, sg, ry, rm, &rd);
c_find_fdom(*ry, *rm, sg, &rjd, &ns2);
*rn = DIV(jd - rjd, 7) + 1;
*rk = c_jd_to_wday(jd);
}
#endif
static int
c_valid_ordinal_p(int y, int d, double sg,
int *rd, int *rjd, int *ns)
{
int ry2, rd2;
if (d < 0) {
int rjd2, ns2;
if (!c_find_ldoy(y, sg, &rjd2, &ns2))
return 0;
c_jd_to_ordinal(rjd2 + d + 1, sg, &ry2, &rd2);
if (ry2 != y)
return 0;
d = rd2;
}
c_ordinal_to_jd(y, d, sg, rjd, ns);
c_jd_to_ordinal(*rjd, sg, &ry2, &rd2);
if (ry2 != y || rd2 != d)
return 0;
return 1;
}
static const int monthtab[2][13] = {
{ 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
inline static int
c_julian_leap_p(int y)
{
return MOD(y, 4) == 0;
}
inline static int
c_gregorian_leap_p(int y)
{
return (MOD(y, 4) == 0 && y % 100 != 0) || MOD(y, 400) == 0;
}
static int
c_julian_last_day_of_month(int y, int m)
{
assert(m >= 1 && m <= 12);
return monthtab[c_julian_leap_p(y) ? 1 : 0][m];
}
static int
c_gregorian_last_day_of_month(int y, int m)
{
assert(m >= 1 && m <= 12);
return monthtab[c_gregorian_leap_p(y) ? 1 : 0][m];
}
static int
c_valid_julian_p(int y, int m, int d, int *rm, int *rd)
{
int last;
if (m < 0)
m += 13;
if (m < 1 || m > 12)
return 0;
last = c_julian_last_day_of_month(y, m);
if (d < 0)
d = last + d + 1;
if (d < 1 || d > last)
return 0;
*rm = m;
*rd = d;
return 1;
}
static int
c_valid_gregorian_p(int y, int m, int d, int *rm, int *rd)
{
int last;
if (m < 0)
m += 13;
if (m < 1 || m > 12)
return 0;
last = c_gregorian_last_day_of_month(y, m);
if (d < 0)
d = last + d + 1;
if (d < 1 || d > last)
return 0;
*rm = m;
*rd = d;
return 1;
}
static int
c_valid_civil_p(int y, int m, int d, double sg,
int *rm, int *rd, int *rjd, int *ns)
{
int ry;
if (m < 0)
m += 13;
if (d < 0) {
if (!c_find_ldom(y, m, sg, rjd, ns))
return 0;
c_jd_to_civil(*rjd + d + 1, sg, &ry, rm, rd);
if (ry != y || *rm != m)
return 0;
d = *rd;
}
c_civil_to_jd(y, m, d, sg, rjd, ns);
c_jd_to_civil(*rjd, sg, &ry, rm, rd);
if (ry != y || *rm != m || *rd != d)
return 0;
return 1;
}
static int
c_valid_commercial_p(int y, int w, int d, double sg,
int *rw, int *rd, int *rjd, int *ns)
{
int ns2, ry2, rw2, rd2;
if (d < 0)
d += 8;
if (w < 0) {
int rjd2;
c_commercial_to_jd(y + 1, 1, 1, sg, &rjd2, &ns2);
c_jd_to_commercial(rjd2 + w * 7, sg, &ry2, &rw2, &rd2);
if (ry2 != y)
return 0;
w = rw2;
}
c_commercial_to_jd(y, w, d, sg, rjd, ns);
c_jd_to_commercial(*rjd, sg, &ry2, rw, rd);
if (y != ry2 || w != *rw || d != *rd)
return 0;
return 1;
}
static int
c_valid_weeknum_p(int y, int w, int d, int f, double sg,
int *rw, int *rd, int *rjd, int *ns)
{
int ns2, ry2, rw2, rd2;
if (d < 0)
d += 7;
if (w < 0) {
int rjd2;
c_weeknum_to_jd(y + 1, 1, f, f, sg, &rjd2, &ns2);
c_jd_to_weeknum(rjd2 + w * 7, f, sg, &ry2, &rw2, &rd2);
if (ry2 != y)
return 0;
w = rw2;
}
c_weeknum_to_jd(y, w, d, f, sg, rjd, ns);
c_jd_to_weeknum(*rjd, f, sg, &ry2, rw, rd);
if (y != ry2 || w != *rw || d != *rd)
return 0;
return 1;
}
#ifndef NDEBUG
static int
c_valid_nth_kday_p(int y, int m, int n, int k, double sg,
int *rm, int *rn, int *rk, int *rjd, int *ns)
{
int ns2, ry2, rm2, rn2, rk2;
if (k < 0)
k += 7;
if (n < 0) {
int t, ny, nm, rjd2;
t = y * 12 + m;
ny = DIV(t, 12);
nm = MOD(t, 12) + 1;
c_nth_kday_to_jd(ny, nm, 1, k, sg, &rjd2, &ns2);
c_jd_to_nth_kday(rjd2 + n * 7, sg, &ry2, &rm2, &rn2, &rk2);
if (ry2 != y || rm2 != m)
return 0;
n = rn2;
}
c_nth_kday_to_jd(y, m, n, k, sg, rjd, ns);
c_jd_to_nth_kday(*rjd, sg, &ry2, rm, rn, rk);
if (y != ry2 || m != *rm || n != *rn || k != *rk)
return 0;
return 1;
}
#endif
static int
c_valid_time_p(int h, int min, int s, int *rh, int *rmin, int *rs)
{
if (h < 0)
h += 24;
if (min < 0)
min += 60;
if (s < 0)
s += 60;
*rh = h;
*rmin = min;
*rs = s;
return !(h < 0 || h > 24 ||
min < 0 || min > 59 ||
s < 0 || s > 59 ||
(h == 24 && (min > 0 || s > 0)));
}
inline static int
c_valid_start_p(double sg)
{
if (isnan(sg))
return 0;
if (isinf(sg))
return 1;
if (sg < REFORM_BEGIN_JD || sg > REFORM_END_JD)
return 0;
return 1;
}
inline static int
df_local_to_utc(int df, int of)
{
df -= of;
if (df < 0)
df += DAY_IN_SECONDS;
else if (df >= DAY_IN_SECONDS)
df -= DAY_IN_SECONDS;
return df;
}
inline static int
df_utc_to_local(int df, int of)
{
df += of;
if (df < 0)
df += DAY_IN_SECONDS;
else if (df >= DAY_IN_SECONDS)
df -= DAY_IN_SECONDS;
return df;
}
inline static int
jd_local_to_utc(int jd, int df, int of)
{
df -= of;
if (df < 0)
jd -= 1;
else if (df >= DAY_IN_SECONDS)
jd += 1;
return jd;
}
inline static int
jd_utc_to_local(int jd, int df, int of)
{
df += of;
if (df < 0)
jd -= 1;
else if (df >= DAY_IN_SECONDS)
jd += 1;
return jd;
}
inline static int
time_to_df(int h, int min, int s)
{
return h * HOUR_IN_SECONDS + min * MINUTE_IN_SECONDS + s;
}
inline static void
df_to_time(int df, int *h, int *min, int *s)
{
*h = df / HOUR_IN_SECONDS;
df %= HOUR_IN_SECONDS;
*min = df / MINUTE_IN_SECONDS;
*s = df % MINUTE_IN_SECONDS;
}
static VALUE
sec_to_day(VALUE s)
{
if (FIXNUM_P(s))
return rb_rational_new2(s, INT2FIX(DAY_IN_SECONDS));
return f_quo(s, INT2FIX(DAY_IN_SECONDS));
}
inline static VALUE
isec_to_day(int s)
{
return sec_to_day(INT2FIX(s));
}
static VALUE
ns_to_day(VALUE n)
{
if (FIXNUM_P(n))
return rb_rational_new2(n, day_in_nanoseconds);
return f_quo(n, day_in_nanoseconds);
}
#ifndef NDEBUG
static VALUE
ms_to_sec(VALUE m)
{
if (FIXNUM_P(m))
return rb_rational_new2(m, INT2FIX(SECOND_IN_MILLISECONDS));
return f_quo(m, INT2FIX(SECOND_IN_MILLISECONDS));
}
#endif
static VALUE
ns_to_sec(VALUE n)
{
if (FIXNUM_P(n))
return rb_rational_new2(n, INT2FIX(SECOND_IN_NANOSECONDS));
return f_quo(n, INT2FIX(SECOND_IN_NANOSECONDS));
}
#ifndef NDEBUG
inline static VALUE
ins_to_day(int n)
{
return ns_to_day(INT2FIX(n));
}
#endif
static int
safe_mul_p(VALUE x, long m)
{
long ix;
if (!FIXNUM_P(x))
return 0;
ix = FIX2LONG(x);
if (ix < 0) {
if (ix <= (FIXNUM_MIN / m))
return 0;
}
else {
if (ix >= (FIXNUM_MAX / m))
return 0;
}
return 1;
}
static VALUE
day_to_sec(VALUE d)
{
if (safe_mul_p(d, DAY_IN_SECONDS))
return LONG2FIX(FIX2LONG(d) * DAY_IN_SECONDS);
return f_mul(d, INT2FIX(DAY_IN_SECONDS));
}
#ifndef NDEBUG
static VALUE
day_to_ns(VALUE d)
{
return f_mul(d, day_in_nanoseconds);
}
#endif
static VALUE
sec_to_ms(VALUE s)
{
if (safe_mul_p(s, SECOND_IN_MILLISECONDS))
return LONG2FIX(FIX2LONG(s) * SECOND_IN_MILLISECONDS);
return f_mul(s, INT2FIX(SECOND_IN_MILLISECONDS));
}
static VALUE
sec_to_ns(VALUE s)
{
if (safe_mul_p(s, SECOND_IN_NANOSECONDS))
return LONG2FIX(FIX2LONG(s) * SECOND_IN_NANOSECONDS);
return f_mul(s, INT2FIX(SECOND_IN_NANOSECONDS));
}
#ifndef NDEBUG
static VALUE
isec_to_ns(int s)
{
return sec_to_ns(INT2FIX(s));
}
#endif
static VALUE
div_day(VALUE d, VALUE *f)
{
if (f)
*f = f_mod(d, INT2FIX(1));
return f_floor(d);
}
static VALUE
div_df(VALUE d, VALUE *f)
{
VALUE s = day_to_sec(d);
if (f)
*f = f_mod(s, INT2FIX(1));
return f_floor(s);
}
#ifndef NDEBUG
static VALUE
div_sf(VALUE s, VALUE *f)
{
VALUE n = sec_to_ns(s);
if (f)
*f = f_mod(n, INT2FIX(1));
return f_floor(n);
}
#endif
static void
decode_day(VALUE d, VALUE *jd, VALUE *df, VALUE *sf)
{
VALUE f;
*jd = div_day(d, &f);
*df = div_df(f, &f);
*sf = sec_to_ns(f);
}
inline static double
s_virtual_sg(union DateData *x)
{
if (isinf(x->s.sg))
return x->s.sg;
if (f_zero_p(x->s.nth))
return x->s.sg;
else if (f_negative_p(x->s.nth))
return positive_inf;
return negative_inf;
}
inline static double
c_virtual_sg(union DateData *x)
{
if (isinf(x->c.sg))
return x->c.sg;
if (f_zero_p(x->c.nth))
return x->c.sg;
else if (f_negative_p(x->c.nth))
return positive_inf;
return negative_inf;
}
inline static double
m_virtual_sg(union DateData *x)
{
if (simple_dat_p(x))
return s_virtual_sg(x);
else
return c_virtual_sg(x);
}
#define canonicalize_jd(_nth, _jd) \
do {\
if (_jd < 0) {\
_nth = f_sub(_nth, INT2FIX(1));\
_jd += CM_PERIOD;\
}\
if (_jd >= CM_PERIOD) {\
_nth = f_add(_nth, INT2FIX(1));\
_jd -= CM_PERIOD;\
}\
} while (0)
inline static void
canonicalize_s_jd(VALUE obj, union DateData *x)
{
int j = x->s.jd;
VALUE nth = x->s.nth;
assert(have_jd_p(x));
canonicalize_jd(nth, x->s.jd);
RB_OBJ_WRITE(obj, &x->s.nth, nth);
if (x->s.jd != j)
x->flags &= ~HAVE_CIVIL;
}
inline static void
get_s_jd(union DateData *x)
{
assert(simple_dat_p(x));
if (!have_jd_p(x)) {
int jd, ns;
assert(have_civil_p(x));
#ifndef USE_PACK
c_civil_to_jd(x->s.year, x->s.mon, x->s.mday,
s_virtual_sg(x), &jd, &ns);
#else
c_civil_to_jd(x->s.year, EX_MON(x->s.pc), EX_MDAY(x->s.pc),
s_virtual_sg(x), &jd, &ns);
#endif
x->s.jd = jd;
x->s.flags |= HAVE_JD;
}
}
inline static void
get_s_civil(union DateData *x)
{
assert(simple_dat_p(x));
if (!have_civil_p(x)) {
int y, m, d;
assert(have_jd_p(x));
c_jd_to_civil(x->s.jd, s_virtual_sg(x), &y, &m, &d);
x->s.year = y;
#ifndef USE_PACK
x->s.mon = m;
x->s.mday = d;
#else
x->s.pc = PACK2(m, d);
#endif
x->s.flags |= HAVE_CIVIL;
}
}
inline static void
get_c_df(union DateData *x)
{
assert(complex_dat_p(x));
if (!have_df_p(x)) {
assert(have_time_p(x));
#ifndef USE_PACK
x->c.df = df_local_to_utc(time_to_df(x->c.hour, x->c.min, x->c.sec),
x->c.of);
#else
x->c.df = df_local_to_utc(time_to_df(EX_HOUR(x->c.pc),
EX_MIN(x->c.pc),
EX_SEC(x->c.pc)),
x->c.of);
#endif
x->c.flags |= HAVE_DF;
}
}
inline static void
get_c_time(union DateData *x)
{
assert(complex_dat_p(x));
if (!have_time_p(x)) {
#ifndef USE_PACK
int r;
assert(have_df_p(x));
r = df_utc_to_local(x->c.df, x->c.of);
df_to_time(r, &x->c.hour, &x->c.min, &x->c.sec);
x->c.flags |= HAVE_TIME;
#else
int r, m, d, h, min, s;
assert(have_df_p(x));
m = EX_MON(x->c.pc);
d = EX_MDAY(x->c.pc);
r = df_utc_to_local(x->c.df, x->c.of);
df_to_time(r, &h, &min, &s);
x->c.pc = PACK5(m, d, h, min, s);
x->c.flags |= HAVE_TIME;
#endif
}
}
inline static void
canonicalize_c_jd(VALUE obj, union DateData *x)
{
int j = x->c.jd;
VALUE nth = x->c.nth;
assert(have_jd_p(x));
canonicalize_jd(nth, x->c.jd);
RB_OBJ_WRITE(obj, &x->c.nth, nth);
if (x->c.jd != j)
x->flags &= ~HAVE_CIVIL;
}
inline static void
get_c_jd(union DateData *x)
{
assert(complex_dat_p(x));
if (!have_jd_p(x)) {
int jd, ns;
assert(have_civil_p(x));
#ifndef USE_PACK
c_civil_to_jd(x->c.year, x->c.mon, x->c.mday,
c_virtual_sg(x), &jd, &ns);
#else
c_civil_to_jd(x->c.year, EX_MON(x->c.pc), EX_MDAY(x->c.pc),
c_virtual_sg(x), &jd, &ns);
#endif
get_c_time(x);
#ifndef USE_PACK
x->c.jd = jd_local_to_utc(jd,
time_to_df(x->c.hour, x->c.min, x->c.sec),
x->c.of);
#else
x->c.jd = jd_local_to_utc(jd,
time_to_df(EX_HOUR(x->c.pc),
EX_MIN(x->c.pc),
EX_SEC(x->c.pc)),
x->c.of);
#endif
x->c.flags |= HAVE_JD;
}
}
inline static void
get_c_civil(union DateData *x)
{
assert(complex_dat_p(x));
if (!have_civil_p(x)) {
#ifndef USE_PACK
int jd, y, m, d;
#else
int jd, y, m, d, h, min, s;
#endif
assert(have_jd_p(x));
get_c_df(x);
jd = jd_utc_to_local(x->c.jd, x->c.df, x->c.of);
c_jd_to_civil(jd, c_virtual_sg(x), &y, &m, &d);
x->c.year = y;
#ifndef USE_PACK
x->c.mon = m;
x->c.mday = d;
#else
h = EX_HOUR(x->c.pc);
min = EX_MIN(x->c.pc);
s = EX_SEC(x->c.pc);
x->c.pc = PACK5(m, d, h, min, s);
#endif
x->c.flags |= HAVE_CIVIL;
}
}
inline static int
local_jd(union DateData *x)
{
assert(complex_dat_p(x));
assert(have_jd_p(x));
assert(have_df_p(x));
return jd_utc_to_local(x->c.jd, x->c.df, x->c.of);
}
inline static int
local_df(union DateData *x)
{
assert(complex_dat_p(x));
assert(have_df_p(x));
return df_utc_to_local(x->c.df, x->c.of);
}
static void
decode_year(VALUE y, double style,
VALUE *nth, int *ry)
{
int period;
VALUE t;
period = (style < 0) ?
CM_PERIOD_GCY :
CM_PERIOD_JCY;
if (FIXNUM_P(y)) {
long iy, it, inth;
iy = FIX2LONG(y);
if (iy >= (FIXNUM_MAX - 4712))
goto big;
it = iy + 4712; /* shift */
inth = DIV(it, ((long)period));
*nth = LONG2FIX(inth);
if (inth)
it = MOD(it, ((long)period));
*ry = (int)it - 4712; /* unshift */
return;
}
big:
t = f_add(y, INT2FIX(4712)); /* shift */
*nth = f_idiv(t, INT2FIX(period));
if (f_nonzero_p(*nth))
t = f_mod(t, INT2FIX(period));
*ry = FIX2INT(t) - 4712; /* unshift */
}
static void
encode_year(VALUE nth, int y, double style,
VALUE *ry)
{
int period;
VALUE t;
period = (style < 0) ?
CM_PERIOD_GCY :
CM_PERIOD_JCY;
if (f_zero_p(nth))
*ry = INT2FIX(y);
else {
t = f_mul(INT2FIX(period), nth);
t = f_add(t, INT2FIX(y));
*ry = t;
}
}
static void
decode_jd(VALUE jd, VALUE *nth, int *rjd)
{
*nth = f_idiv(jd, INT2FIX(CM_PERIOD));
if (f_zero_p(*nth)) {
*rjd = FIX2INT(jd);
return;
}
*rjd = FIX2INT(f_mod(jd, INT2FIX(CM_PERIOD)));
}
static void
encode_jd(VALUE nth, int jd, VALUE *rjd)
{
if (f_zero_p(nth)) {
*rjd = INT2FIX(jd);
return;
}
*rjd = f_add(f_mul(INT2FIX(CM_PERIOD), nth), INT2FIX(jd));
}
inline static double
guess_style(VALUE y, double sg) /* -/+oo or zero */
{
double style = 0;
if (isinf(sg))
style = sg;
else if (!FIXNUM_P(y))
style = f_positive_p(y) ? negative_inf : positive_inf;
else {
long iy = FIX2LONG(y);
assert(FIXNUM_P(y));
if (iy < REFORM_BEGIN_YEAR)
style = positive_inf;
else if (iy > REFORM_END_YEAR)
style = negative_inf;
}
return style;
}
inline static void
m_canonicalize_jd(VALUE obj, union DateData *x)
{
if (simple_dat_p(x)) {
get_s_jd(x);
canonicalize_s_jd(obj, x);
}
else {
get_c_jd(x);
canonicalize_c_jd(obj, x);
}
}
inline static VALUE
m_nth(union DateData *x)
{
if (simple_dat_p(x))
return x->s.nth;
else {
get_c_civil(x);
return x->c.nth;
}
}
inline static int
m_jd(union DateData *x)
{
if (simple_dat_p(x)) {
get_s_jd(x);
return x->s.jd;
}
else {
get_c_jd(x);
return x->c.jd;
}
}
static VALUE
m_real_jd(union DateData *x)
{
VALUE nth, rjd;
int jd;
nth = m_nth(x);
jd = m_jd(x);
encode_jd(nth, jd, &rjd);
return rjd;
}
static int
m_local_jd(union DateData *x)
{
if (simple_dat_p(x)) {
get_s_jd(x);
return x->s.jd;
}
else {
get_c_jd(x);
get_c_df(x);
return local_jd(x);
}
}
static VALUE
m_real_local_jd(union DateData *x)
{
VALUE nth, rjd;
int jd;
nth = m_nth(x);
jd = m_local_jd(x);
encode_jd(nth, jd, &rjd);
return rjd;
}
inline static int
m_df(union DateData *x)
{
if (simple_dat_p(x))
return 0;
else {
get_c_df(x);
return x->c.df;
}
}
#ifndef NDEBUG
static VALUE
m_df_in_day(union DateData *x)
{
return isec_to_day(m_df(x));
}
#endif
static int
m_local_df(union DateData *x)
{
if (simple_dat_p(x))
return 0;
else {
get_c_df(x);
return local_df(x);
}
}
#ifndef NDEBUG
static VALUE
m_local_df_in_day(union DateData *x)
{
return isec_to_day(m_local_df(x));
}
#endif
inline static VALUE
m_sf(union DateData *x)
{
if (simple_dat_p(x))
return INT2FIX(0);
else
return x->c.sf;
}
#ifndef NDEBUG
static VALUE
m_sf_in_day(union DateData *x)
{
return ns_to_day(m_sf(x));
}
#endif
static VALUE
m_sf_in_sec(union DateData *x)
{
return ns_to_sec(m_sf(x));
}
static VALUE
m_fr(union DateData *x)
{
if (simple_dat_p(x))
return INT2FIX(0);
else {
int df;
VALUE sf, fr;
df = m_local_df(x);
sf = m_sf(x);
fr = isec_to_day(df);
if (f_nonzero_p(sf))
fr = f_add(fr, ns_to_day(sf));
return fr;
}
}
#define HALF_DAYS_IN_SECONDS (DAY_IN_SECONDS / 2)
static VALUE
m_ajd(union DateData *x)
{
VALUE r, sf;
int df;
if (simple_dat_p(x)) {
r = m_real_jd(x);
if (FIXNUM_P(r) && FIX2LONG(r) <= (FIXNUM_MAX / 2)) {
long ir = FIX2LONG(r);
ir = ir * 2 - 1;
return rb_rational_new2(LONG2FIX(ir), INT2FIX(2));
}
else
return rb_rational_new2(f_sub(f_mul(r,
INT2FIX(2)),
INT2FIX(1)),
INT2FIX(2));
}
r = m_real_jd(x);
df = m_df(x);
df -= HALF_DAYS_IN_SECONDS;
if (df)
r = f_add(r, isec_to_day(df));
sf = m_sf(x);
if (f_nonzero_p(sf))
r = f_add(r, ns_to_day(sf));
return r;
}
static VALUE
m_amjd(union DateData *x)
{
VALUE r, sf;
int df;
r = m_real_jd(x);
if (FIXNUM_P(r) && FIX2LONG(r) >= (FIXNUM_MIN + 2400001)) {
long ir = FIX2LONG(r);
ir -= 2400001;
r = rb_rational_new1(LONG2FIX(ir));
}
else
r = rb_rational_new1(f_sub(m_real_jd(x),
INT2FIX(2400001)));
if (simple_dat_p(x))
return r;
df = m_df(x);
if (df)
r = f_add(r, isec_to_day(df));
sf = m_sf(x);
if (f_nonzero_p(sf))
r = f_add(r, ns_to_day(sf));
return r;
}
inline static int
m_of(union DateData *x)
{
if (simple_dat_p(x))
return 0;
else {
get_c_jd(x);
return x->c.of;
}
}
static VALUE
m_of_in_day(union DateData *x)
{
return isec_to_day(m_of(x));
}
inline static double
m_sg(union DateData *x)
{
if (simple_dat_p(x))
return x->s.sg;
else {
get_c_jd(x);
return x->c.sg;
}
}
static int
m_julian_p(union DateData *x)
{
int jd;
double sg;
if (simple_dat_p(x)) {
get_s_jd(x);
jd = x->s.jd;
sg = s_virtual_sg(x);
}
else {
get_c_jd(x);
jd = x->c.jd;
sg = c_virtual_sg(x);
}
if (isinf(sg))
return sg == positive_inf;
return jd < sg;
}
inline static int
m_gregorian_p(union DateData *x)
{
return !m_julian_p(x);
}
inline static int
m_proleptic_julian_p(union DateData *x)
{
double sg;
sg = m_sg(x);
if (isinf(sg) && sg > 0)
return 1;
return 0;
}
inline static int
m_proleptic_gregorian_p(union DateData *x)
{
double sg;
sg = m_sg(x);
if (isinf(sg) && sg < 0)
return 1;
return 0;
}
inline static int
m_year(union DateData *x)
{
if (simple_dat_p(x)) {
get_s_civil(x);
return x->s.year;
}
else {
get_c_civil(x);
return x->c.year;
}
}
static VALUE
m_real_year(union DateData *x)
{
VALUE nth, ry;
int year;
nth = m_nth(x);
year = m_year(x);
if (f_zero_p(nth))
return INT2FIX(year);
encode_year(nth, year,
m_gregorian_p(x) ? -1 : +1,
&ry);
return ry;
}
inline static int
m_mon(union DateData *x)
{
if (simple_dat_p(x)) {
get_s_civil(x);
#ifndef USE_PACK
return x->s.mon;
#else
return EX_MON(x->s.pc);
#endif
}
else {
get_c_civil(x);
#ifndef USE_PACK
return x->c.mon;
#else
return EX_MON(x->c.pc);
#endif
}
}
inline static int
m_mday(union DateData *x)
{
if (simple_dat_p(x)) {
get_s_civil(x);
#ifndef USE_PACK
return x->s.mday;
#else
return EX_MDAY(x->s.pc);
#endif
}
else {
get_c_civil(x);
#ifndef USE_PACK
return x->c.mday;
#else
return EX_MDAY(x->c.pc);
#endif
}
}
static const int yeartab[2][13] = {
{ 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 },
{ 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 }
};
static int
c_julian_to_yday(int y, int m, int d)
{
assert(m >= 1 && m <= 12);
return yeartab[c_julian_leap_p(y) ? 1 : 0][m] + d;
}
static int
c_gregorian_to_yday(int y, int m, int d)
{
assert(m >= 1 && m <= 12);
return yeartab[c_gregorian_leap_p(y) ? 1 : 0][m] + d;
}
static int
m_yday(union DateData *x)
{
int jd, ry, rd;
double sg;
jd = m_local_jd(x);
sg = m_virtual_sg(x); /* !=m_sg() */
if (m_proleptic_gregorian_p(x) ||
(jd - sg) > 366)
return c_gregorian_to_yday(m_year(x), m_mon(x), m_mday(x));
if (m_proleptic_julian_p(x))
return c_julian_to_yday(m_year(x), m_mon(x), m_mday(x));
c_jd_to_ordinal(jd, sg, &ry, &rd);
return rd;
}
static int
m_wday(union DateData *x)
{
return c_jd_to_wday(m_local_jd(x));
}
static int
m_cwyear(union DateData *x)
{
int ry, rw, rd;
c_jd_to_commercial(m_local_jd(x), m_virtual_sg(x), /* !=m_sg() */
&ry, &rw, &rd);
return ry;
}
static VALUE
m_real_cwyear(union DateData *x)
{
VALUE nth, ry;
int year;
nth = m_nth(x);
year = m_cwyear(x);
if (f_zero_p(nth))
return INT2FIX(year);
encode_year(nth, year,
m_gregorian_p(x) ? -1 : +1,
&ry);
return ry;
}
static int
m_cweek(union DateData *x)
{
int ry, rw, rd;
c_jd_to_commercial(m_local_jd(x), m_virtual_sg(x), /* !=m_sg() */
&ry, &rw, &rd);
return rw;
}
static int
m_cwday(union DateData *x)
{
int w;
w = m_wday(x);
if (w == 0)
w = 7;
return w;
}
static int
m_wnumx(union DateData *x, int f)
{
int ry, rw, rd;
c_jd_to_weeknum(m_local_jd(x), f, m_virtual_sg(x), /* !=m_sg() */
&ry, &rw, &rd);
return rw;
}
static int
m_wnum0(union DateData *x)
{
return m_wnumx(x, 0);
}
static int
m_wnum1(union DateData *x)
{
return m_wnumx(x, 1);
}
inline static int
m_hour(union DateData *x)
{
if (simple_dat_p(x))
return 0;
else {
get_c_time(x);
#ifndef USE_PACK
return x->c.hour;
#else
return EX_HOUR(x->c.pc);
#endif
}
}
inline static int
m_min(union DateData *x)
{
if (simple_dat_p(x))
return 0;
else {
get_c_time(x);
#ifndef USE_PACK
return x->c.min;
#else
return EX_MIN(x->c.pc);
#endif
}
}
inline static int
m_sec(union DateData *x)
{
if (simple_dat_p(x))
return 0;
else {
get_c_time(x);
#ifndef USE_PACK
return x->c.sec;
#else
return EX_SEC(x->c.pc);
#endif
}
}
#define decode_offset(of,s,h,m)\
do {\
int a;\
s = (of < 0) ? '-' : '+';\
a = (of < 0) ? -of : of;\
h = a / HOUR_IN_SECONDS;\
m = a % HOUR_IN_SECONDS / MINUTE_IN_SECONDS;\
} while (0)
static VALUE
of2str(int of)
{
int s, h, m;
decode_offset(of, s, h, m);
return rb_enc_sprintf(rb_usascii_encoding(), "%c%02d:%02d", s, h, m);
}
static VALUE
m_zone(union DateData *x)
{
if (simple_dat_p(x))
return rb_usascii_str_new2("+00:00");
return of2str(m_of(x));
}
inline static VALUE
f_kind_of_p(VALUE x, VALUE c)
{
return rb_obj_is_kind_of(x, c);
}
inline static VALUE
k_date_p(VALUE x)
{
return f_kind_of_p(x, cDate);
}
inline static VALUE
k_numeric_p(VALUE x)
{
return f_kind_of_p(x, rb_cNumeric);
}
inline static VALUE
k_rational_p(VALUE x)
{
return f_kind_of_p(x, rb_cRational);
}
static inline void
expect_numeric(VALUE x)
{
if (!k_numeric_p(x))
rb_raise(rb_eTypeError, "expected numeric");
}
#ifndef NDEBUG
static void
civil_to_jd(VALUE y, int m, int d, double sg,
VALUE *nth, int *ry,
int *rjd,
int *ns)
{
double style = guess_style(y, sg);
if (style == 0) {
int jd;
c_civil_to_jd(FIX2INT(y), m, d, sg, &jd, ns);
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
c_civil_to_jd(*ry, m, d, style, rjd, ns);
}
}
static void
jd_to_civil(VALUE jd, double sg,
VALUE *nth, int *rjd,
int *ry, int *rm, int *rd)
{
decode_jd(jd, nth, rjd);
c_jd_to_civil(*rjd, sg, ry, rm, rd);
}
static void
ordinal_to_jd(VALUE y, int d, double sg,
VALUE *nth, int *ry,
int *rjd,
int *ns)
{
double style = guess_style(y, sg);
if (style == 0) {
int jd;
c_ordinal_to_jd(FIX2INT(y), d, sg, &jd, ns);
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
c_ordinal_to_jd(*ry, d, style, rjd, ns);
}
}
static void
jd_to_ordinal(VALUE jd, double sg,
VALUE *nth, int *rjd,
int *ry, int *rd)
{
decode_jd(jd, nth, rjd);
c_jd_to_ordinal(*rjd, sg, ry, rd);
}
static void
commercial_to_jd(VALUE y, int w, int d, double sg,
VALUE *nth, int *ry,
int *rjd,
int *ns)
{
double style = guess_style(y, sg);
if (style == 0) {
int jd;
c_commercial_to_jd(FIX2INT(y), w, d, sg, &jd, ns);
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
c_commercial_to_jd(*ry, w, d, style, rjd, ns);
}
}
static void
jd_to_commercial(VALUE jd, double sg,
VALUE *nth, int *rjd,
int *ry, int *rw, int *rd)
{
decode_jd(jd, nth, rjd);
c_jd_to_commercial(*rjd, sg, ry, rw, rd);
}
static void
weeknum_to_jd(VALUE y, int w, int d, int f, double sg,
VALUE *nth, int *ry,
int *rjd,
int *ns)
{
double style = guess_style(y, sg);
if (style == 0) {
int jd;
c_weeknum_to_jd(FIX2INT(y), w, d, f, sg, &jd, ns);
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
c_weeknum_to_jd(*ry, w, d, f, style, rjd, ns);
}
}
static void
jd_to_weeknum(VALUE jd, int f, double sg,
VALUE *nth, int *rjd,
int *ry, int *rw, int *rd)
{
decode_jd(jd, nth, rjd);
c_jd_to_weeknum(*rjd, f, sg, ry, rw, rd);
}
static void
nth_kday_to_jd(VALUE y, int m, int n, int k, double sg,
VALUE *nth, int *ry,
int *rjd,
int *ns)
{
double style = guess_style(y, sg);
if (style == 0) {
int jd;
c_nth_kday_to_jd(FIX2INT(y), m, n, k, sg, &jd, ns);
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
c_nth_kday_to_jd(*ry, m, n, k, style, rjd, ns);
}
}
static void
jd_to_nth_kday(VALUE jd, double sg,
VALUE *nth, int *rjd,
int *ry, int *rm, int *rn, int *rk)
{
decode_jd(jd, nth, rjd);
c_jd_to_nth_kday(*rjd, sg, ry, rm, rn, rk);
}
#endif
static int
valid_ordinal_p(VALUE y, int d, double sg,
VALUE *nth, int *ry,
int *rd, int *rjd,
int *ns)
{
double style = guess_style(y, sg);
int r;
if (style == 0) {
int jd;
r = c_valid_ordinal_p(FIX2INT(y), d, sg, rd, &jd, ns);
if (!r)
return 0;
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
r = c_valid_ordinal_p(*ry, d, style, rd, rjd, ns);
}
return r;
}
static int
valid_gregorian_p(VALUE y, int m, int d,
VALUE *nth, int *ry,
int *rm, int *rd)
{
decode_year(y, -1, nth, ry);
return c_valid_gregorian_p(*ry, m, d, rm, rd);
}
static int
valid_civil_p(VALUE y, int m, int d, double sg,
VALUE *nth, int *ry,
int *rm, int *rd, int *rjd,
int *ns)
{
double style = guess_style(y, sg);
int r;
if (style == 0) {
int jd;
r = c_valid_civil_p(FIX2INT(y), m, d, sg, rm, rd, &jd, ns);
if (!r)
return 0;
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
if (style < 0)
r = c_valid_gregorian_p(*ry, m, d, rm, rd);
else
r = c_valid_julian_p(*ry, m, d, rm, rd);
if (!r)
return 0;
c_civil_to_jd(*ry, *rm, *rd, style, rjd, ns);
}
return r;
}
static int
valid_commercial_p(VALUE y, int w, int d, double sg,
VALUE *nth, int *ry,
int *rw, int *rd, int *rjd,
int *ns)
{
double style = guess_style(y, sg);
int r;
if (style == 0) {
int jd;
r = c_valid_commercial_p(FIX2INT(y), w, d, sg, rw, rd, &jd, ns);
if (!r)
return 0;
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
r = c_valid_commercial_p(*ry, w, d, style, rw, rd, rjd, ns);
}
return r;
}
static int
valid_weeknum_p(VALUE y, int w, int d, int f, double sg,
VALUE *nth, int *ry,
int *rw, int *rd, int *rjd,
int *ns)
{
double style = guess_style(y, sg);
int r;
if (style == 0) {
int jd;
r = c_valid_weeknum_p(FIX2INT(y), w, d, f, sg, rw, rd, &jd, ns);
if (!r)
return 0;
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
r = c_valid_weeknum_p(*ry, w, d, f, style, rw, rd, rjd, ns);
}
return r;
}
#ifndef NDEBUG
static int
valid_nth_kday_p(VALUE y, int m, int n, int k, double sg,
VALUE *nth, int *ry,
int *rm, int *rn, int *rk, int *rjd,
int *ns)
{
double style = guess_style(y, sg);
int r;
if (style == 0) {
int jd;
r = c_valid_nth_kday_p(FIX2INT(y), m, n, k, sg, rm, rn, rk, &jd, ns);
if (!r)
return 0;
decode_jd(INT2FIX(jd), nth, rjd);
if (f_zero_p(*nth))
*ry = FIX2INT(y);
else {
VALUE nth2;
decode_year(y, *ns ? -1 : +1, &nth2, ry);
}
}
else {
decode_year(y, style, nth, ry);
r = c_valid_nth_kday_p(*ry, m, n, k, style, rm, rn, rk, rjd, ns);
}
return r;
}
#endif
VALUE date_zone_to_diff(VALUE);
static int
offset_to_sec(VALUE vof, int *rof)
{
int try_rational = 1;
again:
switch (TYPE(vof)) {
case T_FIXNUM:
{
long n;
n = FIX2LONG(vof);
if (n != -1 && n != 0 && n != 1)
return 0;
*rof = (int)n * DAY_IN_SECONDS;
return 1;
}
case T_FLOAT:
{
double n;
n = RFLOAT_VALUE(vof) * DAY_IN_SECONDS;
if (n < -DAY_IN_SECONDS || n > DAY_IN_SECONDS)
return 0;
*rof = (int)round(n);
if (*rof != n)
rb_warning("fraction of offset is ignored");
return 1;
}
default:
expect_numeric(vof);
vof = f_to_r(vof);
if (!k_rational_p(vof)) {
if (!try_rational) Check_Type(vof, T_RATIONAL);
try_rational = 0;
goto again;
}
/* fall through */
case T_RATIONAL:
{
VALUE vs, vn, vd;
long n;
vs = day_to_sec(vof);
if (!k_rational_p(vs)) {
vn = vs;
goto rounded;
}
vn = rb_rational_num(vs);
vd = rb_rational_den(vs);
if (FIXNUM_P(vn) && FIXNUM_P(vd) && (FIX2LONG(vd) == 1))
n = FIX2LONG(vn);
else {
vn = f_round(vs);
if (!f_eqeq_p(vn, vs))
rb_warning("fraction of offset is ignored");
rounded:
if (!FIXNUM_P(vn))
return 0;
n = FIX2LONG(vn);
if (n < -DAY_IN_SECONDS || n > DAY_IN_SECONDS)
return 0;
}
*rof = (int)n;
return 1;
}
case T_STRING:
{
VALUE vs = date_zone_to_diff(vof);
long n;
if (!FIXNUM_P(vs))
return 0;
n = FIX2LONG(vs);
if (n < -DAY_IN_SECONDS || n > DAY_IN_SECONDS)
return 0;
*rof = (int)n;
return 1;
}
}
return 0;
}
/* date */
#define valid_sg(sg) \
do {\
if (!c_valid_start_p(sg)) {\
sg = 0;\
rb_warning("invalid start is ignored");\
}\
} while (0)
static VALUE
valid_jd_sub(int argc, VALUE *argv, VALUE klass, int need_jd)
{
double sg = NUM2DBL(argv[1]);
valid_sg(sg);
return argv[0];
}
#ifndef NDEBUG
static VALUE
date_s__valid_jd_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vjd, vsg;
VALUE argv2[2];
rb_scan_args(argc, argv, "11", &vjd, &vsg);
argv2[0] = vjd;
if (argc < 2)
argv2[1] = DBL2NUM(GREGORIAN);
else
argv2[1] = vsg;
return valid_jd_sub(2, argv2, klass, 1);
}
#endif
/*
* call-seq:
* Date.valid_jd?(jd[, start=Date::ITALY]) -> bool
*
* Just returns true. It's nonsense, but is for symmetry.
*
* Date.valid_jd?(2451944) #=> true
*
* See also ::jd.
*/
static VALUE
date_s_valid_jd_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vjd, vsg;
VALUE argv2[2];
rb_scan_args(argc, argv, "11", &vjd, &vsg);
argv2[0] = vjd;
if (argc < 2)
argv2[1] = INT2FIX(DEFAULT_SG);
else
argv2[1] = vsg;
if (NIL_P(valid_jd_sub(2, argv2, klass, 0)))
return Qfalse;
return Qtrue;
}
static VALUE
valid_civil_sub(int argc, VALUE *argv, VALUE klass, int need_jd)
{
VALUE nth, y;
int m, d, ry, rm, rd;
double sg;
y = argv[0];
m = NUM2INT(argv[1]);
d = NUM2INT(argv[2]);
sg = NUM2DBL(argv[3]);
valid_sg(sg);
if (!need_jd && (guess_style(y, sg) < 0)) {
if (!valid_gregorian_p(y, m, d,
&nth, &ry,
&rm, &rd))
return Qnil;
return INT2FIX(0); /* dummy */
}
else {
int rjd, ns;
VALUE rjd2;
if (!valid_civil_p(y, m, d, sg,
&nth, &ry,
&rm, &rd, &rjd,
&ns))
return Qnil;
if (!need_jd)
return INT2FIX(0); /* dummy */
encode_jd(nth, rjd, &rjd2);
return rjd2;
}
}
#ifndef NDEBUG
static VALUE
date_s__valid_civil_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vm, vd, vsg;
VALUE argv2[4];
rb_scan_args(argc, argv, "31", &vy, &vm, &vd, &vsg);
argv2[0] = vy;
argv2[1] = vm;
argv2[2] = vd;
if (argc < 4)
argv2[3] = DBL2NUM(GREGORIAN);
else
argv2[3] = vsg;
return valid_civil_sub(4, argv2, klass, 1);
}
#endif
/*
* call-seq:
* Date.valid_civil?(year, month, mday[, start=Date::ITALY]) -> bool
* Date.valid_date?(year, month, mday[, start=Date::ITALY]) -> bool
*
* Returns true if the given calendar date is valid, and false if not.
*
* Date.valid_date?(2001,2,3) #=> true
* Date.valid_date?(2001,2,29) #=> false
*
* See also ::jd and ::civil.
*/
static VALUE
date_s_valid_civil_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vm, vd, vsg;
VALUE argv2[4];
rb_scan_args(argc, argv, "31", &vy, &vm, &vd, &vsg);
argv2[0] = vy;
argv2[1] = vm;
argv2[2] = vd;
if (argc < 4)
argv2[3] = INT2FIX(DEFAULT_SG);
else
argv2[3] = vsg;
if (NIL_P(valid_civil_sub(4, argv2, klass, 0)))
return Qfalse;
return Qtrue;
}
static VALUE
valid_ordinal_sub(int argc, VALUE *argv, VALUE klass, int need_jd)
{
VALUE nth, y;
int d, ry, rd;
double sg;
y = argv[0];
d = NUM2INT(argv[1]);
sg = NUM2DBL(argv[2]);
valid_sg(sg);
{
int rjd, ns;
VALUE rjd2;
if (!valid_ordinal_p(y, d, sg,
&nth, &ry,
&rd, &rjd,
&ns))
return Qnil;
if (!need_jd)
return INT2FIX(0); /* dummy */
encode_jd(nth, rjd, &rjd2);
return rjd2;
}
}
#ifndef NDEBUG
static VALUE
date_s__valid_ordinal_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vd, vsg;
VALUE argv2[3];
rb_scan_args(argc, argv, "21", &vy, &vd, &vsg);
argv2[0] = vy;
argv2[1] = vd;
if (argc < 3)
argv2[2] = DBL2NUM(GREGORIAN);
else
argv2[2] = vsg;
return valid_ordinal_sub(3, argv2, klass, 1);
}
#endif
/*
* call-seq:
* Date.valid_ordinal?(year, yday[, start=Date::ITALY]) -> bool
*
* Returns true if the given ordinal date is valid, and false if not.
*
* Date.valid_ordinal?(2001,34) #=> true
* Date.valid_ordinal?(2001,366) #=> false
*
* See also ::jd and ::ordinal.
*/
static VALUE
date_s_valid_ordinal_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vd, vsg;
VALUE argv2[3];
rb_scan_args(argc, argv, "21", &vy, &vd, &vsg);
argv2[0] = vy;
argv2[1] = vd;
if (argc < 3)
argv2[2] = INT2FIX(DEFAULT_SG);
else
argv2[2] = vsg;
if (NIL_P(valid_ordinal_sub(3, argv2, klass, 0)))
return Qfalse;
return Qtrue;
}
static VALUE
valid_commercial_sub(int argc, VALUE *argv, VALUE klass, int need_jd)
{
VALUE nth, y;
int w, d, ry, rw, rd;
double sg;
y = argv[0];
w = NUM2INT(argv[1]);
d = NUM2INT(argv[2]);
sg = NUM2DBL(argv[3]);
valid_sg(sg);
{
int rjd, ns;
VALUE rjd2;
if (!valid_commercial_p(y, w, d, sg,
&nth, &ry,
&rw, &rd, &rjd,
&ns))
return Qnil;
if (!need_jd)
return INT2FIX(0); /* dummy */
encode_jd(nth, rjd, &rjd2);
return rjd2;
}
}
#ifndef NDEBUG
static VALUE
date_s__valid_commercial_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vw, vd, vsg;
VALUE argv2[4];
rb_scan_args(argc, argv, "31", &vy, &vw, &vd, &vsg);
argv2[0] = vy;
argv2[1] = vw;
argv2[2] = vd;
if (argc < 4)
argv2[3] = DBL2NUM(GREGORIAN);
else
argv2[3] = vsg;
return valid_commercial_sub(4, argv2, klass, 1);
}
#endif
/*
* call-seq:
* Date.valid_commercial?(cwyear, cweek, cwday[, start=Date::ITALY]) -> bool
*
* Returns true if the given week date is valid, and false if not.
*
* Date.valid_commercial?(2001,5,6) #=> true
* Date.valid_commercial?(2001,5,8) #=> false
*
* See also ::jd and ::commercial.
*/
static VALUE
date_s_valid_commercial_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vw, vd, vsg;
VALUE argv2[4];
rb_scan_args(argc, argv, "31", &vy, &vw, &vd, &vsg);
argv2[0] = vy;
argv2[1] = vw;
argv2[2] = vd;
if (argc < 4)
argv2[3] = INT2FIX(DEFAULT_SG);
else
argv2[3] = vsg;
if (NIL_P(valid_commercial_sub(4, argv2, klass, 0)))
return Qfalse;
return Qtrue;
}
#ifndef NDEBUG
static VALUE
valid_weeknum_sub(int argc, VALUE *argv, VALUE klass, int need_jd)
{
VALUE nth, y;
int w, d, f, ry, rw, rd;
double sg;
y = argv[0];
w = NUM2INT(argv[1]);
d = NUM2INT(argv[2]);
f = NUM2INT(argv[3]);
sg = NUM2DBL(argv[4]);
valid_sg(sg);
{
int rjd, ns;
VALUE rjd2;
if (!valid_weeknum_p(y, w, d, f, sg,
&nth, &ry,
&rw, &rd, &rjd,
&ns))
return Qnil;
if (!need_jd)
return INT2FIX(0); /* dummy */
encode_jd(nth, rjd, &rjd2);
return rjd2;
}
}
static VALUE
date_s__valid_weeknum_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vw, vd, vf, vsg;
VALUE argv2[5];
rb_scan_args(argc, argv, "41", &vy, &vw, &vd, &vf, &vsg);
argv2[0] = vy;
argv2[1] = vw;
argv2[2] = vd;
argv2[3] = vf;
if (argc < 5)
argv2[4] = DBL2NUM(GREGORIAN);
else
argv2[4] = vsg;
return valid_weeknum_sub(5, argv2, klass, 1);
}
static VALUE
date_s_valid_weeknum_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vw, vd, vf, vsg;
VALUE argv2[5];
rb_scan_args(argc, argv, "41", &vy, &vw, &vd, &vf, &vsg);
argv2[0] = vy;
argv2[1] = vw;
argv2[2] = vd;
argv2[3] = vf;
if (argc < 5)
argv2[4] = INT2FIX(DEFAULT_SG);
else
argv2[4] = vsg;
if (NIL_P(valid_weeknum_sub(5, argv2, klass, 0)))
return Qfalse;
return Qtrue;
}
static VALUE
valid_nth_kday_sub(int argc, VALUE *argv, VALUE klass, int need_jd)
{
VALUE nth, y;
int m, n, k, ry, rm, rn, rk;
double sg;
y = argv[0];
m = NUM2INT(argv[1]);
n = NUM2INT(argv[2]);
k = NUM2INT(argv[3]);
sg = NUM2DBL(argv[4]);
{
int rjd, ns;
VALUE rjd2;
if (!valid_nth_kday_p(y, m, n, k, sg,
&nth, &ry,
&rm, &rn, &rk, &rjd,
&ns))
return Qnil;
if (!need_jd)
return INT2FIX(0); /* dummy */
encode_jd(nth, rjd, &rjd2);
return rjd2;
}
}
static VALUE
date_s__valid_nth_kday_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vm, vn, vk, vsg;
VALUE argv2[5];
rb_scan_args(argc, argv, "41", &vy, &vm, &vn, &vk, &vsg);
argv2[0] = vy;
argv2[1] = vm;
argv2[2] = vn;
argv2[3] = vk;
if (argc < 5)
argv2[4] = DBL2NUM(GREGORIAN);
else
argv2[4] = vsg;
return valid_nth_kday_sub(5, argv2, klass, 1);
}
static VALUE
date_s_valid_nth_kday_p(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vm, vn, vk, vsg;
VALUE argv2[5];
rb_scan_args(argc, argv, "41", &vy, &vm, &vn, &vk, &vsg);
argv2[0] = vy;
argv2[1] = vm;
argv2[2] = vn;
argv2[3] = vk;
if (argc < 5)
argv2[4] = INT2FIX(DEFAULT_SG);
else
argv2[4] = vsg;
if (NIL_P(valid_nth_kday_sub(5, argv2, klass, 0)))
return Qfalse;
return Qtrue;
}
static VALUE
date_s_zone_to_diff(VALUE klass, VALUE str)
{
return date_zone_to_diff(str);
}
#endif
/*
* call-seq:
* Date.julian_leap?(year) -> bool
*
* Returns true if the given year is a leap year of the proleptic
* Julian calendar.
*
* Date.julian_leap?(1900) #=> true
* Date.julian_leap?(1901) #=> false
*/
static VALUE
date_s_julian_leap_p(VALUE klass, VALUE y)
{
VALUE nth;
int ry;
decode_year(y, +1, &nth, &ry);
return f_boolcast(c_julian_leap_p(ry));
}
/*
* call-seq:
* Date.gregorian_leap?(year) -> bool
* Date.leap?(year) -> bool
*
* Returns true if the given year is a leap year of the proleptic
* Gregorian calendar.
*
* Date.gregorian_leap?(1900) #=> false
* Date.gregorian_leap?(2000) #=> true
*/
static VALUE
date_s_gregorian_leap_p(VALUE klass, VALUE y)
{
VALUE nth;
int ry;
decode_year(y, -1, &nth, &ry);
return f_boolcast(c_gregorian_leap_p(ry));
}
static void
d_lite_gc_mark(void *ptr)
{
union DateData *dat = ptr;
if (simple_dat_p(dat))
rb_gc_mark(dat->s.nth);
else {
rb_gc_mark(dat->c.nth);
rb_gc_mark(dat->c.sf);
}
}
static size_t
d_lite_memsize(const void *ptr)
{
const union DateData *dat = ptr;
return complex_dat_p(dat) ? sizeof(struct ComplexDateData) : sizeof(struct SimpleDateData);
}
static const rb_data_type_t d_lite_type = {
"Date",
{d_lite_gc_mark, RUBY_TYPED_DEFAULT_FREE, d_lite_memsize,},
0, 0,
RUBY_TYPED_FREE_IMMEDIATELY|RUBY_TYPED_WB_PROTECTED,
};
inline static VALUE
d_simple_new_internal(VALUE klass,
VALUE nth, int jd,
double sg,
int y, int m, int d,
unsigned flags)
{
struct SimpleDateData *dat;
VALUE obj;
obj = TypedData_Make_Struct(klass, struct SimpleDateData,
&d_lite_type, dat);
set_to_simple(obj, dat, nth, jd, sg, y, m, d, flags);
assert(have_jd_p(dat) || have_civil_p(dat));
return obj;
}
inline static VALUE
d_complex_new_internal(VALUE klass,
VALUE nth, int jd,
int df, VALUE sf,
int of, double sg,
int y, int m, int d,
int h, int min, int s,
unsigned flags)
{
struct ComplexDateData *dat;
VALUE obj;
obj = TypedData_Make_Struct(klass, struct ComplexDateData,
&d_lite_type, dat);
set_to_complex(obj, dat, nth, jd, df, sf, of, sg,
y, m, d, h, min, s, flags);
assert(have_jd_p(dat) || have_civil_p(dat));
assert(have_df_p(dat) || have_time_p(dat));
return obj;
}
static VALUE
d_lite_s_alloc_simple(VALUE klass)
{
return d_simple_new_internal(klass,
INT2FIX(0), 0,
DEFAULT_SG,
0, 0, 0,
HAVE_JD);
}
static VALUE
d_lite_s_alloc_complex(VALUE klass)
{
return d_complex_new_internal(klass,
INT2FIX(0), 0,
0, INT2FIX(0),
0, DEFAULT_SG,
0, 0, 0,
0, 0, 0,
HAVE_JD | HAVE_DF);
}
static VALUE
d_lite_s_alloc(VALUE klass)
{
return d_lite_s_alloc_complex(klass);
}
static void
old_to_new(VALUE ajd, VALUE of, VALUE sg,
VALUE *rnth, int *rjd, int *rdf, VALUE *rsf,
int *rof, double *rsg)
{
VALUE jd, df, sf, of2, t;
decode_day(f_add(ajd, half_days_in_day),
&jd, &df, &sf);
t = day_to_sec(of);
of2 = f_round(t);
if (!f_eqeq_p(of2, t))
rb_warning("fraction of offset is ignored");
decode_jd(jd, rnth, rjd);
*rdf = NUM2INT(df);
*rsf = sf;
*rof = NUM2INT(of2);
*rsg = NUM2DBL(sg);
if (*rdf < 0 || *rdf >= DAY_IN_SECONDS)
rb_raise(rb_eArgError, "invalid day fraction");
if (f_lt_p(*rsf, INT2FIX(0)) ||
f_ge_p(*rsf, INT2FIX(SECOND_IN_NANOSECONDS)))
if (*rof < -DAY_IN_SECONDS || *rof > DAY_IN_SECONDS) {
*rof = 0;
rb_warning("invalid offset is ignored");
}
if (!c_valid_start_p(*rsg)) {
*rsg = DEFAULT_SG;
rb_warning("invalid start is ignored");
}
}
#ifndef NDEBUG
static VALUE
date_s_new_bang(int argc, VALUE *argv, VALUE klass)
{
VALUE ajd, of, sg, nth, sf;
int jd, df, rof;
double rsg;
rb_scan_args(argc, argv, "03", &ajd, &of, &sg);
switch (argc) {
case 0:
ajd = INT2FIX(0);
case 1:
of = INT2FIX(0);
case 2:
sg = INT2FIX(DEFAULT_SG);
}
old_to_new(ajd, of, sg,
&nth, &jd, &df, &sf, &rof, &rsg);
if (!df && f_zero_p(sf) && !rof)
return d_simple_new_internal(klass,
nth, jd,
rsg,
0, 0, 0,
HAVE_JD);
else
return d_complex_new_internal(klass,
nth, jd,
df, sf,
rof, rsg,
0, 0, 0,
0, 0, 0,
HAVE_JD | HAVE_DF);
}
#endif
inline static int
wholenum_p(VALUE x)
{
if (FIXNUM_P(x))
return 1;
switch (TYPE(x)) {
case T_BIGNUM:
return 1;
case T_FLOAT:
{
double d = RFLOAT_VALUE(x);
return round(d) == d;
}
break;
case T_RATIONAL:
{
VALUE den = rb_rational_den(x);
return FIXNUM_P(den) && FIX2LONG(den) == 1;
}
break;
}
return 0;
}
inline static VALUE
to_integer(VALUE x)
{
if (RB_INTEGER_TYPE_P(x))
return x;
return f_to_i(x);
}
inline static VALUE
d_trunc(VALUE d, VALUE *fr)
{
VALUE rd;
if (wholenum_p(d)) {
rd = to_integer(d);
*fr = INT2FIX(0);
}
else {
rd = f_idiv(d, INT2FIX(1));
*fr = f_mod(d, INT2FIX(1));
}
return rd;
}
#define jd_trunc d_trunc
#define k_trunc d_trunc
inline static VALUE
h_trunc(VALUE h, VALUE *fr)
{
VALUE rh;
if (wholenum_p(h)) {
rh = to_integer(h);
*fr = INT2FIX(0);
}
else {
rh = f_idiv(h, INT2FIX(1));
*fr = f_mod(h, INT2FIX(1));
*fr = f_quo(*fr, INT2FIX(24));
}
return rh;
}
inline static VALUE
min_trunc(VALUE min, VALUE *fr)
{
VALUE rmin;
if (wholenum_p(min)) {
rmin = to_integer(min);
*fr = INT2FIX(0);
}
else {
rmin = f_idiv(min, INT2FIX(1));
*fr = f_mod(min, INT2FIX(1));
*fr = f_quo(*fr, INT2FIX(1440));
}
return rmin;
}
inline static VALUE
s_trunc(VALUE s, VALUE *fr)
{
VALUE rs;
if (wholenum_p(s)) {
rs = to_integer(s);
*fr = INT2FIX(0);
}
else {
rs = f_idiv(s, INT2FIX(1));
*fr = f_mod(s, INT2FIX(1));
*fr = f_quo(*fr, INT2FIX(86400));
}
return rs;
}
#define num2num_with_frac(s,n) \
do {\
s = s##_trunc(v##s, &fr);\
if (f_nonzero_p(fr)) {\
if (argc > n)\
rb_raise(rb_eArgError, "invalid fraction");\
fr2 = fr;\
}\
} while (0)
#define num2int_with_frac(s,n) \
do {\
s = NUM2INT(s##_trunc(v##s, &fr));\
if (f_nonzero_p(fr)) {\
if (argc > n)\
rb_raise(rb_eArgError, "invalid fraction");\
fr2 = fr;\
}\
} while (0)
#define canon24oc() \
do {\
if (rh == 24) {\
rh = 0;\
fr2 = f_add(fr2, INT2FIX(1));\
}\
} while (0)
#define add_frac() \
do {\
if (f_nonzero_p(fr2))\
ret = d_lite_plus(ret, fr2);\
} while (0)
#define val2sg(vsg,dsg) \
do {\
dsg = NUM2DBL(vsg);\
if (!c_valid_start_p(dsg)) {\
dsg = DEFAULT_SG;\
rb_warning("invalid start is ignored");\
}\
} while (0)
static VALUE d_lite_plus(VALUE, VALUE);
/*
* call-seq:
* Date.jd([jd=0[, start=Date::ITALY]]) -> date
*
* Creates a date object denoting the given chronological Julian day
* number.
*
* Date.jd(2451944) #=> #<Date: 2001-02-03 ...>
* Date.jd(2451945) #=> #<Date: 2001-02-04 ...>
* Date.jd(0) #=> #<Date: -4712-01-01 ...>
*
* See also ::new.
*/
static VALUE
date_s_jd(int argc, VALUE *argv, VALUE klass)
{
VALUE vjd, vsg, jd, fr, fr2, ret;
double sg;
rb_scan_args(argc, argv, "02", &vjd, &vsg);
jd = INT2FIX(0);
fr2 = INT2FIX(0);
sg = DEFAULT_SG;
switch (argc) {
case 2:
val2sg(vsg, sg);
case 1:
num2num_with_frac(jd, positive_inf);
}
{
VALUE nth;
int rjd;
decode_jd(jd, &nth, &rjd);
ret = d_simple_new_internal(klass,
nth, rjd,
sg,
0, 0, 0,
HAVE_JD);
}
add_frac();
return ret;
}
/*
* call-seq:
* Date.ordinal([year=-4712[, yday=1[, start=Date::ITALY]]]) -> date
*
* Creates a date object denoting the given ordinal date.
*
* The day of year should be a negative or a positive number (as a
* relative day from the end of year when negative). It should not be
* zero.
*
* Date.ordinal(2001) #=> #<Date: 2001-01-01 ...>
* Date.ordinal(2001,34) #=> #<Date: 2001-02-03 ...>
* Date.ordinal(2001,-1) #=> #<Date: 2001-12-31 ...>
*
* See also ::jd and ::new.
*/
static VALUE
date_s_ordinal(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vd, vsg, y, fr, fr2, ret;
int d;
double sg;
rb_scan_args(argc, argv, "03", &vy, &vd, &vsg);
y = INT2FIX(-4712);
d = 1;
fr2 = INT2FIX(0);
sg = DEFAULT_SG;
switch (argc) {
case 3:
val2sg(vsg, sg);
case 2:
num2int_with_frac(d, positive_inf);
case 1:
y = vy;
}
{
VALUE nth;
int ry, rd, rjd, ns;
if (!valid_ordinal_p(y, d, sg,
&nth, &ry,
&rd, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
ret = d_simple_new_internal(klass,
nth, rjd,
sg,
0, 0, 0,
HAVE_JD);
}
add_frac();
return ret;
}
/*
* call-seq:
* Date.civil([year=-4712[, month=1[, mday=1[, start=Date::ITALY]]]]) -> date
* Date.new([year=-4712[, month=1[, mday=1[, start=Date::ITALY]]]]) -> date
*
* Creates a date object denoting the given calendar date.
*
* In this class, BCE years are counted astronomically. Thus, the
* year before the year 1 is the year zero, and the year preceding the
* year zero is the year -1. The month and the day of month should be
* a negative or a positive number (as a relative month/day from the
* end of year/month when negative). They should not be zero.
*
* The last argument should be a Julian day number which denotes the
* day of calendar reform. Date::ITALY (2299161=1582-10-15),
* Date::ENGLAND (2361222=1752-09-14), Date::GREGORIAN (the proleptic
* Gregorian calendar) and Date::JULIAN (the proleptic Julian
* calendar) can be specified as a day of calendar reform.
*
* Date.new(2001) #=> #<Date: 2001-01-01 ...>
* Date.new(2001,2,3) #=> #<Date: 2001-02-03 ...>
* Date.new(2001,2,-1) #=> #<Date: 2001-02-28 ...>
*
* See also ::jd.
*/
static VALUE
date_s_civil(int argc, VALUE *argv, VALUE klass)
{
return date_initialize(argc, argv, d_lite_s_alloc_simple(klass));
}
static VALUE
date_initialize(int argc, VALUE *argv, VALUE self)
{
VALUE vy, vm, vd, vsg, y, fr, fr2, ret;
int m, d;
double sg;
struct SimpleDateData *dat = rb_check_typeddata(self, &d_lite_type);
if (!simple_dat_p(dat)) {
rb_raise(rb_eTypeError, "Date expected");
}
rb_scan_args(argc, argv, "04", &vy, &vm, &vd, &vsg);
y = INT2FIX(-4712);
m = 1;
d = 1;
fr2 = INT2FIX(0);
sg = DEFAULT_SG;
switch (argc) {
case 4:
val2sg(vsg, sg);
case 3:
num2int_with_frac(d, positive_inf);
case 2:
m = NUM2INT(vm);
case 1:
y = vy;
}
if (guess_style(y, sg) < 0) {
VALUE nth;
int ry, rm, rd;
if (!valid_gregorian_p(y, m, d,
&nth, &ry,
&rm, &rd))
rb_raise(rb_eArgError, "invalid date");
set_to_simple(self, dat, nth, 0, sg, ry, rm, rd, HAVE_CIVIL);
}
else {
VALUE nth;
int ry, rm, rd, rjd, ns;
if (!valid_civil_p(y, m, d, sg,
&nth, &ry,
&rm, &rd, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
set_to_simple(self, dat, nth, rjd, sg, ry, rm, rd, HAVE_JD | HAVE_CIVIL);
}
ret = self;
add_frac();
return ret;
}
/*
* call-seq:
* Date.commercial([cwyear=-4712[, cweek=1[, cwday=1[, start=Date::ITALY]]]]) -> date
*
* Creates a date object denoting the given week date.
*
* The week and the day of week should be a negative or a positive
* number (as a relative week/day from the end of year/week when
* negative). They should not be zero.
*
* Date.commercial(2001) #=> #<Date: 2001-01-01 ...>
* Date.commercial(2002) #=> #<Date: 2001-12-31 ...>
* Date.commercial(2001,5,6) #=> #<Date: 2001-02-03 ...>
*
* See also ::jd and ::new.
*/
static VALUE
date_s_commercial(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vw, vd, vsg, y, fr, fr2, ret;
int w, d;
double sg;
rb_scan_args(argc, argv, "04", &vy, &vw, &vd, &vsg);
y = INT2FIX(-4712);
w = 1;
d = 1;
fr2 = INT2FIX(0);
sg = DEFAULT_SG;
switch (argc) {
case 4:
val2sg(vsg, sg);
case 3:
num2int_with_frac(d, positive_inf);
case 2:
w = NUM2INT(vw);
case 1:
y = vy;
}
{
VALUE nth;
int ry, rw, rd, rjd, ns;
if (!valid_commercial_p(y, w, d, sg,
&nth, &ry,
&rw, &rd, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
ret = d_simple_new_internal(klass,
nth, rjd,
sg,
0, 0, 0,
HAVE_JD);
}
add_frac();
return ret;
}
#ifndef NDEBUG
static VALUE
date_s_weeknum(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vw, vd, vf, vsg, y, fr, fr2, ret;
int w, d, f;
double sg;
rb_scan_args(argc, argv, "05", &vy, &vw, &vd, &vf, &vsg);
y = INT2FIX(-4712);
w = 0;
d = 1;
f = 0;
fr2 = INT2FIX(0);
sg = DEFAULT_SG;
switch (argc) {
case 5:
val2sg(vsg, sg);
case 4:
f = NUM2INT(vf);
case 3:
num2int_with_frac(d, positive_inf);
case 2:
w = NUM2INT(vw);
case 1:
y = vy;
}
{
VALUE nth;
int ry, rw, rd, rjd, ns;
if (!valid_weeknum_p(y, w, d, f, sg,
&nth, &ry,
&rw, &rd, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
ret = d_simple_new_internal(klass,
nth, rjd,
sg,
0, 0, 0,
HAVE_JD);
}
add_frac();
return ret;
}
static VALUE
date_s_nth_kday(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vm, vn, vk, vsg, y, fr, fr2, ret;
int m, n, k;
double sg;
rb_scan_args(argc, argv, "05", &vy, &vm, &vn, &vk, &vsg);
y = INT2FIX(-4712);
m = 1;
n = 1;
k = 1;
fr2 = INT2FIX(0);
sg = DEFAULT_SG;
switch (argc) {
case 5:
val2sg(vsg, sg);
case 4:
num2int_with_frac(k, positive_inf);
case 3:
n = NUM2INT(vn);
case 2:
m = NUM2INT(vm);
case 1:
y = vy;
}
{
VALUE nth;
int ry, rm, rn, rk, rjd, ns;
if (!valid_nth_kday_p(y, m, n, k, sg,
&nth, &ry,
&rm, &rn, &rk, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
ret = d_simple_new_internal(klass,
nth, rjd,
sg,
0, 0, 0,
HAVE_JD);
}
add_frac();
return ret;
}
#endif
#if !defined(HAVE_GMTIME_R)
static struct tm*
gmtime_r(const time_t *t, struct tm *tm)
{
auto struct tm *tmp = gmtime(t);
if (tmp)
*tm = *tmp;
return tmp;
}
static struct tm*
localtime_r(const time_t *t, struct tm *tm)
{
auto struct tm *tmp = localtime(t);
if (tmp)
*tm = *tmp;
return tmp;
}
#endif
static void set_sg(union DateData *, double);
/*
* call-seq:
* Date.today([start=Date::ITALY]) -> date
*
* Creates a date object denoting the present day.
*
* Date.today #=> #<Date: 2011-06-11 ...>
*/
static VALUE
date_s_today(int argc, VALUE *argv, VALUE klass)
{
VALUE vsg, nth, ret;
double sg;
time_t t;
struct tm tm;
int y, ry, m, d;
rb_scan_args(argc, argv, "01", &vsg);
if (argc < 1)
sg = DEFAULT_SG;
else
val2sg(vsg, sg);
if (time(&t) == -1)
rb_sys_fail("time");
tzset();
if (!localtime_r(&t, &tm))
rb_sys_fail("localtime");
y = tm.tm_year + 1900;
m = tm.tm_mon + 1;
d = tm.tm_mday;
decode_year(INT2FIX(y), -1, &nth, &ry);
ret = d_simple_new_internal(klass,
nth, 0,
GREGORIAN,
ry, m, d,
HAVE_CIVIL);
{
get_d1(ret);
set_sg(dat, sg);
}
return ret;
}
#define set_hash0(k,v) rb_hash_aset(hash, k, v)
#define ref_hash0(k) rb_hash_aref(hash, k)
#define del_hash0(k) rb_hash_delete(hash, k)
#define sym(x) ID2SYM(rb_intern(x""))
#define set_hash(k,v) set_hash0(sym(k), v)
#define ref_hash(k) ref_hash0(sym(k))
#define del_hash(k) del_hash0(sym(k))
static VALUE
rt_rewrite_frags(VALUE hash)
{
VALUE seconds;
seconds = ref_hash("seconds");
if (!NIL_P(seconds)) {
VALUE offset, d, h, min, s, fr;
offset = ref_hash("offset");
if (!NIL_P(offset))
seconds = f_add(seconds, offset);
d = f_idiv(seconds, INT2FIX(DAY_IN_SECONDS));
fr = f_mod(seconds, INT2FIX(DAY_IN_SECONDS));
h = f_idiv(fr, INT2FIX(HOUR_IN_SECONDS));
fr = f_mod(fr, INT2FIX(HOUR_IN_SECONDS));
min = f_idiv(fr, INT2FIX(MINUTE_IN_SECONDS));
fr = f_mod(fr, INT2FIX(MINUTE_IN_SECONDS));
s = f_idiv(fr, INT2FIX(1));
fr = f_mod(fr, INT2FIX(1));
set_hash("jd", f_add(UNIX_EPOCH_IN_CJD, d));
set_hash("hour", h);
set_hash("min", min);
set_hash("sec", s);
set_hash("sec_fraction", fr);
del_hash("seconds");
}
return hash;
}
static VALUE d_lite_year(VALUE);
static VALUE d_lite_wday(VALUE);
static VALUE d_lite_jd(VALUE);
static VALUE
rt_complete_frags(VALUE klass, VALUE hash)
{
static VALUE tab = Qnil;
int g;
long e;
VALUE k, a, d;
if (NIL_P(tab)) {
tab = rb_ary_new3(11,
rb_ary_new3(2,
sym("time"),
rb_ary_new3(3,
sym("hour"),
sym("min"),
sym("sec"))),
rb_ary_new3(2,
Qnil,
rb_ary_new3(1,
sym("jd"))),
rb_ary_new3(2,
sym("ordinal"),
rb_ary_new3(5,
sym("year"),
sym("yday"),
sym("hour"),
sym("min"),
sym("sec"))),
rb_ary_new3(2,
sym("civil"),
rb_ary_new3(6,
sym("year"),
sym("mon"),
sym("mday"),
sym("hour"),
sym("min"),
sym("sec"))),
rb_ary_new3(2,
sym("commercial"),
rb_ary_new3(6,
sym("cwyear"),
sym("cweek"),
sym("cwday"),
sym("hour"),
sym("min"),
sym("sec"))),
rb_ary_new3(2,
sym("wday"),
rb_ary_new3(4,
sym("wday"),
sym("hour"),
sym("min"),
sym("sec"))),
rb_ary_new3(2,
sym("wnum0"),
rb_ary_new3(6,
sym("year"),
sym("wnum0"),
sym("wday"),
sym("hour"),
sym("min"),
sym("sec"))),
rb_ary_new3(2,
sym("wnum1"),
rb_ary_new3(6,
sym("year"),
sym("wnum1"),
sym("wday"),
sym("hour"),
sym("min"),
sym("sec"))),
rb_ary_new3(2,
Qnil,
rb_ary_new3(6,
sym("cwyear"),
sym("cweek"),
sym("wday"),
sym("hour"),
sym("min"),
sym("sec"))),
rb_ary_new3(2,
Qnil,
rb_ary_new3(6,
sym("year"),
sym("wnum0"),
sym("cwday"),
sym("hour"),
sym("min"),
sym("sec"))),
rb_ary_new3(2,
Qnil,
rb_ary_new3(6,
sym("year"),
sym("wnum1"),
sym("cwday"),
sym("hour"),
sym("min"),
sym("sec"))));
rb_gc_register_mark_object(tab);
}
{
long i, eno = 0, idx = 0;
for (i = 0; i < RARRAY_LEN(tab); i++) {
VALUE x, a;
x = RARRAY_AREF(tab, i);
a = RARRAY_AREF(x, 1);
{
long j, n = 0;
for (j = 0; j < RARRAY_LEN(a); j++)
if (!NIL_P(ref_hash0(RARRAY_AREF(a, j))))
n++;
if (n > eno) {
eno = n;
idx = i;
}
}
}
if (eno == 0)
g = 0;
else {
g = 1;
k = RARRAY_AREF(RARRAY_AREF(tab, idx), 0);
a = RARRAY_AREF(RARRAY_AREF(tab, idx), 1);
e = eno;
}
}
d = Qnil;
if (g && !NIL_P(k) && (RARRAY_LEN(a) - e)) {
if (k == sym("ordinal")) {
if (NIL_P(ref_hash("year"))) {
if (NIL_P(d))
d = date_s_today(0, (VALUE *)0, cDate);
set_hash("year", d_lite_year(d));
}
if (NIL_P(ref_hash("yday")))
set_hash("yday", INT2FIX(1));
}
else if (k == sym("civil")) {
long i;
for (i = 0; i < RARRAY_LEN(a); i++) {
VALUE e = RARRAY_AREF(a, i);
if (!NIL_P(ref_hash0(e)))
break;
if (NIL_P(d))
d = date_s_today(0, (VALUE *)0, cDate);
set_hash0(e, rb_funcall(d, SYM2ID(e), 0));
}
if (NIL_P(ref_hash("mon")))
set_hash("mon", INT2FIX(1));
if (NIL_P(ref_hash("mday")))
set_hash("mday", INT2FIX(1));
}
else if (k == sym("commercial")) {
long i;
for (i = 0; i < RARRAY_LEN(a); i++) {
VALUE e = RARRAY_AREF(a, i);
if (!NIL_P(ref_hash0(e)))
break;
if (NIL_P(d))
d = date_s_today(0, (VALUE *)0, cDate);
set_hash0(e, rb_funcall(d, SYM2ID(e), 0));
}
if (NIL_P(ref_hash("cweek")))
set_hash("cweek", INT2FIX(1));
if (NIL_P(ref_hash("cwday")))
set_hash("cwday", INT2FIX(1));
}
else if (k == sym("wday")) {
if (NIL_P(d))
d = date_s_today(0, (VALUE *)0, cDate);
set_hash("jd", d_lite_jd(f_add(f_sub(d,
d_lite_wday(d)),
ref_hash("wday"))));
}
else if (k == sym("wnum0")) {
long i;
for (i = 0; i < RARRAY_LEN(a); i++) {
VALUE e = RARRAY_AREF(a, i);
if (!NIL_P(ref_hash0(e)))
break;
if (NIL_P(d))
d = date_s_today(0, (VALUE *)0, cDate);
set_hash0(e, rb_funcall(d, SYM2ID(e), 0));
}
if (NIL_P(ref_hash("wnum0")))
set_hash("wnum0", INT2FIX(0));
if (NIL_P(ref_hash("wday")))
set_hash("wday", INT2FIX(0));
}
else if (k == sym("wnum1")) {
long i;
for (i = 0; i < RARRAY_LEN(a); i++) {
VALUE e = RARRAY_AREF(a, i);
if (!NIL_P(ref_hash0(e)))
break;
if (NIL_P(d))
d = date_s_today(0, (VALUE *)0, cDate);
set_hash0(e, rb_funcall(d, SYM2ID(e), 0));
}
if (NIL_P(ref_hash("wnum1")))
set_hash("wnum1", INT2FIX(0));
if (NIL_P(ref_hash("wday")))
set_hash("wday", INT2FIX(1));
}
}
if (g && k == sym("time")) {
if (f_le_p(klass, cDateTime)) {
if (NIL_P(d))
d = date_s_today(0, (VALUE *)0, cDate);
if (NIL_P(ref_hash("jd")))
set_hash("jd", d_lite_jd(d));
}
}
if (NIL_P(ref_hash("hour")))
set_hash("hour", INT2FIX(0));
if (NIL_P(ref_hash("min")))
set_hash("min", INT2FIX(0));
if (NIL_P(ref_hash("sec")))
set_hash("sec", INT2FIX(0));
else if (f_gt_p(ref_hash("sec"), INT2FIX(59)))
set_hash("sec", INT2FIX(59));
return hash;
}
static VALUE
rt__valid_jd_p(VALUE jd, VALUE sg)
{
return jd;
}
static VALUE
rt__valid_ordinal_p(VALUE y, VALUE d, VALUE sg)
{
VALUE nth, rjd2;
int ry, rd, rjd, ns;
if (!valid_ordinal_p(y, NUM2INT(d), NUM2DBL(sg),
&nth, &ry,
&rd, &rjd,
&ns))
return Qnil;
encode_jd(nth, rjd, &rjd2);
return rjd2;
}
static VALUE
rt__valid_civil_p(VALUE y, VALUE m, VALUE d, VALUE sg)
{
VALUE nth, rjd2;
int ry, rm, rd, rjd, ns;
if (!valid_civil_p(y, NUM2INT(m), NUM2INT(d), NUM2DBL(sg),
&nth, &ry,
&rm, &rd, &rjd,
&ns))
return Qnil;
encode_jd(nth, rjd, &rjd2);
return rjd2;
}
static VALUE
rt__valid_commercial_p(VALUE y, VALUE w, VALUE d, VALUE sg)
{
VALUE nth, rjd2;
int ry, rw, rd, rjd, ns;
if (!valid_commercial_p(y, NUM2INT(w), NUM2INT(d), NUM2DBL(sg),
&nth, &ry,
&rw, &rd, &rjd,
&ns))
return Qnil;
encode_jd(nth, rjd, &rjd2);
return rjd2;
}
static VALUE
rt__valid_weeknum_p(VALUE y, VALUE w, VALUE d, VALUE f, VALUE sg)
{
VALUE nth, rjd2;
int ry, rw, rd, rjd, ns;
if (!valid_weeknum_p(y, NUM2INT(w), NUM2INT(d), NUM2INT(f), NUM2DBL(sg),
&nth, &ry,
&rw, &rd, &rjd,
&ns))
return Qnil;
encode_jd(nth, rjd, &rjd2);
return rjd2;
}
static VALUE
rt__valid_date_frags_p(VALUE hash, VALUE sg)
{
{
VALUE vjd;
if (!NIL_P(vjd = ref_hash("jd"))) {
VALUE jd = rt__valid_jd_p(vjd, sg);
if (!NIL_P(jd))
return jd;
}
}
{
VALUE year, yday;
if (!NIL_P(yday = ref_hash("yday")) &&
!NIL_P(year = ref_hash("year"))) {
VALUE jd = rt__valid_ordinal_p(year, yday, sg);
if (!NIL_P(jd))
return jd;
}
}
{
VALUE year, mon, mday;
if (!NIL_P(mday = ref_hash("mday")) &&
!NIL_P(mon = ref_hash("mon")) &&
!NIL_P(year = ref_hash("year"))) {
VALUE jd = rt__valid_civil_p(year, mon, mday, sg);
if (!NIL_P(jd))
return jd;
}
}
{
VALUE year, week, wday;
wday = ref_hash("cwday");
if (NIL_P(wday)) {
wday = ref_hash("wday");
if (!NIL_P(wday))
if (f_zero_p(wday))
wday = INT2FIX(7);
}
if (!NIL_P(wday) &&
!NIL_P(week = ref_hash("cweek")) &&
!NIL_P(year = ref_hash("cwyear"))) {
VALUE jd = rt__valid_commercial_p(year, week, wday, sg);
if (!NIL_P(jd))
return jd;
}
}
{
VALUE year, week, wday;
wday = ref_hash("wday");
if (NIL_P(wday)) {
wday = ref_hash("cwday");
if (!NIL_P(wday))
if (f_eqeq_p(wday, INT2FIX(7)))
wday = INT2FIX(0);
}
if (!NIL_P(wday) &&
!NIL_P(week = ref_hash("wnum0")) &&
!NIL_P(year = ref_hash("year"))) {
VALUE jd = rt__valid_weeknum_p(year, week, wday, INT2FIX(0), sg);
if (!NIL_P(jd))
return jd;
}
}
{
VALUE year, week, wday;
wday = ref_hash("wday");
if (NIL_P(wday))
wday = ref_hash("cwday");
if (!NIL_P(wday))
wday = f_mod(f_sub(wday, INT2FIX(1)),
INT2FIX(7));
if (!NIL_P(wday) &&
!NIL_P(week = ref_hash("wnum1")) &&
!NIL_P(year = ref_hash("year"))) {
VALUE jd = rt__valid_weeknum_p(year, week, wday, INT2FIX(1), sg);
if (!NIL_P(jd))
return jd;
}
}
return Qnil;
}
static VALUE
d_new_by_frags(VALUE klass, VALUE hash, VALUE sg)
{
VALUE jd;
if (!c_valid_start_p(NUM2DBL(sg))) {
sg = INT2FIX(DEFAULT_SG);
rb_warning("invalid start is ignored");
}
if (NIL_P(hash))
rb_raise(rb_eArgError, "invalid date");
if (NIL_P(ref_hash("jd")) &&
NIL_P(ref_hash("yday")) &&
!NIL_P(ref_hash("year")) &&
!NIL_P(ref_hash("mon")) &&
!NIL_P(ref_hash("mday")))
jd = rt__valid_civil_p(ref_hash("year"),
ref_hash("mon"),
ref_hash("mday"), sg);
else {
hash = rt_rewrite_frags(hash);
hash = rt_complete_frags(klass, hash);
jd = rt__valid_date_frags_p(hash, sg);
}
if (NIL_P(jd))
rb_raise(rb_eArgError, "invalid date");
{
VALUE nth;
int rjd;
decode_jd(jd, &nth, &rjd);
return d_simple_new_internal(klass,
nth, rjd,
NUM2DBL(sg),
0, 0, 0,
HAVE_JD);
}
}
VALUE date__strptime(const char *str, size_t slen,
const char *fmt, size_t flen, VALUE hash);
static VALUE
date_s__strptime_internal(int argc, VALUE *argv, VALUE klass,
const char *default_fmt)
{
VALUE vstr, vfmt, hash;
const char *str, *fmt;
size_t slen, flen;
rb_scan_args(argc, argv, "11", &vstr, &vfmt);
StringValue(vstr);
if (!rb_enc_str_asciicompat_p(vstr))
rb_raise(rb_eArgError,
"string should have ASCII compatible encoding");
str = RSTRING_PTR(vstr);
slen = RSTRING_LEN(vstr);
if (argc < 2) {
fmt = default_fmt;
flen = strlen(default_fmt);
}
else {
StringValue(vfmt);
if (!rb_enc_str_asciicompat_p(vfmt))
rb_raise(rb_eArgError,
"format should have ASCII compatible encoding");
fmt = RSTRING_PTR(vfmt);
flen = RSTRING_LEN(vfmt);
}
hash = rb_hash_new();
if (NIL_P(date__strptime(str, slen, fmt, flen, hash)))
return Qnil;
{
VALUE zone = ref_hash("zone");
VALUE left = ref_hash("leftover");
if (!NIL_P(zone)) {
rb_enc_copy(zone, vstr);
OBJ_INFECT(zone, vstr);
set_hash("zone", zone);
}
if (!NIL_P(left)) {
rb_enc_copy(left, vstr);
OBJ_INFECT(left, vstr);
set_hash("leftover", left);
}
}
return hash;
}
/*
* call-seq:
* Date._strptime(string[, format='%F']) -> hash
*
* Parses the given representation of date and time with the given
* template, and returns a hash of parsed elements. _strptime does
* not support specification of flags and width unlike strftime.
*
* Date._strptime('2001-02-03', '%Y-%m-%d')
* #=> {:year=>2001, :mon=>2, :mday=>3}
*
* See also strptime(3) and #strftime.
*/
static VALUE
date_s__strptime(int argc, VALUE *argv, VALUE klass)
{
return date_s__strptime_internal(argc, argv, klass, "%F");
}
/*
* call-seq:
* Date.strptime([string='-4712-01-01'[, format='%F'[, start=Date::ITALY]]]) -> date
*
* Parses the given representation of date and time with the given
* template, and creates a date object. strptime does not support
* specification of flags and width unlike strftime.
*
* Date.strptime('2001-02-03', '%Y-%m-%d') #=> #<Date: 2001-02-03 ...>
* Date.strptime('03-02-2001', '%d-%m-%Y') #=> #<Date: 2001-02-03 ...>
* Date.strptime('2001-034', '%Y-%j') #=> #<Date: 2001-02-03 ...>
* Date.strptime('2001-W05-6', '%G-W%V-%u') #=> #<Date: 2001-02-03 ...>
* Date.strptime('2001 04 6', '%Y %U %w') #=> #<Date: 2001-02-03 ...>
* Date.strptime('2001 05 6', '%Y %W %u') #=> #<Date: 2001-02-03 ...>
* Date.strptime('sat3feb01', '%a%d%b%y') #=> #<Date: 2001-02-03 ...>
*
* See also strptime(3) and #strftime.
*/
static VALUE
date_s_strptime(int argc, VALUE *argv, VALUE klass)
{
VALUE str, fmt, sg;
rb_scan_args(argc, argv, "03", &str, &fmt, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01");
case 1:
fmt = rb_str_new2("%F");
case 2:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE argv2[2], hash;
argv2[0] = str;
argv2[1] = fmt;
hash = date_s__strptime(2, argv2, klass);
return d_new_by_frags(klass, hash, sg);
}
}
VALUE date__parse(VALUE str, VALUE comp);
static VALUE
date_s__parse_internal(int argc, VALUE *argv, VALUE klass)
{
VALUE vstr, vcomp, hash;
rb_scan_args(argc, argv, "11", &vstr, &vcomp);
StringValue(vstr);
if (!rb_enc_str_asciicompat_p(vstr))
rb_raise(rb_eArgError,
"string should have ASCII compatible encoding");
if (argc < 2)
vcomp = Qtrue;
hash = date__parse(vstr, vcomp);
{
VALUE zone = ref_hash("zone");
if (!NIL_P(zone)) {
rb_enc_copy(zone, vstr);
OBJ_INFECT(zone, vstr);
set_hash("zone", zone);
}
}
return hash;
}
/*
* call-seq:
* Date._parse(string[, comp=true]) -> hash
*
* Parses the given representation of date and time, and returns a
* hash of parsed elements. This method does not function as a
* validator.
*
* If the optional second argument is true and the detected year is in
* the range "00" to "99", considers the year a 2-digit form and makes
* it full.
*
* Date._parse('2001-02-03') #=> {:year=>2001, :mon=>2, :mday=>3}
*/
static VALUE
date_s__parse(int argc, VALUE *argv, VALUE klass)
{
return date_s__parse_internal(argc, argv, klass);
}
/*
* call-seq:
* Date.parse(string='-4712-01-01'[, comp=true[, start=Date::ITALY]]) -> date
*
* Parses the given representation of date and time, and creates a
* date object. This method does not function as a validator.
*
* If the optional second argument is true and the detected year is in
* the range "00" to "99", considers the year a 2-digit form and makes
* it full.
*
* Date.parse('2001-02-03') #=> #<Date: 2001-02-03 ...>
* Date.parse('20010203') #=> #<Date: 2001-02-03 ...>
* Date.parse('3rd Feb 2001') #=> #<Date: 2001-02-03 ...>
*/
static VALUE
date_s_parse(int argc, VALUE *argv, VALUE klass)
{
VALUE str, comp, sg;
rb_scan_args(argc, argv, "03", &str, &comp, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01");
case 1:
comp = Qtrue;
case 2:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE argv2[2], hash;
argv2[0] = str;
argv2[1] = comp;
hash = date_s__parse(2, argv2, klass);
return d_new_by_frags(klass, hash, sg);
}
}
VALUE date__iso8601(VALUE);
VALUE date__rfc3339(VALUE);
VALUE date__xmlschema(VALUE);
VALUE date__rfc2822(VALUE);
VALUE date__httpdate(VALUE);
VALUE date__jisx0301(VALUE);
/*
* call-seq:
* Date._iso8601(string) -> hash
*
* Returns a hash of parsed elements.
*/
static VALUE
date_s__iso8601(VALUE klass, VALUE str)
{
return date__iso8601(str);
}
/*
* call-seq:
* Date.iso8601(string='-4712-01-01'[, start=Date::ITALY]) -> date
*
* Creates a new Date object by parsing from a string according to
* some typical ISO 8601 formats.
*
* Date.iso8601('2001-02-03') #=> #<Date: 2001-02-03 ...>
* Date.iso8601('20010203') #=> #<Date: 2001-02-03 ...>
* Date.iso8601('2001-W05-6') #=> #<Date: 2001-02-03 ...>
*/
static VALUE
date_s_iso8601(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__iso8601(klass, str);
return d_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* Date._rfc3339(string) -> hash
*
* Returns a hash of parsed elements.
*/
static VALUE
date_s__rfc3339(VALUE klass, VALUE str)
{
return date__rfc3339(str);
}
/*
* call-seq:
* Date.rfc3339(string='-4712-01-01T00:00:00+00:00'[, start=Date::ITALY]) -> date
*
* Creates a new Date object by parsing from a string according to
* some typical RFC 3339 formats.
*
* Date.rfc3339('2001-02-03T04:05:06+07:00') #=> #<Date: 2001-02-03 ...>
*/
static VALUE
date_s_rfc3339(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01T00:00:00+00:00");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__rfc3339(klass, str);
return d_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* Date._xmlschema(string) -> hash
*
* Returns a hash of parsed elements.
*/
static VALUE
date_s__xmlschema(VALUE klass, VALUE str)
{
return date__xmlschema(str);
}
/*
* call-seq:
* Date.xmlschema(string='-4712-01-01'[, start=Date::ITALY]) -> date
*
* Creates a new Date object by parsing from a string according to
* some typical XML Schema formats.
*
* Date.xmlschema('2001-02-03') #=> #<Date: 2001-02-03 ...>
*/
static VALUE
date_s_xmlschema(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__xmlschema(klass, str);
return d_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* Date._rfc2822(string) -> hash
* Date._rfc822(string) -> hash
*
* Returns a hash of parsed elements.
*/
static VALUE
date_s__rfc2822(VALUE klass, VALUE str)
{
return date__rfc2822(str);
}
/*
* call-seq:
* Date.rfc2822(string='Mon, 1 Jan -4712 00:00:00 +0000'[, start=Date::ITALY]) -> date
* Date.rfc822(string='Mon, 1 Jan -4712 00:00:00 +0000'[, start=Date::ITALY]) -> date
*
* Creates a new Date object by parsing from a string according to
* some typical RFC 2822 formats.
*
* Date.rfc2822('Sat, 3 Feb 2001 00:00:00 +0000')
* #=> #<Date: 2001-02-03 ...>
*/
static VALUE
date_s_rfc2822(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("Mon, 1 Jan -4712 00:00:00 +0000");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__rfc2822(klass, str);
return d_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* Date._httpdate(string) -> hash
*
* Returns a hash of parsed elements.
*/
static VALUE
date_s__httpdate(VALUE klass, VALUE str)
{
return date__httpdate(str);
}
/*
* call-seq:
* Date.httpdate(string='Mon, 01 Jan -4712 00:00:00 GMT'[, start=Date::ITALY]) -> date
*
* Creates a new Date object by parsing from a string according to
* some RFC 2616 format.
*
* Date.httpdate('Sat, 03 Feb 2001 00:00:00 GMT')
* #=> #<Date: 2001-02-03 ...>
*/
static VALUE
date_s_httpdate(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("Mon, 01 Jan -4712 00:00:00 GMT");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__httpdate(klass, str);
return d_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* Date._jisx0301(string) -> hash
*
* Returns a hash of parsed elements.
*/
static VALUE
date_s__jisx0301(VALUE klass, VALUE str)
{
return date__jisx0301(str);
}
/*
* call-seq:
* Date.jisx0301(string='-4712-01-01'[, start=Date::ITALY]) -> date
*
* Creates a new Date object by parsing from a string according to
* some typical JIS X 0301 formats.
*
* Date.jisx0301('H13.02.03') #=> #<Date: 2001-02-03 ...>
*/
static VALUE
date_s_jisx0301(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__jisx0301(klass, str);
return d_new_by_frags(klass, hash, sg);
}
}
static VALUE
dup_obj(VALUE self)
{
get_d1a(self);
if (simple_dat_p(adat)) {
VALUE new = d_lite_s_alloc_simple(rb_obj_class(self));
{
get_d1b(new);
bdat->s = adat->s;
RB_OBJ_WRITTEN(new, Qundef, bdat->s.nth);
return new;
}
}
else {
VALUE new = d_lite_s_alloc_complex(rb_obj_class(self));
{
get_d1b(new);
bdat->c = adat->c;
RB_OBJ_WRITTEN(new, Qundef, bdat->c.nth);
RB_OBJ_WRITTEN(new, Qundef, bdat->c.sf);
return new;
}
}
}
static VALUE
dup_obj_as_complex(VALUE self)
{
get_d1a(self);
if (simple_dat_p(adat)) {
VALUE new = d_lite_s_alloc_complex(rb_obj_class(self));
{
get_d1b(new);
copy_simple_to_complex(new, &bdat->c, &adat->s);
bdat->c.flags |= HAVE_DF | COMPLEX_DAT;
return new;
}
}
else {
VALUE new = d_lite_s_alloc_complex(rb_obj_class(self));
{
get_d1b(new);
bdat->c = adat->c;
RB_OBJ_WRITTEN(new, Qundef, bdat->c.nth);
RB_OBJ_WRITTEN(new, Qundef, bdat->c.sf);
return new;
}
}
}
#define val2off(vof,iof) \
do {\
if (!offset_to_sec(vof, &iof)) {\
iof = 0;\
rb_warning("invalid offset is ignored");\
}\
} while (0)
#if 0
static VALUE
d_lite_initialize(int argc, VALUE *argv, VALUE self)
{
VALUE jd, vjd, vdf, sf, vsf, vof, vsg;
int df, of;
double sg;
rb_check_frozen(self);
rb_check_trusted(self);
rb_scan_args(argc, argv, "05", &vjd, &vdf, &vsf, &vof, &vsg);
jd = INT2FIX(0);
df = 0;
sf = INT2FIX(0);
of = 0;
sg = DEFAULT_SG;
switch (argc) {
case 5:
val2sg(vsg, sg);
case 4:
val2off(vof, of);
case 3:
sf = vsf;
if (f_lt_p(sf, INT2FIX(0)) ||
f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS)))
rb_raise(rb_eArgError, "invalid second fraction");
case 2:
df = NUM2INT(vdf);
if (df < 0 || df >= DAY_IN_SECONDS)
rb_raise(rb_eArgError, "invalid day fraction");
case 1:
jd = vjd;
}
{
VALUE nth;
int rjd;
get_d1(self);
decode_jd(jd, &nth, &rjd);
if (!df && f_zero_p(sf) && !of) {
set_to_simple(self, &dat->s, nth, rjd, sg, 0, 0, 0, HAVE_JD);
}
else {
if (!complex_dat_p(dat))
rb_raise(rb_eArgError,
"cannot load complex into simple");
set_to_complex(self, &dat->c, nth, rjd, df, sf, of, sg,
0, 0, 0, 0, 0, 0, HAVE_JD | HAVE_DF);
}
}
return self;
}
#endif
/* :nodoc: */
static VALUE
d_lite_initialize_copy(VALUE copy, VALUE date)
{
rb_check_frozen(copy);
rb_check_trusted(copy);
if (copy == date)
return copy;
{
get_d2(copy, date);
if (simple_dat_p(bdat)) {
if (simple_dat_p(adat)) {
adat->s = bdat->s;
}
else {
adat->c.flags = bdat->s.flags | COMPLEX_DAT;
adat->c.nth = bdat->s.nth;
adat->c.jd = bdat->s.jd;
adat->c.df = 0;
adat->c.sf = INT2FIX(0);
adat->c.of = 0;
adat->c.sg = bdat->s.sg;
adat->c.year = bdat->s.year;
#ifndef USE_PACK
adat->c.mon = bdat->s.mon;
adat->c.mday = bdat->s.mday;
adat->c.hour = bdat->s.hour;
adat->c.min = bdat->s.min;
adat->c.sec = bdat->s.sec;
#else
adat->c.pc = bdat->s.pc;
#endif
}
}
else {
if (!complex_dat_p(adat))
rb_raise(rb_eArgError,
"cannot load complex into simple");
adat->c = bdat->c;
}
}
return copy;
}
#ifndef NDEBUG
static VALUE
d_lite_fill(VALUE self)
{
get_d1(self);
if (simple_dat_p(dat)) {
get_s_jd(dat);
get_s_civil(dat);
}
else {
get_c_jd(dat);
get_c_civil(dat);
get_c_df(dat);
get_c_time(dat);
}
return self;
}
#endif
/*
* call-seq:
* d.ajd -> rational
*
* Returns the astronomical Julian day number. This is a fractional
* number, which is not adjusted by the offset.
*
* DateTime.new(2001,2,3,4,5,6,'+7').ajd #=> (11769328217/4800)
* DateTime.new(2001,2,2,14,5,6,'-7').ajd #=> (11769328217/4800)
*/
static VALUE
d_lite_ajd(VALUE self)
{
get_d1(self);
return m_ajd(dat);
}
/*
* call-seq:
* d.amjd -> rational
*
* Returns the astronomical modified Julian day number. This is
* a fractional number, which is not adjusted by the offset.
*
* DateTime.new(2001,2,3,4,5,6,'+7').amjd #=> (249325817/4800)
* DateTime.new(2001,2,2,14,5,6,'-7').amjd #=> (249325817/4800)
*/
static VALUE
d_lite_amjd(VALUE self)
{
get_d1(self);
return m_amjd(dat);
}
/*
* call-seq:
* d.jd -> integer
*
* Returns the Julian day number. This is a whole number, which is
* adjusted by the offset as the local time.
*
* DateTime.new(2001,2,3,4,5,6,'+7').jd #=> 2451944
* DateTime.new(2001,2,3,4,5,6,'-7').jd #=> 2451944
*/
static VALUE
d_lite_jd(VALUE self)
{
get_d1(self);
return m_real_local_jd(dat);
}
/*
* call-seq:
* d.mjd -> integer
*
* Returns the modified Julian day number. This is a whole number,
* which is adjusted by the offset as the local time.
*
* DateTime.new(2001,2,3,4,5,6,'+7').mjd #=> 51943
* DateTime.new(2001,2,3,4,5,6,'-7').mjd #=> 51943
*/
static VALUE
d_lite_mjd(VALUE self)
{
get_d1(self);
return f_sub(m_real_local_jd(dat), INT2FIX(2400001));
}
/*
* call-seq:
* d.ld -> integer
*
* Returns the Lilian day number. This is a whole number, which is
* adjusted by the offset as the local time.
*
* Date.new(2001,2,3).ld #=> 152784
*/
static VALUE
d_lite_ld(VALUE self)
{
get_d1(self);
return f_sub(m_real_local_jd(dat), INT2FIX(2299160));
}
/*
* call-seq:
* d.year -> integer
*
* Returns the year.
*
* Date.new(2001,2,3).year #=> 2001
* (Date.new(1,1,1) - 1).year #=> 0
*/
static VALUE
d_lite_year(VALUE self)
{
get_d1(self);
return m_real_year(dat);
}
/*
* call-seq:
* d.yday -> fixnum
*
* Returns the day of the year (1-366).
*
* Date.new(2001,2,3).yday #=> 34
*/
static VALUE
d_lite_yday(VALUE self)
{
get_d1(self);
return INT2FIX(m_yday(dat));
}
/*
* call-seq:
* d.mon -> fixnum
* d.month -> fixnum
*
* Returns the month (1-12).
*
* Date.new(2001,2,3).mon #=> 2
*/
static VALUE
d_lite_mon(VALUE self)
{
get_d1(self);
return INT2FIX(m_mon(dat));
}
/*
* call-seq:
* d.mday -> fixnum
* d.day -> fixnum
*
* Returns the day of the month (1-31).
*
* Date.new(2001,2,3).mday #=> 3
*/
static VALUE
d_lite_mday(VALUE self)
{
get_d1(self);
return INT2FIX(m_mday(dat));
}
/*
* call-seq:
* d.day_fraction -> rational
*
* Returns the fractional part of the day.
*
* DateTime.new(2001,2,3,12).day_fraction #=> (1/2)
*/
static VALUE
d_lite_day_fraction(VALUE self)
{
get_d1(self);
if (simple_dat_p(dat))
return INT2FIX(0);
return m_fr(dat);
}
/*
* call-seq:
* d.cwyear -> integer
*
* Returns the calendar week based year.
*
* Date.new(2001,2,3).cwyear #=> 2001
* Date.new(2000,1,1).cwyear #=> 1999
*/
static VALUE
d_lite_cwyear(VALUE self)
{
get_d1(self);
return m_real_cwyear(dat);
}
/*
* call-seq:
* d.cweek -> fixnum
*
* Returns the calendar week number (1-53).
*
* Date.new(2001,2,3).cweek #=> 5
*/
static VALUE
d_lite_cweek(VALUE self)
{
get_d1(self);
return INT2FIX(m_cweek(dat));
}
/*
* call-seq:
* d.cwday -> fixnum
*
* Returns the day of calendar week (1-7, Monday is 1).
*
* Date.new(2001,2,3).cwday #=> 6
*/
static VALUE
d_lite_cwday(VALUE self)
{
get_d1(self);
return INT2FIX(m_cwday(dat));
}
#ifndef NDEBUG
static VALUE
d_lite_wnum0(VALUE self)
{
get_d1(self);
return INT2FIX(m_wnum0(dat));
}
static VALUE
d_lite_wnum1(VALUE self)
{
get_d1(self);
return INT2FIX(m_wnum1(dat));
}
#endif
/*
* call-seq:
* d.wday -> fixnum
*
* Returns the day of week (0-6, Sunday is zero).
*
* Date.new(2001,2,3).wday #=> 6
*/
static VALUE
d_lite_wday(VALUE self)
{
get_d1(self);
return INT2FIX(m_wday(dat));
}
/*
* call-seq:
* d.sunday? -> bool
*
* Returns true if the date is Sunday.
*/
static VALUE
d_lite_sunday_p(VALUE self)
{
get_d1(self);
return f_boolcast(m_wday(dat) == 0);
}
/*
* call-seq:
* d.monday? -> bool
*
* Returns true if the date is Monday.
*/
static VALUE
d_lite_monday_p(VALUE self)
{
get_d1(self);
return f_boolcast(m_wday(dat) == 1);
}
/*
* call-seq:
* d.tuesday? -> bool
*
* Returns true if the date is Tuesday.
*/
static VALUE
d_lite_tuesday_p(VALUE self)
{
get_d1(self);
return f_boolcast(m_wday(dat) == 2);
}
/*
* call-seq:
* d.wednesday? -> bool
*
* Returns true if the date is Wednesday.
*/
static VALUE
d_lite_wednesday_p(VALUE self)
{
get_d1(self);
return f_boolcast(m_wday(dat) == 3);
}
/*
* call-seq:
* d.thursday? -> bool
*
* Returns true if the date is Thursday.
*/
static VALUE
d_lite_thursday_p(VALUE self)
{
get_d1(self);
return f_boolcast(m_wday(dat) == 4);
}
/*
* call-seq:
* d.friday? -> bool
*
* Returns true if the date is Friday.
*/
static VALUE
d_lite_friday_p(VALUE self)
{
get_d1(self);
return f_boolcast(m_wday(dat) == 5);
}
/*
* call-seq:
* d.saturday? -> bool
*
* Returns true if the date is Saturday.
*/
static VALUE
d_lite_saturday_p(VALUE self)
{
get_d1(self);
return f_boolcast(m_wday(dat) == 6);
}
#ifndef NDEBUG
static VALUE
d_lite_nth_kday_p(VALUE self, VALUE n, VALUE k)
{
int rjd, ns;
get_d1(self);
if (NUM2INT(k) != m_wday(dat))
return Qfalse;
c_nth_kday_to_jd(m_year(dat), m_mon(dat),
NUM2INT(n), NUM2INT(k), m_virtual_sg(dat), /* !=m_sg() */
&rjd, &ns);
if (m_local_jd(dat) != rjd)
return Qfalse;
return Qtrue;
}
#endif
/*
* call-seq:
* d.hour -> fixnum
*
* Returns the hour (0-23).
*
* DateTime.new(2001,2,3,4,5,6).hour #=> 4
*/
static VALUE
d_lite_hour(VALUE self)
{
get_d1(self);
return INT2FIX(m_hour(dat));
}
/*
* call-seq:
* d.min -> fixnum
* d.minute -> fixnum
*
* Returns the minute (0-59).
*
* DateTime.new(2001,2,3,4,5,6).min #=> 5
*/
static VALUE
d_lite_min(VALUE self)
{
get_d1(self);
return INT2FIX(m_min(dat));
}
/*
* call-seq:
* d.sec -> fixnum
* d.second -> fixnum
*
* Returns the second (0-59).
*
* DateTime.new(2001,2,3,4,5,6).sec #=> 6
*/
static VALUE
d_lite_sec(VALUE self)
{
get_d1(self);
return INT2FIX(m_sec(dat));
}
/*
* call-seq:
* d.sec_fraction -> rational
* d.second_fraction -> rational
*
* Returns the fractional part of the second.
*
* DateTime.new(2001,2,3,4,5,6.5).sec_fraction #=> (1/2)
*/
static VALUE
d_lite_sec_fraction(VALUE self)
{
get_d1(self);
return m_sf_in_sec(dat);
}
/*
* call-seq:
* d.offset -> rational
*
* Returns the offset.
*
* DateTime.parse('04pm+0730').offset #=> (5/16)
*/
static VALUE
d_lite_offset(VALUE self)
{
get_d1(self);
return m_of_in_day(dat);
}
/*
* call-seq:
* d.zone -> string
*
* Returns the timezone.
*
* DateTime.parse('04pm+0730').zone #=> "+07:30"
*/
static VALUE
d_lite_zone(VALUE self)
{
get_d1(self);
return m_zone(dat);
}
/*
* call-seq:
* d.julian? -> bool
*
* Returns true if the date is before the day of calendar reform.
*
* Date.new(1582,10,15).julian? #=> false
* (Date.new(1582,10,15) - 1).julian? #=> true
*/
static VALUE
d_lite_julian_p(VALUE self)
{
get_d1(self);
return f_boolcast(m_julian_p(dat));
}
/*
* call-seq:
* d.gregorian? -> bool
*
* Returns true if the date is on or after the day of calendar reform.
*
* Date.new(1582,10,15).gregorian? #=> true
* (Date.new(1582,10,15) - 1).gregorian? #=> false
*/
static VALUE
d_lite_gregorian_p(VALUE self)
{
get_d1(self);
return f_boolcast(m_gregorian_p(dat));
}
/*
* call-seq:
* d.leap? -> bool
*
* Returns true if the year is a leap year.
*
* Date.new(2000).leap? #=> true
* Date.new(2001).leap? #=> false
*/
static VALUE
d_lite_leap_p(VALUE self)
{
int rjd, ns, ry, rm, rd;
get_d1(self);
if (m_gregorian_p(dat))
return f_boolcast(c_gregorian_leap_p(m_year(dat)));
c_civil_to_jd(m_year(dat), 3, 1, m_virtual_sg(dat),
&rjd, &ns);
c_jd_to_civil(rjd - 1, m_virtual_sg(dat), &ry, &rm, &rd);
return f_boolcast(rd == 29);
}
/*
* call-seq:
* d.start -> float
*
* Returns the Julian day number denoting the day of calendar reform.
*
* Date.new(2001,2,3).start #=> 2299161.0
* Date.new(2001,2,3,Date::GREGORIAN).start #=> -Infinity
*/
static VALUE
d_lite_start(VALUE self)
{
get_d1(self);
return DBL2NUM(m_sg(dat));
}
static void
clear_civil(union DateData *x)
{
if (simple_dat_p(x)) {
x->s.year = 0;
#ifndef USE_PACK
x->s.mon = 0;
x->s.mday = 0;
#else
x->s.pc = 0;
#endif
x->s.flags &= ~HAVE_CIVIL;
}
else {
x->c.year = 0;
#ifndef USE_PACK
x->c.mon = 0;
x->c.mday = 0;
x->c.hour = 0;
x->c.min = 0;
x->c.sec = 0;
#else
x->c.pc = 0;
#endif
x->c.flags &= ~(HAVE_CIVIL | HAVE_TIME);
}
}
static void
set_sg(union DateData *x, double sg)
{
if (simple_dat_p(x)) {
get_s_jd(x);
clear_civil(x);
x->s.sg = (date_sg_t)sg;
} else {
get_c_jd(x);
get_c_df(x);
clear_civil(x);
x->c.sg = (date_sg_t)sg;
}
}
static VALUE
dup_obj_with_new_start(VALUE obj, double sg)
{
volatile VALUE dup = dup_obj(obj);
{
get_d1(dup);
set_sg(dat, sg);
}
return dup;
}
/*
* call-seq:
* d.new_start([start=Date::ITALY]) -> date
*
* Duplicates self and resets its day of calendar reform.
*
* d = Date.new(1582,10,15)
* d.new_start(Date::JULIAN) #=> #<Date: 1582-10-05 ...>
*/
static VALUE
d_lite_new_start(int argc, VALUE *argv, VALUE self)
{
VALUE vsg;
double sg;
rb_scan_args(argc, argv, "01", &vsg);
sg = DEFAULT_SG;
if (argc >= 1)
val2sg(vsg, sg);
return dup_obj_with_new_start(self, sg);
}
/*
* call-seq:
* d.italy -> date
*
* This method is equivalent to new_start(Date::ITALY).
*/
static VALUE
d_lite_italy(VALUE self)
{
return dup_obj_with_new_start(self, ITALY);
}
/*
* call-seq:
* d.england -> date
*
* This method is equivalent to new_start(Date::ENGLAND).
*/
static VALUE
d_lite_england(VALUE self)
{
return dup_obj_with_new_start(self, ENGLAND);
}
/*
* call-seq:
* d.julian -> date
*
* This method is equivalent to new_start(Date::JULIAN).
*/
static VALUE
d_lite_julian(VALUE self)
{
return dup_obj_with_new_start(self, JULIAN);
}
/*
* call-seq:
* d.gregorian -> date
*
* This method is equivalent to new_start(Date::GREGORIAN).
*/
static VALUE
d_lite_gregorian(VALUE self)
{
return dup_obj_with_new_start(self, GREGORIAN);
}
static void
set_of(union DateData *x, int of)
{
assert(complex_dat_p(x));
get_c_jd(x);
get_c_df(x);
clear_civil(x);
x->c.of = of;
}
static VALUE
dup_obj_with_new_offset(VALUE obj, int of)
{
volatile VALUE dup = dup_obj_as_complex(obj);
{
get_d1(dup);
set_of(dat, of);
}
return dup;
}
/*
* call-seq:
* d.new_offset([offset=0]) -> date
*
* Duplicates self and resets its offset.
*
* d = DateTime.new(2001,2,3,4,5,6,'-02:00')
* #=> #<DateTime: 2001-02-03T04:05:06-02:00 ...>
* d.new_offset('+09:00') #=> #<DateTime: 2001-02-03T15:05:06+09:00 ...>
*/
static VALUE
d_lite_new_offset(int argc, VALUE *argv, VALUE self)
{
VALUE vof;
int rof;
rb_scan_args(argc, argv, "01", &vof);
rof = 0;
if (argc >= 1)
val2off(vof, rof);
return dup_obj_with_new_offset(self, rof);
}
/*
* call-seq:
* d + other -> date
*
* Returns a date object pointing +other+ days after self. The other
* should be a numeric value. If the other is a fractional number,
* assumes its precision is at most nanosecond.
*
* Date.new(2001,2,3) + 1 #=> #<Date: 2001-02-04 ...>
* DateTime.new(2001,2,3) + Rational(1,2)
* #=> #<DateTime: 2001-02-03T12:00:00+00:00 ...>
* DateTime.new(2001,2,3) + Rational(-1,2)
* #=> #<DateTime: 2001-02-02T12:00:00+00:00 ...>
* DateTime.jd(0,12) + DateTime.new(2001,2,3).ajd
* #=> #<DateTime: 2001-02-03T00:00:00+00:00 ...>
*/
static VALUE
d_lite_plus(VALUE self, VALUE other)
{
int try_rational = 1;
get_d1(self);
again:
switch (TYPE(other)) {
case T_FIXNUM:
{
VALUE nth;
long t;
int jd;
nth = m_nth(dat);
t = FIX2LONG(other);
if (DIV(t, CM_PERIOD)) {
nth = f_add(nth, INT2FIX(DIV(t, CM_PERIOD)));
t = MOD(t, CM_PERIOD);
}
if (!t)
jd = m_jd(dat);
else {
jd = m_jd(dat) + (int)t;
canonicalize_jd(nth, jd);
}
if (simple_dat_p(dat))
return d_simple_new_internal(rb_obj_class(self),
nth, jd,
dat->s.sg,
0, 0, 0,
(dat->s.flags | HAVE_JD) &
~HAVE_CIVIL);
else
return d_complex_new_internal(rb_obj_class(self),
nth, jd,
dat->c.df, dat->c.sf,
dat->c.of, dat->c.sg,
0, 0, 0,
#ifndef USE_PACK
dat->c.hour,
dat->c.min,
dat->c.sec,
#else
EX_HOUR(dat->c.pc),
EX_MIN(dat->c.pc),
EX_SEC(dat->c.pc),
#endif
(dat->c.flags | HAVE_JD) &
~HAVE_CIVIL);
}
break;
case T_BIGNUM:
{
VALUE nth;
int jd, s;
if (f_positive_p(other))
s = +1;
else {
s = -1;
other = f_negate(other);
}
nth = f_idiv(other, INT2FIX(CM_PERIOD));
jd = FIX2INT(f_mod(other, INT2FIX(CM_PERIOD)));
if (s < 0) {
nth = f_negate(nth);
jd = -jd;
}
if (!jd)
jd = m_jd(dat);
else {
jd = m_jd(dat) + jd;
canonicalize_jd(nth, jd);
}
if (f_zero_p(nth))
nth = m_nth(dat);
else
nth = f_add(m_nth(dat), nth);
if (simple_dat_p(dat))
return d_simple_new_internal(rb_obj_class(self),
nth, jd,
dat->s.sg,
0, 0, 0,
(dat->s.flags | HAVE_JD) &
~HAVE_CIVIL);
else
return d_complex_new_internal(rb_obj_class(self),
nth, jd,
dat->c.df, dat->c.sf,
dat->c.of, dat->c.sg,
0, 0, 0,
#ifndef USE_PACK
dat->c.hour,
dat->c.min,
dat->c.sec,
#else
EX_HOUR(dat->c.pc),
EX_MIN(dat->c.pc),
EX_SEC(dat->c.pc),
#endif
(dat->c.flags | HAVE_JD) &
~HAVE_CIVIL);
}
break;
case T_FLOAT:
{
double jd, o, tmp;
int s, df;
VALUE nth, sf;
o = RFLOAT_VALUE(other);
if (o > 0)
s = +1;
else {
s = -1;
o = -o;
}
o = modf(o, &tmp);
if (!floor(tmp / CM_PERIOD)) {
nth = INT2FIX(0);
jd = (int)tmp;
}
else {
double i, f;
f = modf(tmp / CM_PERIOD, &i);
nth = f_floor(DBL2NUM(i));
jd = (int)(f * CM_PERIOD);
}
o *= DAY_IN_SECONDS;
o = modf(o, &tmp);
df = (int)tmp;
o *= SECOND_IN_NANOSECONDS;
sf = INT2FIX((int)round(o));
if (s < 0) {
jd = -jd;
df = -df;
sf = f_negate(sf);
}
if (f_zero_p(sf))
sf = m_sf(dat);
else {
sf = f_add(m_sf(dat), sf);
if (f_lt_p(sf, INT2FIX(0))) {
df -= 1;
sf = f_add(sf, INT2FIX(SECOND_IN_NANOSECONDS));
}
else if (f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS))) {
df += 1;
sf = f_sub(sf, INT2FIX(SECOND_IN_NANOSECONDS));
}
}
if (!df)
df = m_df(dat);
else {
df = m_df(dat) + df;
if (df < 0) {
jd -= 1;
df += DAY_IN_SECONDS;
}
else if (df >= DAY_IN_SECONDS) {
jd += 1;
df -= DAY_IN_SECONDS;
}
}
if (!jd)
jd = m_jd(dat);
else {
jd = m_jd(dat) + jd;
canonicalize_jd(nth, jd);
}
if (f_zero_p(nth))
nth = m_nth(dat);
else
nth = f_add(m_nth(dat), nth);
if (!df && f_zero_p(sf) && !m_of(dat))
return d_simple_new_internal(rb_obj_class(self),
nth, (int)jd,
m_sg(dat),
0, 0, 0,
(dat->s.flags | HAVE_JD) &
~(HAVE_CIVIL | HAVE_TIME |
COMPLEX_DAT));
else
return d_complex_new_internal(rb_obj_class(self),
nth, (int)jd,
df, sf,
m_of(dat), m_sg(dat),
0, 0, 0,
0, 0, 0,
(dat->c.flags |
HAVE_JD | HAVE_DF) &
~(HAVE_CIVIL | HAVE_TIME));
}
break;
default:
expect_numeric(other);
other = f_to_r(other);
if (!k_rational_p(other)) {
if (!try_rational) Check_Type(other, T_RATIONAL);
try_rational = 0;
goto again;
}
/* fall through */
case T_RATIONAL:
{
VALUE nth, sf, t;
int jd, df, s;
if (wholenum_p(other)) {
other = rb_rational_num(other);
goto again;
}
if (f_positive_p(other))
s = +1;
else {
s = -1;
other = f_negate(other);
}
nth = f_idiv(other, INT2FIX(CM_PERIOD));
t = f_mod(other, INT2FIX(CM_PERIOD));
jd = FIX2INT(f_idiv(t, INT2FIX(1)));
t = f_mod(t, INT2FIX(1));
t = f_mul(t, INT2FIX(DAY_IN_SECONDS));
df = FIX2INT(f_idiv(t, INT2FIX(1)));
t = f_mod(t, INT2FIX(1));
sf = f_mul(t, INT2FIX(SECOND_IN_NANOSECONDS));
if (s < 0) {
nth = f_negate(nth);
jd = -jd;
df = -df;
sf = f_negate(sf);
}
if (f_zero_p(sf))
sf = m_sf(dat);
else {
sf = f_add(m_sf(dat), sf);
if (f_lt_p(sf, INT2FIX(0))) {
df -= 1;
sf = f_add(sf, INT2FIX(SECOND_IN_NANOSECONDS));
}
else if (f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS))) {
df += 1;
sf = f_sub(sf, INT2FIX(SECOND_IN_NANOSECONDS));
}
}
if (!df)
df = m_df(dat);
else {
df = m_df(dat) + df;
if (df < 0) {
jd -= 1;
df += DAY_IN_SECONDS;
}
else if (df >= DAY_IN_SECONDS) {
jd += 1;
df -= DAY_IN_SECONDS;
}
}
if (!jd)
jd = m_jd(dat);
else {
jd = m_jd(dat) + jd;
canonicalize_jd(nth, jd);
}
if (f_zero_p(nth))
nth = m_nth(dat);
else
nth = f_add(m_nth(dat), nth);
if (!df && f_zero_p(sf) && !m_of(dat))
return d_simple_new_internal(rb_obj_class(self),
nth, jd,
m_sg(dat),
0, 0, 0,
(dat->s.flags | HAVE_JD) &
~(HAVE_CIVIL | HAVE_TIME |
COMPLEX_DAT));
else
return d_complex_new_internal(rb_obj_class(self),
nth, jd,
df, sf,
m_of(dat), m_sg(dat),
0, 0, 0,
0, 0, 0,
(dat->c.flags |
HAVE_JD | HAVE_DF) &
~(HAVE_CIVIL | HAVE_TIME));
}
break;
}
}
static VALUE
minus_dd(VALUE self, VALUE other)
{
get_d2(self, other);
{
int d, df;
VALUE n, sf, r;
n = f_sub(m_nth(adat), m_nth(bdat));
d = m_jd(adat) - m_jd(bdat);
df = m_df(adat) - m_df(bdat);
sf = f_sub(m_sf(adat), m_sf(bdat));
canonicalize_jd(n, d);
if (df < 0) {
d -= 1;
df += DAY_IN_SECONDS;
}
else if (df >= DAY_IN_SECONDS) {
d += 1;
df -= DAY_IN_SECONDS;
}
if (f_lt_p(sf, INT2FIX(0))) {
df -= 1;
sf = f_add(sf, INT2FIX(SECOND_IN_NANOSECONDS));
}
else if (f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS))) {
df += 1;
sf = f_sub(sf, INT2FIX(SECOND_IN_NANOSECONDS));
}
if (f_zero_p(n))
r = INT2FIX(0);
else
r = f_mul(n, INT2FIX(CM_PERIOD));
if (d)
r = f_add(r, rb_rational_new1(INT2FIX(d)));
if (df)
r = f_add(r, isec_to_day(df));
if (f_nonzero_p(sf))
r = f_add(r, ns_to_day(sf));
if (RB_TYPE_P(r, T_RATIONAL))
return r;
return rb_rational_new1(r);
}
}
/*
* call-seq:
* d - other -> date or rational
*
* Returns the difference between the two dates if the other is a date
* object. If the other is a numeric value, returns a date object
* pointing +other+ days before self. If the other is a fractional number,
* assumes its precision is at most nanosecond.
*
* Date.new(2001,2,3) - 1 #=> #<Date: 2001-02-02 ...>
* DateTime.new(2001,2,3) - Rational(1,2)
* #=> #<DateTime: 2001-02-02T12:00:00+00:00 ...>
* Date.new(2001,2,3) - Date.new(2001)
* #=> (33/1)
* DateTime.new(2001,2,3) - DateTime.new(2001,2,2,12)
* #=> (1/2)
*/
static VALUE
d_lite_minus(VALUE self, VALUE other)
{
if (k_date_p(other))
return minus_dd(self, other);
switch (TYPE(other)) {
case T_FIXNUM:
return d_lite_plus(self, LONG2NUM(-FIX2LONG(other)));
case T_FLOAT:
return d_lite_plus(self, DBL2NUM(-RFLOAT_VALUE(other)));
default:
expect_numeric(other);
/* fall through */
case T_BIGNUM:
case T_RATIONAL:
return d_lite_plus(self, f_negate(other));
}
}
/*
* call-seq:
* d.next_day([n=1]) -> date
*
* This method is equivalent to d + n.
*/
static VALUE
d_lite_next_day(int argc, VALUE *argv, VALUE self)
{
VALUE n;
rb_scan_args(argc, argv, "01", &n);
if (argc < 1)
n = INT2FIX(1);
return d_lite_plus(self, n);
}
/*
* call-seq:
* d.prev_day([n=1]) -> date
*
* This method is equivalent to d - n.
*/
static VALUE
d_lite_prev_day(int argc, VALUE *argv, VALUE self)
{
VALUE n;
rb_scan_args(argc, argv, "01", &n);
if (argc < 1)
n = INT2FIX(1);
return d_lite_minus(self, n);
}
/*
* call-seq:
* d.succ -> date
* d.next -> date
*
* Returns a date object denoting the following day.
*/
static VALUE
d_lite_next(VALUE self)
{
return d_lite_next_day(0, (VALUE *)NULL, self);
}
/*
* call-seq:
* d >> n -> date
*
* Returns a date object pointing +n+ months after self.
* The argument +n+ should be a numeric value.
*
* Date.new(2001,2,3) >> 1 #=> #<Date: 2001-03-03 ...>
* Date.new(2001,2,3) >> -2 #=> #<Date: 2000-12-03 ...>
*
* When the same day does not exist for the corresponding month,
* the last day of the month is used instead:
*
* Date.new(2001,1,28) >> 1 #=> #<Date: 2001-02-28 ...>
* Date.new(2001,1,31) >> 1 #=> #<Date: 2001-02-28 ...>
*
* This also results in the following, possibly unexpected, behavior:
*
* Date.new(2001,1,31) >> 2 #=> #<Date: 2001-03-31 ...>
* Date.new(2001,1,31) >> 1 >> 1 #=> #<Date: 2001-03-28 ...>
*
* Date.new(2001,1,31) >> 1 >> -1 #=> #<Date: 2001-01-28 ...>
*/
static VALUE
d_lite_rshift(VALUE self, VALUE other)
{
VALUE t, y, nth, rjd2;
int m, d, rjd;
double sg;
get_d1(self);
t = f_add3(f_mul(m_real_year(dat), INT2FIX(12)),
INT2FIX(m_mon(dat) - 1),
other);
if (FIXNUM_P(t)) {
long it = FIX2LONG(t);
y = LONG2NUM(DIV(it, 12));
it = MOD(it, 12);
m = (int)it + 1;
}
else {
y = f_idiv(t, INT2FIX(12));
t = f_mod(t, INT2FIX(12));
m = FIX2INT(t) + 1;
}
d = m_mday(dat);
sg = m_sg(dat);
while (1) {
int ry, rm, rd, ns;
if (valid_civil_p(y, m, d, sg,
&nth, &ry,
&rm, &rd, &rjd, &ns))
break;
if (--d < 1)
rb_raise(rb_eArgError, "invalid date");
}
encode_jd(nth, rjd, &rjd2);
return d_lite_plus(self, f_sub(rjd2, m_real_local_jd(dat)));
}
/*
* call-seq:
* d << n -> date
*
* Returns a date object pointing +n+ months before self.
* The argument +n+ should be a numeric value.
*
* Date.new(2001,2,3) << 1 #=> #<Date: 2001-01-03 ...>
* Date.new(2001,2,3) << -2 #=> #<Date: 2001-04-03 ...>
*
* When the same day does not exist for the corresponding month,
* the last day of the month is used instead:
*
* Date.new(2001,3,28) << 1 #=> #<Date: 2001-02-28 ...>
* Date.new(2001,3,31) << 1 #=> #<Date: 2001-02-28 ...>
*
* This also results in the following, possibly unexpected, behavior:
*
* Date.new(2001,3,31) << 2 #=> #<Date: 2001-01-31 ...>
* Date.new(2001,3,31) << 1 << 1 #=> #<Date: 2001-01-28 ...>
*
* Date.new(2001,3,31) << 1 << -1 #=> #<Date: 2001-03-28 ...>
*/
static VALUE
d_lite_lshift(VALUE self, VALUE other)
{
expect_numeric(other);
return d_lite_rshift(self, f_negate(other));
}
/*
* call-seq:
* d.next_month([n=1]) -> date
*
* This method is equivalent to d >> n.
*
* See Date#>> for examples.
*/
static VALUE
d_lite_next_month(int argc, VALUE *argv, VALUE self)
{
VALUE n;
rb_scan_args(argc, argv, "01", &n);
if (argc < 1)
n = INT2FIX(1);
return d_lite_rshift(self, n);
}
/*
* call-seq:
* d.prev_month([n=1]) -> date
*
* This method is equivalent to d << n.
*
* See Date#<< for examples.
*/
static VALUE
d_lite_prev_month(int argc, VALUE *argv, VALUE self)
{
VALUE n;
rb_scan_args(argc, argv, "01", &n);
if (argc < 1)
n = INT2FIX(1);
return d_lite_lshift(self, n);
}
/*
* call-seq:
* d.next_year([n=1]) -> date
*
* This method is equivalent to d >> (n * 12).
*
* Date.new(2001,2,3).next_year #=> #<Date: 2002-02-03 ...>
* Date.new(2008,2,29).next_year #=> #<Date: 2009-02-28 ...>
* Date.new(2008,2,29).next_year(4) #=> #<Date: 2012-02-29 ...>
*
* See also Date#>>.
*/
static VALUE
d_lite_next_year(int argc, VALUE *argv, VALUE self)
{
VALUE n;
rb_scan_args(argc, argv, "01", &n);
if (argc < 1)
n = INT2FIX(1);
return d_lite_rshift(self, f_mul(n, INT2FIX(12)));
}
/*
* call-seq:
* d.prev_year([n=1]) -> date
*
* This method is equivalent to d << (n * 12).
*
* Date.new(2001,2,3).prev_year #=> #<Date: 2000-02-03 ...>
* Date.new(2008,2,29).prev_year #=> #<Date: 2007-02-28 ...>
* Date.new(2008,2,29).prev_year(4) #=> #<Date: 2004-02-29 ...>
*
* See also Date#<<.
*/
static VALUE
d_lite_prev_year(int argc, VALUE *argv, VALUE self)
{
VALUE n;
rb_scan_args(argc, argv, "01", &n);
if (argc < 1)
n = INT2FIX(1);
return d_lite_lshift(self, f_mul(n, INT2FIX(12)));
}
static VALUE d_lite_cmp(VALUE, VALUE);
/*
* call-seq:
* d.step(limit[, step=1]) -> enumerator
* d.step(limit[, step=1]){|date| ...} -> self
*
* Iterates evaluation of the given block, which takes a date object.
* The limit should be a date object.
*
* Date.new(2001).step(Date.new(2001,-1,-1)).select{|d| d.sunday?}.size
* #=> 52
*/
static VALUE
d_lite_step(int argc, VALUE *argv, VALUE self)
{
VALUE limit, step, date;
int c;
rb_scan_args(argc, argv, "11", &limit, &step);
if (argc < 2)
step = INT2FIX(1);
#if 0
if (f_zero_p(step))
rb_raise(rb_eArgError, "step can't be 0");
#endif
RETURN_ENUMERATOR(self, argc, argv);
date = self;
c = f_cmp(step, INT2FIX(0));
if (c < 0) {
while (FIX2INT(d_lite_cmp(date, limit)) >= 0) {
rb_yield(date);
date = d_lite_plus(date, step);
}
}
else if (c == 0) {
while (1)
rb_yield(date);
}
else /* if (c > 0) */ {
while (FIX2INT(d_lite_cmp(date, limit)) <= 0) {
rb_yield(date);
date = d_lite_plus(date, step);
}
}
return self;
}
/*
* call-seq:
* d.upto(max) -> enumerator
* d.upto(max){|date| ...} -> self
*
* This method is equivalent to step(max, 1){|date| ...}.
*/
static VALUE
d_lite_upto(VALUE self, VALUE max)
{
VALUE date;
RETURN_ENUMERATOR(self, 1, &max);
date = self;
while (FIX2INT(d_lite_cmp(date, max)) <= 0) {
rb_yield(date);
date = d_lite_plus(date, INT2FIX(1));
}
return self;
}
/*
* call-seq:
* d.downto(min) -> enumerator
* d.downto(min){|date| ...} -> self
*
* This method is equivalent to step(min, -1){|date| ...}.
*/
static VALUE
d_lite_downto(VALUE self, VALUE min)
{
VALUE date;
RETURN_ENUMERATOR(self, 1, &min);
date = self;
while (FIX2INT(d_lite_cmp(date, min)) >= 0) {
rb_yield(date);
date = d_lite_plus(date, INT2FIX(-1));
}
return self;
}
static VALUE
cmp_gen(VALUE self, VALUE other)
{
get_d1(self);
if (k_numeric_p(other))
return INT2FIX(f_cmp(m_ajd(dat), other));
else if (k_date_p(other))
return INT2FIX(f_cmp(m_ajd(dat), f_ajd(other)));
return rb_num_coerce_cmp(self, other, id_cmp);
}
static VALUE
cmp_dd(VALUE self, VALUE other)
{
get_d2(self, other);
{
VALUE a_nth, b_nth,
a_sf, b_sf;
int a_jd, b_jd,
a_df, b_df;
m_canonicalize_jd(self, adat);
m_canonicalize_jd(other, bdat);
a_nth = m_nth(adat);
b_nth = m_nth(bdat);
if (f_eqeq_p(a_nth, b_nth)) {
a_jd = m_jd(adat);
b_jd = m_jd(bdat);
if (a_jd == b_jd) {
a_df = m_df(adat);
b_df = m_df(bdat);
if (a_df == b_df) {
a_sf = m_sf(adat);
b_sf = m_sf(bdat);
if (f_eqeq_p(a_sf, b_sf)) {
return INT2FIX(0);
}
else if (f_lt_p(a_sf, b_sf)) {
return INT2FIX(-1);
}
else {
return INT2FIX(1);
}
}
else if (a_df < b_df) {
return INT2FIX(-1);
}
else {
return INT2FIX(1);
}
}
else if (a_jd < b_jd) {
return INT2FIX(-1);
}
else {
return INT2FIX(1);
}
}
else if (f_lt_p(a_nth, b_nth)) {
return INT2FIX(-1);
}
else {
return INT2FIX(1);
}
}
}
/*
* call-seq:
* d <=> other -> -1, 0, +1 or nil
*
* Compares the two dates and returns -1, zero, 1 or nil. The other
* should be a date object or a numeric value as an astronomical
* Julian day number.
*
* Date.new(2001,2,3) <=> Date.new(2001,2,4) #=> -1
* Date.new(2001,2,3) <=> Date.new(2001,2,3) #=> 0
* Date.new(2001,2,3) <=> Date.new(2001,2,2) #=> 1
* Date.new(2001,2,3) <=> Object.new #=> nil
* Date.new(2001,2,3) <=> Rational(4903887,2) #=> 0
*
* See also Comparable.
*/
static VALUE
d_lite_cmp(VALUE self, VALUE other)
{
if (!k_date_p(other))
return cmp_gen(self, other);
{
get_d2(self, other);
if (!(simple_dat_p(adat) && simple_dat_p(bdat) &&
m_gregorian_p(adat) == m_gregorian_p(bdat)))
return cmp_dd(self, other);
{
VALUE a_nth, b_nth;
int a_jd, b_jd;
m_canonicalize_jd(self, adat);
m_canonicalize_jd(other, bdat);
a_nth = m_nth(adat);
b_nth = m_nth(bdat);
if (f_eqeq_p(a_nth, b_nth)) {
a_jd = m_jd(adat);
b_jd = m_jd(bdat);
if (a_jd == b_jd) {
return INT2FIX(0);
}
else if (a_jd < b_jd) {
return INT2FIX(-1);
}
else {
return INT2FIX(1);
}
}
else if (f_lt_p(a_nth, b_nth)) {
return INT2FIX(-1);
}
else {
return INT2FIX(1);
}
}
}
}
static VALUE
equal_gen(VALUE self, VALUE other)
{
get_d1(self);
if (k_numeric_p(other))
return f_eqeq_p(m_real_local_jd(dat), other);
else if (k_date_p(other))
return f_eqeq_p(m_real_local_jd(dat), f_jd(other));
return rb_num_coerce_cmp(self, other, id_eqeq_p);
}
/*
* call-seq:
* d === other -> bool
*
* Returns true if they are the same day.
*
* Date.new(2001,2,3) === Date.new(2001,2,3)
* #=> true
* Date.new(2001,2,3) === Date.new(2001,2,4)
* #=> false
* DateTime.new(2001,2,3) === DateTime.new(2001,2,3,12)
* #=> true
* DateTime.new(2001,2,3) === DateTime.new(2001,2,3,0,0,0,'+24:00')
* #=> true
* DateTime.new(2001,2,3) === DateTime.new(2001,2,4,0,0,0,'+24:00')
* #=> false
*/
static VALUE
d_lite_equal(VALUE self, VALUE other)
{
if (!k_date_p(other))
return equal_gen(self, other);
{
get_d2(self, other);
if (!(m_gregorian_p(adat) == m_gregorian_p(bdat)))
return equal_gen(self, other);
{
VALUE a_nth, b_nth;
int a_jd, b_jd;
m_canonicalize_jd(self, adat);
m_canonicalize_jd(other, bdat);
a_nth = m_nth(adat);
b_nth = m_nth(bdat);
a_jd = m_local_jd(adat);
b_jd = m_local_jd(bdat);
if (f_eqeq_p(a_nth, b_nth) &&
a_jd == b_jd)
return Qtrue;
return Qfalse;
}
}
}
/* :nodoc: */
static VALUE
d_lite_eql_p(VALUE self, VALUE other)
{
if (!k_date_p(other))
return Qfalse;
return f_zero_p(d_lite_cmp(self, other));
}
/* :nodoc: */
static VALUE
d_lite_hash(VALUE self)
{
st_index_t v, h[4];
get_d1(self);
h[0] = m_nth(dat);
h[1] = m_jd(dat);
h[2] = m_df(dat);
h[3] = m_sf(dat);
v = rb_memhash(h, sizeof(h));
return ST2FIX(v);
}
#include "date_tmx.h"
static void set_tmx(VALUE, struct tmx *);
static VALUE strftimev(const char *, VALUE,
void (*)(VALUE, struct tmx *));
/*
* call-seq:
* d.to_s -> string
*
* Returns a string in an ISO 8601 format. (This method doesn't use the
* expanded representations.)
*
* Date.new(2001,2,3).to_s #=> "2001-02-03"
*/
static VALUE
d_lite_to_s(VALUE self)
{
return strftimev("%Y-%m-%d", self, set_tmx);
}
#ifndef NDEBUG
static VALUE
mk_inspect_raw(union DateData *x, VALUE klass)
{
char flags[6];
flags[0] = (x->flags & COMPLEX_DAT) ? 'C' : 'S';
flags[1] = (x->flags & HAVE_JD) ? 'j' : '-';
flags[2] = (x->flags & HAVE_DF) ? 'd' : '-';
flags[3] = (x->flags & HAVE_CIVIL) ? 'c' : '-';
flags[4] = (x->flags & HAVE_TIME) ? 't' : '-';
flags[5] = '\0';
if (simple_dat_p(x)) {
return rb_enc_sprintf(rb_usascii_encoding(),
"#<%"PRIsVALUE": "
"(%+"PRIsVALUE"th,%dj),+0s,%.0fj; "
"%dy%dm%dd; %s>",
klass,
x->s.nth, x->s.jd, x->s.sg,
#ifndef USE_PACK
x->s.year, x->s.mon, x->s.mday,
#else
x->s.year,
EX_MON(x->s.pc), EX_MDAY(x->s.pc),
#endif
flags);
}
else {
return rb_enc_sprintf(rb_usascii_encoding(),
"#<%"PRIsVALUE": "
"(%+"PRIsVALUE"th,%dj,%ds,%+"PRIsVALUE"n),"
"%+ds,%.0fj; "
"%dy%dm%dd %dh%dm%ds; %s>",
klass,
x->c.nth, x->c.jd, x->c.df, x->c.sf,
x->c.of, x->c.sg,
#ifndef USE_PACK
x->c.year, x->c.mon, x->c.mday,
x->c.hour, x->c.min, x->c.sec,
#else
x->c.year,
EX_MON(x->c.pc), EX_MDAY(x->c.pc),
EX_HOUR(x->c.pc), EX_MIN(x->c.pc),
EX_SEC(x->c.pc),
#endif
flags);
}
}
static VALUE
d_lite_inspect_raw(VALUE self)
{
get_d1(self);
return mk_inspect_raw(dat, rb_obj_class(self));
}
#endif
static VALUE
mk_inspect(union DateData *x, VALUE klass, VALUE to_s)
{
return rb_enc_sprintf(rb_usascii_encoding(),
"#<%"PRIsVALUE": %"PRIsVALUE" "
"((%+"PRIsVALUE"j,%ds,%+"PRIsVALUE"n),%+ds,%.0fj)>",
klass, to_s,
m_real_jd(x), m_df(x), m_sf(x),
m_of(x), m_sg(x));
}
/*
* call-seq:
* d.inspect -> string
*
* Returns the value as a string for inspection.
*
* Date.new(2001,2,3).inspect
* #=> "#<Date: 2001-02-03 ((2451944j,0s,0n),+0s,2299161j)>"
* DateTime.new(2001,2,3,4,5,6,'-7').inspect
* #=> "#<DateTime: 2001-02-03T04:05:06-07:00 ((2451944j,39906s,0n),-25200s,2299161j)>"
*/
static VALUE
d_lite_inspect(VALUE self)
{
get_d1(self);
return mk_inspect(dat, rb_obj_class(self), self);
}
#include <errno.h>
#include "date_tmx.h"
size_t date_strftime(char *s, size_t maxsize, const char *format,
const struct tmx *tmx);
#define SMALLBUF 100
static size_t
date_strftime_alloc(char **buf, const char *format,
struct tmx *tmx)
{
size_t size, len, flen;
(*buf)[0] = '\0';
flen = strlen(format);
if (flen == 0) {
return 0;
}
errno = 0;
len = date_strftime(*buf, SMALLBUF, format, tmx);
if (len != 0 || (**buf == '\0' && errno != ERANGE)) return len;
for (size=1024; ; size*=2) {
*buf = xmalloc(size);
(*buf)[0] = '\0';
len = date_strftime(*buf, size, format, tmx);
/*
* buflen can be zero EITHER because there's not enough
* room in the string, or because the control command
* goes to the empty string. Make a reasonable guess that
* if the buffer is 1024 times bigger than the length of the
* format string, it's not failing for lack of room.
*/
if (len > 0) break;
xfree(*buf);
if (size >= 1024 * flen) {
rb_sys_fail(format);
break;
}
}
return len;
}
static VALUE
tmx_m_secs(union DateData *x)
{
VALUE s;
int df;
s = day_to_sec(f_sub(m_real_jd(x),
UNIX_EPOCH_IN_CJD));
if (simple_dat_p(x))
return s;
df = m_df(x);
if (df)
s = f_add(s, INT2FIX(df));
return s;
}
#define MILLISECOND_IN_NANOSECONDS 1000000
static VALUE
tmx_m_msecs(union DateData *x)
{
VALUE s, sf;
s = sec_to_ms(tmx_m_secs(x));
if (simple_dat_p(x))
return s;
sf = m_sf(x);
if (f_nonzero_p(sf))
s = f_add(s, f_div(sf, INT2FIX(MILLISECOND_IN_NANOSECONDS)));
return s;
}
static int
tmx_m_of(union DateData *x)
{
return m_of(x);
}
static char *
tmx_m_zone(union DateData *x)
{
return RSTRING_PTR(m_zone(x));
}
static const struct tmx_funcs tmx_funcs = {
(VALUE (*)(void *))m_real_year,
(int (*)(void *))m_yday,
(int (*)(void *))m_mon,
(int (*)(void *))m_mday,
(VALUE (*)(void *))m_real_cwyear,
(int (*)(void *))m_cweek,
(int (*)(void *))m_cwday,
(int (*)(void *))m_wnum0,
(int (*)(void *))m_wnum1,
(int (*)(void *))m_wday,
(int (*)(void *))m_hour,
(int (*)(void *))m_min,
(int (*)(void *))m_sec,
(VALUE (*)(void *))m_sf_in_sec,
(VALUE (*)(void *))tmx_m_secs,
(VALUE (*)(void *))tmx_m_msecs,
(int (*)(void *))tmx_m_of,
(char *(*)(void *))tmx_m_zone
};
static void
set_tmx(VALUE self, struct tmx *tmx)
{
get_d1(self);
tmx->dat = (void *)dat;
tmx->funcs = &tmx_funcs;
}
static VALUE
date_strftime_internal(int argc, VALUE *argv, VALUE self,
const char *default_fmt,
void (*func)(VALUE, struct tmx *))
{
VALUE vfmt;
const char *fmt;
long len;
char buffer[SMALLBUF], *buf = buffer;
struct tmx tmx;
VALUE str;
rb_scan_args(argc, argv, "01", &vfmt);
if (argc < 1)
vfmt = rb_usascii_str_new2(default_fmt);
else {
StringValue(vfmt);
if (!rb_enc_str_asciicompat_p(vfmt)) {
rb_raise(rb_eArgError,
"format should have ASCII compatible encoding");
}
}
fmt = RSTRING_PTR(vfmt);
len = RSTRING_LEN(vfmt);
(*func)(self, &tmx);
if (memchr(fmt, '\0', len)) {
/* Ruby string may contain \0's. */
const char *p = fmt, *pe = fmt + len;
str = rb_str_new(0, 0);
while (p < pe) {
len = date_strftime_alloc(&buf, p, &tmx);
rb_str_cat(str, buf, len);
p += strlen(p);
if (buf != buffer) {
xfree(buf);
buf = buffer;
}
for (fmt = p; p < pe && !*p; ++p);
if (p > fmt) rb_str_cat(str, fmt, p - fmt);
}
rb_enc_copy(str, vfmt);
OBJ_INFECT(str, vfmt);
return str;
}
else
len = date_strftime_alloc(&buf, fmt, &tmx);
str = rb_str_new(buf, len);
if (buf != buffer) xfree(buf);
rb_enc_copy(str, vfmt);
OBJ_INFECT(str, vfmt);
return str;
}
/*
* call-seq:
* d.strftime([format='%F']) -> string
*
* Formats date according to the directives in the given format
* string.
* The directives begin with a percent (%) character.
* Any text not listed as a directive will be passed through to the
* output string.
*
* A directive consists of a percent (%) character,
* zero or more flags, an optional minimum field width,
* an optional modifier, and a conversion specifier
* as follows.
*
* %<flags><width><modifier><conversion>
*
* Flags:
* - don't pad a numerical output.
* _ use spaces for padding.
* 0 use zeros for padding.
* ^ upcase the result string.
* # change case.
*
* The minimum field width specifies the minimum width.
*
* The modifiers are "E", "O", ":", "::" and ":::".
* "E" and "O" are ignored. No effect to result currently.
*
* Format directives:
*
* Date (Year, Month, Day):
* %Y - Year with century (can be negative, 4 digits at least)
* -0001, 0000, 1995, 2009, 14292, etc.
* %C - year / 100 (round down. 20 in 2009)
* %y - year % 100 (00..99)
*
* %m - Month of the year, zero-padded (01..12)
* %_m blank-padded ( 1..12)
* %-m no-padded (1..12)
* %B - The full month name (``January'')
* %^B uppercased (``JANUARY'')
* %b - The abbreviated month name (``Jan'')
* %^b uppercased (``JAN'')
* %h - Equivalent to %b
*
* %d - Day of the month, zero-padded (01..31)
* %-d no-padded (1..31)
* %e - Day of the month, blank-padded ( 1..31)
*
* %j - Day of the year (001..366)
*
* Time (Hour, Minute, Second, Subsecond):
* %H - Hour of the day, 24-hour clock, zero-padded (00..23)
* %k - Hour of the day, 24-hour clock, blank-padded ( 0..23)
* %I - Hour of the day, 12-hour clock, zero-padded (01..12)
* %l - Hour of the day, 12-hour clock, blank-padded ( 1..12)
* %P - Meridian indicator, lowercase (``am'' or ``pm'')
* %p - Meridian indicator, uppercase (``AM'' or ``PM'')
*
* %M - Minute of the hour (00..59)
*
* %S - Second of the minute (00..60)
*
* %L - Millisecond of the second (000..999)
* %N - Fractional seconds digits, default is 9 digits (nanosecond)
* %3N millisecond (3 digits) %15N femtosecond (15 digits)
* %6N microsecond (6 digits) %18N attosecond (18 digits)
* %9N nanosecond (9 digits) %21N zeptosecond (21 digits)
* %12N picosecond (12 digits) %24N yoctosecond (24 digits)
*
* Time zone:
* %z - Time zone as hour and minute offset from UTC (e.g. +0900)
* %:z - hour and minute offset from UTC with a colon (e.g. +09:00)
* %::z - hour, minute and second offset from UTC (e.g. +09:00:00)
* %:::z - hour, minute and second offset from UTC
* (e.g. +09, +09:30, +09:30:30)
* %Z - Equivalent to %:z (e.g. +09:00)
*
* Weekday:
* %A - The full weekday name (``Sunday'')
* %^A uppercased (``SUNDAY'')
* %a - The abbreviated name (``Sun'')
* %^a uppercased (``SUN'')
* %u - Day of the week (Monday is 1, 1..7)
* %w - Day of the week (Sunday is 0, 0..6)
*
* ISO 8601 week-based year and week number:
* The week 1 of YYYY starts with a Monday and includes YYYY-01-04.
* The days in the year before the first week are in the last week of
* the previous year.
* %G - The week-based year
* %g - The last 2 digits of the week-based year (00..99)
* %V - Week number of the week-based year (01..53)
*
* Week number:
* The week 1 of YYYY starts with a Sunday or Monday (according to %U
* or %W). The days in the year before the first week are in week 0.
* %U - Week number of the year. The week starts with Sunday. (00..53)
* %W - Week number of the year. The week starts with Monday. (00..53)
*
* Seconds since the Unix Epoch:
* %s - Number of seconds since 1970-01-01 00:00:00 UTC.
* %Q - Number of milliseconds since 1970-01-01 00:00:00 UTC.
*
* Literal string:
* %n - Newline character (\n)
* %t - Tab character (\t)
* %% - Literal ``%'' character
*
* Combination:
* %c - date and time (%a %b %e %T %Y)
* %D - Date (%m/%d/%y)
* %F - The ISO 8601 date format (%Y-%m-%d)
* %v - VMS date (%e-%b-%Y)
* %x - Same as %D
* %X - Same as %T
* %r - 12-hour time (%I:%M:%S %p)
* %R - 24-hour time (%H:%M)
* %T - 24-hour time (%H:%M:%S)
* %+ - date(1) (%a %b %e %H:%M:%S %Z %Y)
*
* This method is similar to the strftime() function defined in ISO C
* and POSIX.
* Several directives (%a, %A, %b, %B, %c, %p, %r, %x, %X, %E*, %O* and %Z)
* are locale dependent in the function.
* However, this method is locale independent.
* So, the result may differ even if the same format string is used in other
* systems such as C.
* It is good practice to avoid %x and %X because there are corresponding
* locale independent representations, %D and %T.
*
* Examples:
*
* d = DateTime.new(2007,11,19,8,37,48,"-06:00")
* #=> #<DateTime: 2007-11-19T08:37:48-0600 ...>
* d.strftime("Printed on %m/%d/%Y") #=> "Printed on 11/19/2007"
* d.strftime("at %I:%M%p") #=> "at 08:37AM"
*
* Various ISO 8601 formats:
* %Y%m%d => 20071119 Calendar date (basic)
* %F => 2007-11-19 Calendar date (extended)
* %Y-%m => 2007-11 Calendar date, reduced accuracy, specific month
* %Y => 2007 Calendar date, reduced accuracy, specific year
* %C => 20 Calendar date, reduced accuracy, specific century
* %Y%j => 2007323 Ordinal date (basic)
* %Y-%j => 2007-323 Ordinal date (extended)
* %GW%V%u => 2007W471 Week date (basic)
* %G-W%V-%u => 2007-W47-1 Week date (extended)
* %GW%V => 2007W47 Week date, reduced accuracy, specific week (basic)
* %G-W%V => 2007-W47 Week date, reduced accuracy, specific week (extended)
* %H%M%S => 083748 Local time (basic)
* %T => 08:37:48 Local time (extended)
* %H%M => 0837 Local time, reduced accuracy, specific minute (basic)
* %H:%M => 08:37 Local time, reduced accuracy, specific minute (extended)
* %H => 08 Local time, reduced accuracy, specific hour
* %H%M%S,%L => 083748,000 Local time with decimal fraction, comma as decimal sign (basic)
* %T,%L => 08:37:48,000 Local time with decimal fraction, comma as decimal sign (extended)
* %H%M%S.%L => 083748.000 Local time with decimal fraction, full stop as decimal sign (basic)
* %T.%L => 08:37:48.000 Local time with decimal fraction, full stop as decimal sign (extended)
* %H%M%S%z => 083748-0600 Local time and the difference from UTC (basic)
* %T%:z => 08:37:48-06:00 Local time and the difference from UTC (extended)
* %Y%m%dT%H%M%S%z => 20071119T083748-0600 Date and time of day for calendar date (basic)
* %FT%T%:z => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended)
* %Y%jT%H%M%S%z => 2007323T083748-0600 Date and time of day for ordinal date (basic)
* %Y-%jT%T%:z => 2007-323T08:37:48-06:00 Date and time of day for ordinal date (extended)
* %GW%V%uT%H%M%S%z => 2007W471T083748-0600 Date and time of day for week date (basic)
* %G-W%V-%uT%T%:z => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended)
* %Y%m%dT%H%M => 20071119T0837 Calendar date and local time (basic)
* %FT%R => 2007-11-19T08:37 Calendar date and local time (extended)
* %Y%jT%H%MZ => 2007323T0837Z Ordinal date and UTC of day (basic)
* %Y-%jT%RZ => 2007-323T08:37Z Ordinal date and UTC of day (extended)
* %GW%V%uT%H%M%z => 2007W471T0837-0600 Week date and local time and difference from UTC (basic)
* %G-W%V-%uT%R%:z => 2007-W47-1T08:37-06:00 Week date and local time and difference from UTC (extended)
*
* See also strftime(3) and ::strptime.
*/
static VALUE
d_lite_strftime(int argc, VALUE *argv, VALUE self)
{
return date_strftime_internal(argc, argv, self,
"%Y-%m-%d", set_tmx);
}
static VALUE
strftimev(const char *fmt, VALUE self,
void (*func)(VALUE, struct tmx *))
{
char buffer[SMALLBUF], *buf = buffer;
struct tmx tmx;
long len;
VALUE str;
(*func)(self, &tmx);
len = date_strftime_alloc(&buf, fmt, &tmx);
RB_GC_GUARD(self);
str = rb_usascii_str_new(buf, len);
if (buf != buffer) xfree(buf);
return str;
}
/*
* call-seq:
* d.asctime -> string
* d.ctime -> string
*
* Returns a string in asctime(3) format (but without "\n\0" at the
* end). This method is equivalent to strftime('%c').
*
* See also asctime(3) or ctime(3).
*/
static VALUE
d_lite_asctime(VALUE self)
{
return strftimev("%a %b %e %H:%M:%S %Y", self, set_tmx);
}
/*
* call-seq:
* d.iso8601 -> string
* d.xmlschema -> string
*
* This method is equivalent to strftime('%F').
*/
static VALUE
d_lite_iso8601(VALUE self)
{
return strftimev("%Y-%m-%d", self, set_tmx);
}
/*
* call-seq:
* d.rfc3339 -> string
*
* This method is equivalent to strftime('%FT%T%:z').
*/
static VALUE
d_lite_rfc3339(VALUE self)
{
return strftimev("%Y-%m-%dT%H:%M:%S%:z", self, set_tmx);
}
/*
* call-seq:
* d.rfc2822 -> string
* d.rfc822 -> string
*
* This method is equivalent to strftime('%a, %-d %b %Y %T %z').
*/
static VALUE
d_lite_rfc2822(VALUE self)
{
return strftimev("%a, %-d %b %Y %T %z", self, set_tmx);
}
/*
* call-seq:
* d.httpdate -> string
*
* This method is equivalent to strftime('%a, %d %b %Y %T GMT').
* See also RFC 2616.
*/
static VALUE
d_lite_httpdate(VALUE self)
{
volatile VALUE dup = dup_obj_with_new_offset(self, 0);
return strftimev("%a, %d %b %Y %T GMT", dup, set_tmx);
}
enum {
DECIMAL_SIZE_OF_LONG = DECIMAL_SIZE_OF_BITS(CHAR_BIT*sizeof(long)),
JISX0301_DATE_SIZE = DECIMAL_SIZE_OF_LONG+8
};
static const char *
jisx0301_date_format(char *fmt, size_t size, VALUE jd, VALUE y)
{
if (FIXNUM_P(jd)) {
long d = FIX2INT(jd);
long s;
char c;
if (d < 2405160)
return "%Y-%m-%d";
if (d < 2419614) {
c = 'M';
s = 1867;
}
else if (d < 2424875) {
c = 'T';
s = 1911;
}
else if (d < 2447535) {
c = 'S';
s = 1925;
}
else {
c = 'H';
s = 1988;
}
snprintf(fmt, size, "%c%02ld" ".%%m.%%d", c, FIX2INT(y) - s);
return fmt;
}
return "%Y-%m-%d";
}
/*
* call-seq:
* d.jisx0301 -> string
*
* Returns a string in a JIS X 0301 format.
*
* Date.new(2001,2,3).jisx0301 #=> "H13.02.03"
*/
static VALUE
d_lite_jisx0301(VALUE self)
{
char fmtbuf[JISX0301_DATE_SIZE];
const char *fmt;
get_d1(self);
fmt = jisx0301_date_format(fmtbuf, sizeof(fmtbuf),
m_real_local_jd(dat),
m_real_year(dat));
return strftimev(fmt, self, set_tmx);
}
#ifndef NDEBUG
static VALUE
d_lite_marshal_dump_old(VALUE self)
{
VALUE a;
get_d1(self);
a = rb_ary_new3(3,
m_ajd(dat),
m_of_in_day(dat),
DBL2NUM(m_sg(dat)));
if (FL_TEST(self, FL_EXIVAR)) {
rb_copy_generic_ivar(a, self);
FL_SET(a, FL_EXIVAR);
}
return a;
}
#endif
/* :nodoc: */
static VALUE
d_lite_marshal_dump(VALUE self)
{
VALUE a;
get_d1(self);
a = rb_ary_new3(6,
m_nth(dat),
INT2FIX(m_jd(dat)),
INT2FIX(m_df(dat)),
m_sf(dat),
INT2FIX(m_of(dat)),
DBL2NUM(m_sg(dat)));
if (FL_TEST(self, FL_EXIVAR)) {
rb_copy_generic_ivar(a, self);
FL_SET(a, FL_EXIVAR);
}
return a;
}
/* :nodoc: */
static VALUE
d_lite_marshal_load(VALUE self, VALUE a)
{
VALUE nth, sf;
int jd, df, of;
double sg;
get_d1(self);
rb_check_frozen(self);
rb_check_trusted(self);
if (!RB_TYPE_P(a, T_ARRAY))
rb_raise(rb_eTypeError, "expected an array");
switch (RARRAY_LEN(a)) {
case 2: /* 1.6.x */
case 3: /* 1.8.x, 1.9.2 */
{
VALUE ajd, vof, vsg;
if (RARRAY_LEN(a) == 2) {
ajd = f_sub(RARRAY_AREF(a, 0), half_days_in_day);
vof = INT2FIX(0);
vsg = RARRAY_AREF(a, 1);
if (!k_numeric_p(vsg))
vsg = DBL2NUM(RTEST(vsg) ? GREGORIAN : JULIAN);
}
else {
ajd = RARRAY_AREF(a, 0);
vof = RARRAY_AREF(a, 1);
vsg = RARRAY_AREF(a, 2);
}
old_to_new(ajd, vof, vsg,
&nth, &jd, &df, &sf, &of, &sg);
}
break;
case 6:
{
nth = RARRAY_AREF(a, 0);
jd = NUM2INT(RARRAY_AREF(a, 1));
df = NUM2INT(RARRAY_AREF(a, 2));
sf = RARRAY_AREF(a, 3);
of = NUM2INT(RARRAY_AREF(a, 4));
sg = NUM2DBL(RARRAY_AREF(a, 5));
}
break;
default:
rb_raise(rb_eTypeError, "invalid size");
break;
}
if (simple_dat_p(dat)) {
if (df || !f_zero_p(sf) || of) {
rb_raise(rb_eArgError,
"cannot load complex into simple");
}
set_to_simple(self, &dat->s, nth, jd, sg, 0, 0, 0, HAVE_JD);
} else {
set_to_complex(self, &dat->c, nth, jd, df, sf, of, sg,
0, 0, 0, 0, 0, 0,
HAVE_JD | HAVE_DF);
}
if (FL_TEST(a, FL_EXIVAR)) {
rb_copy_generic_ivar(self, a);
FL_SET(self, FL_EXIVAR);
}
return self;
}
/* :nodoc: */
static VALUE
date_s__load(VALUE klass, VALUE s)
{
VALUE a, obj;
a = rb_marshal_load(s);
obj = d_lite_s_alloc(klass);
return d_lite_marshal_load(obj, a);
}
/* datetime */
/*
* call-seq:
* DateTime.jd([jd=0[, hour=0[, minute=0[, second=0[, offset=0[, start=Date::ITALY]]]]]]) -> datetime
*
* Creates a DateTime object denoting the given chronological Julian
* day number.
*
* DateTime.jd(2451944) #=> #<DateTime: 2001-02-03T00:00:00+00:00 ...>
* DateTime.jd(2451945) #=> #<DateTime: 2001-02-04T00:00:00+00:00 ...>
* DateTime.jd(Rational('0.5'))
* #=> #<DateTime: -4712-01-01T12:00:00+00:00 ...>
*/
static VALUE
datetime_s_jd(int argc, VALUE *argv, VALUE klass)
{
VALUE vjd, vh, vmin, vs, vof, vsg, jd, fr, fr2, ret;
int h, min, s, rof;
double sg;
rb_scan_args(argc, argv, "06", &vjd, &vh, &vmin, &vs, &vof, &vsg);
jd = INT2FIX(0);
h = min = s = 0;
fr2 = INT2FIX(0);
rof = 0;
sg = DEFAULT_SG;
switch (argc) {
case 6:
val2sg(vsg, sg);
case 5:
val2off(vof, rof);
case 4:
num2int_with_frac(s, positive_inf);
case 3:
num2int_with_frac(min, 3);
case 2:
num2int_with_frac(h, 2);
case 1:
num2num_with_frac(jd, 1);
}
{
VALUE nth;
int rh, rmin, rs, rjd, rjd2;
if (!c_valid_time_p(h, min, s, &rh, &rmin, &rs))
rb_raise(rb_eArgError, "invalid date");
canon24oc();
decode_jd(jd, &nth, &rjd);
rjd2 = jd_local_to_utc(rjd,
time_to_df(rh, rmin, rs),
rof);
ret = d_complex_new_internal(klass,
nth, rjd2,
0, INT2FIX(0),
rof, sg,
0, 0, 0,
rh, rmin, rs,
HAVE_JD | HAVE_TIME);
}
add_frac();
return ret;
}
/*
* call-seq:
* DateTime.ordinal([year=-4712[, yday=1[, hour=0[, minute=0[, second=0[, offset=0[, start=Date::ITALY]]]]]]]) -> datetime
*
* Creates a DateTime object denoting the given ordinal date.
*
* DateTime.ordinal(2001,34) #=> #<DateTime: 2001-02-03T00:00:00+00:00 ...>
* DateTime.ordinal(2001,34,4,5,6,'+7')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.ordinal(2001,-332,-20,-55,-54,'+7')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
*/
static VALUE
datetime_s_ordinal(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vd, vh, vmin, vs, vof, vsg, y, fr, fr2, ret;
int d, h, min, s, rof;
double sg;
rb_scan_args(argc, argv, "07", &vy, &vd, &vh, &vmin, &vs, &vof, &vsg);
y = INT2FIX(-4712);
d = 1;
h = min = s = 0;
fr2 = INT2FIX(0);
rof = 0;
sg = DEFAULT_SG;
switch (argc) {
case 7:
val2sg(vsg, sg);
case 6:
val2off(vof, rof);
case 5:
num2int_with_frac(s, positive_inf);
case 4:
num2int_with_frac(min, 4);
case 3:
num2int_with_frac(h, 3);
case 2:
num2int_with_frac(d, 2);
case 1:
y = vy;
}
{
VALUE nth;
int ry, rd, rh, rmin, rs, rjd, rjd2, ns;
if (!valid_ordinal_p(y, d, sg,
&nth, &ry,
&rd, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
if (!c_valid_time_p(h, min, s, &rh, &rmin, &rs))
rb_raise(rb_eArgError, "invalid date");
canon24oc();
rjd2 = jd_local_to_utc(rjd,
time_to_df(rh, rmin, rs),
rof);
ret = d_complex_new_internal(klass,
nth, rjd2,
0, INT2FIX(0),
rof, sg,
0, 0, 0,
rh, rmin, rs,
HAVE_JD | HAVE_TIME);
}
add_frac();
return ret;
}
/*
* call-seq:
* DateTime.civil([year=-4712[, month=1[, mday=1[, hour=0[, minute=0[, second=0[, offset=0[, start=Date::ITALY]]]]]]]]) -> datetime
* DateTime.new([year=-4712[, month=1[, mday=1[, hour=0[, minute=0[, second=0[, offset=0[, start=Date::ITALY]]]]]]]]) -> datetime
*
* Creates a DateTime object denoting the given calendar date.
*
* DateTime.new(2001,2,3) #=> #<DateTime: 2001-02-03T00:00:00+00:00 ...>
* DateTime.new(2001,2,3,4,5,6,'+7')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.new(2001,-11,-26,-20,-55,-54,'+7')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
*/
static VALUE
datetime_s_civil(int argc, VALUE *argv, VALUE klass)
{
return datetime_initialize(argc, argv, d_lite_s_alloc_complex(klass));
}
static VALUE
datetime_initialize(int argc, VALUE *argv, VALUE self)
{
VALUE vy, vm, vd, vh, vmin, vs, vof, vsg, y, fr, fr2, ret;
int m, d, h, min, s, rof;
double sg;
struct ComplexDateData *dat = rb_check_typeddata(self, &d_lite_type);
if (!complex_dat_p(dat)) {
rb_raise(rb_eTypeError, "DateTime expected");
}
rb_scan_args(argc, argv, "08", &vy, &vm, &vd, &vh, &vmin, &vs, &vof, &vsg);
y = INT2FIX(-4712);
m = 1;
d = 1;
h = min = s = 0;
fr2 = INT2FIX(0);
rof = 0;
sg = DEFAULT_SG;
switch (argc) {
case 8:
val2sg(vsg, sg);
case 7:
val2off(vof, rof);
case 6:
num2int_with_frac(s, positive_inf);
case 5:
num2int_with_frac(min, 5);
case 4:
num2int_with_frac(h, 4);
case 3:
num2int_with_frac(d, 3);
case 2:
m = NUM2INT(vm);
case 1:
y = vy;
}
if (guess_style(y, sg) < 0) {
VALUE nth;
int ry, rm, rd, rh, rmin, rs;
if (!valid_gregorian_p(y, m, d,
&nth, &ry,
&rm, &rd))
rb_raise(rb_eArgError, "invalid date");
if (!c_valid_time_p(h, min, s, &rh, &rmin, &rs))
rb_raise(rb_eArgError, "invalid date");
canon24oc();
set_to_complex(self, dat,
nth, 0,
0, INT2FIX(0),
rof, sg,
ry, rm, rd,
rh, rmin, rs,
HAVE_CIVIL | HAVE_TIME);
}
else {
VALUE nth;
int ry, rm, rd, rh, rmin, rs, rjd, rjd2, ns;
if (!valid_civil_p(y, m, d, sg,
&nth, &ry,
&rm, &rd, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
if (!c_valid_time_p(h, min, s, &rh, &rmin, &rs))
rb_raise(rb_eArgError, "invalid date");
canon24oc();
rjd2 = jd_local_to_utc(rjd,
time_to_df(rh, rmin, rs),
rof);
set_to_complex(self, dat,
nth, rjd2,
0, INT2FIX(0),
rof, sg,
ry, rm, rd,
rh, rmin, rs,
HAVE_JD | HAVE_CIVIL | HAVE_TIME);
}
ret = self;
add_frac();
return ret;
}
/*
* call-seq:
* DateTime.commercial([cwyear=-4712[, cweek=1[, cwday=1[, hour=0[, minute=0[, second=0[, offset=0[, start=Date::ITALY]]]]]]]]) -> datetime
*
* Creates a DateTime object denoting the given week date.
*
* DateTime.commercial(2001) #=> #<DateTime: 2001-01-01T00:00:00+00:00 ...>
* DateTime.commercial(2002) #=> #<DateTime: 2001-12-31T00:00:00+00:00 ...>
* DateTime.commercial(2001,5,6,4,5,6,'+7')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
*/
static VALUE
datetime_s_commercial(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vw, vd, vh, vmin, vs, vof, vsg, y, fr, fr2, ret;
int w, d, h, min, s, rof;
double sg;
rb_scan_args(argc, argv, "08", &vy, &vw, &vd, &vh, &vmin, &vs, &vof, &vsg);
y = INT2FIX(-4712);
w = 1;
d = 1;
h = min = s = 0;
fr2 = INT2FIX(0);
rof = 0;
sg = DEFAULT_SG;
switch (argc) {
case 8:
val2sg(vsg, sg);
case 7:
val2off(vof, rof);
case 6:
num2int_with_frac(s, positive_inf);
case 5:
num2int_with_frac(min, 5);
case 4:
num2int_with_frac(h, 4);
case 3:
num2int_with_frac(d, 3);
case 2:
w = NUM2INT(vw);
case 1:
y = vy;
}
{
VALUE nth;
int ry, rw, rd, rh, rmin, rs, rjd, rjd2, ns;
if (!valid_commercial_p(y, w, d, sg,
&nth, &ry,
&rw, &rd, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
if (!c_valid_time_p(h, min, s, &rh, &rmin, &rs))
rb_raise(rb_eArgError, "invalid date");
canon24oc();
rjd2 = jd_local_to_utc(rjd,
time_to_df(rh, rmin, rs),
rof);
ret = d_complex_new_internal(klass,
nth, rjd2,
0, INT2FIX(0),
rof, sg,
0, 0, 0,
rh, rmin, rs,
HAVE_JD | HAVE_TIME);
}
add_frac();
return ret;
}
#ifndef NDEBUG
static VALUE
datetime_s_weeknum(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vw, vd, vf, vh, vmin, vs, vof, vsg, y, fr, fr2, ret;
int w, d, f, h, min, s, rof;
double sg;
rb_scan_args(argc, argv, "09", &vy, &vw, &vd, &vf,
&vh, &vmin, &vs, &vof, &vsg);
y = INT2FIX(-4712);
w = 0;
d = 1;
f = 0;
h = min = s = 0;
fr2 = INT2FIX(0);
rof = 0;
sg = DEFAULT_SG;
switch (argc) {
case 9:
val2sg(vsg, sg);
case 8:
val2off(vof, rof);
case 7:
num2int_with_frac(s, positive_inf);
case 6:
num2int_with_frac(min, 6);
case 5:
num2int_with_frac(h, 5);
case 4:
f = NUM2INT(vf);
case 3:
num2int_with_frac(d, 4);
case 2:
w = NUM2INT(vw);
case 1:
y = vy;
}
{
VALUE nth;
int ry, rw, rd, rh, rmin, rs, rjd, rjd2, ns;
if (!valid_weeknum_p(y, w, d, f, sg,
&nth, &ry,
&rw, &rd, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
if (!c_valid_time_p(h, min, s, &rh, &rmin, &rs))
rb_raise(rb_eArgError, "invalid date");
canon24oc();
rjd2 = jd_local_to_utc(rjd,
time_to_df(rh, rmin, rs),
rof);
ret = d_complex_new_internal(klass,
nth, rjd2,
0, INT2FIX(0),
rof, sg,
0, 0, 0,
rh, rmin, rs,
HAVE_JD | HAVE_TIME);
}
add_frac();
return ret;
}
static VALUE
datetime_s_nth_kday(int argc, VALUE *argv, VALUE klass)
{
VALUE vy, vm, vn, vk, vh, vmin, vs, vof, vsg, y, fr, fr2, ret;
int m, n, k, h, min, s, rof;
double sg;
rb_scan_args(argc, argv, "09", &vy, &vm, &vn, &vk,
&vh, &vmin, &vs, &vof, &vsg);
y = INT2FIX(-4712);
m = 1;
n = 1;
k = 1;
h = min = s = 0;
fr2 = INT2FIX(0);
rof = 0;
sg = DEFAULT_SG;
switch (argc) {
case 9:
val2sg(vsg, sg);
case 8:
val2off(vof, rof);
case 7:
num2int_with_frac(s, positive_inf);
case 6:
num2int_with_frac(min, 6);
case 5:
num2int_with_frac(h, 5);
case 4:
num2int_with_frac(k, 4);
case 3:
n = NUM2INT(vn);
case 2:
m = NUM2INT(vm);
case 1:
y = vy;
}
{
VALUE nth;
int ry, rm, rn, rk, rh, rmin, rs, rjd, rjd2, ns;
if (!valid_nth_kday_p(y, m, n, k, sg,
&nth, &ry,
&rm, &rn, &rk, &rjd,
&ns))
rb_raise(rb_eArgError, "invalid date");
if (!c_valid_time_p(h, min, s, &rh, &rmin, &rs))
rb_raise(rb_eArgError, "invalid date");
canon24oc();
rjd2 = jd_local_to_utc(rjd,
time_to_df(rh, rmin, rs),
rof);
ret = d_complex_new_internal(klass,
nth, rjd2,
0, INT2FIX(0),
rof, sg,
0, 0, 0,
rh, rmin, rs,
HAVE_JD | HAVE_TIME);
}
add_frac();
return ret;
}
#endif
/*
* call-seq:
* DateTime.now([start=Date::ITALY]) -> datetime
*
* Creates a DateTime object denoting the present time.
*
* DateTime.now #=> #<DateTime: 2011-06-11T21:20:44+09:00 ...>
*/
static VALUE
datetime_s_now(int argc, VALUE *argv, VALUE klass)
{
VALUE vsg, nth, ret;
double sg;
#ifdef HAVE_CLOCK_GETTIME
struct timespec ts;
#else
struct timeval tv;
#endif
time_t sec;
struct tm tm;
long sf, of;
int y, ry, m, d, h, min, s;
rb_scan_args(argc, argv, "01", &vsg);
if (argc < 1)
sg = DEFAULT_SG;
else
sg = NUM2DBL(vsg);
#ifdef HAVE_CLOCK_GETTIME
if (clock_gettime(CLOCK_REALTIME, &ts) == -1)
rb_sys_fail("clock_gettime");
sec = ts.tv_sec;
#else
if (gettimeofday(&tv, NULL) == -1)
rb_sys_fail("gettimeofday");
sec = tv.tv_sec;
#endif
tzset();
if (!localtime_r(&sec, &tm))
rb_sys_fail("localtime");
y = tm.tm_year + 1900;
m = tm.tm_mon + 1;
d = tm.tm_mday;
h = tm.tm_hour;
min = tm.tm_min;
s = tm.tm_sec;
if (s == 60)
s = 59;
#ifdef HAVE_STRUCT_TM_TM_GMTOFF
of = tm.tm_gmtoff;
#elif defined(HAVE_TIMEZONE)
#ifdef HAVE_ALTZONE
of = (long)-((tm.tm_isdst > 0) ? altzone : timezone);
#else
of = (long)-timezone;
if (tm.tm_isdst) {
time_t sec2;
tm.tm_isdst = 0;
sec2 = mktime(&tm);
of += (long)difftime(sec2, sec);
}
#endif
#elif defined(HAVE_TIMEGM)
{
time_t sec2;
sec2 = timegm(&tm);
of = (long)difftime(sec2, sec);
}
#else
{
struct tm tm2;
time_t sec2;
if (!gmtime_r(&sec, &tm2))
rb_sys_fail("gmtime");
tm2.tm_isdst = tm.tm_isdst;
sec2 = mktime(&tm2);
of = (long)difftime(sec, sec2);
}
#endif
#ifdef HAVE_CLOCK_GETTIME
sf = ts.tv_nsec;
#else
sf = tv.tv_usec * 1000;
#endif
if (of < -DAY_IN_SECONDS || of > DAY_IN_SECONDS) {
of = 0;
rb_warning("invalid offset is ignored");
}
decode_year(INT2FIX(y), -1, &nth, &ry);
ret = d_complex_new_internal(klass,
nth, 0,
0, LONG2NUM(sf),
(int)of, GREGORIAN,
ry, m, d,
h, min, s,
HAVE_CIVIL | HAVE_TIME);
{
get_d1(ret);
set_sg(dat, sg);
}
return ret;
}
static VALUE
dt_new_by_frags(VALUE klass, VALUE hash, VALUE sg)
{
VALUE jd, sf, t;
int df, of;
if (!c_valid_start_p(NUM2DBL(sg))) {
sg = INT2FIX(DEFAULT_SG);
rb_warning("invalid start is ignored");
}
if (NIL_P(hash))
rb_raise(rb_eArgError, "invalid date");
if (NIL_P(ref_hash("jd")) &&
NIL_P(ref_hash("yday")) &&
!NIL_P(ref_hash("year")) &&
!NIL_P(ref_hash("mon")) &&
!NIL_P(ref_hash("mday"))) {
jd = rt__valid_civil_p(ref_hash("year"),
ref_hash("mon"),
ref_hash("mday"), sg);
if (NIL_P(ref_hash("hour")))
set_hash("hour", INT2FIX(0));
if (NIL_P(ref_hash("min")))
set_hash("min", INT2FIX(0));
if (NIL_P(ref_hash("sec")))
set_hash("sec", INT2FIX(0));
else if (f_eqeq_p(ref_hash("sec"), INT2FIX(60)))
set_hash("sec", INT2FIX(59));
}
else {
hash = rt_rewrite_frags(hash);
hash = rt_complete_frags(klass, hash);
jd = rt__valid_date_frags_p(hash, sg);
}
if (NIL_P(jd))
rb_raise(rb_eArgError, "invalid date");
{
int rh, rmin, rs;
if (!c_valid_time_p(NUM2INT(ref_hash("hour")),
NUM2INT(ref_hash("min")),
NUM2INT(ref_hash("sec")),
&rh, &rmin, &rs))
rb_raise(rb_eArgError, "invalid date");
df = time_to_df(rh, rmin, rs);
}
t = ref_hash("sec_fraction");
if (NIL_P(t))
sf = INT2FIX(0);
else
sf = sec_to_ns(t);
t = ref_hash("offset");
if (NIL_P(t))
of = 0;
else {
of = NUM2INT(t);
if (of < -DAY_IN_SECONDS || of > DAY_IN_SECONDS) {
of = 0;
rb_warning("invalid offset is ignored");
}
}
{
VALUE nth;
int rjd, rjd2;
decode_jd(jd, &nth, &rjd);
rjd2 = jd_local_to_utc(rjd, df, of);
df = df_local_to_utc(df, of);
return d_complex_new_internal(klass,
nth, rjd2,
df, sf,
of, NUM2DBL(sg),
0, 0, 0,
0, 0, 0,
HAVE_JD | HAVE_DF);
}
}
/*
* call-seq:
* DateTime._strptime(string[, format='%FT%T%z']) -> hash
*
* Parses the given representation of date and time with the given
* template, and returns a hash of parsed elements. _strptime does
* not support specification of flags and width unlike strftime.
*
* See also strptime(3) and #strftime.
*/
static VALUE
datetime_s__strptime(int argc, VALUE *argv, VALUE klass)
{
return date_s__strptime_internal(argc, argv, klass, "%FT%T%z");
}
/*
* call-seq:
* DateTime.strptime([string='-4712-01-01T00:00:00+00:00'[, format='%FT%T%z'[ ,start=Date::ITALY]]]) -> datetime
*
* Parses the given representation of date and time with the given
* template, and creates a DateTime object. strptime does not support
* specification of flags and width unlike strftime.
*
* DateTime.strptime('2001-02-03T04:05:06+07:00', '%Y-%m-%dT%H:%M:%S%z')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.strptime('03-02-2001 04:05:06 PM', '%d-%m-%Y %I:%M:%S %p')
* #=> #<DateTime: 2001-02-03T16:05:06+00:00 ...>
* DateTime.strptime('2001-W05-6T04:05:06+07:00', '%G-W%V-%uT%H:%M:%S%z')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.strptime('2001 04 6 04 05 06 +7', '%Y %U %w %H %M %S %z')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.strptime('2001 05 6 04 05 06 +7', '%Y %W %u %H %M %S %z')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.strptime('-1', '%s')
* #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...>
* DateTime.strptime('-1000', '%Q')
* #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...>
* DateTime.strptime('sat3feb014pm+7', '%a%d%b%y%H%p%z')
* #=> #<DateTime: 2001-02-03T16:00:00+07:00 ...>
*
* See also strptime(3) and #strftime.
*/
static VALUE
datetime_s_strptime(int argc, VALUE *argv, VALUE klass)
{
VALUE str, fmt, sg;
rb_scan_args(argc, argv, "03", &str, &fmt, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01T00:00:00+00:00");
case 1:
fmt = rb_str_new2("%FT%T%z");
case 2:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE argv2[2], hash;
argv2[0] = str;
argv2[1] = fmt;
hash = date_s__strptime(2, argv2, klass);
return dt_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* DateTime.parse(string='-4712-01-01T00:00:00+00:00'[, comp=true[, start=Date::ITALY]]) -> datetime
*
* Parses the given representation of date and time, and creates a
* DateTime object. This method does not function as a validator.
*
* If the optional second argument is true and the detected year is in
* the range "00" to "99", makes it full.
*
* DateTime.parse('2001-02-03T04:05:06+07:00')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.parse('20010203T040506+0700')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.parse('3rd Feb 2001 04:05:06 PM')
* #=> #<DateTime: 2001-02-03T16:05:06+00:00 ...>
*/
static VALUE
datetime_s_parse(int argc, VALUE *argv, VALUE klass)
{
VALUE str, comp, sg;
rb_scan_args(argc, argv, "03", &str, &comp, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01T00:00:00+00:00");
case 1:
comp = Qtrue;
case 2:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE argv2[2], hash;
argv2[0] = str;
argv2[1] = comp;
hash = date_s__parse(2, argv2, klass);
return dt_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* DateTime.iso8601(string='-4712-01-01T00:00:00+00:00'[, start=Date::ITALY]) -> datetime
*
* Creates a new DateTime object by parsing from a string according to
* some typical ISO 8601 formats.
*
* DateTime.iso8601('2001-02-03T04:05:06+07:00')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.iso8601('20010203T040506+0700')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
* DateTime.iso8601('2001-W05-6T04:05:06+07:00')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
*/
static VALUE
datetime_s_iso8601(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01T00:00:00+00:00");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__iso8601(klass, str);
return dt_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* DateTime.rfc3339(string='-4712-01-01T00:00:00+00:00'[, start=Date::ITALY]) -> datetime
*
* Creates a new DateTime object by parsing from a string according to
* some typical RFC 3339 formats.
*
* DateTime.rfc3339('2001-02-03T04:05:06+07:00')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
*/
static VALUE
datetime_s_rfc3339(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01T00:00:00+00:00");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__rfc3339(klass, str);
return dt_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* DateTime.xmlschema(string='-4712-01-01T00:00:00+00:00'[, start=Date::ITALY]) -> datetime
*
* Creates a new DateTime object by parsing from a string according to
* some typical XML Schema formats.
*
* DateTime.xmlschema('2001-02-03T04:05:06+07:00')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
*/
static VALUE
datetime_s_xmlschema(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01T00:00:00+00:00");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__xmlschema(klass, str);
return dt_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* DateTime.rfc2822(string='Mon, 1 Jan -4712 00:00:00 +0000'[, start=Date::ITALY]) -> datetime
* DateTime.rfc822(string='Mon, 1 Jan -4712 00:00:00 +0000'[, start=Date::ITALY]) -> datetime
*
* Creates a new DateTime object by parsing from a string according to
* some typical RFC 2822 formats.
*
* DateTime.rfc2822('Sat, 3 Feb 2001 04:05:06 +0700')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
*/
static VALUE
datetime_s_rfc2822(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("Mon, 1 Jan -4712 00:00:00 +0000");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__rfc2822(klass, str);
return dt_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* DateTime.httpdate(string='Mon, 01 Jan -4712 00:00:00 GMT'[, start=Date::ITALY]) -> datetime
*
* Creates a new DateTime object by parsing from a string according to
* some RFC 2616 format.
*
* DateTime.httpdate('Sat, 03 Feb 2001 04:05:06 GMT')
* #=> #<DateTime: 2001-02-03T04:05:06+00:00 ...>
*/
static VALUE
datetime_s_httpdate(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("Mon, 01 Jan -4712 00:00:00 GMT");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__httpdate(klass, str);
return dt_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* DateTime.jisx0301(string='-4712-01-01T00:00:00+00:00'[, start=Date::ITALY]) -> datetime
*
* Creates a new DateTime object by parsing from a string according to
* some typical JIS X 0301 formats.
*
* DateTime.jisx0301('H13.02.03T04:05:06+07:00')
* #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...>
*/
static VALUE
datetime_s_jisx0301(int argc, VALUE *argv, VALUE klass)
{
VALUE str, sg;
rb_scan_args(argc, argv, "02", &str, &sg);
switch (argc) {
case 0:
str = rb_str_new2("-4712-01-01T00:00:00+00:00");
case 1:
sg = INT2FIX(DEFAULT_SG);
}
{
VALUE hash = date_s__jisx0301(klass, str);
return dt_new_by_frags(klass, hash, sg);
}
}
/*
* call-seq:
* dt.to_s -> string
*
* Returns a string in an ISO 8601 format. (This method doesn't use the
* expanded representations.)
*
* DateTime.new(2001,2,3,4,5,6,'-7').to_s
* #=> "2001-02-03T04:05:06-07:00"
*/
static VALUE
dt_lite_to_s(VALUE self)
{
return strftimev("%Y-%m-%dT%H:%M:%S%:z", self, set_tmx);
}
/*
* call-seq:
* dt.strftime([format='%FT%T%:z']) -> string
*
* Formats date according to the directives in the given format
* string.
* The directives begin with a percent (%) character.
* Any text not listed as a directive will be passed through to the
* output string.
*
* A directive consists of a percent (%) character,
* zero or more flags, an optional minimum field width,
* an optional modifier, and a conversion specifier
* as follows.
*
* %<flags><width><modifier><conversion>
*
* Flags:
* - don't pad a numerical output.
* _ use spaces for padding.
* 0 use zeros for padding.
* ^ upcase the result string.
* # change case.
* : use colons for %z.
*
* The minimum field width specifies the minimum width.
*
* The modifiers are "E" and "O".
* They are ignored.
*
* Format directives:
*
* Date (Year, Month, Day):
* %Y - Year with century (can be negative, 4 digits at least)
* -0001, 0000, 1995, 2009, 14292, etc.
* %C - year / 100 (round down. 20 in 2009)
* %y - year % 100 (00..99)
*
* %m - Month of the year, zero-padded (01..12)
* %_m blank-padded ( 1..12)
* %-m no-padded (1..12)
* %B - The full month name (``January'')
* %^B uppercased (``JANUARY'')
* %b - The abbreviated month name (``Jan'')
* %^b uppercased (``JAN'')
* %h - Equivalent to %b
*
* %d - Day of the month, zero-padded (01..31)
* %-d no-padded (1..31)
* %e - Day of the month, blank-padded ( 1..31)
*
* %j - Day of the year (001..366)
*
* Time (Hour, Minute, Second, Subsecond):
* %H - Hour of the day, 24-hour clock, zero-padded (00..23)
* %k - Hour of the day, 24-hour clock, blank-padded ( 0..23)
* %I - Hour of the day, 12-hour clock, zero-padded (01..12)
* %l - Hour of the day, 12-hour clock, blank-padded ( 1..12)
* %P - Meridian indicator, lowercase (``am'' or ``pm'')
* %p - Meridian indicator, uppercase (``AM'' or ``PM'')
*
* %M - Minute of the hour (00..59)
*
* %S - Second of the minute (00..60)
*
* %L - Millisecond of the second (000..999)
* %N - Fractional seconds digits, default is 9 digits (nanosecond)
* %3N millisecond (3 digits) %15N femtosecond (15 digits)
* %6N microsecond (6 digits) %18N attosecond (18 digits)
* %9N nanosecond (9 digits) %21N zeptosecond (21 digits)
* %12N picosecond (12 digits) %24N yoctosecond (24 digits)
*
* Time zone:
* %z - Time zone as hour and minute offset from UTC (e.g. +0900)
* %:z - hour and minute offset from UTC with a colon (e.g. +09:00)
* %::z - hour, minute and second offset from UTC (e.g. +09:00:00)
* %:::z - hour, minute and second offset from UTC
* (e.g. +09, +09:30, +09:30:30)
* %Z - Equivalent to %:z (e.g. +09:00)
*
* Weekday:
* %A - The full weekday name (``Sunday'')
* %^A uppercased (``SUNDAY'')
* %a - The abbreviated name (``Sun'')
* %^a uppercased (``SUN'')
* %u - Day of the week (Monday is 1, 1..7)
* %w - Day of the week (Sunday is 0, 0..6)
*
* ISO 8601 week-based year and week number:
* The week 1 of YYYY starts with a Monday and includes YYYY-01-04.
* The days in the year before the first week are in the last week of
* the previous year.
* %G - The week-based year
* %g - The last 2 digits of the week-based year (00..99)
* %V - Week number of the week-based year (01..53)
*
* Week number:
* The week 1 of YYYY starts with a Sunday or Monday (according to %U
* or %W). The days in the year before the first week are in week 0.
* %U - Week number of the year. The week starts with Sunday. (00..53)
* %W - Week number of the year. The week starts with Monday. (00..53)
*
* Seconds since the Unix Epoch:
* %s - Number of seconds since 1970-01-01 00:00:00 UTC.
* %Q - Number of milliseconds since 1970-01-01 00:00:00 UTC.
*
* Literal string:
* %n - Newline character (\n)
* %t - Tab character (\t)
* %% - Literal ``%'' character
*
* Combination:
* %c - date and time (%a %b %e %T %Y)
* %D - Date (%m/%d/%y)
* %F - The ISO 8601 date format (%Y-%m-%d)
* %v - VMS date (%e-%b-%Y)
* %x - Same as %D
* %X - Same as %T
* %r - 12-hour time (%I:%M:%S %p)
* %R - 24-hour time (%H:%M)
* %T - 24-hour time (%H:%M:%S)
* %+ - date(1) (%a %b %e %H:%M:%S %Z %Y)
*
* This method is similar to the strftime() function defined in ISO C
* and POSIX.
* Several directives (%a, %A, %b, %B, %c, %p, %r, %x, %X, %E*, %O* and %Z)
* are locale dependent in the function.
* However, this method is locale independent.
* So, the result may differ even if the same format string is used in other
* systems such as C.
* It is good practice to avoid %x and %X because there are corresponding
* locale independent representations, %D and %T.
*
* Examples:
*
* d = DateTime.new(2007,11,19,8,37,48,"-06:00")
* #=> #<DateTime: 2007-11-19T08:37:48-0600 ...>
* d.strftime("Printed on %m/%d/%Y") #=> "Printed on 11/19/2007"
* d.strftime("at %I:%M%p") #=> "at 08:37AM"
*
* Various ISO 8601 formats:
* %Y%m%d => 20071119 Calendar date (basic)
* %F => 2007-11-19 Calendar date (extended)
* %Y-%m => 2007-11 Calendar date, reduced accuracy, specific month
* %Y => 2007 Calendar date, reduced accuracy, specific year
* %C => 20 Calendar date, reduced accuracy, specific century
* %Y%j => 2007323 Ordinal date (basic)
* %Y-%j => 2007-323 Ordinal date (extended)
* %GW%V%u => 2007W471 Week date (basic)
* %G-W%V-%u => 2007-W47-1 Week date (extended)
* %GW%V => 2007W47 Week date, reduced accuracy, specific week (basic)
* %G-W%V => 2007-W47 Week date, reduced accuracy, specific week (extended)
* %H%M%S => 083748 Local time (basic)
* %T => 08:37:48 Local time (extended)
* %H%M => 0837 Local time, reduced accuracy, specific minute (basic)
* %H:%M => 08:37 Local time, reduced accuracy, specific minute (extended)
* %H => 08 Local time, reduced accuracy, specific hour
* %H%M%S,%L => 083748,000 Local time with decimal fraction, comma as decimal sign (basic)
* %T,%L => 08:37:48,000 Local time with decimal fraction, comma as decimal sign (extended)
* %H%M%S.%L => 083748.000 Local time with decimal fraction, full stop as decimal sign (basic)
* %T.%L => 08:37:48.000 Local time with decimal fraction, full stop as decimal sign (extended)
* %H%M%S%z => 083748-0600 Local time and the difference from UTC (basic)
* %T%:z => 08:37:48-06:00 Local time and the difference from UTC (extended)
* %Y%m%dT%H%M%S%z => 20071119T083748-0600 Date and time of day for calendar date (basic)
* %FT%T%:z => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended)
* %Y%jT%H%M%S%z => 2007323T083748-0600 Date and time of day for ordinal date (basic)
* %Y-%jT%T%:z => 2007-323T08:37:48-06:00 Date and time of day for ordinal date (extended)
* %GW%V%uT%H%M%S%z => 2007W471T083748-0600 Date and time of day for week date (basic)
* %G-W%V-%uT%T%:z => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended)
* %Y%m%dT%H%M => 20071119T0837 Calendar date and local time (basic)
* %FT%R => 2007-11-19T08:37 Calendar date and local time (extended)
* %Y%jT%H%MZ => 2007323T0837Z Ordinal date and UTC of day (basic)
* %Y-%jT%RZ => 2007-323T08:37Z Ordinal date and UTC of day (extended)
* %GW%V%uT%H%M%z => 2007W471T0837-0600 Week date and local time and difference from UTC (basic)
* %G-W%V-%uT%R%:z => 2007-W47-1T08:37-06:00 Week date and local time and difference from UTC (extended)
*
* See also strftime(3) and ::strptime.
*/
static VALUE
dt_lite_strftime(int argc, VALUE *argv, VALUE self)
{
return date_strftime_internal(argc, argv, self,
"%Y-%m-%dT%H:%M:%S%:z", set_tmx);
}
static VALUE
iso8601_timediv(VALUE self, long n)
{
static const char timefmt[] = "T%H:%M:%S";
static const char zone[] = "%:z";
char fmt[sizeof(timefmt) + sizeof(zone) + rb_strlen_lit(".%N") +
DECIMAL_SIZE_OF_LONG];
char *p = fmt;
memcpy(p, timefmt, sizeof(timefmt)-1);
p += sizeof(timefmt)-1;
if (n > 0) p += snprintf(p, fmt+sizeof(fmt)-p, ".%%%ldN", n);
memcpy(p, zone, sizeof(zone));
return strftimev(fmt, self, set_tmx);
}
/*
* call-seq:
* dt.iso8601([n=0]) -> string
* dt.xmlschema([n=0]) -> string
*
* This method is equivalent to strftime('%FT%T%:z').
* The optional argument +n+ is the number of digits for fractional seconds.
*
* DateTime.parse('2001-02-03T04:05:06.123456789+07:00').iso8601(9)
* #=> "2001-02-03T04:05:06.123456789+07:00"
*/
static VALUE
dt_lite_iso8601(int argc, VALUE *argv, VALUE self)
{
long n = 0;
rb_check_arity(argc, 0, 1);
if (argc >= 1)
n = NUM2LONG(argv[0]);
return rb_str_append(strftimev("%Y-%m-%d", self, set_tmx),
iso8601_timediv(self, n));
}
/*
* call-seq:
* dt.rfc3339([n=0]) -> string
*
* This method is equivalent to strftime('%FT%T%:z').
* The optional argument +n+ is the number of digits for fractional seconds.
*
* DateTime.parse('2001-02-03T04:05:06.123456789+07:00').rfc3339(9)
* #=> "2001-02-03T04:05:06.123456789+07:00"
*/
static VALUE
dt_lite_rfc3339(int argc, VALUE *argv, VALUE self)
{
return dt_lite_iso8601(argc, argv, self);
}
/*
* call-seq:
* dt.jisx0301([n=0]) -> string
*
* Returns a string in a JIS X 0301 format.
* The optional argument +n+ is the number of digits for fractional seconds.
*
* DateTime.parse('2001-02-03T04:05:06.123456789+07:00').jisx0301(9)
* #=> "H13.02.03T04:05:06.123456789+07:00"
*/
static VALUE
dt_lite_jisx0301(int argc, VALUE *argv, VALUE self)
{
long n = 0;
rb_check_arity(argc, 0, 1);
if (argc >= 1)
n = NUM2LONG(argv[0]);
return rb_str_append(d_lite_jisx0301(self),
iso8601_timediv(self, n));
}
/* conversions */
#define f_subsec(x) rb_funcall(x, rb_intern("subsec"), 0)
#define f_utc_offset(x) rb_funcall(x, rb_intern("utc_offset"), 0)
#define f_local3(x,y,m,d) rb_funcall(x, rb_intern("local"), 3, y, m, d)
/*
* call-seq:
* t.to_time -> time
*
* Returns self.
*/
static VALUE
time_to_time(VALUE self)
{
return self;
}
/*
* call-seq:
* t.to_date -> date
*
* Returns a Date object which denotes self.
*/
static VALUE
time_to_date(VALUE self)
{
VALUE y, nth, ret;
int ry, m, d;
y = f_year(self);
m = FIX2INT(f_mon(self));
d = FIX2INT(f_mday(self));
decode_year(y, -1, &nth, &ry);
ret = d_simple_new_internal(cDate,
nth, 0,
GREGORIAN,
ry, m, d,
HAVE_CIVIL);
{
get_d1(ret);
set_sg(dat, DEFAULT_SG);
}
return ret;
}
/*
* call-seq:
* t.to_datetime -> datetime
*
* Returns a DateTime object which denotes self.
*/
static VALUE
time_to_datetime(VALUE self)
{
VALUE y, sf, nth, ret;
int ry, m, d, h, min, s, of;
y = f_year(self);
m = FIX2INT(f_mon(self));
d = FIX2INT(f_mday(self));
h = FIX2INT(f_hour(self));
min = FIX2INT(f_min(self));
s = FIX2INT(f_sec(self));
if (s == 60)
s = 59;
sf = sec_to_ns(f_subsec(self));
of = FIX2INT(f_utc_offset(self));
decode_year(y, -1, &nth, &ry);
ret = d_complex_new_internal(cDateTime,
nth, 0,
0, sf,
of, DEFAULT_SG,
ry, m, d,
h, min, s,
HAVE_CIVIL | HAVE_TIME);
{
get_d1(ret);
set_sg(dat, DEFAULT_SG);
}
return ret;
}
/*
* call-seq:
* d.to_time -> time
*
* Returns a Time object which denotes self.
*/
static VALUE
date_to_time(VALUE self)
{
get_d1(self);
return f_local3(rb_cTime,
m_real_year(dat),
INT2FIX(m_mon(dat)),
INT2FIX(m_mday(dat)));
}
/*
* call-seq:
* d.to_date -> self
*
* Returns self.
*/
static VALUE
date_to_date(VALUE self)
{
return self;
}
/*
* call-seq:
* d.to_datetime -> datetime
*
* Returns a DateTime object which denotes self.
*/
static VALUE
date_to_datetime(VALUE self)
{
get_d1a(self);
if (simple_dat_p(adat)) {
VALUE new = d_lite_s_alloc_simple(cDateTime);
{
get_d1b(new);
bdat->s = adat->s;
return new;
}
}
else {
VALUE new = d_lite_s_alloc_complex(cDateTime);
{
get_d1b(new);
bdat->c = adat->c;
bdat->c.df = 0;
RB_OBJ_WRITE(new, &bdat->c.sf, INT2FIX(0));
#ifndef USE_PACK
bdat->c.hour = 0;
bdat->c.min = 0;
bdat->c.sec = 0;
#else
bdat->c.pc = PACK5(EX_MON(adat->c.pc), EX_MDAY(adat->c.pc),
0, 0, 0);
bdat->c.flags |= HAVE_DF | HAVE_TIME;
#endif
return new;
}
}
}
/*
* call-seq:
* dt.to_time -> time
*
* Returns a Time object which denotes self.
*/
static VALUE
datetime_to_time(VALUE self)
{
volatile VALUE dup = dup_obj(self);
{
VALUE t;
get_d1(dup);
t = rb_funcall(rb_cTime,
rb_intern("new"),
7,
m_real_year(dat),
INT2FIX(m_mon(dat)),
INT2FIX(m_mday(dat)),
INT2FIX(m_hour(dat)),
INT2FIX(m_min(dat)),
f_add(INT2FIX(m_sec(dat)),
m_sf_in_sec(dat)),
INT2FIX(m_of(dat)));
return t;
}
}
/*
* call-seq:
* dt.to_date -> date
*
* Returns a Date object which denotes self.
*/
static VALUE
datetime_to_date(VALUE self)
{
get_d1a(self);
if (simple_dat_p(adat)) {
VALUE new = d_lite_s_alloc_simple(cDate);
{
get_d1b(new);
bdat->s = adat->s;
bdat->s.jd = m_local_jd(adat);
return new;
}
}
else {
VALUE new = d_lite_s_alloc_simple(cDate);
{
get_d1b(new);
copy_complex_to_simple(new, &bdat->s, &adat->c);
bdat->s.jd = m_local_jd(adat);
bdat->s.flags &= ~(HAVE_DF | HAVE_TIME | COMPLEX_DAT);
return new;
}
}
}
/*
* call-seq:
* dt.to_datetime -> self
*
* Returns self.
*/
static VALUE
datetime_to_datetime(VALUE self)
{
return self;
}
#ifndef NDEBUG
/* tests */
#define MIN_YEAR -4713
#define MAX_YEAR 1000000
#define MIN_JD -327
#define MAX_JD 366963925
static int
test_civil(int from, int to, double sg)
{
int j;
fprintf(stderr, "test_civil: %d...%d (%d) - %.0f\n",
from, to, to - from, sg);
for (j = from; j <= to; j++) {
int y, m, d, rj, ns;
c_jd_to_civil(j, sg, &y, &m, &d);
c_civil_to_jd(y, m, d, sg, &rj, &ns);
if (j != rj) {
fprintf(stderr, "%d != %d\n", j, rj);
return 0;
}
}
return 1;
}
static VALUE
date_s_test_civil(VALUE klass)
{
if (!test_civil(MIN_JD, MIN_JD + 366, GREGORIAN))
return Qfalse;
if (!test_civil(2305814, 2598007, GREGORIAN))
return Qfalse;
if (!test_civil(MAX_JD - 366, MAX_JD, GREGORIAN))
return Qfalse;
if (!test_civil(MIN_JD, MIN_JD + 366, ITALY))
return Qfalse;
if (!test_civil(2305814, 2598007, ITALY))
return Qfalse;
if (!test_civil(MAX_JD - 366, MAX_JD, ITALY))
return Qfalse;
return Qtrue;
}
static int
test_ordinal(int from, int to, double sg)
{
int j;
fprintf(stderr, "test_ordinal: %d...%d (%d) - %.0f\n",
from, to, to - from, sg);
for (j = from; j <= to; j++) {
int y, d, rj, ns;
c_jd_to_ordinal(j, sg, &y, &d);
c_ordinal_to_jd(y, d, sg, &rj, &ns);
if (j != rj) {
fprintf(stderr, "%d != %d\n", j, rj);
return 0;
}
}
return 1;
}
static VALUE
date_s_test_ordinal(VALUE klass)
{
if (!test_ordinal(MIN_JD, MIN_JD + 366, GREGORIAN))
return Qfalse;
if (!test_ordinal(2305814, 2598007, GREGORIAN))
return Qfalse;
if (!test_ordinal(MAX_JD - 366, MAX_JD, GREGORIAN))
return Qfalse;
if (!test_ordinal(MIN_JD, MIN_JD + 366, ITALY))
return Qfalse;
if (!test_ordinal(2305814, 2598007, ITALY))
return Qfalse;
if (!test_ordinal(MAX_JD - 366, MAX_JD, ITALY))
return Qfalse;
return Qtrue;
}
static int
test_commercial(int from, int to, double sg)
{
int j;
fprintf(stderr, "test_commercial: %d...%d (%d) - %.0f\n",
from, to, to - from, sg);
for (j = from; j <= to; j++) {
int y, w, d, rj, ns;
c_jd_to_commercial(j, sg, &y, &w, &d);
c_commercial_to_jd(y, w, d, sg, &rj, &ns);
if (j != rj) {
fprintf(stderr, "%d != %d\n", j, rj);
return 0;
}
}
return 1;
}
static VALUE
date_s_test_commercial(VALUE klass)
{
if (!test_commercial(MIN_JD, MIN_JD + 366, GREGORIAN))
return Qfalse;
if (!test_commercial(2305814, 2598007, GREGORIAN))
return Qfalse;
if (!test_commercial(MAX_JD - 366, MAX_JD, GREGORIAN))
return Qfalse;
if (!test_commercial(MIN_JD, MIN_JD + 366, ITALY))
return Qfalse;
if (!test_commercial(2305814, 2598007, ITALY))
return Qfalse;
if (!test_commercial(MAX_JD - 366, MAX_JD, ITALY))
return Qfalse;
return Qtrue;
}
static int
test_weeknum(int from, int to, int f, double sg)
{
int j;
fprintf(stderr, "test_weeknum: %d...%d (%d) - %.0f\n",
from, to, to - from, sg);
for (j = from; j <= to; j++) {
int y, w, d, rj, ns;
c_jd_to_weeknum(j, f, sg, &y, &w, &d);
c_weeknum_to_jd(y, w, d, f, sg, &rj, &ns);
if (j != rj) {
fprintf(stderr, "%d != %d\n", j, rj);
return 0;
}
}
return 1;
}
static VALUE
date_s_test_weeknum(VALUE klass)
{
int f;
for (f = 0; f <= 1; f++) {
if (!test_weeknum(MIN_JD, MIN_JD + 366, f, GREGORIAN))
return Qfalse;
if (!test_weeknum(2305814, 2598007, f, GREGORIAN))
return Qfalse;
if (!test_weeknum(MAX_JD - 366, MAX_JD, f, GREGORIAN))
return Qfalse;
if (!test_weeknum(MIN_JD, MIN_JD + 366, f, ITALY))
return Qfalse;
if (!test_weeknum(2305814, 2598007, f, ITALY))
return Qfalse;
if (!test_weeknum(MAX_JD - 366, MAX_JD, f, ITALY))
return Qfalse;
}
return Qtrue;
}
static int
test_nth_kday(int from, int to, double sg)
{
int j;
fprintf(stderr, "test_nth_kday: %d...%d (%d) - %.0f\n",
from, to, to - from, sg);
for (j = from; j <= to; j++) {
int y, m, n, k, rj, ns;
c_jd_to_nth_kday(j, sg, &y, &m, &n, &k);
c_nth_kday_to_jd(y, m, n, k, sg, &rj, &ns);
if (j != rj) {
fprintf(stderr, "%d != %d\n", j, rj);
return 0;
}
}
return 1;
}
static VALUE
date_s_test_nth_kday(VALUE klass)
{
if (!test_nth_kday(MIN_JD, MIN_JD + 366, GREGORIAN))
return Qfalse;
if (!test_nth_kday(2305814, 2598007, GREGORIAN))
return Qfalse;
if (!test_nth_kday(MAX_JD - 366, MAX_JD, GREGORIAN))
return Qfalse;
if (!test_nth_kday(MIN_JD, MIN_JD + 366, ITALY))
return Qfalse;
if (!test_nth_kday(2305814, 2598007, ITALY))
return Qfalse;
if (!test_nth_kday(MAX_JD - 366, MAX_JD, ITALY))
return Qfalse;
return Qtrue;
}
static int
test_unit_v2v(VALUE i,
VALUE (* conv1)(VALUE),
VALUE (* conv2)(VALUE))
{
VALUE c, o;
c = (*conv1)(i);
o = (*conv2)(c);
return f_eqeq_p(o, i);
}
static int
test_unit_v2v_iter2(VALUE (* conv1)(VALUE),
VALUE (* conv2)(VALUE))
{
if (!test_unit_v2v(INT2FIX(0), conv1, conv2))
return 0;
if (!test_unit_v2v(INT2FIX(1), conv1, conv2))
return 0;
if (!test_unit_v2v(INT2FIX(2), conv1, conv2))
return 0;
if (!test_unit_v2v(INT2FIX(3), conv1, conv2))
return 0;
if (!test_unit_v2v(INT2FIX(11), conv1, conv2))
return 0;
if (!test_unit_v2v(INT2FIX(65535), conv1, conv2))
return 0;
if (!test_unit_v2v(INT2FIX(1073741823), conv1, conv2))
return 0;
if (!test_unit_v2v(INT2NUM(1073741824), conv1, conv2))
return 0;
if (!test_unit_v2v(rb_rational_new2(INT2FIX(0), INT2FIX(1)), conv1, conv2))
return 0;
if (!test_unit_v2v(rb_rational_new2(INT2FIX(1), INT2FIX(1)), conv1, conv2))
return 0;
if (!test_unit_v2v(rb_rational_new2(INT2FIX(1), INT2FIX(2)), conv1, conv2))
return 0;
if (!test_unit_v2v(rb_rational_new2(INT2FIX(2), INT2FIX(3)), conv1, conv2))
return 0;
return 1;
}
static int
test_unit_v2v_iter(VALUE (* conv1)(VALUE),
VALUE (* conv2)(VALUE))
{
if (!test_unit_v2v_iter2(conv1, conv2))
return 0;
if (!test_unit_v2v_iter2(conv2, conv1))
return 0;
return 1;
}
static VALUE
date_s_test_unit_conv(VALUE klass)
{
if (!test_unit_v2v_iter(sec_to_day, day_to_sec))
return Qfalse;
if (!test_unit_v2v_iter(ms_to_sec, sec_to_ms))
return Qfalse;
if (!test_unit_v2v_iter(ns_to_day, day_to_ns))
return Qfalse;
if (!test_unit_v2v_iter(ns_to_sec, sec_to_ns))
return Qfalse;
return Qtrue;
}
static VALUE
date_s_test_all(VALUE klass)
{
if (date_s_test_civil(klass) == Qfalse)
return Qfalse;
if (date_s_test_ordinal(klass) == Qfalse)
return Qfalse;
if (date_s_test_commercial(klass) == Qfalse)
return Qfalse;
if (date_s_test_weeknum(klass) == Qfalse)
return Qfalse;
if (date_s_test_nth_kday(klass) == Qfalse)
return Qfalse;
if (date_s_test_unit_conv(klass) == Qfalse)
return Qfalse;
return Qtrue;
}
#endif
static const char *monthnames[] = {
NULL,
"January", "February", "March",
"April", "May", "June",
"July", "August", "September",
"October", "November", "December"
};
static const char *abbr_monthnames[] = {
NULL,
"Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug",
"Sep", "Oct", "Nov", "Dec"
};
static const char *daynames[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"
};
static const char *abbr_daynames[] = {
"Sun", "Mon", "Tue", "Wed",
"Thu", "Fri", "Sat"
};
static VALUE
mk_ary_of_str(long len, const char *a[])
{
VALUE o;
long i;
o = rb_ary_new2(len);
for (i = 0; i < len; i++) {
VALUE e;
if (!a[i])
e = Qnil;
else {
e = rb_usascii_str_new2(a[i]);
rb_obj_freeze(e);
}
rb_ary_push(o, e);
}
rb_obj_freeze(o);
return o;
}
void
Init_date_core(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
id_cmp = rb_intern("<=>");
id_le_p = rb_intern("<=");
id_ge_p = rb_intern(">=");
id_eqeq_p = rb_intern("==");
half_days_in_day = rb_rational_new2(INT2FIX(1), INT2FIX(2));
#if (LONG_MAX / DAY_IN_SECONDS) > SECOND_IN_NANOSECONDS
day_in_nanoseconds = LONG2NUM((long)DAY_IN_SECONDS *
SECOND_IN_NANOSECONDS);
#elif defined HAVE_LONG_LONG
day_in_nanoseconds = LL2NUM((LONG_LONG)DAY_IN_SECONDS *
SECOND_IN_NANOSECONDS);
#else
day_in_nanoseconds = f_mul(INT2FIX(DAY_IN_SECONDS),
INT2FIX(SECOND_IN_NANOSECONDS));
#endif
rb_gc_register_mark_object(half_days_in_day);
rb_gc_register_mark_object(day_in_nanoseconds);
positive_inf = +INFINITY;
negative_inf = -INFINITY;
/*
* date and datetime class - Tadayoshi Funaba 1998-2011
*
* 'date' provides two classes: Date and DateTime.
*
* == Terms and Definitions
*
* Some terms and definitions are based on ISO 8601 and JIS X 0301.
*
* === Calendar Date
*
* The calendar date is a particular day of a calendar year,
* identified by its ordinal number within a calendar month within
* that year.
*
* In those classes, this is so-called "civil".
*
* === Ordinal Date
*
* The ordinal date is a particular day of a calendar year identified
* by its ordinal number within the year.
*
* In those classes, this is so-called "ordinal".
*
* === Week Date
*
* The week date is a date identified by calendar week and day numbers.
*
* The calendar week is a seven day period within a calendar year,
* starting on a Monday and identified by its ordinal number within
* the year; the first calendar week of the year is the one that
* includes the first Thursday of that year. In the Gregorian
* calendar, this is equivalent to the week which includes January 4.
*
* In those classes, this is so-called "commercial".
*
* === Julian Day Number
*
* The Julian day number is in elapsed days since noon (Greenwich Mean
* Time) on January 1, 4713 BCE (in the Julian calendar).
*
* In this document, the astronomical Julian day number is the same as
* the original Julian day number. And the chronological Julian day
* number is a variation of the Julian day number. Its days begin at
* midnight on local time.
*
* In this document, when the term "Julian day number" simply appears,
* it just refers to "chronological Julian day number", not the
* original.
*
* In those classes, those are so-called "ajd" and "jd".
*
* === Modified Julian Day Number
*
* The modified Julian day number is in elapsed days since midnight
* (Coordinated Universal Time) on November 17, 1858 CE (in the
* Gregorian calendar).
*
* In this document, the astronomical modified Julian day number is
* the same as the original modified Julian day number. And the
* chronological modified Julian day number is a variation of the
* modified Julian day number. Its days begin at midnight on local
* time.
*
* In this document, when the term "modified Julian day number" simply
* appears, it just refers to "chronological modified Julian day
* number", not the original.
*
* In those classes, those are so-called "amjd" and "mjd".
*
* == Date
*
* A subclass of Object that includes the Comparable module and
* easily handles date.
*
* A Date object is created with Date::new, Date::jd, Date::ordinal,
* Date::commercial, Date::parse, Date::strptime, Date::today,
* Time#to_date, etc.
*
* require 'date'
*
* Date.new(2001,2,3)
* #=> #<Date: 2001-02-03 ...>
* Date.jd(2451944)
* #=> #<Date: 2001-02-03 ...>
* Date.ordinal(2001,34)
* #=> #<Date: 2001-02-03 ...>
* Date.commercial(2001,5,6)
* #=> #<Date: 2001-02-03 ...>
* Date.parse('2001-02-03')
* #=> #<Date: 2001-02-03 ...>
* Date.strptime('03-02-2001', '%d-%m-%Y')
* #=> #<Date: 2001-02-03 ...>
* Time.new(2001,2,3).to_date
* #=> #<Date: 2001-02-03 ...>
*
* All date objects are immutable; hence cannot modify themselves.
*
* The concept of a date object can be represented as a tuple
* of the day count, the offset and the day of calendar reform.
*
* The day count denotes the absolute position of a temporal
* dimension. The offset is relative adjustment, which determines
* decoded local time with the day count. The day of calendar
* reform denotes the start day of the new style. The old style
* of the West is the Julian calendar which was adopted by
* Caesar. The new style is the Gregorian calendar, which is the
* current civil calendar of many countries.
*
* The day count is virtually the astronomical Julian day number.
* The offset in this class is usually zero, and cannot be
* specified directly.
*
* A Date object can be created with an optional argument,
* the day of calendar reform as a Julian day number, which
* should be 2298874 to 2426355 or negative/positive infinity.
* The default value is +Date::ITALY+ (2299161=1582-10-15).
* See also sample/cal.rb.
*
* $ ruby sample/cal.rb -c it 10 1582
* October 1582
* S M Tu W Th F S
* 1 2 3 4 15 16
* 17 18 19 20 21 22 23
* 24 25 26 27 28 29 30
* 31
*
* $ ruby sample/cal.rb -c gb 9 1752
* September 1752
* S M Tu W Th F S
* 1 2 14 15 16
* 17 18 19 20 21 22 23
* 24 25 26 27 28 29 30
*
* A Date object has various methods. See each reference.
*
* d = Date.parse('3rd Feb 2001')
* #=> #<Date: 2001-02-03 ...>
* d.year #=> 2001
* d.mon #=> 2
* d.mday #=> 3
* d.wday #=> 6
* d += 1 #=> #<Date: 2001-02-04 ...>
* d.strftime('%a %d %b %Y') #=> "Sun 04 Feb 2001"
*
*/
cDate = rb_define_class("Date", rb_cObject);
rb_include_module(cDate, rb_mComparable);
/* An array of strings of full month names in English. The first
* element is nil.
*/
rb_define_const(cDate, "MONTHNAMES", mk_ary_of_str(13, monthnames));
/* An array of strings of abbreviated month names in English. The
* first element is nil.
*/
rb_define_const(cDate, "ABBR_MONTHNAMES",
mk_ary_of_str(13, abbr_monthnames));
/* An array of strings of the full names of days of the week in English.
* The first is "Sunday".
*/
rb_define_const(cDate, "DAYNAMES", mk_ary_of_str(7, daynames));
/* An array of strings of abbreviated day names in English. The
* first is "Sun".
*/
rb_define_const(cDate, "ABBR_DAYNAMES", mk_ary_of_str(7, abbr_daynames));
/* The Julian day number of the day of calendar reform for Italy
* and some catholic countries.
*/
rb_define_const(cDate, "ITALY", INT2FIX(ITALY));
/* The Julian day number of the day of calendar reform for England
* and her colonies.
*/
rb_define_const(cDate, "ENGLAND", INT2FIX(ENGLAND));
/* The Julian day number of the day of calendar reform for the
* proleptic Julian calendar.
*/
rb_define_const(cDate, "JULIAN", DBL2NUM(JULIAN));
/* The Julian day number of the day of calendar reform for the
* proleptic Gregorian calendar.
*/
rb_define_const(cDate, "GREGORIAN", DBL2NUM(GREGORIAN));
rb_define_alloc_func(cDate, d_lite_s_alloc_simple);
#ifndef NDEBUG
rb_define_private_method(CLASS_OF(cDate), "_valid_jd?",
date_s__valid_jd_p, -1);
rb_define_private_method(CLASS_OF(cDate), "_valid_ordinal?",
date_s__valid_ordinal_p, -1);
rb_define_private_method(CLASS_OF(cDate), "_valid_civil?",
date_s__valid_civil_p, -1);
rb_define_private_method(CLASS_OF(cDate), "_valid_date?",
date_s__valid_civil_p, -1);
rb_define_private_method(CLASS_OF(cDate), "_valid_commercial?",
date_s__valid_commercial_p, -1);
rb_define_private_method(CLASS_OF(cDate), "_valid_weeknum?",
date_s__valid_weeknum_p, -1);
rb_define_private_method(CLASS_OF(cDate), "_valid_nth_kday?",
date_s__valid_nth_kday_p, -1);
#endif
rb_define_singleton_method(cDate, "valid_jd?", date_s_valid_jd_p, -1);
rb_define_singleton_method(cDate, "valid_ordinal?",
date_s_valid_ordinal_p, -1);
rb_define_singleton_method(cDate, "valid_civil?", date_s_valid_civil_p, -1);
rb_define_singleton_method(cDate, "valid_date?", date_s_valid_civil_p, -1);
rb_define_singleton_method(cDate, "valid_commercial?",
date_s_valid_commercial_p, -1);
#ifndef NDEBUG
rb_define_private_method(CLASS_OF(cDate), "valid_weeknum?",
date_s_valid_weeknum_p, -1);
rb_define_private_method(CLASS_OF(cDate), "valid_nth_kday?",
date_s_valid_nth_kday_p, -1);
rb_define_private_method(CLASS_OF(cDate), "zone_to_diff",
date_s_zone_to_diff, 1);
#endif
rb_define_singleton_method(cDate, "julian_leap?", date_s_julian_leap_p, 1);
rb_define_singleton_method(cDate, "gregorian_leap?",
date_s_gregorian_leap_p, 1);
rb_define_singleton_method(cDate, "leap?",
date_s_gregorian_leap_p, 1);
#ifndef NDEBUG
rb_define_singleton_method(cDate, "new!", date_s_new_bang, -1);
rb_define_alias(rb_singleton_class(cDate), "new_l!", "new");
#endif
rb_define_singleton_method(cDate, "jd", date_s_jd, -1);
rb_define_singleton_method(cDate, "ordinal", date_s_ordinal, -1);
rb_define_singleton_method(cDate, "civil", date_s_civil, -1);
rb_define_singleton_method(cDate, "commercial", date_s_commercial, -1);
#ifndef NDEBUG
rb_define_singleton_method(cDate, "weeknum", date_s_weeknum, -1);
rb_define_singleton_method(cDate, "nth_kday", date_s_nth_kday, -1);
#endif
rb_define_singleton_method(cDate, "today", date_s_today, -1);
rb_define_singleton_method(cDate, "_strptime", date_s__strptime, -1);
rb_define_singleton_method(cDate, "strptime", date_s_strptime, -1);
rb_define_singleton_method(cDate, "_parse", date_s__parse, -1);
rb_define_singleton_method(cDate, "parse", date_s_parse, -1);
rb_define_singleton_method(cDate, "_iso8601", date_s__iso8601, 1);
rb_define_singleton_method(cDate, "iso8601", date_s_iso8601, -1);
rb_define_singleton_method(cDate, "_rfc3339", date_s__rfc3339, 1);
rb_define_singleton_method(cDate, "rfc3339", date_s_rfc3339, -1);
rb_define_singleton_method(cDate, "_xmlschema", date_s__xmlschema, 1);
rb_define_singleton_method(cDate, "xmlschema", date_s_xmlschema, -1);
rb_define_singleton_method(cDate, "_rfc2822", date_s__rfc2822, 1);
rb_define_singleton_method(cDate, "_rfc822", date_s__rfc2822, 1);
rb_define_singleton_method(cDate, "rfc2822", date_s_rfc2822, -1);
rb_define_singleton_method(cDate, "rfc822", date_s_rfc2822, -1);
rb_define_singleton_method(cDate, "_httpdate", date_s__httpdate, 1);
rb_define_singleton_method(cDate, "httpdate", date_s_httpdate, -1);
rb_define_singleton_method(cDate, "_jisx0301", date_s__jisx0301, 1);
rb_define_singleton_method(cDate, "jisx0301", date_s_jisx0301, -1);
rb_define_method(cDate, "initialize", date_initialize, -1);
rb_define_method(cDate, "initialize_copy", d_lite_initialize_copy, 1);
#ifndef NDEBUG
rb_define_method(cDate, "fill", d_lite_fill, 0);
#endif
rb_define_method(cDate, "ajd", d_lite_ajd, 0);
rb_define_method(cDate, "amjd", d_lite_amjd, 0);
rb_define_method(cDate, "jd", d_lite_jd, 0);
rb_define_method(cDate, "mjd", d_lite_mjd, 0);
rb_define_method(cDate, "ld", d_lite_ld, 0);
rb_define_method(cDate, "year", d_lite_year, 0);
rb_define_method(cDate, "yday", d_lite_yday, 0);
rb_define_method(cDate, "mon", d_lite_mon, 0);
rb_define_method(cDate, "month", d_lite_mon, 0);
rb_define_method(cDate, "mday", d_lite_mday, 0);
rb_define_method(cDate, "day", d_lite_mday, 0);
rb_define_method(cDate, "day_fraction", d_lite_day_fraction, 0);
rb_define_method(cDate, "cwyear", d_lite_cwyear, 0);
rb_define_method(cDate, "cweek", d_lite_cweek, 0);
rb_define_method(cDate, "cwday", d_lite_cwday, 0);
#ifndef NDEBUG
rb_define_private_method(cDate, "wnum0", d_lite_wnum0, 0);
rb_define_private_method(cDate, "wnum1", d_lite_wnum1, 0);
#endif
rb_define_method(cDate, "wday", d_lite_wday, 0);
rb_define_method(cDate, "sunday?", d_lite_sunday_p, 0);
rb_define_method(cDate, "monday?", d_lite_monday_p, 0);
rb_define_method(cDate, "tuesday?", d_lite_tuesday_p, 0);
rb_define_method(cDate, "wednesday?", d_lite_wednesday_p, 0);
rb_define_method(cDate, "thursday?", d_lite_thursday_p, 0);
rb_define_method(cDate, "friday?", d_lite_friday_p, 0);
rb_define_method(cDate, "saturday?", d_lite_saturday_p, 0);
#ifndef NDEBUG
rb_define_method(cDate, "nth_kday?", d_lite_nth_kday_p, 2);
#endif
rb_define_method(cDate, "julian?", d_lite_julian_p, 0);
rb_define_method(cDate, "gregorian?", d_lite_gregorian_p, 0);
rb_define_method(cDate, "leap?", d_lite_leap_p, 0);
rb_define_method(cDate, "start", d_lite_start, 0);
rb_define_method(cDate, "new_start", d_lite_new_start, -1);
rb_define_method(cDate, "italy", d_lite_italy, 0);
rb_define_method(cDate, "england", d_lite_england, 0);
rb_define_method(cDate, "julian", d_lite_julian, 0);
rb_define_method(cDate, "gregorian", d_lite_gregorian, 0);
rb_define_method(cDate, "+", d_lite_plus, 1);
rb_define_method(cDate, "-", d_lite_minus, 1);
rb_define_method(cDate, "next_day", d_lite_next_day, -1);
rb_define_method(cDate, "prev_day", d_lite_prev_day, -1);
rb_define_method(cDate, "next", d_lite_next, 0);
rb_define_method(cDate, "succ", d_lite_next, 0);
rb_define_method(cDate, ">>", d_lite_rshift, 1);
rb_define_method(cDate, "<<", d_lite_lshift, 1);
rb_define_method(cDate, "next_month", d_lite_next_month, -1);
rb_define_method(cDate, "prev_month", d_lite_prev_month, -1);
rb_define_method(cDate, "next_year", d_lite_next_year, -1);
rb_define_method(cDate, "prev_year", d_lite_prev_year, -1);
rb_define_method(cDate, "step", d_lite_step, -1);
rb_define_method(cDate, "upto", d_lite_upto, 1);
rb_define_method(cDate, "downto", d_lite_downto, 1);
rb_define_method(cDate, "<=>", d_lite_cmp, 1);
rb_define_method(cDate, "===", d_lite_equal, 1);
rb_define_method(cDate, "eql?", d_lite_eql_p, 1);
rb_define_method(cDate, "hash", d_lite_hash, 0);
rb_define_method(cDate, "to_s", d_lite_to_s, 0);
#ifndef NDEBUG
rb_define_method(cDate, "inspect_raw", d_lite_inspect_raw, 0);
#endif
rb_define_method(cDate, "inspect", d_lite_inspect, 0);
rb_define_method(cDate, "strftime", d_lite_strftime, -1);
rb_define_method(cDate, "asctime", d_lite_asctime, 0);
rb_define_method(cDate, "ctime", d_lite_asctime, 0);
rb_define_method(cDate, "iso8601", d_lite_iso8601, 0);
rb_define_method(cDate, "xmlschema", d_lite_iso8601, 0);
rb_define_method(cDate, "rfc3339", d_lite_rfc3339, 0);
rb_define_method(cDate, "rfc2822", d_lite_rfc2822, 0);
rb_define_method(cDate, "rfc822", d_lite_rfc2822, 0);
rb_define_method(cDate, "httpdate", d_lite_httpdate, 0);
rb_define_method(cDate, "jisx0301", d_lite_jisx0301, 0);
#ifndef NDEBUG
rb_define_method(cDate, "marshal_dump_old", d_lite_marshal_dump_old, 0);
#endif
rb_define_method(cDate, "marshal_dump", d_lite_marshal_dump, 0);
rb_define_method(cDate, "marshal_load", d_lite_marshal_load, 1);
rb_define_singleton_method(cDate, "_load", date_s__load, 1);
/*
* == DateTime
*
* A subclass of Date that easily handles date, hour, minute, second,
* and offset.
*
* DateTime does not consider any leap seconds, does not track
* any summer time rules.
*
* A DateTime object is created with DateTime::new, DateTime::jd,
* DateTime::ordinal, DateTime::commercial, DateTime::parse,
* DateTime::strptime, DateTime::now, Time#to_datetime, etc.
*
* require 'date'
*
* DateTime.new(2001,2,3,4,5,6)
* #=> #<DateTime: 2001-02-03T04:05:06+00:00 ...>
*
* The last element of day, hour, minute, or second can be a
* fractional number. The fractional number's precision is assumed
* at most nanosecond.
*
* DateTime.new(2001,2,3.5)
* #=> #<DateTime: 2001-02-03T12:00:00+00:00 ...>
*
* An optional argument, the offset, indicates the difference
* between the local time and UTC. For example, <tt>Rational(3,24)</tt>
* represents ahead of 3 hours of UTC, <tt>Rational(-5,24)</tt> represents
* behind of 5 hours of UTC. The offset should be -1 to +1, and
* its precision is assumed at most second. The default value is
* zero (equals to UTC).
*
* DateTime.new(2001,2,3,4,5,6,Rational(3,24))
* #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>
*
* The offset also accepts string form:
*
* DateTime.new(2001,2,3,4,5,6,'+03:00')
* #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>
*
* An optional argument, the day of calendar reform (+start+), denotes
* a Julian day number, which should be 2298874 to 2426355 or
* negative/positive infinity.
* The default value is +Date::ITALY+ (2299161=1582-10-15).
*
* A DateTime object has various methods. See each reference.
*
* d = DateTime.parse('3rd Feb 2001 04:05:06+03:30')
* #=> #<DateTime: 2001-02-03T04:05:06+03:30 ...>
* d.hour #=> 4
* d.min #=> 5
* d.sec #=> 6
* d.offset #=> (7/48)
* d.zone #=> "+03:30"
* d += Rational('1.5')
* #=> #<DateTime: 2001-02-04%16:05:06+03:30 ...>
* d = d.new_offset('+09:00')
* #=> #<DateTime: 2001-02-04%21:35:06+09:00 ...>
* d.strftime('%I:%M:%S %p')
* #=> "09:35:06 PM"
* d > DateTime.new(1999)
* #=> true
*
* === When should you use DateTime and when should you use Time?
*
* It's a common misconception that
* {William Shakespeare}[http://en.wikipedia.org/wiki/William_Shakespeare]
* and
* {Miguel de Cervantes}[http://en.wikipedia.org/wiki/Miguel_de_Cervantes]
* died on the same day in history -
* so much so that UNESCO named April 23 as
* {World Book Day because of this fact}[http://en.wikipedia.org/wiki/World_Book_Day].
* However, because England hadn't yet adopted the
* {Gregorian Calendar Reform}[http://en.wikipedia.org/wiki/Gregorian_calendar#Gregorian_reform]
* (and wouldn't until {1752}[http://en.wikipedia.org/wiki/Calendar_(New_Style)_Act_1750])
* their deaths are actually 10 days apart.
* Since Ruby's Time class implements a
* {proleptic Gregorian calendar}[http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar]
* and has no concept of calendar reform there's no way
* to express this with Time objects. This is where DateTime steps in:
*
* shakespeare = DateTime.iso8601('1616-04-23', Date::ENGLAND)
* #=> Tue, 23 Apr 1616 00:00:00 +0000
* cervantes = DateTime.iso8601('1616-04-23', Date::ITALY)
* #=> Sat, 23 Apr 1616 00:00:00 +0000
*
* Already you can see something is weird - the days of the week
* are different. Taking this further:
*
* cervantes == shakespeare
* #=> false
* (shakespeare - cervantes).to_i
* #=> 10
*
* This shows that in fact they died 10 days apart (in reality
* 11 days since Cervantes died a day earlier but was buried on
* the 23rd). We can see the actual date of Shakespeare's death by
* using the #gregorian method to convert it:
*
* shakespeare.gregorian
* #=> Tue, 03 May 1616 00:00:00 +0000
*
* So there's an argument that all the celebrations that take
* place on the 23rd April in Stratford-upon-Avon are actually
* the wrong date since England is now using the Gregorian calendar.
* You can see why when we transition across the reform
* date boundary:
*
* # start off with the anniversary of Shakespeare's birth in 1751
* shakespeare = DateTime.iso8601('1751-04-23', Date::ENGLAND)
* #=> Tue, 23 Apr 1751 00:00:00 +0000
*
* # add 366 days since 1752 is a leap year and April 23 is after February 29
* shakespeare + 366
* #=> Thu, 23 Apr 1752 00:00:00 +0000
*
* # add another 365 days to take us to the anniversary in 1753
* shakespeare + 366 + 365
* #=> Fri, 04 May 1753 00:00:00 +0000
*
* As you can see, if we're accurately tracking the number of
* {solar years}[http://en.wikipedia.org/wiki/Tropical_year]
* since Shakespeare's birthday then the correct anniversary date
* would be the 4th May and not the 23rd April.
*
* So when should you use DateTime in Ruby and when should
* you use Time? Almost certainly you'll want to use Time
* since your app is probably dealing with current dates and
* times. However, if you need to deal with dates and times in a
* historical context you'll want to use DateTime to avoid
* making the same mistakes as UNESCO. If you also have to deal
* with timezones then best of luck - just bear in mind that
* you'll probably be dealing with
* {local solar times}[http://en.wikipedia.org/wiki/Solar_time],
* since it wasn't until the 19th century that the introduction
* of the railways necessitated the need for
* {Standard Time}[http://en.wikipedia.org/wiki/Standard_time#Great_Britain]
* and eventually timezones.
*/
cDateTime = rb_define_class("DateTime", cDate);
rb_define_alloc_func(cDateTime, d_lite_s_alloc_complex);
rb_define_singleton_method(cDateTime, "jd", datetime_s_jd, -1);
rb_define_singleton_method(cDateTime, "ordinal", datetime_s_ordinal, -1);
rb_define_singleton_method(cDateTime, "civil", datetime_s_civil, -1);
rb_define_singleton_method(cDateTime, "new", datetime_s_civil, -1);
rb_define_singleton_method(cDateTime, "commercial",
datetime_s_commercial, -1);
#ifndef NDEBUG
rb_define_singleton_method(cDateTime, "weeknum",
datetime_s_weeknum, -1);
rb_define_singleton_method(cDateTime, "nth_kday",
datetime_s_nth_kday, -1);
#endif
rb_undef_method(CLASS_OF(cDateTime), "today");
rb_define_singleton_method(cDateTime, "now", datetime_s_now, -1);
rb_define_singleton_method(cDateTime, "_strptime",
datetime_s__strptime, -1);
rb_define_singleton_method(cDateTime, "strptime",
datetime_s_strptime, -1);
rb_define_singleton_method(cDateTime, "parse",
datetime_s_parse, -1);
rb_define_singleton_method(cDateTime, "iso8601",
datetime_s_iso8601, -1);
rb_define_singleton_method(cDateTime, "rfc3339",
datetime_s_rfc3339, -1);
rb_define_singleton_method(cDateTime, "xmlschema",
datetime_s_xmlschema, -1);
rb_define_singleton_method(cDateTime, "rfc2822",
datetime_s_rfc2822, -1);
rb_define_singleton_method(cDateTime, "rfc822",
datetime_s_rfc2822, -1);
rb_define_singleton_method(cDateTime, "httpdate",
datetime_s_httpdate, -1);
rb_define_singleton_method(cDateTime, "jisx0301",
datetime_s_jisx0301, -1);
rb_define_method(cDateTime, "hour", d_lite_hour, 0);
rb_define_method(cDateTime, "min", d_lite_min, 0);
rb_define_method(cDateTime, "minute", d_lite_min, 0);
rb_define_method(cDateTime, "sec", d_lite_sec, 0);
rb_define_method(cDateTime, "second", d_lite_sec, 0);
rb_define_method(cDateTime, "sec_fraction", d_lite_sec_fraction, 0);
rb_define_method(cDateTime, "second_fraction", d_lite_sec_fraction, 0);
rb_define_method(cDateTime, "offset", d_lite_offset, 0);
rb_define_method(cDateTime, "zone", d_lite_zone, 0);
rb_define_method(cDateTime, "new_offset", d_lite_new_offset, -1);
rb_define_method(cDateTime, "to_s", dt_lite_to_s, 0);
rb_define_method(cDateTime, "strftime", dt_lite_strftime, -1);
rb_define_method(cDateTime, "iso8601", dt_lite_iso8601, -1);
rb_define_method(cDateTime, "xmlschema", dt_lite_iso8601, -1);
rb_define_method(cDateTime, "rfc3339", dt_lite_rfc3339, -1);
rb_define_method(cDateTime, "jisx0301", dt_lite_jisx0301, -1);
/* conversions */
rb_define_method(rb_cTime, "to_time", time_to_time, 0);
rb_define_method(rb_cTime, "to_date", time_to_date, 0);
rb_define_method(rb_cTime, "to_datetime", time_to_datetime, 0);
rb_define_method(cDate, "to_time", date_to_time, 0);
rb_define_method(cDate, "to_date", date_to_date, 0);
rb_define_method(cDate, "to_datetime", date_to_datetime, 0);
rb_define_method(cDateTime, "to_time", datetime_to_time, 0);
rb_define_method(cDateTime, "to_date", datetime_to_date, 0);
rb_define_method(cDateTime, "to_datetime", datetime_to_datetime, 0);
#ifndef NDEBUG
/* tests */
rb_define_singleton_method(cDate, "test_civil", date_s_test_civil, 0);
rb_define_singleton_method(cDate, "test_ordinal", date_s_test_ordinal, 0);
rb_define_singleton_method(cDate, "test_commercial",
date_s_test_commercial, 0);
rb_define_singleton_method(cDate, "test_weeknum", date_s_test_weeknum, 0);
rb_define_singleton_method(cDate, "test_nth_kday", date_s_test_nth_kday, 0);
rb_define_singleton_method(cDate, "test_unit_conv",
date_s_test_unit_conv, 0);
rb_define_singleton_method(cDate, "test_all", date_s_test_all, 0);
#endif
}
/*
Local variables:
c-file-style: "ruby"
End:
*/