ruby/lib/ruby_vm/mjit/insn_compiler.rb

3262 строки
106 KiB
Ruby

module RubyVM::MJIT
class InsnCompiler
# @param ocb [CodeBlock]
# @param exit_compiler [RubyVM::MJIT::ExitCompiler]
def initialize(cb, ocb, exit_compiler)
@ocb = ocb
@exit_compiler = exit_compiler
@full_cfunc_return = Assembler.new.then do |asm|
@exit_compiler.compile_full_cfunc_return(asm)
@ocb.write(asm)
end
@cfunc_codegen_table = {}
register_cfunc_codegen_funcs
# freeze # workaround a binding.irb issue. TODO: resurrect this
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
# @param insn `RubyVM::MJIT::Instruction`
def compile(jit, ctx, asm, insn)
asm.incr_counter(:mjit_insns_count)
asm.comment("Insn: #{insn.name}")
# 62/101
case insn.name
when :nop then nop(jit, ctx, asm)
when :getlocal then getlocal(jit, ctx, asm)
when :setlocal then setlocal(jit, ctx, asm)
# getblockparam
# setblockparam
# getblockparamproxy
# getspecial
# setspecial
when :getinstancevariable then getinstancevariable(jit, ctx, asm)
when :setinstancevariable then setinstancevariable(jit, ctx, asm)
# getclassvariable
# setclassvariable
when :opt_getconstant_path then opt_getconstant_path(jit, ctx, asm)
# getconstant
# setconstant
# getglobal
# setglobal
when :putnil then putnil(jit, ctx, asm)
when :putself then putself(jit, ctx, asm)
when :putobject then putobject(jit, ctx, asm)
# putspecialobject
when :putstring then putstring(jit, ctx, asm)
# concatstrings
# anytostring
# toregexp
# intern
when :newarray then newarray(jit, ctx, asm)
# newarraykwsplat
when :duparray then duparray(jit, ctx, asm)
# duphash
when :expandarray then expandarray(jit, ctx, asm)
# concatarray
when :splatarray then splatarray(jit, ctx, asm)
when :newhash then newhash(jit, ctx, asm)
# newrange
when :pop then pop(jit, ctx, asm)
when :dup then dup(jit, ctx, asm)
when :dupn then dupn(jit, ctx, asm)
when :swap then swap(jit, ctx, asm)
# opt_reverse
when :topn then topn(jit, ctx, asm)
when :setn then setn(jit, ctx, asm)
when :adjuststack then adjuststack(jit, ctx, asm)
when :defined then defined(jit, ctx, asm)
# checkmatch
# checkkeyword
# checktype
# defineclass
# definemethod
# definesmethod
when :send then send(jit, ctx, asm)
when :opt_send_without_block then opt_send_without_block(jit, ctx, asm)
# objtostring
# opt_str_freeze
when :opt_nil_p then opt_nil_p(jit, ctx, asm)
# opt_str_uminus
# opt_newarray_max
when :opt_newarray_min then opt_newarray_min(jit, ctx, asm)
when :invokesuper then invokesuper(jit, ctx, asm)
# invokeblock
when :leave then leave(jit, ctx, asm)
# throw
when :jump then jump(jit, ctx, asm)
when :branchif then branchif(jit, ctx, asm)
when :branchunless then branchunless(jit, ctx, asm)
# branchnil
# once
# opt_case_dispatch
when :opt_plus then opt_plus(jit, ctx, asm)
when :opt_minus then opt_minus(jit, ctx, asm)
when :opt_mult then opt_mult(jit, ctx, asm)
when :opt_div then opt_div(jit, ctx, asm)
when :opt_mod then opt_mod(jit, ctx, asm)
when :opt_eq then opt_eq(jit, ctx, asm)
when :opt_neq then opt_neq(jit, ctx, asm)
when :opt_lt then opt_lt(jit, ctx, asm)
when :opt_le then opt_le(jit, ctx, asm)
when :opt_gt then opt_gt(jit, ctx, asm)
when :opt_ge then opt_ge(jit, ctx, asm)
when :opt_ltlt then opt_ltlt(jit, ctx, asm)
when :opt_and then opt_and(jit, ctx, asm)
when :opt_or then opt_or(jit, ctx, asm)
when :opt_aref then opt_aref(jit, ctx, asm)
when :opt_aset then opt_aset(jit, ctx, asm)
# opt_aset_with
# opt_aref_with
when :opt_length then opt_length(jit, ctx, asm)
when :opt_size then opt_size(jit, ctx, asm)
when :opt_empty_p then opt_empty_p(jit, ctx, asm)
when :opt_succ then opt_succ(jit, ctx, asm)
when :opt_not then opt_not(jit, ctx, asm)
when :opt_regexpmatch2 then opt_regexpmatch2(jit, ctx, asm)
# invokebuiltin
when :opt_invokebuiltin_delegate then opt_invokebuiltin_delegate(jit, ctx, asm)
when :opt_invokebuiltin_delegate_leave then opt_invokebuiltin_delegate_leave(jit, ctx, asm)
when :getlocal_WC_0 then getlocal_WC_0(jit, ctx, asm)
when :getlocal_WC_1 then getlocal_WC_1(jit, ctx, asm)
when :setlocal_WC_0 then setlocal_WC_0(jit, ctx, asm)
when :setlocal_WC_1 then setlocal_WC_1(jit, ctx, asm)
when :putobject_INT2FIX_0_ then putobject_INT2FIX_0_(jit, ctx, asm)
when :putobject_INT2FIX_1_ then putobject_INT2FIX_1_(jit, ctx, asm)
else CantCompile
end
end
private
#
# Insns
#
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def nop(jit, ctx, asm)
# Do nothing
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def getlocal(jit, ctx, asm)
idx = jit.operand(0)
level = jit.operand(1)
jit_getlocal_generic(jit, ctx, asm, idx:, level:)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def setlocal(jit, ctx, asm)
idx = jit.operand(0)
level = jit.operand(1)
jit_setlocal_generic(jit, ctx, asm, idx:, level:)
end
# getblockparam
# setblockparam
# getblockparamproxy
# getspecial
# setspecial
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def getinstancevariable(jit, ctx, asm)
# Specialize on a compile-time receiver, and split a block for chain guards
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
id = jit.operand(0)
comptime_obj = jit.peek_at_self
jit_getivar(jit, ctx, asm, comptime_obj, id)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def setinstancevariable(jit, ctx, asm)
starting_context = ctx.dup # make a copy for use with jit_chain_guard
# Defer compilation so we can specialize on a runtime `self`
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
ivar_name = jit.operand(0)
comptime_receiver = jit.peek_at_self
comptime_val_klass = C.rb_class_of(comptime_receiver)
# If the comptime receiver is frozen, writing an IV will raise an exception
# and we don't want to JIT code to deal with that situation.
if C.rb_obj_frozen_p(comptime_receiver)
asm.incr_counter(:setivar_frozen)
return CantCompile
end
# Check if the comptime receiver is a T_OBJECT
receiver_t_object = C.BUILTIN_TYPE(comptime_receiver) == C.T_OBJECT
# If the receiver isn't a T_OBJECT, or uses a custom allocator,
# then just write out the IV write as a function call.
# too-complex shapes can't use index access, so we use rb_ivar_get for them too.
if !receiver_t_object || shape_too_complex?(comptime_receiver) || ctx.chain_depth >= 10
asm.comment('call rb_vm_setinstancevariable')
ic = jit.operand(1)
# The function could raise exceptions.
# Note that this modifies REG_SP, which is why we do it first
jit_prepare_routine_call(jit, ctx, asm)
# Get the operands from the stack
val_opnd = ctx.stack_pop(1)
# Call rb_vm_setinstancevariable(iseq, obj, id, val, ic);
asm.mov(:rdi, jit.iseq.to_i)
asm.mov(:rsi, [CFP, C.rb_control_frame_t.offsetof(:self)])
asm.mov(:rdx, ivar_name)
asm.mov(:rcx, val_opnd)
asm.mov(:r8, ic)
asm.call(C.rb_vm_setinstancevariable)
else
# Get the iv index
shape_id = C.rb_shape_get_shape_id(comptime_receiver)
ivar_index = C.rb_shape_get_iv_index(shape_id, ivar_name)
# Get the receiver
asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)])
# Generate a side exit
side_exit = side_exit(jit, ctx)
# Upgrade type
guard_object_is_heap(asm, :rax, counted_exit(side_exit, :setivar_not_heap))
asm.comment('guard shape')
asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id)
megamorphic_side_exit = counted_exit(side_exit, :setivar_megamorphic)
jit_chain_guard(:jne, jit, starting_context, asm, megamorphic_side_exit)
# If we don't have an instance variable index, then we need to
# transition out of the current shape.
if ivar_index.nil?
shape = C.rb_shape_get_shape_by_id(shape_id)
current_capacity = shape.capacity
new_capacity = current_capacity * 2
# If the object doesn't have the capacity to store the IV,
# then we'll need to allocate it.
needs_extension = shape.next_iv_index >= current_capacity
# We can write to the object, but we need to transition the shape
ivar_index = shape.next_iv_index
capa_shape =
if needs_extension
# We need to add an extended table to the object
# First, create an outgoing transition that increases the capacity
C.rb_shape_transition_shape_capa(shape, new_capacity)
else
nil
end
dest_shape =
if capa_shape
C.rb_shape_get_next(capa_shape, comptime_receiver, ivar_name)
else
C.rb_shape_get_next(shape, comptime_receiver, ivar_name)
end
new_shape_id = C.rb_shape_id(dest_shape)
if new_shape_id == C.OBJ_TOO_COMPLEX_SHAPE_ID
asm.incr_counter(:setivar_too_complex)
return CantCompile
end
if needs_extension
# Generate the C call so that runtime code will increase
# the capacity and set the buffer.
asm.mov(C_ARGS[0], :rax)
asm.mov(C_ARGS[1], current_capacity)
asm.mov(C_ARGS[2], new_capacity)
asm.call(C.rb_ensure_iv_list_size)
# Load the receiver again after the function call
asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)])
end
write_val = ctx.stack_pop(1)
jit_write_iv(asm, comptime_receiver, :rax, :rcx, ivar_index, write_val, needs_extension)
# Store the new shape
asm.comment('write shape')
asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # reload after jit_write_iv
asm.mov(DwordPtr[:rax, C.rb_shape_id_offset], new_shape_id)
else
# If the iv index already exists, then we don't need to
# transition to a new shape. The reason is because we find
# the iv index by searching up the shape tree. If we've
# made the transition already, then there's no reason to
# update the shape on the object. Just set the IV.
write_val = ctx.stack_pop(1)
jit_write_iv(asm, comptime_receiver, :rax, :rcx, ivar_index, write_val, false)
end
skip_wb = asm.new_label('skip_wb')
# If the value we're writing is an immediate, we don't need to WB
asm.test(write_val, C.RUBY_IMMEDIATE_MASK)
asm.jnz(skip_wb)
# If the value we're writing is nil or false, we don't need to WB
asm.cmp(write_val, Qnil)
asm.jbe(skip_wb)
asm.comment('write barrier')
asm.mov(C_ARGS[0], [CFP, C.rb_control_frame_t.offsetof(:self)]) # reload after jit_write_iv
asm.mov(C_ARGS[1], write_val)
asm.call(C.rb_gc_writebarrier)
asm.write_label(skip_wb)
end
KeepCompiling
end
# getclassvariable
# setclassvariable
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_getconstant_path(jit, ctx, asm)
# Cut the block for invalidation
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
ic = C.iseq_inline_constant_cache.new(jit.operand(0))
idlist = ic.segments
# Make sure there is an exit for this block as the interpreter might want
# to invalidate this block from rb_mjit_constant_ic_update().
# For now, we always take an entry exit even if it was a side exit.
Invariants.ensure_block_entry_exit(jit, cause: 'opt_getconstant_path')
# See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update().
ice = ic.entry
if ice.nil?
# In this case, leave a block that unconditionally side exits
# for the interpreter to invalidate.
asm.incr_counter(:optgetconst_not_cached)
return CantCompile
end
if ice.ic_cref # with cref
# Not supported yet
asm.incr_counter(:optgetconst_cref)
return CantCompile
else # without cref
# TODO: implement this
# Optimize for single ractor mode.
# if !assume_single_ractor_mode(jit, ocb)
# return CantCompile
# end
# Invalidate output code on any constant writes associated with
# constants referenced within the current block.
Invariants.assume_stable_constant_names(jit, idlist)
putobject(jit, ctx, asm, val: ice.value)
end
jump_to_next_insn(jit, ctx, asm)
EndBlock
end
# getconstant
# setconstant
# getglobal
# setglobal
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def putnil(jit, ctx, asm)
putobject(jit, ctx, asm, val: Qnil)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def putself(jit, ctx, asm)
stack_top = ctx.stack_push
asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)])
asm.mov(stack_top, :rax)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def putobject(jit, ctx, asm, val: jit.operand(0))
# Push it to the stack
stack_top = ctx.stack_push
if asm.imm32?(val)
asm.mov(stack_top, val)
else # 64-bit immediates can't be directly written to memory
asm.mov(:rax, val)
asm.mov(stack_top, :rax)
end
# TODO: GC offsets?
KeepCompiling
end
# putspecialobject
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def putstring(jit, ctx, asm)
put_val = jit.operand(0, ruby: true)
# Save the PC and SP because the callee will allocate
jit_prepare_routine_call(jit, ctx, asm)
asm.mov(C_ARGS[0], EC)
asm.mov(C_ARGS[1], to_value(put_val))
asm.call(C.rb_ec_str_resurrect)
stack_top = ctx.stack_push
asm.mov(stack_top, C_RET)
KeepCompiling
end
# concatstrings
# anytostring
# toregexp
# intern
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def newarray(jit, ctx, asm)
n = jit.operand(0)
# Save the PC and SP because we are allocating
jit_prepare_routine_call(jit, ctx, asm)
# If n is 0, then elts is never going to be read, so we can just pass null
if n == 0
values_ptr = 0
else
asm.comment('load pointer to array elts')
offset_magnitude = C.VALUE.size * n
values_opnd = ctx.sp_opnd(-(offset_magnitude))
asm.lea(:rax, values_opnd)
values_ptr = :rax
end
# call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts);
asm.mov(C_ARGS[0], EC)
asm.mov(C_ARGS[1], n)
asm.mov(C_ARGS[2], values_ptr)
asm.call(C.rb_ec_ary_new_from_values)
ctx.stack_pop(n)
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
KeepCompiling
end
# newarraykwsplat
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def duparray(jit, ctx, asm)
ary = jit.operand(0)
# Save the PC and SP because we are allocating
jit_prepare_routine_call(jit, ctx, asm)
# call rb_ary_resurrect(VALUE ary);
asm.comment('call rb_ary_resurrect')
asm.mov(C_ARGS[0], ary)
asm.call(C.rb_ary_resurrect)
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
KeepCompiling
end
# duphash
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def expandarray(jit, ctx, asm)
# Both arguments are rb_num_t which is unsigned
num = jit.operand(0)
flag = jit.operand(1)
# If this instruction has the splat flag, then bail out.
if flag & 0x01 != 0
asm.incr_counter(:expandarray_splat)
return CantCompile
end
# If this instruction has the postarg flag, then bail out.
if flag & 0x02 != 0
asm.incr_counter(:expandarray_postarg)
return CantCompile
end
side_exit = side_exit(jit, ctx)
array_opnd = ctx.stack_pop(1)
# num is the number of requested values. If there aren't enough in the
# array then we're going to push on nils.
# TODO: implement this
# Move the array from the stack and check that it's an array.
asm.mov(:rax, array_opnd)
guard_object_is_heap(asm, :rax, counted_exit(side_exit, :expandarray_not_array))
guard_object_is_array(asm, :rax, :rcx, counted_exit(side_exit, :expandarray_not_array))
# If we don't actually want any values, then just return.
if num == 0
return KeepCompiling
end
jit_array_len(asm, :rax, :rcx)
# Only handle the case where the number of values in the array is greater
# than or equal to the number of values requested.
asm.cmp(:rcx, num)
asm.jl(counted_exit(side_exit, :expandarray_rhs_too_small))
# Conditionally load the address of the heap array into REG1.
# (struct RArray *)(obj)->as.heap.ptr
#asm.mov(:rax, array_opnd)
asm.mov(:rcx, [:rax, C.RBasic.offsetof(:flags)])
asm.test(:rcx, C.RARRAY_EMBED_FLAG);
asm.mov(:rcx, [:rax, C.RArray.offsetof(:as, :heap, :ptr)])
# Load the address of the embedded array into REG1.
# (struct RArray *)(obj)->as.ary
asm.lea(:rax, [:rax, C.RArray.offsetof(:as, :ary)])
asm.cmovnz(:rcx, :rax)
# Loop backward through the array and push each element onto the stack.
(num - 1).downto(0).each do |i|
top = ctx.stack_push
asm.mov(:rax, [:rcx, i * C.VALUE.size])
asm.mov(top, :rax)
end
KeepCompiling
end
# concatarray
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def splatarray(jit, ctx, asm)
flag = jit.operand(0)
# Save the PC and SP because the callee may allocate
# Note that this modifies REG_SP, which is why we do it first
jit_prepare_routine_call(jit, ctx, asm)
# Get the operands from the stack
ary_opnd = ctx.stack_pop(1)
# Call rb_vm_splat_array(flag, ary)
asm.mov(C_ARGS[0], flag)
asm.mov(C_ARGS[1], ary_opnd)
asm.call(C.rb_vm_splat_array)
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def newhash(jit, ctx, asm)
num = jit.operand(0)
# Save the PC and SP because we are allocating
jit_prepare_routine_call(jit, ctx, asm)
if num != 0
# val = rb_hash_new_with_size(num / 2);
asm.mov(C_ARGS[0], num / 2)
asm.call(C.rb_hash_new_with_size)
# Save the allocated hash as we want to push it after insertion
asm.push(C_RET)
asm.push(C_RET) # x86 alignment
# Get a pointer to the values to insert into the hash
asm.lea(:rcx, ctx.stack_opnd(num - 1))
# rb_hash_bulk_insert(num, STACK_ADDR_FROM_TOP(num), val);
asm.mov(C_ARGS[0], num)
asm.mov(C_ARGS[1], :rcx)
asm.mov(C_ARGS[2], C_RET)
asm.call(C.rb_hash_bulk_insert)
asm.pop(:rax)
asm.pop(:rax)
ctx.stack_pop(num)
stack_ret = ctx.stack_push
asm.mov(stack_ret, :rax)
else
# val = rb_hash_new();
asm.call(C.rb_hash_new)
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
end
KeepCompiling
end
# newrange
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def pop(jit, ctx, asm)
ctx.stack_pop
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def dup(jit, ctx, asm)
val1 = ctx.stack_opnd(0)
val2 = ctx.stack_push
asm.mov(:rax, val1)
asm.mov(val2, :rax)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def dupn(jit, ctx, asm)
n = jit.operand(0)
# In practice, seems to be only used for n==2
if n != 2
return CantCompile
end
opnd1 = ctx.stack_opnd(1)
opnd0 = ctx.stack_opnd(0)
dst1 = ctx.stack_push
asm.mov(:rax, opnd1)
asm.mov(dst1, :rax)
dst0 = ctx.stack_push
asm.mov(:rax, opnd0)
asm.mov(dst0, :rax)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def swap(jit, ctx, asm)
stack0_mem = ctx.stack_opnd(0)
stack1_mem = ctx.stack_opnd(1)
asm.mov(:rax, stack0_mem)
asm.mov(:rcx, stack1_mem)
asm.mov(stack0_mem, :rcx)
asm.mov(stack1_mem, :rax)
KeepCompiling
end
# opt_reverse
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def topn(jit, ctx, asm)
n = jit.operand(0)
top_n_val = ctx.stack_opnd(n)
loc0 = ctx.stack_push
asm.mov(:rax, top_n_val)
asm.mov(loc0, :rax)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def setn(jit, ctx, asm)
n = jit.operand(0)
top_val = ctx.stack_pop(0)
dst_opnd = ctx.stack_opnd(n)
asm.mov(:rax, top_val)
asm.mov(dst_opnd, :rax)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def adjuststack(jit, ctx, asm)
n = jit.operand(0)
ctx.stack_pop(n)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def defined(jit, ctx, asm)
op_type = jit.operand(0)
obj = jit.operand(1, ruby: true)
pushval = jit.operand(2, ruby: true)
# Save the PC and SP because the callee may allocate
# Note that this modifies REG_SP, which is why we do it first
jit_prepare_routine_call(jit, ctx, asm)
# Get the operands from the stack
v_opnd = ctx.stack_pop(1)
# Call vm_defined(ec, reg_cfp, op_type, obj, v)
asm.mov(C_ARGS[0], EC)
asm.mov(C_ARGS[1], CFP)
asm.mov(C_ARGS[2], op_type)
asm.mov(C_ARGS[3], to_value(obj))
asm.mov(C_ARGS[4], v_opnd)
asm.call(C.rb_vm_defined)
asm.test(C_RET, 255)
asm.mov(:rax, Qnil)
asm.mov(:rcx, to_value(pushval))
asm.cmovnz(:rax, :rcx)
# Push the return value onto the stack
stack_ret = ctx.stack_push
asm.mov(stack_ret, :rax)
KeepCompiling
end
# checkmatch
# checkkeyword
# checktype
# defineclass
# definemethod
# definesmethod
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def send(jit, ctx, asm)
# Specialize on a compile-time receiver, and split a block for chain guards
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
cd = C.rb_call_data.new(jit.operand(0))
blockiseq = jit.operand(1)
block_handler = jit_caller_setup_arg_block(jit, ctx, asm, cd.ci, blockiseq, false)
if block_handler == CantCompile
return CantCompile
end
# calling->ci
mid = C.vm_ci_mid(cd.ci)
argc = C.vm_ci_argc(cd.ci)
flags = C.vm_ci_flag(cd.ci)
# vm_sendish
cme = jit_search_method(jit, ctx, asm, mid, argc, flags)
if cme == CantCompile
return CantCompile
end
jit_call_general(jit, ctx, asm, mid, argc, flags, cme, block_handler)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_send_without_block(jit, ctx, asm, cd: C.rb_call_data.new(jit.operand(0)))
# Specialize on a compile-time receiver, and split a block for chain guards
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
# calling->ci
mid = C.vm_ci_mid(cd.ci)
argc = C.vm_ci_argc(cd.ci)
flags = C.vm_ci_flag(cd.ci)
# vm_sendish
cme = jit_search_method(jit, ctx, asm, mid, argc, flags)
if cme == CantCompile
return CantCompile
end
jit_call_general(jit, ctx, asm, mid, argc, flags, cme, C.VM_BLOCK_HANDLER_NONE)
end
# objtostring
# opt_str_freeze
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_nil_p(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# opt_str_uminus
# opt_newarray_max
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_newarray_min(jit, ctx, asm)
num = jit.operand(0)
# Save the PC and SP because we may allocate
jit_prepare_routine_call(jit, ctx, asm)
offset_magnitude = C.VALUE.size * num
values_opnd = ctx.sp_opnd(-offset_magnitude)
asm.lea(:rax, values_opnd)
asm.mov(C_ARGS[0], EC)
asm.mov(C_ARGS[1], num)
asm.mov(C_ARGS[2], :rax)
asm.call(C.rb_vm_opt_newarray_min)
ctx.stack_pop(num)
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def invokesuper(jit, ctx, asm)
# Specialize on a compile-time receiver, and split a block for chain guards
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
cd = C.rb_call_data.new(jit.operand(0))
blockiseq = jit.operand(1)
block_handler = jit_caller_setup_arg_block(jit, ctx, asm, cd.ci, blockiseq, true)
if block_handler == CantCompile
return CantCompile
end
# calling->ci
mid = C.vm_ci_mid(cd.ci)
argc = C.vm_ci_argc(cd.ci)
flags = C.vm_ci_flag(cd.ci)
# vm_sendish
cme = jit_search_super_method(jit, ctx, asm, mid, argc, flags)
if cme == CantCompile
return CantCompile
end
jit_call_general(jit, ctx, asm, mid, argc, flags, cme, block_handler)
end
# invokeblock
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def leave(jit, ctx, asm)
assert_equal(ctx.stack_size, 1)
jit_check_ints(jit, ctx, asm)
asm.comment('pop stack frame')
asm.lea(:rax, [CFP, C.rb_control_frame_t.size])
asm.mov(CFP, :rax)
asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], :rax)
# Return a value (for compile_leave_exit)
ret_opnd = ctx.stack_pop
asm.mov(:rax, ret_opnd)
# Set caller's SP and push a value to its stack (for JIT)
asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # Note: SP is in the position after popping a receiver and arguments
asm.mov([SP], :rax)
# Jump to cfp->jit_return
asm.jmp([CFP, -C.rb_control_frame_t.size + C.rb_control_frame_t.offsetof(:jit_return)])
EndBlock
end
# throw
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jump(jit, ctx, asm)
# Check for interrupts, but only on backward branches that may create loops
jump_offset = jit.operand(0, signed: true)
if jump_offset < 0
jit_check_ints(jit, ctx, asm)
end
pc = jit.pc + C.VALUE.size * (jit.insn.len + jump_offset)
stub_next_block(jit.iseq, pc, ctx, asm)
EndBlock
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def branchif(jit, ctx, asm)
# Check for interrupts, but only on backward branches that may create loops
jump_offset = jit.operand(0, signed: true)
if jump_offset < 0
jit_check_ints(jit, ctx, asm)
end
# TODO: skip check for known truthy
# This `test` sets ZF only for Qnil and Qfalse, which let jz jump.
val = ctx.stack_pop
asm.test(val, ~Qnil)
# Set stubs
branch_stub = BranchStub.new(
iseq: jit.iseq,
shape: Default,
target0: BranchTarget.new(ctx:, pc: jit.pc + C.VALUE.size * (jit.insn.len + jump_offset)), # branch target
target1: BranchTarget.new(ctx:, pc: jit.pc + C.VALUE.size * jit.insn.len), # fallthrough
)
branch_stub.target0.address = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true)
@ocb.write(ocb_asm)
end
branch_stub.target1.address = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false)
@ocb.write(ocb_asm)
end
# Jump to target0 on jnz
branch_stub.compile = proc do |branch_asm|
branch_asm.comment("branchif #{branch_stub.shape}")
branch_asm.stub(branch_stub) do
case branch_stub.shape
in Default
branch_asm.jnz(branch_stub.target0.address)
branch_asm.jmp(branch_stub.target1.address)
in Next0
branch_asm.jz(branch_stub.target1.address)
in Next1
branch_asm.jnz(branch_stub.target0.address)
end
end
end
branch_stub.compile.call(asm)
EndBlock
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def branchunless(jit, ctx, asm)
# Check for interrupts, but only on backward branches that may create loops
jump_offset = jit.operand(0, signed: true)
if jump_offset < 0
jit_check_ints(jit, ctx, asm)
end
# TODO: skip check for known truthy
# This `test` sets ZF only for Qnil and Qfalse, which let jz jump.
val = ctx.stack_pop
asm.test(val, ~Qnil)
# Set stubs
branch_stub = BranchStub.new(
iseq: jit.iseq,
shape: Default,
target0: BranchTarget.new(ctx:, pc: jit.pc + C.VALUE.size * (jit.insn.len + jump_offset)), # branch target
target1: BranchTarget.new(ctx:, pc: jit.pc + C.VALUE.size * jit.insn.len), # fallthrough
)
branch_stub.target0.address = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true)
@ocb.write(ocb_asm)
end
branch_stub.target1.address = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, false)
@ocb.write(ocb_asm)
end
# Jump to target0 on jz
branch_stub.compile = proc do |branch_asm|
branch_asm.comment("branchunless #{branch_stub.shape}")
branch_asm.stub(branch_stub) do
case branch_stub.shape
in Default
branch_asm.jz(branch_stub.target0.address)
branch_asm.jmp(branch_stub.target1.address)
in Next0
branch_asm.jnz(branch_stub.target1.address)
in Next1
branch_asm.jz(branch_stub.target0.address)
end
end
end
branch_stub.compile.call(asm)
EndBlock
end
# branchnil
# once
# opt_case_dispatch
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_plus(jit, ctx, asm)
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
comptime_recv = jit.peek_at_stack(1)
comptime_obj = jit.peek_at_stack(0)
if fixnum?(comptime_recv) && fixnum?(comptime_obj)
# Generate a side exit before popping operands
side_exit = side_exit(jit, ctx)
unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_PLUS)
return CantCompile
end
obj_opnd = ctx.stack_pop
recv_opnd = ctx.stack_pop
asm.comment('guard recv is fixnum') # TODO: skip this with type information
asm.test(recv_opnd, C.RUBY_FIXNUM_FLAG)
asm.jz(side_exit)
asm.comment('guard obj is fixnum') # TODO: skip this with type information
asm.test(obj_opnd, C.RUBY_FIXNUM_FLAG)
asm.jz(side_exit)
asm.mov(:rax, recv_opnd)
asm.sub(:rax, 1) # untag
asm.mov(:rcx, obj_opnd)
asm.add(:rax, :rcx)
asm.jo(side_exit)
dst_opnd = ctx.stack_push
asm.mov(dst_opnd, :rax)
KeepCompiling
else
opt_send_without_block(jit, ctx, asm)
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_minus(jit, ctx, asm)
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
comptime_recv = jit.peek_at_stack(1)
comptime_obj = jit.peek_at_stack(0)
if fixnum?(comptime_recv) && fixnum?(comptime_obj)
# Generate a side exit before popping operands
side_exit = side_exit(jit, ctx)
unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_MINUS)
return CantCompile
end
obj_opnd = ctx.stack_pop
recv_opnd = ctx.stack_pop
asm.comment('guard recv is fixnum') # TODO: skip this with type information
asm.test(recv_opnd, C.RUBY_FIXNUM_FLAG)
asm.jz(side_exit)
asm.comment('guard obj is fixnum') # TODO: skip this with type information
asm.test(obj_opnd, C.RUBY_FIXNUM_FLAG)
asm.jz(side_exit)
asm.mov(:rax, recv_opnd)
asm.mov(:rcx, obj_opnd)
asm.sub(:rax, :rcx)
asm.jo(side_exit)
asm.add(:rax, 1) # re-tag
dst_opnd = ctx.stack_push
asm.mov(dst_opnd, :rax)
KeepCompiling
else
opt_send_without_block(jit, ctx, asm)
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_mult(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_div(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_mod(jit, ctx, asm)
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
if two_fixnums_on_stack?(jit)
# Create a side-exit to fall back to the interpreter
# Note: we generate the side-exit before popping operands from the stack
side_exit = side_exit(jit, ctx)
unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_MOD)
return CantCompile
end
# Check that both operands are fixnums
guard_two_fixnums(jit, ctx, asm, side_exit)
# Get the operands and destination from the stack
arg1 = ctx.stack_pop(1)
arg0 = ctx.stack_pop(1)
# Check for arg0 % 0
asm.cmp(arg1, 0)
asm.je(side_exit)
# Call rb_fix_mod_fix(VALUE recv, VALUE obj)
asm.mov(C_ARGS[0], arg0)
asm.mov(C_ARGS[1], arg1)
asm.call(C.rb_fix_mod_fix)
# Push the return value onto the stack
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
KeepCompiling
else
opt_send_without_block(jit, ctx, asm)
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_eq(jit, ctx, asm)
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
if jit_equality_specialized(jit, ctx, asm, true)
jump_to_next_insn(jit, ctx, asm)
EndBlock
else
opt_send_without_block(jit, ctx, asm)
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_neq(jit, ctx, asm)
# opt_neq is passed two rb_call_data as arguments:
# first for ==, second for !=
neq_cd = C.rb_call_data.new(jit.operand(1))
opt_send_without_block(jit, ctx, asm, cd: neq_cd)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_lt(jit, ctx, asm)
jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovl, bop: C.BOP_LT)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_le(jit, ctx, asm)
jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovle, bop: C.BOP_LE)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_gt(jit, ctx, asm)
jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovg, bop: C.BOP_GT)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_ge(jit, ctx, asm)
jit_fixnum_cmp(jit, ctx, asm, opcode: :cmovge, bop: C.BOP_GE)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_ltlt(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_and(jit, ctx, asm)
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
if two_fixnums_on_stack?(jit)
# Create a side-exit to fall back to the interpreter
# Note: we generate the side-exit before popping operands from the stack
side_exit = side_exit(jit, ctx)
unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_AND)
return CantCompile
end
# Check that both operands are fixnums
guard_two_fixnums(jit, ctx, asm, side_exit)
# Get the operands and destination from the stack
arg1 = ctx.stack_pop(1)
arg0 = ctx.stack_pop(1)
asm.comment('bitwise and')
asm.mov(:rax, arg0)
asm.and(:rax, arg1)
# Push the return value onto the stack
dst = ctx.stack_push
asm.mov(dst, :rax)
KeepCompiling
else
opt_send_without_block(jit, ctx, asm)
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_or(jit, ctx, asm)
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
if two_fixnums_on_stack?(jit)
# Create a side-exit to fall back to the interpreter
# Note: we generate the side-exit before popping operands from the stack
side_exit = side_exit(jit, ctx)
unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_OR)
return CantCompile
end
# Check that both operands are fixnums
guard_two_fixnums(jit, ctx, asm, side_exit)
# Get the operands and destination from the stack
asm.comment('bitwise or')
arg1 = ctx.stack_pop(1)
arg0 = ctx.stack_pop(1)
# Do the bitwise or arg0 | arg1
asm.mov(:rax, arg0)
asm.or(:rax, arg1)
# Push the return value onto the stack
dst = ctx.stack_push
asm.mov(dst, :rax)
KeepCompiling
else
opt_send_without_block(jit, ctx, asm)
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_aref(jit, ctx, asm)
cd = C.rb_call_data.new(jit.operand(0))
argc = C.vm_ci_argc(cd.ci)
if argc != 1
asm.incr_counter(:optaref_argc_not_one)
return CantCompile
end
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
comptime_recv = jit.peek_at_stack(1)
comptime_obj = jit.peek_at_stack(0)
side_exit = side_exit(jit, ctx)
if comptime_recv.class == Array && fixnum?(comptime_obj)
unless Invariants.assume_bop_not_redefined(jit, C.ARRAY_REDEFINED_OP_FLAG, C.BOP_AREF)
return CantCompile
end
idx_opnd = ctx.stack_opnd(0)
recv_opnd = ctx.stack_opnd(1)
not_array_exit = counted_exit(side_exit, :optaref_recv_not_array)
jit_guard_known_klass(jit, ctx, asm, comptime_recv.class, recv_opnd, comptime_recv, not_array_exit)
# Bail if idx is not a FIXNUM
asm.mov(:rax, idx_opnd)
asm.test(:rax, C.RUBY_FIXNUM_FLAG)
asm.jz(counted_exit(side_exit, :optaref_arg_not_fixnum))
# Call VALUE rb_ary_entry_internal(VALUE ary, long offset).
# It never raises or allocates, so we don't need to write to cfp->pc.
asm.sar(:rax, 1) # Convert fixnum to int
asm.mov(C_ARGS[0], recv_opnd)
asm.mov(C_ARGS[1], :rax)
asm.call(C.rb_ary_entry_internal)
# Pop the argument and the receiver
ctx.stack_pop(2)
# Push the return value onto the stack
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
# Let guard chains share the same successor
jump_to_next_insn(jit, ctx, asm)
EndBlock
elsif comptime_recv.class == Hash
unless Invariants.assume_bop_not_redefined(jit, C.HASH_REDEFINED_OP_FLAG, C.BOP_AREF)
return CantCompile
end
recv_opnd = ctx.stack_opnd(1)
# Guard that the receiver is a Hash
not_hash_exit = counted_exit(side_exit, :optaref_recv_not_hash)
jit_guard_known_klass(jit, ctx, asm, comptime_recv.class, recv_opnd, comptime_recv, not_hash_exit)
# Prepare to call rb_hash_aref(). It might call #hash on the key.
jit_prepare_routine_call(jit, ctx, asm)
asm.comment('call rb_hash_aref')
key_opnd = ctx.stack_opnd(0)
recv_opnd = ctx.stack_opnd(1)
asm.mov(:rdi, recv_opnd)
asm.mov(:rsi, key_opnd)
asm.call(C.rb_hash_aref)
# Pop the key and the receiver
ctx.stack_pop(2)
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
# Let guard chains share the same successor
jump_to_next_insn(jit, ctx, asm)
EndBlock
else
opt_send_without_block(jit, ctx, asm)
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_aset(jit, ctx, asm)
# Defer compilation so we can specialize on a runtime `self`
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
comptime_recv = jit.peek_at_stack(2)
comptime_key = jit.peek_at_stack(1)
# Get the operands from the stack
recv = ctx.stack_opnd(2)
key = ctx.stack_opnd(1)
_val = ctx.stack_opnd(0)
if comptime_recv.class == Array && fixnum?(comptime_key)
side_exit = side_exit(jit, ctx)
# Guard receiver is an Array
jit_guard_known_klass(jit, ctx, asm, comptime_recv.class, recv, comptime_recv, side_exit)
# Guard key is a fixnum
jit_guard_known_klass(jit, ctx, asm, comptime_key.class, key, comptime_key, side_exit)
# We might allocate or raise
jit_prepare_routine_call(jit, ctx, asm)
asm.comment('call rb_ary_store')
recv = ctx.stack_opnd(2)
key = ctx.stack_opnd(1)
val = ctx.stack_opnd(0)
asm.mov(:rax, key)
asm.sar(:rax, 1) # FIX2LONG(key)
asm.mov(C_ARGS[0], recv)
asm.mov(C_ARGS[1], :rax)
asm.mov(C_ARGS[2], val)
asm.call(C.rb_ary_store)
# rb_ary_store returns void
# stored value should still be on stack
val = ctx.stack_opnd(0)
# Push the return value onto the stack
ctx.stack_pop(3)
stack_ret = ctx.stack_push
asm.mov(:rax, val)
asm.mov(stack_ret, :rax)
jump_to_next_insn(jit, ctx, asm)
EndBlock
elsif comptime_recv.class == Hash
side_exit = side_exit(jit, ctx)
# Guard receiver is a Hash
jit_guard_known_klass(jit, ctx, asm, comptime_recv.class, recv, comptime_recv, side_exit)
# We might allocate or raise
jit_prepare_routine_call(jit, ctx, asm)
# Call rb_hash_aset
recv = ctx.stack_opnd(2)
key = ctx.stack_opnd(1)
val = ctx.stack_opnd(0)
asm.mov(C_ARGS[0], recv)
asm.mov(C_ARGS[1], key)
asm.mov(C_ARGS[2], val)
asm.call(C.rb_hash_aset)
# Push the return value onto the stack
ctx.stack_pop(3)
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
jump_to_next_insn(jit, ctx, asm)
EndBlock
else
opt_send_without_block(jit, ctx, asm)
end
end
# opt_aset_with
# opt_aref_with
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_length(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_size(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_empty_p(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_succ(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_not(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_regexpmatch2(jit, ctx, asm)
opt_send_without_block(jit, ctx, asm)
end
# invokebuiltin
def opt_invokebuiltin_delegate(jit, ctx, asm)
bf = C.rb_builtin_function.new(jit.operand(0))
bf_argc = bf.argc
start_index = jit.operand(1)
# ec, self, and arguments
if bf_argc + 2 > C_ARGS.size
return CantCompile
end
# If the calls don't allocate, do they need up to date PC, SP?
jit_prepare_routine_call(jit, ctx, asm)
# Call the builtin func (ec, recv, arg1, arg2, ...)
asm.comment('call builtin func')
asm.mov(C_ARGS[0], EC)
asm.mov(C_ARGS[1], [CFP, C.rb_control_frame_t.offsetof(:self)])
# Copy arguments from locals
if bf_argc > 0
# Load environment pointer EP from CFP
asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:ep)])
bf_argc.times do |i|
table_size = jit.iseq.body.local_table_size
offs = -table_size - C.VM_ENV_DATA_SIZE + 1 + start_index + i
asm.mov(C_ARGS[2 + i], [:rax, offs * C.VALUE.size])
end
end
asm.call(bf.func_ptr)
# Push the return value
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def opt_invokebuiltin_delegate_leave(jit, ctx, asm)
opt_invokebuiltin_delegate(jit, ctx, asm)
# opt_invokebuiltin_delegate is always followed by leave insn
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def getlocal_WC_0(jit, ctx, asm)
# Get operands
idx = jit.operand(0)
level = 0
# Get EP
asm.mov(:rax, [CFP, C.rb_control_frame_t.offsetof(:ep)])
# Get a local variable
asm.mov(:rax, [:rax, -idx * C.VALUE.size])
# Push it to the stack
stack_top = ctx.stack_push
asm.mov(stack_top, :rax)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def getlocal_WC_1(jit, ctx, asm)
idx = jit.operand(0)
jit_getlocal_generic(jit, ctx, asm, idx:, level: 1)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def setlocal_WC_0(jit, ctx, asm)
slot_idx = jit.operand(0)
local_idx = slot_to_local_idx(jit.iseq, slot_idx)
# Load environment pointer EP (level 0) from CFP
ep_reg = :rax
jit_get_ep(asm, 0, reg: ep_reg)
# Write barriers may be required when VM_ENV_FLAG_WB_REQUIRED is set, however write barriers
# only affect heap objects being written. If we know an immediate value is being written we
# can skip this check.
# flags & VM_ENV_FLAG_WB_REQUIRED
flags_opnd = [ep_reg, C.VALUE.size * C.VM_ENV_DATA_INDEX_FLAGS]
asm.test(flags_opnd, C.VM_ENV_FLAG_WB_REQUIRED)
# Create a side-exit to fall back to the interpreter
side_exit = side_exit(jit, ctx)
# if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
asm.jnz(side_exit)
# Pop the value to write from the stack
stack_top = ctx.stack_pop(1)
# Write the value at the environment pointer
asm.mov(:rcx, stack_top)
asm.mov([ep_reg, -8 * slot_idx], :rcx)
KeepCompiling
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def setlocal_WC_1(jit, ctx, asm)
idx = jit.operand(0)
jit_setlocal_generic(jit, ctx, asm, idx:, level: 1)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def putobject_INT2FIX_0_(jit, ctx, asm)
putobject(jit, ctx, asm, val: C.to_value(0))
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def putobject_INT2FIX_1_(jit, ctx, asm)
putobject(jit, ctx, asm, val: C.to_value(1))
end
#
# C func
#
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_rb_obj_not(jit, ctx, asm, argc)
return false if argc != 0
asm.comment('rb_obj_not')
recv = ctx.stack_pop
# This `test` sets ZF only for Qnil and Qfalse, which let cmovz set.
asm.test(recv, ~Qnil)
asm.mov(:rax, Qfalse)
asm.mov(:rcx, Qtrue)
asm.cmovz(:rax, :rcx)
stack_ret = ctx.stack_push
asm.mov(stack_ret, :rax)
true
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_rb_obj_not_equal(jit, ctx, asm, argc)
return false if argc != 1
jit_equality_specialized(jit, ctx, asm, false)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_rb_int_equal(jit, ctx, asm, argc)
return false if argc != 1
return false unless two_fixnums_on_stack?(jit)
side_exit = side_exit(jit, ctx)
guard_two_fixnums(jit, ctx, asm, side_exit)
# Compare the arguments
asm.comment('rb_int_equal')
arg1 = ctx.stack_pop(1)
arg0 = ctx.stack_pop(1)
asm.mov(:rax, arg1)
asm.cmp(arg0, :rax)
asm.mov(:rax, Qfalse)
asm.mov(:rcx, Qtrue)
asm.cmove(:rax, :rcx)
stack_ret = ctx.stack_push
asm.mov(stack_ret, :rax)
true
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_rb_int_mul(jit, ctx, asm, argc)
return false if argc != 1
return false unless two_fixnums_on_stack?(jit)
side_exit = side_exit(jit, ctx)
guard_two_fixnums(jit, ctx, asm, side_exit)
asm.comment('rb_int_mul')
y_opnd = ctx.stack_pop
x_opnd = ctx.stack_pop
asm.mov(C_ARGS[0], x_opnd)
asm.mov(C_ARGS[1], y_opnd)
asm.call(C.rb_fix_mul_fix)
ret_opnd = ctx.stack_push
asm.mov(ret_opnd, C_RET)
true
end
def jit_rb_int_div(jit, ctx, asm, argc)
return false if argc != 1
return false unless two_fixnums_on_stack?(jit)
side_exit = side_exit(jit, ctx)
guard_two_fixnums(jit, ctx, asm, side_exit)
asm.comment('rb_int_div')
y_opnd = ctx.stack_pop
x_opnd = ctx.stack_pop
asm.mov(:rax, y_opnd)
asm.cmp(:rax, C.to_value(0))
asm.je(side_exit)
asm.mov(C_ARGS[0], x_opnd)
asm.mov(C_ARGS[1], :rax)
asm.call(C.rb_fix_div_fix)
ret_opnd = ctx.stack_push
asm.mov(ret_opnd, C_RET)
true
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_rb_int_aref(jit, ctx, asm, argc)
return false if argc != 1
return false unless two_fixnums_on_stack?(jit)
side_exit = side_exit(jit, ctx)
guard_two_fixnums(jit, ctx, asm, side_exit)
asm.comment('rb_int_aref')
y_opnd = ctx.stack_pop
x_opnd = ctx.stack_pop
asm.mov(C_ARGS[0], x_opnd)
asm.mov(C_ARGS[1], y_opnd)
asm.call(C.rb_fix_aref)
ret_opnd = ctx.stack_push
asm.mov(ret_opnd, C_RET)
true
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_rb_ary_push(jit, ctx, asm, argc)
return false if argc != 1
asm.comment('rb_ary_push')
jit_prepare_routine_call(jit, ctx, asm)
item_opnd = ctx.stack_pop
ary_opnd = ctx.stack_pop
asm.mov(C_ARGS[0], ary_opnd)
asm.mov(C_ARGS[1], item_opnd)
asm.call(C.rb_ary_push)
ret_opnd = ctx.stack_push
asm.mov(ret_opnd, C_RET)
true
end
#
# Helpers
#
def register_cfunc_codegen_funcs
register_cfunc_method(BasicObject, :!, :jit_rb_obj_not)
register_cfunc_method(BasicObject, :!=, :jit_rb_obj_not_equal)
register_cfunc_method(Integer, :==, :jit_rb_int_equal)
register_cfunc_method(Integer, :===, :jit_rb_int_equal)
register_cfunc_method(Integer, :*, :jit_rb_int_mul)
register_cfunc_method(Integer, :/, :jit_rb_int_div)
register_cfunc_method(Integer, :[], :jit_rb_int_aref)
register_cfunc_method(Array, :<<, :jit_rb_ary_push)
end
def register_cfunc_method(klass, mid_sym, func)
mid = C.rb_intern(mid_sym.to_s)
me = C.rb_method_entry_at(klass, mid)
assert_equal(false, me.nil?)
# Only cfuncs are supported
method_serial = me.def.method_serial
@cfunc_codegen_table[method_serial] = method(func)
end
def lookup_cfunc_codegen(cme_def)
@cfunc_codegen_table[cme_def.method_serial]
end
def jit_getlocal_generic(jit, ctx, asm, idx:, level:)
# Load environment pointer EP at level
ep_reg = :rax
jit_get_ep(asm, level, reg: ep_reg)
# Get a local variable
asm.mov(:rax, [ep_reg, -idx * C.VALUE.size])
# Push it to the stack
stack_top = ctx.stack_push
asm.mov(stack_top, :rax)
KeepCompiling
end
def jit_setlocal_generic(jit, ctx, asm, idx:, level:)
# Load environment pointer EP at level
ep_reg = :rax
jit_get_ep(asm, level, reg: ep_reg)
# Write barriers may be required when VM_ENV_FLAG_WB_REQUIRED is set, however write barriers
# only affect heap objects being written. If we know an immediate value is being written we
# can skip this check.
# flags & VM_ENV_FLAG_WB_REQUIRED
flags_opnd = [ep_reg, C.VALUE.size * C.VM_ENV_DATA_INDEX_FLAGS]
asm.test(flags_opnd, C.VM_ENV_FLAG_WB_REQUIRED)
# Create a side-exit to fall back to the interpreter
side_exit = side_exit(jit, ctx)
# if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
asm.jnz(side_exit)
# Pop the value to write from the stack
stack_top = ctx.stack_pop(1)
# Write the value at the environment pointer
asm.mov(:rcx, stack_top)
asm.mov([ep_reg, -(C.VALUE.size * idx)], :rcx)
KeepCompiling
end
# Compute the index of a local variable from its slot index
def slot_to_local_idx(iseq, slot_idx)
# Layout illustration
# This is an array of VALUE
# | VM_ENV_DATA_SIZE |
# v v
# low addr <+-------+-------+-------+-------+------------------+
# |local 0|local 1| ... |local n| .... |
# +-------+-------+-------+-------+------------------+
# ^ ^ ^ ^
# +-------+---local_table_size----+ cfp->ep--+
# | |
# +------------------slot_idx----------------+
#
# See usages of local_var_name() from iseq.c for similar calculation.
local_table_size = iseq.body.local_table_size
op = slot_idx - C.VM_ENV_DATA_SIZE
local_table_size - op - 1
end
# @param asm [RubyVM::MJIT::Assembler]
def guard_object_is_heap(asm, object_opnd, side_exit)
asm.comment('guard object is heap')
# Test that the object is not an immediate
asm.test(object_opnd, C.RUBY_IMMEDIATE_MASK)
asm.jnz(side_exit)
# Test that the object is not false
asm.cmp(object_opnd, Qfalse)
asm.je(side_exit)
end
# @param asm [RubyVM::MJIT::Assembler]
def guard_object_is_array(asm, object_reg, flags_reg, side_exit)
asm.comment('guard object is array')
# Pull out the type mask
asm.mov(flags_reg, [object_reg, C.RBasic.offsetof(:flags)])
asm.and(flags_reg, C.RUBY_T_MASK)
# Compare the result with T_ARRAY
asm.cmp(flags_reg, C.RUBY_T_ARRAY)
asm.jne(side_exit)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_chain_guard(opcode, jit, ctx, asm, side_exit, limit: 20)
opcode => :je | :jne | :jnz | :jz
if ctx.chain_depth < limit
deeper = ctx.dup
deeper.chain_depth += 1
branch_stub = BranchStub.new(
iseq: jit.iseq,
shape: Default,
target0: BranchTarget.new(ctx: deeper, pc: jit.pc),
)
branch_stub.target0.address = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_branch_stub(deeper, ocb_asm, branch_stub, true)
@ocb.write(ocb_asm)
end
branch_stub.compile = proc do |branch_asm|
# Not using `asm.comment` here since it's usually put before cmp/test before this.
branch_asm.stub(branch_stub) do
case branch_stub.shape
in Default
branch_asm.public_send(opcode, branch_stub.target0.address)
end
end
end
branch_stub.compile.call(asm)
else
asm.public_send(opcode, side_exit)
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_guard_known_klass(jit, ctx, asm, known_klass, obj_opnd, comptime_obj, side_exit, limit: 5)
# Only memory operand is supported for now
assert_equal(true, obj_opnd.is_a?(Array))
if known_klass == NilClass
asm.comment('guard object is nil')
asm.cmp(obj_opnd, Qnil)
jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
elsif known_klass == TrueClass
asm.comment('guard object is true')
asm.cmp(obj_opnd, Qtrue)
jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
elsif known_klass == FalseClass
asm.comment('guard object is false')
asm.cmp(obj_opnd, Qfalse)
jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
elsif known_klass == Integer && fixnum?(comptime_obj)
asm.comment('guard object is fixnum')
asm.test(obj_opnd, C.RUBY_FIXNUM_FLAG)
jit_chain_guard(:jz, jit, ctx, asm, side_exit, limit:)
elsif known_klass == Symbol && static_symbol?(comptime_obj)
# We will guard STATIC vs DYNAMIC as though they were separate classes
# DYNAMIC symbols can be handled by the general else case below
asm.comment('guard object is static symbol')
assert_equal(8, C.RUBY_SPECIAL_SHIFT)
asm.cmp(BytePtr[*obj_opnd], C.RUBY_SYMBOL_FLAG)
jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
elsif known_klass == Float && flonum?(comptime_obj)
# We will guard flonum vs heap float as though they were separate classes
asm.comment('guard object is flonum')
asm.mov(:rax, obj_opnd)
asm.and(:rax, C.RUBY_FLONUM_MASK)
asm.cmp(:rax, C.RUBY_FLONUM_FLAG)
jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
elsif known_klass.singleton_class?
asm.comment('guard known object with singleton class')
asm.mov(:rax, C.to_value(comptime_obj))
asm.cmp(obj_opnd, :rax)
jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
else
# Load memory to a register
asm.mov(:rax, obj_opnd)
obj_opnd = :rax
# Check that the receiver is a heap object
# Note: if we get here, the class doesn't have immediate instances.
asm.comment('guard not immediate')
asm.test(obj_opnd, C.RUBY_IMMEDIATE_MASK)
jit_chain_guard(:jnz, jit, ctx, asm, side_exit, limit:)
asm.cmp(obj_opnd, Qfalse)
jit_chain_guard(:je, jit, ctx, asm, side_exit, limit:)
# Bail if receiver class is different from known_klass
klass_opnd = [obj_opnd, C.RBasic.offsetof(:klass)]
asm.comment("guard known class #{known_klass}")
asm.mov(:rcx, to_value(known_klass))
asm.cmp(klass_opnd, :rcx)
jit_chain_guard(:jne, jit, ctx, asm, side_exit, limit:)
end
end
# @param jit [RubyVM::MJIT::JITState]
def two_fixnums_on_stack?(jit)
comptime_recv = jit.peek_at_stack(1)
comptime_arg = jit.peek_at_stack(0)
return fixnum?(comptime_recv) && fixnum?(comptime_arg)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def guard_two_fixnums(jit, ctx, asm, side_exit)
# Get stack operands without popping them
arg1 = ctx.stack_opnd(0)
arg0 = ctx.stack_opnd(1)
asm.comment('guard arg0 fixnum')
asm.test(arg0, C.RUBY_FIXNUM_FLAG)
jit_chain_guard(:jz, jit, ctx, asm, side_exit)
# TODO: upgrade type, and skip the check when possible
asm.comment('guard arg1 fixnum')
asm.test(arg1, C.RUBY_FIXNUM_FLAG)
jit_chain_guard(:jz, jit, ctx, asm, side_exit)
# TODO: upgrade type, and skip the check when possible
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_fixnum_cmp(jit, ctx, asm, opcode:, bop:)
opcode => :cmovl | :cmovle | :cmovg | :cmovge
unless jit.at_current_insn?
defer_compilation(jit, ctx, asm)
return EndBlock
end
comptime_recv = jit.peek_at_stack(1)
comptime_obj = jit.peek_at_stack(0)
if fixnum?(comptime_recv) && fixnum?(comptime_obj)
# Generate a side exit before popping operands
side_exit = side_exit(jit, ctx)
unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, bop)
return CantCompile
end
obj_opnd = ctx.stack_pop
recv_opnd = ctx.stack_pop
asm.comment('guard recv is fixnum') # TODO: skip this with type information
asm.test(recv_opnd, C.RUBY_FIXNUM_FLAG)
asm.jz(side_exit)
asm.comment('guard obj is fixnum') # TODO: skip this with type information
asm.test(obj_opnd, C.RUBY_FIXNUM_FLAG)
asm.jz(side_exit)
asm.mov(:rax, obj_opnd)
asm.cmp(recv_opnd, :rax)
asm.mov(:rax, Qfalse)
asm.mov(:rcx, Qtrue)
asm.public_send(opcode, :rax, :rcx)
dst_opnd = ctx.stack_push
asm.mov(dst_opnd, :rax)
KeepCompiling
else
opt_send_without_block(jit, ctx, asm)
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_equality_specialized(jit, ctx, asm, gen_eq)
# Create a side-exit to fall back to the interpreter
side_exit = side_exit(jit, ctx)
a_opnd = ctx.stack_opnd(1)
b_opnd = ctx.stack_opnd(0)
comptime_a = jit.peek_at_stack(1)
comptime_b = jit.peek_at_stack(0)
if two_fixnums_on_stack?(jit)
unless Invariants.assume_bop_not_redefined(jit, C.INTEGER_REDEFINED_OP_FLAG, C.BOP_EQ)
return false
end
guard_two_fixnums(jit, ctx, asm, side_exit)
asm.comment('check fixnum equality')
asm.mov(:rax, a_opnd)
asm.mov(:rcx, b_opnd)
asm.cmp(:rax, :rcx)
asm.mov(:rax, gen_eq ? Qfalse : Qtrue)
asm.mov(:rcx, gen_eq ? Qtrue : Qfalse)
asm.cmove(:rax, :rcx)
# Push the output on the stack
ctx.stack_pop(2)
dst = ctx.stack_push
asm.mov(dst, :rax)
true
elsif comptime_a.class == String && comptime_b.class == String
unless Invariants.assume_bop_not_redefined(jit, C.STRING_REDEFINED_OP_FLAG, C.BOP_EQ)
# if overridden, emit the generic version
return false
end
# Guard that a is a String
jit_guard_known_klass(jit, ctx, asm, comptime_a.class, a_opnd, comptime_a, side_exit)
equal_label = asm.new_label(:equal)
ret_label = asm.new_label(:ret)
# If they are equal by identity, return true
asm.mov(:rax, a_opnd)
asm.mov(:rcx, b_opnd)
asm.cmp(:rax, :rcx)
asm.je(equal_label)
# Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard)
# Note: any T_STRING is valid here, but we check for a ::String for simplicity
# To pass a mutable static variable (rb_cString) requires an unsafe block
jit_guard_known_klass(jit, ctx, asm, comptime_b.class, b_opnd, comptime_b, side_exit)
asm.comment('call rb_str_eql_internal')
asm.mov(C_ARGS[0], a_opnd)
asm.mov(C_ARGS[1], b_opnd)
asm.call(gen_eq ? C.rb_str_eql_internal : C.rb_str_neq_internal)
# Push the output on the stack
ctx.stack_pop(2)
dst = ctx.stack_push
asm.mov(dst, C_RET)
asm.jmp(ret_label)
asm.write_label(equal_label)
asm.mov(dst, gen_eq ? Qtrue : Qfalse)
asm.write_label(ret_label)
true
else
false
end
end
# Note: This clobbers :rax
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_prepare_routine_call(jit, ctx, asm)
jit.record_boundary_patch_point = true
jit_save_pc(jit, asm)
jit_save_sp(jit, ctx, asm)
end
# Note: This clobbers :rax
# @param jit [RubyVM::MJIT::JITState]
# @param asm [RubyVM::MJIT::Assembler]
def jit_save_pc(jit, asm, comment: 'save PC to CFP')
next_pc = jit.pc + jit.insn.len * C.VALUE.size # Use the next one for backtrace and side exits
asm.comment(comment)
asm.mov(:rax, next_pc)
asm.mov([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_save_sp(jit, ctx, asm)
if ctx.sp_offset != 0
asm.comment('save SP to CFP')
asm.lea(SP, ctx.sp_opnd)
asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP)
ctx.sp_offset = 0
end
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jump_to_next_insn(jit, ctx, asm)
reset_depth = ctx.dup
reset_depth.chain_depth = 0
next_pc = jit.pc + jit.insn.len * C.VALUE.size
# We are at the end of the current instruction. Record the boundary.
if jit.record_boundary_patch_point
exit_pos = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_side_exit(next_pc, ctx, ocb_asm)
@ocb.write(ocb_asm)
end
Invariants.record_global_inval_patch(asm, exit_pos)
jit.record_boundary_patch_point = false
end
stub_next_block(jit.iseq, next_pc, reset_depth, asm, comment: 'jump_to_next_insn')
end
# rb_vm_check_ints
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_check_ints(jit, ctx, asm)
asm.comment('RUBY_VM_CHECK_INTS(ec)')
asm.mov(:eax, [EC, C.rb_execution_context_t.offsetof(:interrupt_flag)])
asm.test(:eax, :eax)
asm.jnz(side_exit(jit, ctx))
end
# See get_lvar_level in compile.c
def get_lvar_level(iseq)
level = 0
while iseq.to_i != iseq.body.local_iseq.to_i
level += 1
iseq = iseq.body.parent_iseq
end
return level
end
# GET_LEP
# @param jit [RubyVM::MJIT::JITState]
# @param asm [RubyVM::MJIT::Assembler]
def jit_get_lep(jit, asm, reg:)
level = get_lvar_level(jit.iseq)
jit_get_ep(asm, level, reg:)
end
# vm_get_ep
# @param asm [RubyVM::MJIT::Assembler]
def jit_get_ep(asm, level, reg:)
asm.mov(reg, [CFP, C.rb_control_frame_t.offsetof(:ep)])
level.times do
# GET_PREV_EP: ep[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03
asm.mov(reg, [reg, C.VALUE.size * C.VM_ENV_DATA_INDEX_SPECVAL])
asm.and(reg, ~0x03)
end
end
# vm_getivar
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_getivar(jit, ctx, asm, comptime_obj, ivar_id, obj_opnd = nil)
side_exit = side_exit(jit, ctx)
starting_ctx = ctx.dup # copy for jit_chain_guard
# Guard not special const
if C.SPECIAL_CONST_P(comptime_obj)
asm.incr_counter(:getivar_special_const)
return CantCompile
end
case C.BUILTIN_TYPE(comptime_obj)
when C.T_OBJECT
# This is the only supported case for now (ROBJECT_IVPTR)
else
# General case. Call rb_ivar_get().
# VALUE rb_ivar_get(VALUE obj, ID id)
asm.comment('call rb_ivar_get()')
asm.mov(C_ARGS[0], obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)])
asm.mov(C_ARGS[1], ivar_id)
# The function could raise exceptions.
jit_prepare_routine_call(jit, ctx, asm) # clobbers obj_opnd and :rax
asm.call(C.rb_ivar_get)
if obj_opnd # attr_reader
ctx.stack_pop
end
# Push the ivar on the stack
out_opnd = ctx.stack_push
asm.mov(out_opnd, C_RET)
# Jump to next instruction. This allows guard chains to share the same successor.
jump_to_next_insn(jit, ctx, asm)
return EndBlock
end
asm.mov(:rax, obj_opnd ? obj_opnd : [CFP, C.rb_control_frame_t.offsetof(:self)])
guard_object_is_heap(asm, :rax, counted_exit(side_exit, :getivar_not_heap))
shape_id = C.rb_shape_get_shape_id(comptime_obj)
if shape_id == C.OBJ_TOO_COMPLEX_SHAPE_ID
asm.incr_counter(:getivar_too_complex)
return CantCompile
end
asm.comment('guard shape')
asm.cmp(DwordPtr[:rax, C.rb_shape_id_offset], shape_id)
jit_chain_guard(:jne, jit, starting_ctx, asm, counted_exit(side_exit, :getivar_megamorphic))
index = C.rb_shape_get_iv_index(shape_id, ivar_id)
if index
asm.comment('ROBJECT_IVPTR')
if C.FL_TEST_RAW(comptime_obj, C.ROBJECT_EMBED)
# Access embedded array
asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :ary) + (index * C.VALUE.size)])
else
# Pull out an ivar table on heap
asm.mov(:rax, [:rax, C.RObject.offsetof(:as, :heap, :ivptr)])
# Read the table
asm.mov(:rax, [:rax, index * C.VALUE.size])
end
val_opnd = :rax
else
val_opnd = Qnil
end
if obj_opnd
ctx.stack_pop # pop receiver for attr_reader
end
stack_opnd = ctx.stack_push
asm.mov(stack_opnd, val_opnd)
# Let guard chains share the same successor
jump_to_next_insn(jit, ctx, asm)
EndBlock
end
def jit_write_iv(asm, comptime_receiver, recv_reg, temp_reg, ivar_index, set_value, needs_extension)
# Compile time self is embedded and the ivar index lands within the object
embed_test_result = C.FL_TEST_RAW(comptime_receiver, C.ROBJECT_EMBED) && !needs_extension
if embed_test_result
# Find the IV offset
offs = C.RObject.offsetof(:as, :ary) + ivar_index * C.VALUE.size
# Write the IV
asm.comment('write IV')
asm.mov(temp_reg, set_value)
asm.mov([recv_reg, offs], temp_reg)
else
# Compile time value is *not* embedded.
# Get a pointer to the extended table
asm.mov(recv_reg, [recv_reg, C.RObject.offsetof(:as, :heap, :ivptr)])
# Write the ivar in to the extended table
asm.comment("write IV");
asm.mov(temp_reg, set_value)
asm.mov([recv_reg, C.VALUE.size * ivar_index], temp_reg)
end
end
# vm_caller_setup_arg_block
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_caller_setup_arg_block(jit, ctx, asm, ci, blockiseq, is_super)
if C.vm_ci_flag(ci) & C.VM_CALL_ARGS_BLOCKARG != 0
asm.incr_counter(:send_blockarg)
return CantCompile
elsif blockiseq != 0
return blockiseq
else
if is_super
# GET_BLOCK_HANDLER();
# Guard no block passed. Only handle that case for now.
asm.comment('guard no block given')
jit_get_lep(jit, asm, reg: :rax)
asm.cmp([:rax, C.VALUE.size * C.VM_ENV_DATA_INDEX_SPECVAL], C.VM_BLOCK_HANDLER_NONE)
asm.jne(counted_exit(side_exit(jit, ctx), :send_block_handler))
return C.VM_BLOCK_HANDLER_NONE
else
# Not implemented yet. Is this even necessary?
asm.incr_counter(:send_block_setup)
return CantCompile
end
end
end
# vm_search_method
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_search_method(jit, ctx, asm, mid, argc, flags, send_shift: 0)
assert_equal(true, jit.at_current_insn?)
# Generate a side exit
side_exit = side_exit(jit, ctx)
# kw_splat is not supported yet
if flags & C.VM_CALL_KW_SPLAT != 0
asm.incr_counter(:send_kw_splat)
return CantCompile
end
# Get a compile-time receiver and its class
recv_idx = argc + (flags & C.VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0)
recv_idx += send_shift
comptime_recv = jit.peek_at_stack(recv_idx)
comptime_recv_klass = C.rb_class_of(comptime_recv)
# Guard the receiver class (part of vm_search_method_fastpath)
recv_opnd = ctx.stack_opnd(recv_idx)
megamorphic_exit = counted_exit(side_exit, :send_klass_megamorphic)
jit_guard_known_klass(jit, ctx, asm, comptime_recv_klass, recv_opnd, comptime_recv, megamorphic_exit)
# Do method lookup (vm_cc_cme(cc) != NULL)
cme = C.rb_callable_method_entry(comptime_recv_klass, mid)
if cme.nil?
asm.incr_counter(:send_missing_cme)
return CantCompile # We don't support vm_call_method_name
end
# Invalidate on redefinition (part of vm_search_method_fastpath)
Invariants.assume_method_lookup_stable(jit, cme)
return cme
end
def jit_search_super_method(jit, ctx, asm, mid, argc, flags)
assert_equal(true, jit.at_current_insn?)
me = C.rb_vm_frame_method_entry(jit.cfp)
if me.nil?
return CantCompile
end
# FIXME: We should track and invalidate this block when this cme is invalidated
current_defined_class = me.defined_class
mid = me.def.original_id
if me.to_i != C.rb_callable_method_entry(current_defined_class, me.called_id).to_i
# Though we likely could generate this call, as we are only concerned
# with the method entry remaining valid, assume_method_lookup_stable
# below requires that the method lookup matches as well
return CantCompile
end
# vm_search_normal_superclass
rbasic_klass = C.to_ruby(C.RBasic.new(C.to_value(current_defined_class)).klass)
if C.BUILTIN_TYPE(current_defined_class) == C.RUBY_T_ICLASS && C.BUILTIN_TYPE(rbasic_klass) == C.RUBY_T_MODULE && \
C.FL_TEST_RAW(rbasic_klass, C.RMODULE_IS_REFINEMENT) != 0
return CantCompile
end
comptime_superclass = C.rb_class_get_superclass(current_defined_class)
# Don't JIT calls that aren't simple
# Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block.
if flags & C.VM_CALL_KWARG != 0
asm.incr_counter(:send_kwarg)
return CantCompile
end
if flags & C.VM_CALL_KW_SPLAT != 0
asm.incr_counter(:send_kw_splat)
return CantCompile
end
if flags & C.VM_CALL_ARGS_BLOCKARG != 0
asm.incr_counter(:send_blockarg)
return CantCompile
end
# Ensure we haven't rebound this method onto an incompatible class.
# In the interpreter we try to avoid making this check by performing some
# cheaper calculations first, but since we specialize on the method entry
# and so only have to do this once at compile time this is fine to always
# check and side exit.
comptime_recv = jit.peek_at_stack(argc)
unless C.rb_obj_is_kind_of(comptime_recv, current_defined_class)
return CantCompile
end
# Do method lookup
cme = C.rb_callable_method_entry(comptime_superclass, mid)
if cme.nil?
return CantCompile
end
# workaround -- TODO: Why does this happen?
if me.to_i == cme.to_i
asm.incr_counter(:invokesuper_same_me)
return CantCompile
end
# Check that we'll be able to write this method dispatch before generating checks
cme_def_type = cme.def.type
if cme_def_type != C.VM_METHOD_TYPE_ISEQ && cme_def_type != C.VM_METHOD_TYPE_CFUNC
# others unimplemented
return CantCompile
end
# Guard that the receiver has the same class as the one from compile time
side_exit = side_exit(jit, ctx)
asm.comment('guard known me')
jit_get_lep(jit, asm, reg: :rax)
asm.mov(:rcx, me.to_i)
asm.cmp([:rax, C.VALUE.size * C.VM_ENV_DATA_INDEX_ME_CREF], :rcx)
asm.jne(counted_exit(side_exit, :invokesuper_me_changed))
# We need to assume that both our current method entry and the super
# method entry we invoke remain stable
Invariants.assume_method_lookup_stable(jit, me)
Invariants.assume_method_lookup_stable(jit, cme)
return cme
end
# vm_call_general
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_general(jit, ctx, asm, mid, argc, flags, cme, block_handler)
jit_call_method(jit, ctx, asm, mid, argc, flags, cme, block_handler)
end
# vm_call_method
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
# @param send_shift [Integer] The number of shifts needed for VM_CALL_OPT_SEND
def jit_call_method(jit, ctx, asm, mid, argc, flags, cme, block_handler, send_shift: 0)
# The main check of vm_call_method before vm_call_method_each_type
case C.METHOD_ENTRY_VISI(cme)
when C.METHOD_VISI_PUBLIC
# You can always call public methods
when C.METHOD_VISI_PRIVATE
# Allow only callsites without a receiver
if flags & C.VM_CALL_FCALL == 0
asm.incr_counter(:send_private)
return CantCompile
end
when C.METHOD_VISI_PROTECTED
asm.incr_counter(:send_protected)
return CantCompile # TODO: support this
else
# TODO: Change them to a constant and use case-in instead
raise 'unreachable'
end
# Get a compile-time receiver
recv_idx = argc + (flags & C.VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0)
recv_idx += send_shift
comptime_recv = jit.peek_at_stack(recv_idx)
recv_opnd = ctx.stack_opnd(recv_idx)
jit_call_method_each_type(jit, ctx, asm, argc, flags, cme, comptime_recv, recv_opnd, block_handler, send_shift:)
end
# vm_call_method_each_type
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_method_each_type(jit, ctx, asm, argc, flags, cme, comptime_recv, recv_opnd, block_handler, send_shift:)
case cme.def.type
when C.VM_METHOD_TYPE_ISEQ
jit_call_iseq_setup(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
when C.VM_METHOD_TYPE_NOTIMPLEMENTED
asm.incr_counter(:send_notimplemented)
return CantCompile
when C.VM_METHOD_TYPE_CFUNC
jit_call_cfunc(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
when C.VM_METHOD_TYPE_ATTRSET
asm.incr_counter(:send_attrset)
return CantCompile
when C.VM_METHOD_TYPE_IVAR
jit_call_ivar(jit, ctx, asm, cme, flags, argc, comptime_recv, recv_opnd, send_shift:)
when C.VM_METHOD_TYPE_MISSING
asm.incr_counter(:send_missing)
return CantCompile
when C.VM_METHOD_TYPE_BMETHOD
asm.incr_counter(:send_bmethod)
return CantCompile
when C.VM_METHOD_TYPE_ALIAS
asm.incr_counter(:send_alias)
return CantCompile
when C.VM_METHOD_TYPE_OPTIMIZED
jit_call_optimized(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
when C.VM_METHOD_TYPE_UNDEF
asm.incr_counter(:send_undef)
return CantCompile
when C.VM_METHOD_TYPE_ZSUPER
asm.incr_counter(:send_zsuper)
return CantCompile
when C.VM_METHOD_TYPE_REFINED
asm.incr_counter(:send_refined)
return CantCompile
else
asm.incr_counter(:send_unknown_type)
return CantCompile
end
end
# vm_call_iseq_setup
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_iseq_setup(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
iseq = def_iseq_ptr(cme.def)
opt_pc = jit_callee_setup_arg(jit, ctx, asm, flags, argc, iseq)
if opt_pc == CantCompile
return CantCompile
end
if flags & C.VM_CALL_TAILCALL != 0
# We don't support vm_call_iseq_setup_tailcall
asm.incr_counter(:send_tailcall)
return CantCompile
end
jit_call_iseq_setup_normal(jit, ctx, asm, cme, flags, argc, iseq, block_handler, opt_pc, send_shift:)
end
# vm_call_iseq_setup_normal (vm_call_iseq_setup_2 -> vm_call_iseq_setup_normal)
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_iseq_setup_normal(jit, ctx, asm, cme, flags, argc, iseq, block_handler, opt_pc, send_shift:)
# We will not have side exits from here. Adjust the stack.
if flags & C.VM_CALL_OPT_SEND != 0
jit_call_opt_send_shift_stack(ctx, asm, argc, send_shift:)
end
# Save caller SP and PC before pushing a callee frame for backtrace and side exits
asm.comment('save SP to caller CFP')
recv_idx = argc + (flags & C.VM_CALL_ARGS_BLOCKARG != 0 ? 1 : 0)
# Skip setting this to SP register. This cfp->sp will be copied to SP on leave insn.
asm.lea(:rax, ctx.sp_opnd(C.VALUE.size * -(1 + recv_idx))) # Pop receiver and arguments to prepare for side exits
asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], :rax)
jit_save_pc(jit, asm, comment: 'save PC to caller CFP')
frame_type = C.VM_FRAME_MAGIC_METHOD | C.VM_ENV_FLAG_LOCAL
jit_push_frame(
jit, ctx, asm, cme, flags, argc, frame_type, block_handler,
iseq: iseq,
local_size: iseq.body.local_table_size - iseq.body.param.size,
stack_max: iseq.body.stack_max,
)
# Jump to a stub for the callee ISEQ
callee_ctx = Context.new
pc = (iseq.body.iseq_encoded + opt_pc).to_i
stub_next_block(iseq, pc, callee_ctx, asm)
EndBlock
end
# vm_call_cfunc
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_cfunc(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
if jit_caller_setup_arg(jit, ctx, asm, flags) == CantCompile
return CantCompile
end
if jit_caller_remove_empty_kw_splat(jit, ctx, asm, flags) == CantCompile
return CantCompile
end
jit_call_cfunc_with_frame(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
end
# jit_call_cfunc_with_frame
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_cfunc_with_frame(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
cfunc = cme.def.body.cfunc
if argc + 1 > 6
asm.incr_counter(:send_cfunc_too_many_args)
return CantCompile
end
frame_type = C.VM_FRAME_MAGIC_CFUNC | C.VM_FRAME_FLAG_CFRAME | C.VM_ENV_FLAG_LOCAL
if flags & C.VM_CALL_KW_SPLAT != 0
frame_type |= C.VM_FRAME_FLAG_CFRAME_KW
end
# EXEC_EVENT_HOOK: RUBY_EVENT_C_CALL and RUBY_EVENT_C_RETURN
if C.rb_mjit_global_events & (C.RUBY_EVENT_C_CALL | C.RUBY_EVENT_C_RETURN) != 0
asm.incr_counter(:send_c_tracing)
return CantCompile
end
# rb_check_arity
if cfunc.argc >= 0 && argc != cfunc.argc
asm.incr_counter(:send_arity)
return CantCompile
end
if cfunc.argc == -2
asm.incr_counter(:send_cfunc_ruby_array_varg)
return CantCompile
end
# Delegate to codegen for C methods if we have it.
if flags & C.VM_CALL_KWARG == 0 && flags & C.VM_CALL_OPT_SEND == 0
known_cfunc_codegen = lookup_cfunc_codegen(cme.def)
if known_cfunc_codegen&.call(jit, ctx, asm, argc)
# cfunc codegen generated code. Terminate the block so
# there isn't multiple calls in the same block.
jump_to_next_insn(jit, ctx, asm)
return EndBlock
end
end
# We will not have side exits from here. Adjust the stack.
if flags & C.VM_CALL_OPT_SEND != 0
jit_call_opt_send_shift_stack(ctx, asm, argc, send_shift:)
end
# Check interrupts before SP motion to safely side-exit with the original SP.
jit_check_ints(jit, ctx, asm)
# Save caller SP and PC before pushing a callee frame for backtrace and side exits
asm.comment('save SP to caller CFP')
sp_index = -(1 + argc) # Pop receiver and arguments for side exits # TODO: subtract one more for VM_CALL_ARGS_BLOCKARG
asm.lea(SP, ctx.sp_opnd(C.VALUE.size * sp_index))
asm.mov([CFP, C.rb_control_frame_t.offsetof(:sp)], SP)
ctx.sp_offset = -sp_index
jit_save_pc(jit, asm, comment: 'save PC to caller CFP')
# Push a callee frame. SP register and ctx are not modified inside this.
jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, block_handler)
asm.comment('call C function')
case cfunc.argc
in (0..) # Non-variadic method
# Push receiver and args
(1 + argc).times do |i|
asm.mov(C_ARGS[i], ctx.stack_opnd(argc - i)) # TODO: +1 for VM_CALL_ARGS_BLOCKARG
end
in -1 # Variadic method: rb_f_puts(int argc, VALUE *argv, VALUE recv)
asm.mov(C_ARGS[0], argc)
asm.lea(C_ARGS[1], ctx.stack_opnd(argc - 1)) # argv
asm.mov(C_ARGS[2], ctx.stack_opnd(argc)) # recv
end
asm.mov(:rax, cfunc.func)
asm.call(:rax) # TODO: use rel32 if close enough
ctx.stack_pop(1 + argc)
Invariants.record_global_inval_patch(asm, @full_cfunc_return)
asm.comment('push the return value')
stack_ret = ctx.stack_push
asm.mov(stack_ret, C_RET)
asm.comment('pop the stack frame')
asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], CFP)
# Let guard chains share the same successor (ctx.sp_offset == 1)
assert_equal(1, ctx.sp_offset)
jump_to_next_insn(jit, ctx, asm)
EndBlock
end
# vm_call_ivar (+ part of vm_call_method_each_type)
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_ivar(jit, ctx, asm, cme, flags, argc, comptime_recv, recv_opnd, send_shift:)
if flags & C.VM_CALL_ARGS_SPLAT != 0
asm.incr_counter(:send_ivar_splat)
return CantCompile
end
if argc != 0
asm.incr_counter(:send_arity)
return CantCompile
end
# We don't support jit_call_opt_send_shift_stack for this yet.
if flags & C.VM_CALL_OPT_SEND != 0
asm.incr_counter(:send_ivar_opt_send)
return CantCompile
end
ivar_id = cme.def.body.attr.id
# Not handling block_handler
if flags & C.VM_CALL_ARGS_BLOCKARG != 0
asm.incr_counter(:send_ivar_blockarg)
return CantCompile
end
jit_getivar(jit, ctx, asm, comptime_recv, ivar_id, recv_opnd)
end
# vm_call_optimized
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_optimized(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
case cme.def.body.optimized.type
when C.OPTIMIZED_METHOD_TYPE_SEND
jit_call_opt_send(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
when C.OPTIMIZED_METHOD_TYPE_CALL
asm.incr_counter(:send_optimized_call)
return CantCompile
when C.OPTIMIZED_METHOD_TYPE_BLOCK_CALL
asm.incr_counter(:send_optimized_block_call)
return CantCompile
when C.OPTIMIZED_METHOD_TYPE_STRUCT_AREF
asm.incr_counter(:send_optimized_struct_aref)
return CantCompile
when C.OPTIMIZED_METHOD_TYPE_STRUCT_ASET
asm.incr_counter(:send_optimized_struct_aset)
return CantCompile
else
asm.incr_counter(:send_optimized_unknown_type)
return CantCompile
end
end
# vm_call_opt_send
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_opt_send(jit, ctx, asm, cme, flags, argc, block_handler, send_shift:)
if jit_caller_setup_arg(jit, ctx, asm, flags) == CantCompile
return CantCompile
end
if argc == 0
asm.incr_counter(:send_optimized_send_no_args)
return CantCompile
end
argc -= 1
# We aren't handling `send(:send, ...)` yet. This might work, but not tested yet.
if send_shift > 0
asm.incr_counter(:send_optimized_send_send)
return CantCompile
end
# Ideally, we want to shift the stack here, but it's not safe until you reach the point
# where you never exit. `send_shift` signals to lazily shift the stack by this amount.
send_shift += 1
kw_splat = flags & C.VM_CALL_KW_SPLAT != 0
jit_call_symbol(jit, ctx, asm, cme, C.VM_CALL_FCALL, argc, kw_splat, block_handler, send_shift:)
end
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_opt_send_shift_stack(ctx, asm, argc, send_shift:)
# We don't support `send(:send, ...)` for now.
assert_equal(1, send_shift)
asm.comment('shift stack')
(0...argc).reverse_each do |i|
opnd = ctx.stack_opnd(i)
opnd2 = ctx.stack_opnd(i + 1)
asm.mov(:rax, opnd)
asm.mov(opnd2, :rax)
end
ctx.stack_pop(1)
end
# vm_call_symbol
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_call_symbol(jit, ctx, asm, cme, flags, argc, kw_splat, block_handler, send_shift:)
flags |= C.VM_CALL_OPT_SEND | (kw_splat ? C.VM_CALL_KW_SPLAT : 0)
comptime_symbol = jit.peek_at_stack(argc)
if comptime_symbol.class != String && !static_symbol?(comptime_symbol)
asm.incr_counter(:send_optimized_send_not_sym_or_str)
return CantCompile
end
mid = C.get_symbol_id(comptime_symbol)
if mid == 0
asm.incr_counter(:send_optimized_send_null_mid)
return CantCompile
end
asm.comment("Guard #{comptime_symbol.inspect} is on stack")
class_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_class_changed)
jit_guard_known_klass(jit, ctx, asm, comptime_symbol.class, ctx.stack_opnd(argc), comptime_symbol, class_changed_exit)
asm.mov(C_ARGS[0], ctx.stack_opnd(argc))
asm.call(C.rb_get_symbol_id)
asm.cmp(C_RET, mid)
id_changed_exit = counted_exit(side_exit(jit, ctx), :send_optimized_send_mid_id_changed)
jit_chain_guard(:jne, jit, ctx, asm, id_changed_exit)
# rb_callable_method_entry_with_refinements
cme = jit_search_method(jit, ctx, asm, mid, argc, flags, send_shift:)
if cme == CantCompile
return CantCompile
end
if flags & C.VM_CALL_FCALL != 0
return jit_call_method(jit, ctx, asm, mid, argc, flags, cme, block_handler, send_shift:)
end
raise NotImplementedError # unreachable for now
end
# vm_push_frame
#
# Frame structure:
# | args | locals | cme/cref | block_handler/prev EP | frame type (EP here) | stack bottom (SP here)
#
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_push_frame(jit, ctx, asm, cme, flags, argc, frame_type, block_handler, iseq: nil, local_size: 0, stack_max: 0)
# CHECK_VM_STACK_OVERFLOW0: next_cfp <= sp + (local_size + stack_max)
asm.comment('stack overflow check')
asm.lea(:rax, ctx.sp_opnd(C.rb_control_frame_t.size + C.VALUE.size * (local_size + stack_max)))
asm.cmp(CFP, :rax)
asm.jbe(counted_exit(side_exit(jit, ctx), :send_stackoverflow))
if iseq
# This was not handled in jit_callee_setup_arg
opts_filled = argc - iseq.body.param.lead_num # TODO: kwarg
opts_missing = iseq.body.param.opt_num - opts_filled
local_size += opts_missing
end
local_size.times do |i|
asm.comment('set local variables') if i == 0
local_index = ctx.sp_offset + i
asm.mov([SP, C.VALUE.size * local_index], Qnil)
end
asm.comment('set up EP with managing data')
ep_offset = ctx.sp_offset + local_size + 2
# ep[-2]: cref_or_me
asm.mov(:rax, cme.to_i)
asm.mov([SP, C.VALUE.size * (ep_offset - 2)], :rax)
# ep[-1]: block handler or prev env ptr
if block_handler == C.VM_BLOCK_HANDLER_NONE
asm.mov([SP, C.VALUE.size * (ep_offset - 1)], C.VM_BLOCK_HANDLER_NONE)
else # assume blockiseq
asm.mov(:rax, block_handler)
asm.mov([CFP, C.rb_control_frame_t.offsetof(:block_code)], :rax)
asm.lea(:rax, [CFP, C.rb_control_frame_t.offsetof(:self)]) # VM_CFP_TO_CAPTURED_BLOCK
asm.or(:rax, 1) # VM_BH_FROM_ISEQ_BLOCK
asm.mov([SP, C.VALUE.size * (ep_offset - 1)], :rax)
end
# ep[-0]: ENV_FLAGS
asm.mov([SP, C.VALUE.size * (ep_offset - 0)], frame_type)
asm.comment('set up new frame')
cfp_offset = -C.rb_control_frame_t.size # callee CFP
# For ISEQ, JIT code will set it as needed. However, C func needs 0 there for svar frame detection.
if iseq.nil?
asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:pc)], 0)
end
asm.mov(:rax, iseq.to_i)
asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:iseq)], :rax)
self_index = ctx.sp_offset - (1 + argc) # TODO: +1 for VM_CALL_ARGS_BLOCKARG
asm.mov(:rax, [SP, C.VALUE.size * self_index])
asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:self)], :rax)
asm.lea(:rax, [SP, C.VALUE.size * ep_offset])
asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:ep)], :rax)
asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:block_code)], 0)
# Update SP register only for ISEQ calls. SP-relative operations should be done above this.
sp_reg = iseq ? SP : :rax
asm.lea(sp_reg, [SP, C.VALUE.size * (ctx.sp_offset + local_size + 3)])
asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:sp)], sp_reg)
asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:__bp__)], sp_reg) # TODO: get rid of this!!
# cfp->jit_return is used only for ISEQs
if iseq
# Stub cfp->jit_return
return_ctx = ctx.dup
return_ctx.stack_size -= argc # Pop args # TODO: subtract 1 more for VM_CALL_ARGS_BLOCKARG
return_ctx.sp_offset = 1 # SP is in the position after popping a receiver and arguments
branch_stub = BranchStub.new(
iseq: jit.iseq,
shape: Default,
target0: BranchTarget.new(ctx: return_ctx, pc: jit.pc + jit.insn.len * C.VALUE.size),
)
branch_stub.target0.address = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_branch_stub(return_ctx, ocb_asm, branch_stub, true)
@ocb.write(ocb_asm)
end
branch_stub.compile = proc do |branch_asm|
branch_asm.comment('set jit_return to callee CFP')
branch_asm.stub(branch_stub) do
case branch_stub.shape
in Default
branch_asm.mov(:rax, branch_stub.target0.address)
branch_asm.mov([CFP, cfp_offset + C.rb_control_frame_t.offsetof(:jit_return)], :rax)
end
end
end
branch_stub.compile.call(asm)
end
asm.comment('switch to callee CFP')
# Update CFP register only for ISEQ calls
cfp_reg = iseq ? CFP : :rax
asm.lea(cfp_reg, [CFP, cfp_offset])
asm.mov([EC, C.rb_execution_context_t.offsetof(:cfp)], cfp_reg)
end
# vm_callee_setup_arg: Set up args and return opt_pc (or CantCompile)
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_callee_setup_arg(jit, ctx, asm, flags, argc, iseq)
if flags & C.VM_CALL_KW_SPLAT == 0
if C.rb_simple_iseq_p(iseq)
if jit_caller_setup_arg(jit, ctx, asm, flags) == CantCompile
return CantCompile
end
if jit_caller_remove_empty_kw_splat(jit, ctx, asm, flags) == CantCompile
return CantCompile
end
if argc != iseq.body.param.lead_num
# argument_arity_error
return CantCompile
end
return 0
elsif C.rb_iseq_only_optparam_p(iseq)
if jit_caller_setup_arg(jit, ctx, asm, flags) == CantCompile
return CantCompile
end
if jit_caller_remove_empty_kw_splat(jit, ctx, asm, flags) == CantCompile
return CantCompile
end
lead_num = iseq.body.param.lead_num
opt_num = iseq.body.param.opt_num
opt = argc - lead_num
if opt < 0 || opt > opt_num
asm.incr_counter(:send_arity)
return CantCompile
end
# Qnil push is handled in jit_push_frame
return iseq.body.param.opt_table[opt]
else
# We don't support the remaining `else if`s yet.
asm.incr_counter(:send_iseq_not_only_optparam)
return CantCompile
end
end
# We don't support setup_parameters_complex
asm.incr_counter(:send_iseq_kw_splat)
return CantCompile
end
# CALLER_SETUP_ARG: Return CantCompile if not supported
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_caller_setup_arg(jit, ctx, asm, flags)
if flags & C.VM_CALL_ARGS_SPLAT != 0
# We don't support vm_caller_setup_arg_splat
asm.incr_counter(:send_args_splat)
return CantCompile
end
if flags & (C.VM_CALL_KWARG | C.VM_CALL_KW_SPLAT) != 0
# We don't support keyword args either
asm.incr_counter(:send_kwarg)
return CantCompile
end
end
# CALLER_REMOVE_EMPTY_KW_SPLAT: Return CantCompile if not supported
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def jit_caller_remove_empty_kw_splat(jit, ctx, asm, flags)
if (flags & C.VM_CALL_KW_SPLAT) > 0
# We don't support removing the last Hash argument
asm.incr_counter(:send_kw_splat)
return CantCompile
end
end
# Generate RARRAY_LEN. For array_opnd, use Opnd::Reg to reduce memory access,
# and use Opnd::Mem to save registers.
def jit_array_len(asm, array_reg, len_reg)
asm.comment('get array length for embedded or heap')
# Pull out the embed flag to check if it's an embedded array.
asm.mov(len_reg, [array_reg, C.RBasic.offsetof(:flags)])
# Get the length of the array
asm.and(len_reg, C.RARRAY_EMBED_LEN_MASK)
asm.sar(len_reg, C.RARRAY_EMBED_LEN_SHIFT)
# Conditionally move the length of the heap array
asm.test([array_reg, C.RBasic.offsetof(:flags)], C.RARRAY_EMBED_FLAG)
# Select the array length value
asm.cmovz(len_reg, [array_reg, C.RArray.offsetof(:as, :heap, :len)])
end
def assert_equal(left, right)
if left != right
raise "'#{left.inspect}' was not '#{right.inspect}'"
end
end
def fixnum?(obj)
(C.to_value(obj) & C.RUBY_FIXNUM_FLAG) == C.RUBY_FIXNUM_FLAG
end
def flonum?(obj)
(C.to_value(obj) & C.RUBY_FLONUM_MASK) == C.RUBY_FLONUM_FLAG
end
def static_symbol?(obj)
(C.to_value(obj) & 0xff) == C.RUBY_SYMBOL_FLAG
end
def shape_too_complex?(obj)
C.rb_shape_get_shape_id(obj) == C.OBJ_TOO_COMPLEX_SHAPE_ID
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
# @param asm [RubyVM::MJIT::Assembler]
def defer_compilation(jit, ctx, asm)
# Make a stub to compile the current insn
stub_next_block(jit.iseq, jit.pc, ctx, asm, comment: 'defer_compilation')
end
def stub_next_block(iseq, pc, ctx, asm, comment: 'stub_next_block')
branch_stub = BranchStub.new(
iseq:,
shape: Default,
target0: BranchTarget.new(ctx:, pc:),
)
branch_stub.target0.address = Assembler.new.then do |ocb_asm|
@exit_compiler.compile_branch_stub(ctx, ocb_asm, branch_stub, true)
@ocb.write(ocb_asm)
end
branch_stub.compile = proc do |branch_asm|
branch_asm.comment(comment)
branch_asm.stub(branch_stub) do
case branch_stub.shape
in Default
branch_asm.jmp(branch_stub.target0.address)
in Next0
# Just write the block without a jump
end
end
end
branch_stub.compile.call(asm)
end
# @param jit [RubyVM::MJIT::JITState]
# @param ctx [RubyVM::MJIT::Context]
def side_exit(jit, ctx)
if side_exit = jit.side_exits[jit.pc]
return side_exit
end
asm = Assembler.new
@exit_compiler.compile_side_exit(jit.pc, ctx, asm)
jit.side_exits[jit.pc] = @ocb.write(asm)
end
def counted_exit(side_exit, name)
asm = Assembler.new
asm.incr_counter(name)
asm.jmp(side_exit)
@ocb.write(asm)
end
def def_iseq_ptr(cme_def)
C.rb_iseq_check(cme_def.body.iseq.iseqptr)
end
def to_value(obj)
GC_REFS << obj
C.to_value(obj)
end
end
end