ruby/yarp/unescape.c

560 строки
22 KiB
C

#include "yarp/unescape.h"
/******************************************************************************/
/* Character checks */
/******************************************************************************/
static inline bool
yp_char_is_hexadecimal_digits(const char *c, size_t length) {
for (size_t index = 0; index < length; index++) {
if (!yp_char_is_hexadecimal_digit(c[index])) {
return false;
}
}
return true;
}
/******************************************************************************/
/* Lookup tables for characters */
/******************************************************************************/
// This is a lookup table for unescapes that only take up a single character.
static const unsigned char unescape_chars[] = {
['\''] = '\'',
['\\'] = '\\',
['a'] = '\a',
['b'] = '\b',
['e'] = '\033',
['f'] = '\f',
['n'] = '\n',
['r'] = '\r',
['s'] = ' ',
['t'] = '\t',
['v'] = '\v'
};
// This is a lookup table for whether or not an ASCII character is printable.
static const bool ascii_printable_chars[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
};
static inline bool
char_is_ascii_printable(const char c) {
unsigned char v = (unsigned char) c;
return (v < 0x80) && ascii_printable_chars[v];
}
/******************************************************************************/
/* Unescaping for segments */
/******************************************************************************/
// Scan the 1-3 digits of octal into the value. Returns the number of digits
// scanned.
static inline size_t
unescape_octal(const char *backslash, unsigned char *value) {
*value = (unsigned char) (backslash[1] - '0');
if (!yp_char_is_octal_digit(backslash[2])) {
return 2;
}
*value = (*value << 3) | (backslash[2] - '0');
if (!yp_char_is_octal_digit(backslash[3])) {
return 3;
}
*value = (*value << 3) | (backslash[3] - '0');
return 4;
}
// Convert a hexadecimal digit into its equivalent value.
static inline unsigned char
unescape_hexadecimal_digit(const char value) {
return (value <= '9') ? (unsigned char) (value - '0') : (value & 0x7) + 9;
}
// Scan the 1-2 digits of hexadecimal into the value. Returns the number of
// digits scanned.
static inline size_t
unescape_hexadecimal(const char *backslash, unsigned char *value) {
*value = unescape_hexadecimal_digit(backslash[2]);
if (!yp_char_is_hexadecimal_digit(backslash[3])) {
return 3;
}
*value = (*value << 4) | unescape_hexadecimal_digit(backslash[3]);
return 4;
}
// Scan the 4 digits of a Unicode escape into the value. Returns the number of
// digits scanned. This function assumes that the characters have already been
// validated.
static inline void
unescape_unicode(const char *string, size_t length, uint32_t *value) {
*value = 0;
for (size_t index = 0; index < length; index++) {
if (index != 0) *value <<= 4;
*value |= unescape_hexadecimal_digit(string[index]);
}
}
// Accepts the pointer to the string to write the unicode value along with the
// 32-bit value to write. Writes the UTF-8 representation of the value to the
// string and returns the number of bytes written.
static inline size_t
unescape_unicode_write(char *dest, uint32_t value, const char *start, const char *end, yp_list_t *error_list) {
unsigned char *bytes = (unsigned char *) dest;
if (value <= 0x7F) {
// 0xxxxxxx
bytes[0] = value;
return 1;
}
if (value <= 0x7FF) {
// 110xxxxx 10xxxxxx
bytes[0] = 0xC0 | (value >> 6);
bytes[1] = 0x80 | (value & 0x3F);
return 2;
}
if (value <= 0xFFFF) {
// 1110xxxx 10xxxxxx 10xxxxxx
bytes[0] = 0xE0 | (value >> 12);
bytes[1] = 0x80 | ((value >> 6) & 0x3F);
bytes[2] = 0x80 | (value & 0x3F);
return 3;
}
// At this point it must be a 4 digit UTF-8 representation. If it's not, then
// the input is invalid.
if (value <= 0x10FFFF) {
// 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
bytes[0] = 0xF0 | (value >> 18);
bytes[1] = 0x80 | ((value >> 12) & 0x3F);
bytes[2] = 0x80 | ((value >> 6) & 0x3F);
bytes[3] = 0x80 | (value & 0x3F);
return 4;
}
// If we get here, then the value is too big. This is an error, but we don't
// want to just crash, so instead we'll add an error to the error list and put
// in a replacement character instead.
yp_diagnostic_list_append(error_list, start, end, "Invalid Unicode escape sequence.");
bytes[0] = 0xEF;
bytes[1] = 0xBF;
bytes[2] = 0xBD;
return 3;
}
typedef enum {
YP_UNESCAPE_FLAG_NONE = 0,
YP_UNESCAPE_FLAG_CONTROL = 1,
YP_UNESCAPE_FLAG_META = 2,
YP_UNESCAPE_FLAG_EXPECT_SINGLE = 4
} yp_unescape_flag_t;
// Unescape a single character value based on the given flags.
static inline unsigned char
unescape_char(const unsigned char value, const unsigned char flags) {
unsigned char unescaped = value;
if (flags & YP_UNESCAPE_FLAG_CONTROL) {
unescaped &= 0x1f;
}
if (flags & YP_UNESCAPE_FLAG_META) {
unescaped |= 0x80;
}
return unescaped;
}
// Read a specific escape sequence into the given destination.
static const char *
unescape(char *dest, size_t *dest_length, const char *backslash, const char *end, yp_list_t *error_list, const unsigned char flags, bool write_to_str) {
switch (backslash[1]) {
// \a \b \e \f \n \r \s \t \v
case '\r': {
// if this is an \r\n we need to escape both
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char(unescape_chars[(unsigned char) backslash[1]], flags);
}
if (backslash + 2 < end && backslash[2] == '\n') {
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char(unescape_chars[(unsigned char) backslash[2]], flags);
}
return backslash + 3;
}
return backslash + 2;
}
case 'a':
case 'b':
case 'e':
case 'f':
case 'n':
case 'r':
case 's':
case 't':
case 'v':
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char(unescape_chars[(unsigned char) backslash[1]], flags);
}
return backslash + 2;
// \nnn octal bit pattern, where nnn is 1-3 octal digits ([0-7])
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9': {
unsigned char value;
const char *cursor = backslash + unescape_octal(backslash, &value);
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char(value, flags);
}
return cursor;
}
// \xnn hexadecimal bit pattern, where nn is 1-2 hexadecimal digits ([0-9a-fA-F])
case 'x': {
unsigned char value;
const char *cursor = backslash + unescape_hexadecimal(backslash, &value);
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char(value, flags);
}
return cursor;
}
// \u{nnnn ...} Unicode character(s), where each nnnn is 1-6 hexadecimal digits ([0-9a-fA-F])
// \unnnn Unicode character, where nnnn is exactly 4 hexadecimal digits ([0-9a-fA-F])
case 'u': {
if ((flags & YP_UNESCAPE_FLAG_CONTROL) | (flags & YP_UNESCAPE_FLAG_META)) {
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Unicode escape sequence cannot be used with control or meta flags.");
return backslash + 2;
}
if ((backslash + 3) < end && backslash[2] == '{') {
const char *unicode_cursor = backslash + 3;
const char *extra_codepoints_start = NULL;
int codepoints_count = 0;
unicode_cursor += yp_strspn_whitespace(unicode_cursor, end - unicode_cursor);
while ((*unicode_cursor != '}') && (unicode_cursor < end)) {
const char *unicode_start = unicode_cursor;
size_t hexadecimal_length = yp_strspn_hexadecimal_digit(unicode_cursor, end - unicode_cursor);
// \u{nnnn} character literal allows only 1-6 hexadecimal digits
if (hexadecimal_length > 6)
yp_diagnostic_list_append(error_list, unicode_cursor, unicode_cursor + hexadecimal_length, "invalid Unicode escape.");
// there are not hexadecimal characters
if (hexadecimal_length == 0) {
yp_diagnostic_list_append(error_list, unicode_cursor, unicode_cursor + hexadecimal_length, "unterminated Unicode escape");
return unicode_cursor;
}
unicode_cursor += hexadecimal_length;
codepoints_count++;
if (flags & YP_UNESCAPE_FLAG_EXPECT_SINGLE && codepoints_count == 2)
extra_codepoints_start = unicode_start;
uint32_t value;
unescape_unicode(unicode_start, (size_t) (unicode_cursor - unicode_start), &value);
if (write_to_str) {
*dest_length += unescape_unicode_write(dest + *dest_length, value, unicode_start, unicode_cursor, error_list);
}
unicode_cursor += yp_strspn_whitespace(unicode_cursor, end - unicode_cursor);
}
// ?\u{nnnn} character literal should contain only one codepoint and cannot be like ?\u{nnnn mmmm}
if (flags & YP_UNESCAPE_FLAG_EXPECT_SINGLE && codepoints_count > 1)
yp_diagnostic_list_append(error_list, extra_codepoints_start, unicode_cursor - 1, "Multiple codepoints at single character literal");
return unicode_cursor + 1;
}
if ((backslash + 2) < end && yp_char_is_hexadecimal_digits(backslash + 2, 4)) {
uint32_t value;
unescape_unicode(backslash + 2, 4, &value);
if (write_to_str) {
*dest_length += unescape_unicode_write(dest + *dest_length, value, backslash + 2, backslash + 6, error_list);
}
return backslash + 6;
}
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Invalid Unicode escape sequence");
return backslash + 2;
}
// \c\M-x meta control character, where x is an ASCII printable character
// \c? delete, ASCII 7Fh (DEL)
// \cx control character, where x is an ASCII printable character
case 'c':
if (backslash + 2 >= end) {
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
return end;
}
if (flags & YP_UNESCAPE_FLAG_CONTROL) {
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Control escape sequence cannot be doubled.");
return backslash + 2;
}
switch (backslash[2]) {
case '\\':
return unescape(dest, dest_length, backslash + 2, end, error_list, flags | YP_UNESCAPE_FLAG_CONTROL, write_to_str);
case '?':
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char(0x7f, flags);
}
return backslash + 3;
default: {
if (!char_is_ascii_printable(backslash[2])) {
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
return backslash + 2;
}
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char((const unsigned char) backslash[2], flags | YP_UNESCAPE_FLAG_CONTROL);
}
return backslash + 3;
}
}
// \C-x control character, where x is an ASCII printable character
// \C-? delete, ASCII 7Fh (DEL)
case 'C':
if (backslash + 3 >= end) {
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
return end;
}
if (flags & YP_UNESCAPE_FLAG_CONTROL) {
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Control escape sequence cannot be doubled.");
return backslash + 2;
}
if (backslash[2] != '-') {
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
return backslash + 2;
}
switch (backslash[3]) {
case '\\':
return unescape(dest, dest_length, backslash + 3, end, error_list, flags | YP_UNESCAPE_FLAG_CONTROL, write_to_str);
case '?':
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char(0x7f, flags);
}
return backslash + 4;
default:
if (!char_is_ascii_printable(backslash[3])) {
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Invalid control escape sequence");
return backslash + 2;
}
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char((const unsigned char) backslash[3], flags | YP_UNESCAPE_FLAG_CONTROL);
}
return backslash + 4;
}
// \M-\C-x meta control character, where x is an ASCII printable character
// \M-\cx meta control character, where x is an ASCII printable character
// \M-x meta character, where x is an ASCII printable character
case 'M': {
if (backslash + 3 >= end) {
yp_diagnostic_list_append(error_list, backslash, backslash + 1, "Invalid control escape sequence");
return end;
}
if (flags & YP_UNESCAPE_FLAG_META) {
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Meta escape sequence cannot be doubled.");
return backslash + 2;
}
if (backslash[2] != '-') {
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Invalid meta escape sequence");
return backslash + 2;
}
if (backslash[3] == '\\') {
return unescape(dest, dest_length, backslash + 3, end, error_list, flags | YP_UNESCAPE_FLAG_META, write_to_str);
}
if (char_is_ascii_printable(backslash[3])) {
if (write_to_str) {
dest[(*dest_length)++] = (char) unescape_char((const unsigned char) backslash[3], flags | YP_UNESCAPE_FLAG_META);
}
return backslash + 4;
}
yp_diagnostic_list_append(error_list, backslash, backslash + 2, "Invalid meta escape sequence");
return backslash + 3;
}
// In this case we're escaping something that doesn't need escaping.
default:
{
if (write_to_str) {
dest[(*dest_length)++] = backslash[1];
}
return backslash + 2;
}
}
}
/******************************************************************************/
/* Public functions and entrypoints */
/******************************************************************************/
// Unescape the contents of the given token into the given string using the
// given unescape mode. The supported escapes are:
//
// \a bell, ASCII 07h (BEL)
// \b backspace, ASCII 08h (BS)
// \t horizontal tab, ASCII 09h (TAB)
// \n newline (line feed), ASCII 0Ah (LF)
// \v vertical tab, ASCII 0Bh (VT)
// \f form feed, ASCII 0Ch (FF)
// \r carriage return, ASCII 0Dh (CR)
// \e escape, ASCII 1Bh (ESC)
// \s space, ASCII 20h (SPC)
// \\ backslash
// \nnn octal bit pattern, where nnn is 1-3 octal digits ([0-7])
// \xnn hexadecimal bit pattern, where nn is 1-2 hexadecimal digits ([0-9a-fA-F])
// \unnnn Unicode character, where nnnn is exactly 4 hexadecimal digits ([0-9a-fA-F])
// \u{nnnn ...} Unicode character(s), where each nnnn is 1-6 hexadecimal digits ([0-9a-fA-F])
// \cx or \C-x control character, where x is an ASCII printable character
// \M-x meta character, where x is an ASCII printable character
// \M-\C-x meta control character, where x is an ASCII printable character
// \M-\cx same as above
// \c\M-x same as above
// \c? or \C-? delete, ASCII 7Fh (DEL)
//
YP_EXPORTED_FUNCTION void
yp_unescape_manipulate_string(const char *value, size_t length, yp_string_t *string, yp_unescape_type_t unescape_type, yp_list_t *error_list) {
if (unescape_type == YP_UNESCAPE_NONE) {
// If we're not unescaping then we can reference the source directly.
yp_string_shared_init(string, value, value + length);
return;
}
const char *backslash = memchr(value, '\\', length);
if (backslash == NULL) {
// Here there are no escapes, so we can reference the source directly.
yp_string_shared_init(string, value, value + length);
return;
}
// Here we have found an escape character, so we need to handle all escapes
// within the string.
char *allocated = malloc(length);
if (allocated == NULL) {
yp_diagnostic_list_append(error_list, value, value + length, "Failed to allocate memory for unescaping.");
return;
}
yp_string_owned_init(string, allocated, length);
// This is the memory address where we're putting the unescaped string.
char *dest = string->as.owned.source;
size_t dest_length = 0;
// This is the current position in the source string that we're looking at.
// It's going to move along behind the backslash so that we can copy each
// segment of the string that doesn't contain an escape.
const char *cursor = value;
const char *end = value + length;
// For each escape found in the source string, we will handle it and update
// the moving cursor->backslash window.
while (backslash != NULL && backslash + 1 < end) {
assert(dest_length < length);
// This is the size of the segment of the string from the previous escape
// or the start of the string to the current escape.
size_t segment_size = (size_t) (backslash - cursor);
// Here we're going to copy everything up until the escape into the
// destination buffer.
memcpy(dest + dest_length, cursor, segment_size);
dest_length += segment_size;
switch (backslash[1]) {
case '\\':
case '\'':
dest[dest_length++] = (char) unescape_chars[(unsigned char) backslash[1]];
cursor = backslash + 2;
break;
default:
if (unescape_type == YP_UNESCAPE_MINIMAL) {
// In this case we're escaping something that doesn't need escaping.
dest[dest_length++] = '\\';
cursor = backslash + 1;
break;
}
// This is the only type of unescaping left. In this case we need to
// handle all of the different unescapes.
assert(unescape_type == YP_UNESCAPE_ALL);
cursor = unescape(dest, &dest_length, backslash, end, error_list, YP_UNESCAPE_FLAG_NONE, true);
break;
}
if (end > cursor) {
backslash = memchr(cursor, '\\', (size_t) (end - cursor));
} else {
backslash = NULL;
}
}
// We need to copy the final segment of the string after the last escape.
if (end > cursor) {
memcpy(dest + dest_length, cursor, (size_t) (end - cursor));
} else {
cursor = end;
}
// We also need to update the length at the end. This is because every escape
// reduces the length of the final string, and we don't want garbage at the
// end.
string->as.owned.length = dest_length + ((size_t) (end - cursor));
}
// This function is similar to yp_unescape_manipulate_string, except it doesn't
// actually perform any string manipulations. Instead, it calculates how long
// the unescaped character is, and returns that value
YP_EXPORTED_FUNCTION size_t
yp_unescape_calculate_difference(const char *backslash, const char *end, yp_unescape_type_t unescape_type, bool expect_single_codepoint, yp_list_t *error_list) {
assert(unescape_type != YP_UNESCAPE_NONE);
switch (backslash[1]) {
case '\\':
case '\'':
return 2;
default: {
if (unescape_type == YP_UNESCAPE_MINIMAL) return 2;
// This is the only type of unescaping left. In this case we need to
// handle all of the different unescapes.
assert(unescape_type == YP_UNESCAPE_ALL);
unsigned char flags = YP_UNESCAPE_FLAG_NONE;
if (expect_single_codepoint)
flags |= YP_UNESCAPE_FLAG_EXPECT_SINGLE;
const char *cursor = unescape(NULL, 0, backslash, end, error_list, flags, false);
assert(cursor > backslash);
return (size_t) (cursor - backslash);
}
}
}