ruby/process.c

7959 строки
213 KiB
C

/**********************************************************************
process.c -
$Author$
created at: Tue Aug 10 14:30:50 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "internal.h"
#include "ruby/io.h"
#include "ruby/thread.h"
#include "ruby/util.h"
#include "vm_core.h"
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_PROCESS_H
#include <process.h>
#endif
#include <time.h>
#include <ctype.h>
#ifndef EXIT_SUCCESS
#define EXIT_SUCCESS 0
#endif
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
#ifdef HAVE_SYS_WAIT_H
# include <sys/wait.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
# include <sys/resource.h>
#endif
#ifdef HAVE_VFORK_H
# include <vfork.h>
#endif
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifndef MAXPATHLEN
# define MAXPATHLEN 1024
#endif
#include "ruby/st.h"
#include <sys/stat.h>
#if defined(__native_client__) && defined(NACL_NEWLIB)
# include <sys/unistd.h>
# include "nacl/stat.h"
# include "nacl/unistd.h"
# include "nacl/resource.h"
# undef HAVE_ISSETUGID
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#ifdef HAVE_PWD_H
#include <pwd.h>
#endif
#ifdef HAVE_GRP_H
#include <grp.h>
# ifdef __CYGWIN__
int initgroups(const char *, rb_gid_t);
# endif
#endif
#ifdef HAVE_SYS_ID_H
#include <sys/id.h>
#endif
#ifdef __APPLE__
# include <mach/mach_time.h>
#endif
/* define system APIs */
#ifdef _WIN32
#undef open
#define open rb_w32_uopen
#endif
#if defined(HAVE_TIMES) || defined(_WIN32)
static VALUE rb_cProcessTms;
#endif
#ifndef WIFEXITED
#define WIFEXITED(w) (((w) & 0xff) == 0)
#endif
#ifndef WIFSIGNALED
#define WIFSIGNALED(w) (((w) & 0x7f) > 0 && (((w) & 0x7f) < 0x7f))
#endif
#ifndef WIFSTOPPED
#define WIFSTOPPED(w) (((w) & 0xff) == 0x7f)
#endif
#ifndef WEXITSTATUS
#define WEXITSTATUS(w) (((w) >> 8) & 0xff)
#endif
#ifndef WTERMSIG
#define WTERMSIG(w) ((w) & 0x7f)
#endif
#ifndef WSTOPSIG
#define WSTOPSIG WEXITSTATUS
#endif
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__)
#define HAVE_44BSD_SETUID 1
#define HAVE_44BSD_SETGID 1
#endif
#ifdef __NetBSD__
#undef HAVE_SETRUID
#undef HAVE_SETRGID
#endif
#ifdef BROKEN_SETREUID
#define setreuid ruby_setreuid
int setreuid(rb_uid_t ruid, rb_uid_t euid);
#endif
#ifdef BROKEN_SETREGID
#define setregid ruby_setregid
int setregid(rb_gid_t rgid, rb_gid_t egid);
#endif
#if defined(HAVE_44BSD_SETUID) || defined(__APPLE__)
#if !defined(USE_SETREUID) && !defined(BROKEN_SETREUID)
#define OBSOLETE_SETREUID 1
#endif
#if !defined(USE_SETREGID) && !defined(BROKEN_SETREGID)
#define OBSOLETE_SETREGID 1
#endif
#endif
#define preserving_errno(stmts) \
do {int saved_errno = errno; stmts; errno = saved_errno;} while (0)
static void check_uid_switch(void);
static void check_gid_switch(void);
#if 1
#define p_uid_from_name p_uid_from_name
#define p_gid_from_name p_gid_from_name
#endif
#if defined(HAVE_PWD_H)
# if defined(HAVE_GETPWNAM_R) && defined(_SC_GETPW_R_SIZE_MAX)
# define USE_GETPWNAM_R 1
# define GETPW_R_SIZE_INIT sysconf(_SC_GETPW_R_SIZE_MAX)
# define GETPW_R_SIZE_DEFAULT 0x1000
# define GETPW_R_SIZE_LIMIT 0x10000
# endif
# ifdef USE_GETPWNAM_R
# define PREPARE_GETPWNAM \
VALUE getpw_buf = 0
# define FINISH_GETPWNAM \
ALLOCV_END(getpw_buf)
# define OBJ2UID1(id) obj2uid((id), &getpw_buf)
# define OBJ2UID(id) obj2uid0(id)
static rb_uid_t obj2uid(VALUE id, VALUE *getpw_buf);
static inline rb_uid_t
obj2uid0(VALUE id)
{
rb_uid_t uid;
PREPARE_GETPWNAM;
uid = OBJ2UID1(id);
FINISH_GETPWNAM;
return uid;
}
# else
# define PREPARE_GETPWNAM /* do nothing */
# define FINISH_GETPWNAM /* do nothing */
# define OBJ2UID1(id) obj2uid((id))
# define OBJ2UID(id) obj2uid((id))
static rb_uid_t obj2uid(VALUE id);
# endif
#else
# define PREPARE_GETPWNAM /* do nothing */
# define FINISH_GETPWNAM /* do nothing */
# define OBJ2UID1(id) NUM2UIDT(id)
# define OBJ2UID(id) NUM2UIDT(id)
# ifdef p_uid_from_name
# undef p_uid_from_name
# define p_uid_from_name rb_f_notimplement
# endif
#endif
#if defined(HAVE_GRP_H)
# if defined(HAVE_GETGRNAM_R) && defined(_SC_GETGR_R_SIZE_MAX)
# define USE_GETGRNAM_R
# define GETGR_R_SIZE_INIT sysconf(_SC_GETGR_R_SIZE_MAX)
# define GETGR_R_SIZE_DEFAULT 0x1000
# define GETGR_R_SIZE_LIMIT 0x10000
# endif
# ifdef USE_GETGRNAM_R
# define PREPARE_GETGRNAM \
VALUE getgr_buf = 0
# define FINISH_GETGRNAM \
ALLOCV_END(getgr_buf)
# define OBJ2GID1(id) obj2gid((id), &getgr_buf)
# define OBJ2GID(id) obj2gid0(id)
static rb_gid_t obj2gid(VALUE id, VALUE *getgr_buf);
static inline rb_gid_t
obj2gid0(VALUE id)
{
rb_gid_t gid;
PREPARE_GETGRNAM;
gid = OBJ2GID1(id);
FINISH_GETGRNAM;
return gid;
}
static rb_gid_t obj2gid(VALUE id, VALUE *getgr_buf);
# else
# define PREPARE_GETGRNAM /* do nothing */
# define FINISH_GETGRNAM /* do nothing */
# define OBJ2GID1(id) obj2gid((id))
# define OBJ2GID(id) obj2gid((id))
static rb_gid_t obj2gid(VALUE id);
# endif
#else
# define PREPARE_GETGRNAM /* do nothing */
# define FINISH_GETGRNAM /* do nothing */
# define OBJ2GID1(id) NUM2GIDT(id)
# define OBJ2GID(id) NUM2GIDT(id)
# ifdef p_gid_from_name
# undef p_gid_from_name
# define p_gid_from_name rb_f_notimplement
# endif
#endif
#if SIZEOF_CLOCK_T == SIZEOF_INT
typedef unsigned int unsigned_clock_t;
#elif SIZEOF_CLOCK_T == SIZEOF_LONG
typedef unsigned long unsigned_clock_t;
#elif defined(HAVE_LONG_LONG) && SIZEOF_CLOCK_T == SIZEOF_LONG_LONG
typedef unsigned LONG_LONG unsigned_clock_t;
#endif
static ID id_in, id_out, id_err, id_pid, id_uid, id_gid;
static ID id_close, id_child;
#ifdef HAVE_SETPGID
static ID id_pgroup;
#endif
#ifdef _WIN32
static ID id_new_pgroup;
#endif
static ID id_unsetenv_others, id_chdir, id_umask, id_close_others, id_ENV;
static ID id_nanosecond, id_microsecond, id_millisecond, id_second;
static ID id_float_microsecond, id_float_millisecond, id_float_second;
static ID id_GETTIMEOFDAY_BASED_CLOCK_REALTIME, id_TIME_BASED_CLOCK_REALTIME;
#ifdef HAVE_TIMES
static ID id_TIMES_BASED_CLOCK_MONOTONIC;
static ID id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID;
#endif
#ifdef RUSAGE_SELF
static ID id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID;
#endif
static ID id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID;
#ifdef __APPLE__
static ID id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC;
#endif
static ID id_hertz;
extern ID ruby_static_id_status;
#define id_status ruby_static_id_status
/* execv and execl are async-signal-safe since SUSv4 (POSIX.1-2008, XPG7) */
#if defined(__sun) && !defined(_XPG7) /* Solaris 10, 9, ... */
#define execv(path, argv) (rb_async_bug_errno("unreachable: async-signal-unsafe execv() is called", 0))
#define execl(path, arg0, arg1, arg2, term) do { extern char **environ; execle((path), (arg0), (arg1), (arg2), (term), (environ)); } while (0)
#define ALWAYS_NEED_ENVP 1
#else
#define ALWAYS_NEED_ENVP 0
#endif
static inline int
close_unless_reserved(int fd)
{
/* We should not have reserved FDs at this point */
if (rb_reserved_fd_p(fd)) { /* async-signal-safe */
rb_async_bug_errno("BUG timer thread still running", 0 /* EDOOFUS */);
return 0;
}
return close(fd); /* async-signal-safe */
}
/*#define DEBUG_REDIRECT*/
#if defined(DEBUG_REDIRECT)
#include <stdarg.h>
static void
ttyprintf(const char *fmt, ...)
{
va_list ap;
FILE *tty;
int save = errno;
#ifdef _WIN32
tty = fopen("con", "w");
#else
tty = fopen("/dev/tty", "w");
#endif
if (!tty)
return;
va_start(ap, fmt);
vfprintf(tty, fmt, ap);
va_end(ap);
fclose(tty);
errno = save;
}
static int
redirect_dup(int oldfd)
{
int ret;
ret = dup(oldfd);
ttyprintf("dup(%d) => %d\n", oldfd, ret);
return ret;
}
static int
redirect_dup2(int oldfd, int newfd)
{
int ret;
ret = dup2(oldfd, newfd);
ttyprintf("dup2(%d, %d) => %d\n", oldfd, newfd, ret);
return ret;
}
static int
redirect_cloexec_dup(int oldfd)
{
int ret;
ret = rb_cloexec_dup(oldfd);
ttyprintf("cloexec_dup(%d) => %d\n", oldfd, ret);
return ret;
}
static int
redirect_cloexec_dup2(int oldfd, int newfd)
{
int ret;
ret = rb_cloexec_dup2(oldfd, newfd);
ttyprintf("cloexec_dup2(%d, %d) => %d\n", oldfd, newfd, ret);
return ret;
}
static int
redirect_close(int fd)
{
int ret;
ret = close_unless_reserved(fd);
ttyprintf("close(%d) => %d\n", fd, ret);
return ret;
}
static int
parent_redirect_open(const char *pathname, int flags, mode_t perm)
{
int ret;
ret = rb_cloexec_open(pathname, flags, perm);
ttyprintf("parent_open(\"%s\", 0x%x, 0%o) => %d\n", pathname, flags, perm, ret);
return ret;
}
static int
parent_redirect_close(int fd)
{
int ret;
ret = close_unless_reserved(fd);
ttyprintf("parent_close(%d) => %d\n", fd, ret);
return ret;
}
#else
#define redirect_dup(oldfd) dup(oldfd)
#define redirect_dup2(oldfd, newfd) dup2((oldfd), (newfd))
#define redirect_cloexec_dup(oldfd) rb_cloexec_dup(oldfd)
#define redirect_cloexec_dup2(oldfd, newfd) rb_cloexec_dup2((oldfd), (newfd))
#define redirect_close(fd) close_unless_reserved(fd)
#define parent_redirect_open(pathname, flags, perm) rb_cloexec_open((pathname), (flags), (perm))
#define parent_redirect_close(fd) close_unless_reserved(fd)
#endif
/*
* call-seq:
* Process.pid -> fixnum
*
* Returns the process id of this process. Not available on all
* platforms.
*
* Process.pid #=> 27415
*/
static VALUE
get_pid(void)
{
return PIDT2NUM(getpid());
}
/*
* call-seq:
* Process.ppid -> fixnum
*
* Returns the process id of the parent of this process. Returns
* untrustworthy value on Win32/64. Not available on all platforms.
*
* puts "I am #{Process.pid}"
* Process.fork { puts "Dad is #{Process.ppid}" }
*
* <em>produces:</em>
*
* I am 27417
* Dad is 27417
*/
static VALUE
get_ppid(void)
{
return PIDT2NUM(getppid());
}
/*********************************************************************
*
* Document-class: Process::Status
*
* <code>Process::Status</code> encapsulates the information on the
* status of a running or terminated system process. The built-in
* variable <code>$?</code> is either +nil+ or a
* <code>Process::Status</code> object.
*
* fork { exit 99 } #=> 26557
* Process.wait #=> 26557
* $?.class #=> Process::Status
* $?.to_i #=> 25344
* $? >> 8 #=> 99
* $?.stopped? #=> false
* $?.exited? #=> true
* $?.exitstatus #=> 99
*
* Posix systems record information on processes using a 16-bit
* integer. The lower bits record the process status (stopped,
* exited, signaled) and the upper bits possibly contain additional
* information (for example the program's return code in the case of
* exited processes). Pre Ruby 1.8, these bits were exposed directly
* to the Ruby program. Ruby now encapsulates these in a
* <code>Process::Status</code> object. To maximize compatibility,
* however, these objects retain a bit-oriented interface. In the
* descriptions that follow, when we talk about the integer value of
* _stat_, we're referring to this 16 bit value.
*/
static VALUE rb_cProcessStatus;
VALUE
rb_last_status_get(void)
{
return GET_THREAD()->last_status;
}
void
rb_last_status_set(int status, rb_pid_t pid)
{
rb_thread_t *th = GET_THREAD();
th->last_status = rb_obj_alloc(rb_cProcessStatus);
rb_ivar_set(th->last_status, id_status, INT2FIX(status));
rb_ivar_set(th->last_status, id_pid, PIDT2NUM(pid));
}
void
rb_last_status_clear(void)
{
GET_THREAD()->last_status = Qnil;
}
/*
* call-seq:
* stat.to_i -> fixnum
* stat.to_int -> fixnum
*
* Returns the bits in _stat_ as a <code>Fixnum</code>. Poking
* around in these bits is platform dependent.
*
* fork { exit 0xab } #=> 26566
* Process.wait #=> 26566
* sprintf('%04x', $?.to_i) #=> "ab00"
*/
static VALUE
pst_to_i(VALUE st)
{
return rb_ivar_get(st, id_status);
}
#define PST2INT(st) NUM2INT(pst_to_i(st))
/*
* call-seq:
* stat.pid -> fixnum
*
* Returns the process ID that this status object represents.
*
* fork { exit } #=> 26569
* Process.wait #=> 26569
* $?.pid #=> 26569
*/
static VALUE
pst_pid(VALUE st)
{
return rb_attr_get(st, id_pid);
}
static void
pst_message(VALUE str, rb_pid_t pid, int status)
{
rb_str_catf(str, "pid %ld", (long)pid);
if (WIFSTOPPED(status)) {
int stopsig = WSTOPSIG(status);
const char *signame = ruby_signal_name(stopsig);
if (signame) {
rb_str_catf(str, " stopped SIG%s (signal %d)", signame, stopsig);
}
else {
rb_str_catf(str, " stopped signal %d", stopsig);
}
}
if (WIFSIGNALED(status)) {
int termsig = WTERMSIG(status);
const char *signame = ruby_signal_name(termsig);
if (signame) {
rb_str_catf(str, " SIG%s (signal %d)", signame, termsig);
}
else {
rb_str_catf(str, " signal %d", termsig);
}
}
if (WIFEXITED(status)) {
rb_str_catf(str, " exit %d", WEXITSTATUS(status));
}
#ifdef WCOREDUMP
if (WCOREDUMP(status)) {
rb_str_cat2(str, " (core dumped)");
}
#endif
}
/*
* call-seq:
* stat.to_s -> string
*
* Show pid and exit status as a string.
*
* system("false")
* p $?.to_s #=> "pid 12766 exit 1"
*
*/
static VALUE
pst_to_s(VALUE st)
{
rb_pid_t pid;
int status;
VALUE str;
pid = NUM2PIDT(pst_pid(st));
status = PST2INT(st);
str = rb_str_buf_new(0);
pst_message(str, pid, status);
return str;
}
/*
* call-seq:
* stat.inspect -> string
*
* Override the inspection method.
*
* system("false")
* p $?.inspect #=> "#<Process::Status: pid 12861 exit 1>"
*
*/
static VALUE
pst_inspect(VALUE st)
{
rb_pid_t pid;
int status;
VALUE vpid, str;
vpid = pst_pid(st);
if (NIL_P(vpid)) {
return rb_sprintf("#<%s: uninitialized>", rb_class2name(CLASS_OF(st)));
}
pid = NUM2PIDT(vpid);
status = PST2INT(st);
str = rb_sprintf("#<%s: ", rb_class2name(CLASS_OF(st)));
pst_message(str, pid, status);
rb_str_cat2(str, ">");
return str;
}
/*
* call-seq:
* stat == other -> true or false
*
* Returns +true+ if the integer value of _stat_
* equals <em>other</em>.
*/
static VALUE
pst_equal(VALUE st1, VALUE st2)
{
if (st1 == st2) return Qtrue;
return rb_equal(pst_to_i(st1), st2);
}
/*
* call-seq:
* stat & num -> fixnum
*
* Logical AND of the bits in _stat_ with <em>num</em>.
*
* fork { exit 0x37 }
* Process.wait
* sprintf('%04x', $?.to_i) #=> "3700"
* sprintf('%04x', $? & 0x1e00) #=> "1600"
*/
static VALUE
pst_bitand(VALUE st1, VALUE st2)
{
int status = PST2INT(st1) & NUM2INT(st2);
return INT2NUM(status);
}
/*
* call-seq:
* stat >> num -> fixnum
*
* Shift the bits in _stat_ right <em>num</em> places.
*
* fork { exit 99 } #=> 26563
* Process.wait #=> 26563
* $?.to_i #=> 25344
* $? >> 8 #=> 99
*/
static VALUE
pst_rshift(VALUE st1, VALUE st2)
{
int status = PST2INT(st1) >> NUM2INT(st2);
return INT2NUM(status);
}
/*
* call-seq:
* stat.stopped? -> true or false
*
* Returns +true+ if this process is stopped. This is only
* returned if the corresponding <code>wait</code> call had the
* <code>WUNTRACED</code> flag set.
*/
static VALUE
pst_wifstopped(VALUE st)
{
int status = PST2INT(st);
if (WIFSTOPPED(status))
return Qtrue;
else
return Qfalse;
}
/*
* call-seq:
* stat.stopsig -> fixnum or nil
*
* Returns the number of the signal that caused _stat_ to stop
* (or +nil+ if self is not stopped).
*/
static VALUE
pst_wstopsig(VALUE st)
{
int status = PST2INT(st);
if (WIFSTOPPED(status))
return INT2NUM(WSTOPSIG(status));
return Qnil;
}
/*
* call-seq:
* stat.signaled? -> true or false
*
* Returns +true+ if _stat_ terminated because of
* an uncaught signal.
*/
static VALUE
pst_wifsignaled(VALUE st)
{
int status = PST2INT(st);
if (WIFSIGNALED(status))
return Qtrue;
else
return Qfalse;
}
/*
* call-seq:
* stat.termsig -> fixnum or nil
*
* Returns the number of the signal that caused _stat_ to
* terminate (or +nil+ if self was not terminated by an
* uncaught signal).
*/
static VALUE
pst_wtermsig(VALUE st)
{
int status = PST2INT(st);
if (WIFSIGNALED(status))
return INT2NUM(WTERMSIG(status));
return Qnil;
}
/*
* call-seq:
* stat.exited? -> true or false
*
* Returns +true+ if _stat_ exited normally (for
* example using an <code>exit()</code> call or finishing the
* program).
*/
static VALUE
pst_wifexited(VALUE st)
{
int status = PST2INT(st);
if (WIFEXITED(status))
return Qtrue;
else
return Qfalse;
}
/*
* call-seq:
* stat.exitstatus -> fixnum or nil
*
* Returns the least significant eight bits of the return code of
* _stat_. Only available if <code>exited?</code> is
* +true+.
*
* fork { } #=> 26572
* Process.wait #=> 26572
* $?.exited? #=> true
* $?.exitstatus #=> 0
*
* fork { exit 99 } #=> 26573
* Process.wait #=> 26573
* $?.exited? #=> true
* $?.exitstatus #=> 99
*/
static VALUE
pst_wexitstatus(VALUE st)
{
int status = PST2INT(st);
if (WIFEXITED(status))
return INT2NUM(WEXITSTATUS(status));
return Qnil;
}
/*
* call-seq:
* stat.success? -> true, false or nil
*
* Returns +true+ if _stat_ is successful, +false+ if not.
* Returns +nil+ if <code>exited?</code> is not +true+.
*/
static VALUE
pst_success_p(VALUE st)
{
int status = PST2INT(st);
if (!WIFEXITED(status))
return Qnil;
return WEXITSTATUS(status) == EXIT_SUCCESS ? Qtrue : Qfalse;
}
/*
* call-seq:
* stat.coredump? -> true or false
*
* Returns +true+ if _stat_ generated a coredump
* when it terminated. Not available on all platforms.
*/
static VALUE
pst_wcoredump(VALUE st)
{
#ifdef WCOREDUMP
int status = PST2INT(st);
if (WCOREDUMP(status))
return Qtrue;
else
return Qfalse;
#else
return Qfalse;
#endif
}
struct waitpid_arg {
rb_pid_t pid;
int flags;
int *st;
};
static rb_pid_t
do_waitpid(rb_pid_t pid, int *st, int flags)
{
#if defined HAVE_WAITPID
return waitpid(pid, st, flags);
#elif defined HAVE_WAIT4
return wait4(pid, st, flags, NULL);
#else
# error waitpid or wait4 is required.
#endif
}
static void *
rb_waitpid_blocking(void *data)
{
struct waitpid_arg *arg = data;
rb_pid_t result = do_waitpid(arg->pid, arg->st, arg->flags);
return (void *)(VALUE)result;
}
static rb_pid_t
do_waitpid_nonblocking(rb_pid_t pid, int *st, int flags)
{
void *result;
struct waitpid_arg arg;
arg.pid = pid;
arg.st = st;
arg.flags = flags;
result = rb_thread_call_without_gvl(rb_waitpid_blocking, &arg,
RUBY_UBF_PROCESS, 0);
return (rb_pid_t)(VALUE)result;
}
rb_pid_t
rb_waitpid(rb_pid_t pid, int *st, int flags)
{
rb_pid_t result;
if (flags & WNOHANG) {
result = do_waitpid(pid, st, flags);
}
else {
while ((result = do_waitpid_nonblocking(pid, st, flags)) < 0 &&
(errno == EINTR)) {
rb_thread_t *th = GET_THREAD();
RUBY_VM_CHECK_INTS(th);
}
}
if (result > 0) {
rb_last_status_set(*st, result);
}
return result;
}
/* [MG]:FIXME: I wasn't sure how this should be done, since ::wait()
has historically been documented as if it didn't take any arguments
despite the fact that it's just an alias for ::waitpid(). The way I
have it below is more truthful, but a little confusing.
I also took the liberty of putting in the pid values, as they're
pretty useful, and it looked as if the original 'ri' output was
supposed to contain them after "[...]depending on the value of
aPid:".
The 'ansi' and 'bs' formats of the ri output don't display the
definition list for some reason, but the plain text one does.
*/
/*
* call-seq:
* Process.wait() -> fixnum
* Process.wait(pid=-1, flags=0) -> fixnum
* Process.waitpid(pid=-1, flags=0) -> fixnum
*
* Waits for a child process to exit, returns its process id, and
* sets <code>$?</code> to a <code>Process::Status</code> object
* containing information on that process. Which child it waits on
* depends on the value of _pid_:
*
* > 0:: Waits for the child whose process ID equals _pid_.
*
* 0:: Waits for any child whose process group ID equals that of the
* calling process.
*
* -1:: Waits for any child process (the default if no _pid_ is
* given).
*
* < -1:: Waits for any child whose process group ID equals the absolute
* value of _pid_.
*
* The _flags_ argument may be a logical or of the flag values
* <code>Process::WNOHANG</code> (do not block if no child available)
* or <code>Process::WUNTRACED</code> (return stopped children that
* haven't been reported). Not all flags are available on all
* platforms, but a flag value of zero will work on all platforms.
*
* Calling this method raises a SystemCallError if there are no child
* processes. Not available on all platforms.
*
* include Process
* fork { exit 99 } #=> 27429
* wait #=> 27429
* $?.exitstatus #=> 99
*
* pid = fork { sleep 3 } #=> 27440
* Time.now #=> 2008-03-08 19:56:16 +0900
* waitpid(pid, Process::WNOHANG) #=> nil
* Time.now #=> 2008-03-08 19:56:16 +0900
* waitpid(pid, 0) #=> 27440
* Time.now #=> 2008-03-08 19:56:19 +0900
*/
static VALUE
proc_wait(int argc, VALUE *argv)
{
rb_pid_t pid;
int flags, status;
flags = 0;
if (rb_check_arity(argc, 0, 2) == 0) {
pid = -1;
}
else {
VALUE vflags;
pid = NUM2PIDT(argv[0]);
if (argc == 2 && !NIL_P(vflags = argv[1])) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
/*
* call-seq:
* Process.wait2(pid=-1, flags=0) -> [pid, status]
* Process.waitpid2(pid=-1, flags=0) -> [pid, status]
*
* Waits for a child process to exit (see Process::waitpid for exact
* semantics) and returns an array containing the process id and the
* exit status (a <code>Process::Status</code> object) of that
* child. Raises a SystemCallError if there are no child processes.
*
* Process.fork { exit 99 } #=> 27437
* pid, status = Process.wait2
* pid #=> 27437
* status.exitstatus #=> 99
*/
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
/*
* call-seq:
* Process.waitall -> [ [pid1,status1], ...]
*
* Waits for all children, returning an array of
* _pid_/_status_ pairs (where _status_ is a
* <code>Process::Status</code> object).
*
* fork { sleep 0.2; exit 2 } #=> 27432
* fork { sleep 0.1; exit 1 } #=> 27433
* fork { exit 0 } #=> 27434
* p Process.waitall
*
* <em>produces</em>:
*
* [[30982, #<Process::Status: pid 30982 exit 0>],
* [30979, #<Process::Status: pid 30979 exit 1>],
* [30976, #<Process::Status: pid 30976 exit 2>]]
*/
static VALUE
proc_waitall(void)
{
VALUE result;
rb_pid_t pid;
int status;
result = rb_ary_new();
rb_last_status_clear();
for (pid = -1;;) {
pid = rb_waitpid(-1, &status, 0);
if (pid == -1) {
int e = errno;
if (e == ECHILD)
break;
rb_syserr_fail(e, 0);
}
rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
}
return result;
}
static VALUE rb_cWaiter;
static VALUE
detach_process_pid(VALUE thread)
{
return rb_thread_local_aref(thread, id_pid);
}
static VALUE
detach_process_watcher(void *arg)
{
rb_pid_t cpid, pid = (rb_pid_t)(VALUE)arg;
int status;
while ((cpid = rb_waitpid(pid, &status, 0)) == 0) {
/* wait while alive */
}
return rb_last_status_get();
}
VALUE
rb_detach_process(rb_pid_t pid)
{
VALUE watcher = rb_thread_create(detach_process_watcher, (void*)(VALUE)pid);
rb_thread_local_aset(watcher, id_pid, PIDT2NUM(pid));
RBASIC_SET_CLASS(watcher, rb_cWaiter);
return watcher;
}
/*
* call-seq:
* Process.detach(pid) -> thread
*
* Some operating systems retain the status of terminated child
* processes until the parent collects that status (normally using
* some variant of <code>wait()</code>). If the parent never collects
* this status, the child stays around as a <em>zombie</em> process.
* <code>Process::detach</code> prevents this by setting up a
* separate Ruby thread whose sole job is to reap the status of the
* process _pid_ when it terminates. Use <code>detach</code>
* only when you do not intend to explicitly wait for the child to
* terminate.
*
* The waiting thread returns the exit status of the detached process
* when it terminates, so you can use <code>Thread#join</code> to
* know the result. If specified _pid_ is not a valid child process
* ID, the thread returns +nil+ immediately.
*
* The waiting thread has <code>pid</code> method which returns the pid.
*
* In this first example, we don't reap the first child process, so
* it appears as a zombie in the process status display.
*
* p1 = fork { sleep 0.1 }
* p2 = fork { sleep 0.2 }
* Process.waitpid(p2)
* sleep 2
* system("ps -ho pid,state -p #{p1}")
*
* <em>produces:</em>
*
* 27389 Z
*
* In the next example, <code>Process::detach</code> is used to reap
* the child automatically.
*
* p1 = fork { sleep 0.1 }
* p2 = fork { sleep 0.2 }
* Process.detach(p1)
* Process.waitpid(p2)
* sleep 2
* system("ps -ho pid,state -p #{p1}")
*
* <em>(produces no output)</em>
*/
static VALUE
proc_detach(VALUE obj, VALUE pid)
{
return rb_detach_process(NUM2PIDT(pid));
}
/* This function should be async-signal-safe. Actually it is. */
static void
before_exec_async_signal_safe(void)
{
}
static void
before_exec_non_async_signal_safe(void)
{
/*
* On Mac OS X 10.5.x (Leopard) or earlier, exec() may return ENOTSUP
* if the process have multiple threads. Therefore we have to kill
* internal threads temporary. [ruby-core:10583]
* This is also true on Haiku. It returns Errno::EPERM against exec()
* in multiple threads.
*
* Nowadays, we always stop the timer thread completely to allow redirects.
*/
rb_thread_stop_timer_thread();
}
static void
before_exec(void)
{
before_exec_non_async_signal_safe();
before_exec_async_signal_safe();
}
/* This function should be async-signal-safe. Actually it is. */
static void
after_exec_async_signal_safe(void)
{
}
static void
after_exec_non_async_signal_safe(void)
{
rb_thread_reset_timer_thread();
rb_thread_start_timer_thread();
}
static void
after_exec(void)
{
after_exec_async_signal_safe();
after_exec_non_async_signal_safe();
}
#define before_fork_ruby() before_exec()
#define after_fork_ruby() (rb_threadptr_pending_interrupt_clear(GET_THREAD()), after_exec())
#include "dln.h"
static void
security(const char *str)
{
if (rb_env_path_tainted()) {
if (rb_safe_level() > 0) {
rb_raise(rb_eSecurityError, "Insecure PATH - %s", str);
}
}
}
#if defined(HAVE_WORKING_FORK) && !defined(__native_client__)
/* try_with_sh and exec_with_sh should be async-signal-safe. Actually it is.*/
#define try_with_sh(prog, argv, envp) ((saved_errno == ENOEXEC) ? exec_with_sh((prog), (argv), (envp)) : (void)0)
static void
exec_with_sh(const char *prog, char **argv, char **envp)
{
*argv = (char *)prog;
*--argv = (char *)"sh";
if (envp)
execve("/bin/sh", argv, envp); /* async-signal-safe */
else
execv("/bin/sh", argv); /* async-signal-safe (since SUSv4) */
}
#else
#define try_with_sh(prog, argv, envp) (void)0
#endif
/* This function should be async-signal-safe. Actually it is. */
static int
proc_exec_cmd(const char *prog, VALUE argv_str, VALUE envp_str)
{
#ifdef __native_client__
rb_notimplement();
UNREACHABLE;
#else
char **argv;
char **envp;
argv = ARGVSTR2ARGV(argv_str);
if (!prog) {
errno = ENOENT;
return -1;
}
envp = envp_str ? (char **)RSTRING_PTR(envp_str) : NULL;
if (envp_str)
execve(prog, argv, envp); /* async-signal-safe */
else
execv(prog, argv); /* async-signal-safe (since SUSv4) */
preserving_errno(try_with_sh(prog, argv, envp)); /* try_with_sh() is async-signal-safe. */
return -1;
#endif
}
/* This function should be async-signal-safe. Actually it is. */
static int
proc_exec_sh(const char *str, VALUE envp_str)
{
#ifdef __native_client__
rb_notimplement();
UNREACHABLE;
#else
const char *s;
s = str;
while (*s == ' ' || *s == '\t' || *s == '\n')
s++;
if (!*s) {
errno = ENOENT;
return -1;
}
#ifdef _WIN32
rb_w32_uspawn(P_OVERLAY, (char *)str, 0);
return -1;
#else
#if defined(__CYGWIN32__)
{
char fbuf[MAXPATHLEN];
char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf));
int status = -1;
if (shell)
execl(shell, "sh", "-c", str, (char *) NULL);
else
status = system(str);
if (status != -1)
exit(status);
}
#else
if (envp_str)
execle("/bin/sh", "sh", "-c", str, (char *)NULL, (char **)RSTRING_PTR(envp_str)); /* async-signal-safe */
else
execl("/bin/sh", "sh", "-c", str, (char *)NULL); /* async-signal-safe (since SUSv4) */
#endif
return -1;
#endif /* _WIN32 */
#endif
}
int
rb_proc_exec(const char *str)
{
int ret;
before_exec();
ret = proc_exec_sh(str, Qfalse);
preserving_errno(after_exec());
return ret;
}
static void
mark_exec_arg(void *ptr)
{
struct rb_execarg *eargp = ptr;
if (eargp->use_shell)
rb_gc_mark(eargp->invoke.sh.shell_script);
else {
rb_gc_mark(eargp->invoke.cmd.command_name);
rb_gc_mark(eargp->invoke.cmd.command_abspath);
rb_gc_mark(eargp->invoke.cmd.argv_str);
rb_gc_mark(eargp->invoke.cmd.argv_buf);
}
rb_gc_mark(eargp->redirect_fds);
rb_gc_mark(eargp->envp_str);
rb_gc_mark(eargp->envp_buf);
rb_gc_mark(eargp->dup2_tmpbuf);
rb_gc_mark(eargp->rlimit_limits);
rb_gc_mark(eargp->fd_dup2);
rb_gc_mark(eargp->fd_close);
rb_gc_mark(eargp->fd_open);
rb_gc_mark(eargp->fd_dup2_child);
rb_gc_mark(eargp->env_modification);
rb_gc_mark(eargp->chdir_dir);
}
static size_t
memsize_exec_arg(const void *ptr)
{
return sizeof(struct rb_execarg);
}
static const rb_data_type_t exec_arg_data_type = {
"exec_arg",
{mark_exec_arg, RUBY_TYPED_DEFAULT_FREE, memsize_exec_arg},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
#ifdef _WIN32
# define DEFAULT_PROCESS_ENCODING rb_utf8_encoding()
#endif
#ifdef DEFAULT_PROCESS_ENCODING
# define EXPORT_STR(str) rb_str_export_to_enc((str), DEFAULT_PROCESS_ENCODING)
# define EXPORT_DUP(str) export_dup(str)
static VALUE
export_dup(VALUE str)
{
VALUE newstr = EXPORT_STR(str);
if (newstr == str) newstr = rb_str_dup(str);
return newstr;
}
#else
# define EXPORT_STR(str) (str)
# define EXPORT_DUP(str) rb_str_dup(str)
#endif
#if !defined(HAVE_WORKING_FORK) && defined(HAVE_SPAWNV)
# define USE_SPAWNV 1
#else
# define USE_SPAWNV 0
#endif
#ifndef P_NOWAIT
# define P_NOWAIT _P_NOWAIT
#endif
#if USE_SPAWNV
#if defined(_WIN32)
#define proc_spawn_cmd_internal(argv, prog) rb_w32_uaspawn(P_NOWAIT, (prog), (argv))
#else
static rb_pid_t
proc_spawn_cmd_internal(char **argv, char *prog)
{
char fbuf[MAXPATHLEN];
rb_pid_t status;
if (!prog)
prog = argv[0];
security(prog);
prog = dln_find_exe_r(prog, 0, fbuf, sizeof(fbuf));
if (!prog)
return -1;
before_exec();
status = spawnv(P_NOWAIT, prog, (const char **)argv);
if (status == -1 && errno == ENOEXEC) {
*argv = (char *)prog;
*--argv = (char *)"sh";
status = spawnv(P_NOWAIT, "/bin/sh", (const char **)argv);
after_exec();
if (status == -1) errno = ENOEXEC;
}
return status;
}
#endif
static rb_pid_t
proc_spawn_cmd(char **argv, VALUE prog, struct rb_execarg *eargp)
{
rb_pid_t pid = -1;
if (argv[0]) {
#if defined(_WIN32)
DWORD flags = 0;
if (eargp->new_pgroup_given && eargp->new_pgroup_flag) {
flags = CREATE_NEW_PROCESS_GROUP;
}
pid = rb_w32_uaspawn_flags(P_NOWAIT, prog ? RSTRING_PTR(prog) : 0, argv, flags);
#else
pid = proc_spawn_cmd_internal(argv, prog ? RSTRING_PTR(prog) : 0);
#endif
}
return pid;
}
#if defined(_WIN32)
#define proc_spawn_sh(str) rb_w32_uspawn(P_NOWAIT, (str), 0)
#else
static rb_pid_t
proc_spawn_sh(char *str)
{
char fbuf[MAXPATHLEN];
rb_pid_t status;
char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf));
before_exec();
status = spawnl(P_NOWAIT, (shell ? shell : "/bin/sh"), "sh", "-c", str, (char*)NULL);
after_exec();
return status;
}
#endif
#endif
static VALUE
hide_obj(VALUE obj)
{
RBASIC_CLEAR_CLASS(obj);
return obj;
}
static VALUE
check_exec_redirect_fd(VALUE v, int iskey)
{
VALUE tmp;
int fd;
if (FIXNUM_P(v)) {
fd = FIX2INT(v);
}
else if (SYMBOL_P(v)) {
ID id = rb_check_id(&v);
if (id == id_in)
fd = 0;
else if (id == id_out)
fd = 1;
else if (id == id_err)
fd = 2;
else
goto wrong;
}
else if (!NIL_P(tmp = rb_check_convert_type(v, T_FILE, "IO", "to_io"))) {
rb_io_t *fptr;
GetOpenFile(tmp, fptr);
if (fptr->tied_io_for_writing)
rb_raise(rb_eArgError, "duplex IO redirection");
fd = fptr->fd;
}
else {
wrong:
rb_raise(rb_eArgError, "wrong exec redirect");
}
if (fd < 0) {
rb_raise(rb_eArgError, "negative file descriptor");
}
#ifdef _WIN32
else if (fd >= 3 && iskey) {
rb_raise(rb_eArgError, "wrong file descriptor (%d)", fd);
}
#endif
return INT2FIX(fd);
}
static VALUE
check_exec_redirect1(VALUE ary, VALUE key, VALUE param)
{
if (ary == Qfalse) {
ary = hide_obj(rb_ary_new());
}
if (!RB_TYPE_P(key, T_ARRAY)) {
VALUE fd = check_exec_redirect_fd(key, !NIL_P(param));
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param)));
}
else {
int i, n=0;
for (i = 0 ; i < RARRAY_LEN(key); i++) {
VALUE v = RARRAY_AREF(key, i);
VALUE fd = check_exec_redirect_fd(v, !NIL_P(param));
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param)));
n++;
}
}
return ary;
}
static void
check_exec_redirect(VALUE key, VALUE val, struct rb_execarg *eargp)
{
VALUE param;
VALUE path, flags, perm;
VALUE tmp;
ID id;
switch (TYPE(val)) {
case T_SYMBOL:
if (!(id = rb_check_id(&val))) goto wrong_symbol;
if (id == id_close) {
param = Qnil;
eargp->fd_close = check_exec_redirect1(eargp->fd_close, key, param);
}
else if (id == id_in) {
param = INT2FIX(0);
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param);
}
else if (id == id_out) {
param = INT2FIX(1);
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param);
}
else if (id == id_err) {
param = INT2FIX(2);
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param);
}
else {
wrong_symbol:
rb_raise(rb_eArgError, "wrong exec redirect symbol: %"PRIsVALUE,
val);
}
break;
case T_FILE:
io:
val = check_exec_redirect_fd(val, 0);
/* fall through */
case T_FIXNUM:
param = val;
eargp->fd_dup2 = check_exec_redirect1(eargp->fd_dup2, key, param);
break;
case T_ARRAY:
path = rb_ary_entry(val, 0);
if (RARRAY_LEN(val) == 2 && SYMBOL_P(path) &&
path == ID2SYM(id_child)) {
param = check_exec_redirect_fd(rb_ary_entry(val, 1), 0);
eargp->fd_dup2_child = check_exec_redirect1(eargp->fd_dup2_child, key, param);
}
else {
FilePathValue(path);
flags = rb_ary_entry(val, 1);
if (NIL_P(flags))
flags = INT2NUM(O_RDONLY);
else if (RB_TYPE_P(flags, T_STRING))
flags = INT2NUM(rb_io_modestr_oflags(StringValueCStr(flags)));
else
flags = rb_to_int(flags);
perm = rb_ary_entry(val, 2);
perm = NIL_P(perm) ? INT2FIX(0644) : rb_to_int(perm);
param = hide_obj(rb_ary_new3(4, hide_obj(EXPORT_DUP(path)),
flags, perm, Qnil));
eargp->fd_open = check_exec_redirect1(eargp->fd_open, key, param);
}
break;
case T_STRING:
path = val;
FilePathValue(path);
if (RB_TYPE_P(key, T_FILE))
key = check_exec_redirect_fd(key, 1);
if (FIXNUM_P(key) && (FIX2INT(key) == 1 || FIX2INT(key) == 2))
flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC);
else if (RB_TYPE_P(key, T_ARRAY)) {
int i;
for (i = 0; i < RARRAY_LEN(key); i++) {
VALUE v = RARRAY_PTR(key)[i];
VALUE fd = check_exec_redirect_fd(v, 1);
if (FIX2INT(fd) != 1 && FIX2INT(fd) != 2) break;
}
if (i == RARRAY_LEN(key))
flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC);
else
flags = INT2NUM(O_RDONLY);
}
else
flags = INT2NUM(O_RDONLY);
perm = INT2FIX(0644);
param = hide_obj(rb_ary_new3(4, hide_obj(EXPORT_DUP(path)),
flags, perm, Qnil));
eargp->fd_open = check_exec_redirect1(eargp->fd_open, key, param);
break;
default:
tmp = val;
val = rb_io_check_io(tmp);
if (!NIL_P(val)) goto io;
rb_raise(rb_eArgError, "wrong exec redirect action");
}
}
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
static int rlimit_type_by_lname(const char *name);
#endif
int
rb_execarg_addopt(VALUE execarg_obj, VALUE key, VALUE val)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
ID id;
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
int rtype;
#endif
switch (TYPE(key)) {
case T_SYMBOL:
if (!(id = rb_check_id(&key))) return ST_STOP;
#ifdef HAVE_SETPGID
if (id == id_pgroup) {
rb_pid_t pgroup;
if (eargp->pgroup_given) {
rb_raise(rb_eArgError, "pgroup option specified twice");
}
if (!RTEST(val))
pgroup = -1; /* asis(-1) means "don't call setpgid()". */
else if (val == Qtrue)
pgroup = 0; /* new process group. */
else {
pgroup = NUM2PIDT(val);
if (pgroup < 0) {
rb_raise(rb_eArgError, "negative process group ID : %ld", (long)pgroup);
}
}
eargp->pgroup_given = 1;
eargp->pgroup_pgid = pgroup;
}
else
#endif
#ifdef _WIN32
if (id == id_new_pgroup) {
if (eargp->new_pgroup_given) {
rb_raise(rb_eArgError, "new_pgroup option specified twice");
}
eargp->new_pgroup_given = 1;
eargp->new_pgroup_flag = RTEST(val) ? 1 : 0;
}
else
#endif
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
if (strncmp("rlimit_", rb_id2name(id), 7) == 0 &&
(rtype = rlimit_type_by_lname(rb_id2name(id)+7)) != -1) {
VALUE ary = eargp->rlimit_limits;
VALUE tmp, softlim, hardlim;
if (eargp->rlimit_limits == Qfalse)
ary = eargp->rlimit_limits = hide_obj(rb_ary_new());
else
ary = eargp->rlimit_limits;
tmp = rb_check_array_type(val);
if (!NIL_P(tmp)) {
if (RARRAY_LEN(tmp) == 1)
softlim = hardlim = rb_to_int(rb_ary_entry(tmp, 0));
else if (RARRAY_LEN(tmp) == 2) {
softlim = rb_to_int(rb_ary_entry(tmp, 0));
hardlim = rb_to_int(rb_ary_entry(tmp, 1));
}
else {
rb_raise(rb_eArgError, "wrong exec rlimit option");
}
}
else {
softlim = hardlim = rb_to_int(val);
}
tmp = hide_obj(rb_ary_new3(3, INT2NUM(rtype), softlim, hardlim));
rb_ary_push(ary, tmp);
}
else
#endif
if (id == id_unsetenv_others) {
if (eargp->unsetenv_others_given) {
rb_raise(rb_eArgError, "unsetenv_others option specified twice");
}
eargp->unsetenv_others_given = 1;
eargp->unsetenv_others_do = RTEST(val) ? 1 : 0;
}
else if (id == id_chdir) {
if (eargp->chdir_given) {
rb_raise(rb_eArgError, "chdir option specified twice");
}
FilePathValue(val);
val = rb_str_encode_ospath(val);
eargp->chdir_given = 1;
eargp->chdir_dir = hide_obj(EXPORT_DUP(val));
}
else if (id == id_umask) {
mode_t cmask = NUM2MODET(val);
if (eargp->umask_given) {
rb_raise(rb_eArgError, "umask option specified twice");
}
eargp->umask_given = 1;
eargp->umask_mask = cmask;
}
else if (id == id_close_others) {
if (eargp->close_others_given) {
rb_raise(rb_eArgError, "close_others option specified twice");
}
eargp->close_others_given = 1;
eargp->close_others_do = RTEST(val) ? 1 : 0;
}
else if (id == id_in) {
key = INT2FIX(0);
goto redirect;
}
else if (id == id_out) {
key = INT2FIX(1);
goto redirect;
}
else if (id == id_err) {
key = INT2FIX(2);
goto redirect;
}
else if (id == id_uid) {
#ifdef HAVE_SETUID
if (eargp->uid_given) {
rb_raise(rb_eArgError, "uid option specified twice");
}
check_uid_switch();
{
eargp->uid = OBJ2UID(val);
eargp->uid_given = 1;
}
#else
rb_raise(rb_eNotImpError,
"uid option is unimplemented on this machine");
#endif
}
else if (id == id_gid) {
#ifdef HAVE_SETGID
if (eargp->gid_given) {
rb_raise(rb_eArgError, "gid option specified twice");
}
check_gid_switch();
{
eargp->gid = OBJ2GID(val);
eargp->gid_given = 1;
}
#else
rb_raise(rb_eNotImpError,
"gid option is unimplemented on this machine");
#endif
}
else {
return ST_STOP;
}
break;
case T_FIXNUM:
case T_FILE:
case T_ARRAY:
redirect:
check_exec_redirect(key, val, eargp);
break;
default:
return ST_STOP;
}
RB_GC_GUARD(execarg_obj);
return ST_CONTINUE;
}
static int
check_exec_options_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE execarg_obj = (VALUE)arg;
if (rb_execarg_addopt(execarg_obj, key, val) != ST_CONTINUE) {
if (SYMBOL_P(key))
rb_raise(rb_eArgError, "wrong exec option symbol: %"PRIsVALUE,
key);
rb_raise(rb_eArgError, "wrong exec option");
}
return ST_CONTINUE;
}
static int
check_exec_options_i_extract(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE *args = (VALUE *)arg;
VALUE execarg_obj = args[0];
if (rb_execarg_addopt(execarg_obj, key, val) != ST_CONTINUE) {
VALUE nonopts = args[1];
if (NIL_P(nonopts)) args[1] = nonopts = rb_hash_new();
rb_hash_aset(nonopts, key, val);
}
return ST_CONTINUE;
}
static int
check_exec_fds_1(struct rb_execarg *eargp, VALUE h, int maxhint, VALUE ary)
{
long i;
if (ary != Qfalse) {
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int fd = FIX2INT(RARRAY_AREF(elt, 0));
if (RTEST(rb_hash_lookup(h, INT2FIX(fd)))) {
rb_raise(rb_eArgError, "fd %d specified twice", fd);
}
if (ary == eargp->fd_dup2)
rb_hash_aset(h, INT2FIX(fd), Qtrue);
else if (ary == eargp->fd_dup2_child)
rb_hash_aset(h, INT2FIX(fd), RARRAY_AREF(elt, 1));
else /* ary == eargp->fd_close */
rb_hash_aset(h, INT2FIX(fd), INT2FIX(-1));
if (maxhint < fd)
maxhint = fd;
if (ary == eargp->fd_dup2 || ary == eargp->fd_dup2_child) {
fd = FIX2INT(RARRAY_AREF(elt, 1));
if (maxhint < fd)
maxhint = fd;
}
}
}
return maxhint;
}
static VALUE
check_exec_fds(struct rb_execarg *eargp)
{
VALUE h = rb_hash_new();
VALUE ary;
int maxhint = -1;
long i;
maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_dup2);
maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_close);
maxhint = check_exec_fds_1(eargp, h, maxhint, eargp->fd_dup2_child);
if (eargp->fd_dup2_child) {
ary = eargp->fd_dup2_child;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int newfd = FIX2INT(RARRAY_AREF(elt, 0));
int oldfd = FIX2INT(RARRAY_AREF(elt, 1));
int lastfd = oldfd;
VALUE val = rb_hash_lookup(h, INT2FIX(lastfd));
long depth = 0;
while (FIXNUM_P(val) && 0 <= FIX2INT(val)) {
lastfd = FIX2INT(val);
val = rb_hash_lookup(h, val);
if (RARRAY_LEN(ary) < depth)
rb_raise(rb_eArgError, "cyclic child fd redirection from %d", oldfd);
depth++;
}
if (val != Qtrue)
rb_raise(rb_eArgError, "child fd %d is not redirected", oldfd);
if (oldfd != lastfd) {
VALUE val2;
rb_ary_store(elt, 1, INT2FIX(lastfd));
rb_hash_aset(h, INT2FIX(newfd), INT2FIX(lastfd));
val = INT2FIX(oldfd);
while (FIXNUM_P(val2 = rb_hash_lookup(h, val))) {
rb_hash_aset(h, val, INT2FIX(lastfd));
val = val2;
}
}
}
}
eargp->close_others_maxhint = maxhint;
return h;
}
static void
rb_check_exec_options(VALUE opthash, VALUE execarg_obj)
{
if (RHASH_EMPTY_P(opthash))
return;
st_foreach(rb_hash_tbl_raw(opthash), check_exec_options_i, (st_data_t)execarg_obj);
}
VALUE
rb_execarg_extract_options(VALUE execarg_obj, VALUE opthash)
{
VALUE args[2];
if (RHASH_EMPTY_P(opthash))
return Qnil;
args[0] = execarg_obj;
args[1] = Qnil;
st_foreach(rb_hash_tbl_raw(opthash), check_exec_options_i_extract, (st_data_t)args);
return args[1];
}
static int
check_exec_env_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE env = (VALUE)arg;
char *k;
k = StringValueCStr(key);
if (strchr(k, '='))
rb_raise(rb_eArgError, "environment name contains a equal : %s", k);
if (!NIL_P(val))
StringValueCStr(val);
key = EXPORT_STR(key);
if (!NIL_P(val)) val = EXPORT_STR(val);
rb_ary_push(env, hide_obj(rb_assoc_new(key, val)));
return ST_CONTINUE;
}
static VALUE
rb_check_exec_env(VALUE hash)
{
VALUE env;
env = hide_obj(rb_ary_new());
st_foreach(rb_hash_tbl_raw(hash), check_exec_env_i, (st_data_t)env);
return env;
}
static VALUE
rb_check_argv(int argc, VALUE *argv)
{
VALUE tmp, prog;
int i;
const char *name = 0;
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
prog = 0;
tmp = rb_check_array_type(argv[0]);
if (!NIL_P(tmp)) {
if (RARRAY_LEN(tmp) != 2) {
rb_raise(rb_eArgError, "wrong first argument");
}
prog = RARRAY_AREF(tmp, 0);
argv[0] = RARRAY_AREF(tmp, 1);
SafeStringValue(prog);
StringValueCStr(prog);
prog = rb_str_new_frozen(prog);
name = RSTRING_PTR(prog);
}
for (i = 0; i < argc; i++) {
SafeStringValue(argv[i]);
argv[i] = rb_str_new_frozen(argv[i]);
StringValueCStr(argv[i]);
}
security(name ? name : RSTRING_PTR(argv[0]));
return prog;
}
static VALUE
rb_exec_getargs(int *argc_p, VALUE **argv_p, int accept_shell, VALUE *env_ret, VALUE *opthash_ret)
{
VALUE hash, prog;
if (0 < *argc_p) {
hash = rb_check_hash_type((*argv_p)[*argc_p-1]);
if (!NIL_P(hash)) {
*opthash_ret = hash;
(*argc_p)--;
}
}
if (0 < *argc_p) {
hash = rb_check_hash_type((*argv_p)[0]);
if (!NIL_P(hash)) {
*env_ret = hash;
(*argc_p)--;
(*argv_p)++;
}
}
prog = rb_check_argv(*argc_p, *argv_p);
if (!prog) {
prog = (*argv_p)[0];
if (accept_shell && *argc_p == 1) {
*argc_p = 0;
*argv_p = 0;
}
}
return prog;
}
#ifndef _WIN32
struct string_part {
const char *ptr;
size_t len;
};
static int
compare_posix_sh(const void *key, const void *el)
{
const struct string_part *word = key;
int ret = strncmp(word->ptr, el, word->len);
if (!ret && ((const char *)el)[word->len]) ret = -1;
return ret;
}
#endif
static void
rb_exec_fillarg(VALUE prog, int argc, VALUE *argv, VALUE env, VALUE opthash, VALUE execarg_obj)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
char fbuf[MAXPATHLEN];
MEMZERO(eargp, struct rb_execarg, 1);
if (!NIL_P(opthash)) {
rb_check_exec_options(opthash, execarg_obj);
}
if (!NIL_P(env)) {
env = rb_check_exec_env(env);
eargp->env_modification = env;
}
prog = EXPORT_STR(prog);
eargp->use_shell = argc == 0;
if (eargp->use_shell)
eargp->invoke.sh.shell_script = prog;
else
eargp->invoke.cmd.command_name = prog;
#ifndef _WIN32
if (eargp->use_shell) {
static const char posix_sh_cmds[][9] = {
"!", /* reserved */
".", /* special built-in */
":", /* special built-in */
"break", /* special built-in */
"case", /* reserved */
"continue", /* special built-in */
"do", /* reserved */
"done", /* reserved */
"elif", /* reserved */
"else", /* reserved */
"esac", /* reserved */
"eval", /* special built-in */
"exec", /* special built-in */
"exit", /* special built-in */
"export", /* special built-in */
"fi", /* reserved */
"for", /* reserved */
"if", /* reserved */
"in", /* reserved */
"readonly", /* special built-in */
"return", /* special built-in */
"set", /* special built-in */
"shift", /* special built-in */
"then", /* reserved */
"times", /* special built-in */
"trap", /* special built-in */
"unset", /* special built-in */
"until", /* reserved */
"while", /* reserved */
};
const char *p;
struct string_part first = {0, 0};
int has_meta = 0;
/*
* meta characters:
*
* * Pathname Expansion
* ? Pathname Expansion
* {} Grouping Commands
* [] Pathname Expansion
* <> Redirection
* () Grouping Commands
* ~ Tilde Expansion
* & AND Lists, Asynchronous Lists
* | OR Lists, Pipelines
* \ Escape Character
* $ Parameter Expansion
* ; Sequential Lists
* ' Single-Quotes
* ` Command Substitution
* " Double-Quotes
* \n Lists
*
* # Comment
* = Assignment preceding command name
* % (used in Parameter Expansion)
*/
for (p = RSTRING_PTR(prog); *p; p++) {
if (*p == ' ' || *p == '\t') {
if (first.ptr && !first.len) first.len = p - first.ptr;
}
else {
if (!first.ptr) first.ptr = p;
}
if (!has_meta && strchr("*?{}[]<>()~&|\\$;'`\"\n#", *p))
has_meta = 1;
if (!first.len) {
if (*p == '=') {
has_meta = 1;
}
else if (*p == '/') {
first.len = 0x100; /* longer than any posix_sh_cmds */
}
}
if (has_meta)
break;
}
if (!has_meta && first.ptr) {
if (!first.len) first.len = p - first.ptr;
if (first.len > 0 && first.len <= sizeof(posix_sh_cmds[0]) &&
bsearch(&first, posix_sh_cmds, numberof(posix_sh_cmds), sizeof(posix_sh_cmds[0]), compare_posix_sh))
has_meta = 1;
}
if (!has_meta) {
/* avoid shell since no shell meta character found. */
eargp->use_shell = 0;
}
if (!eargp->use_shell) {
VALUE argv_buf;
argv_buf = hide_obj(rb_str_buf_new(0));
p = RSTRING_PTR(prog);
while (*p) {
while (*p == ' ' || *p == '\t')
p++;
if (*p) {
const char *w = p;
while (*p && *p != ' ' && *p != '\t')
p++;
rb_str_buf_cat(argv_buf, w, p-w);
rb_str_buf_cat(argv_buf, "", 1); /* append '\0' */
}
}
eargp->invoke.cmd.argv_buf = argv_buf;
eargp->invoke.cmd.command_name = hide_obj(rb_str_new_cstr(RSTRING_PTR(argv_buf)));
}
}
#endif
if (!eargp->use_shell) {
const char *abspath;
abspath = dln_find_exe_r(RSTRING_PTR(eargp->invoke.cmd.command_name), 0, fbuf, sizeof(fbuf));
if (abspath)
eargp->invoke.cmd.command_abspath = rb_str_new_cstr(abspath);
else
eargp->invoke.cmd.command_abspath = Qnil;
}
if (!eargp->use_shell && !eargp->invoke.cmd.argv_buf) {
int i;
VALUE argv_buf;
argv_buf = rb_str_buf_new(0);
hide_obj(argv_buf);
for (i = 0; i < argc; i++) {
VALUE arg = argv[i];
const char *s = StringValueCStr(arg);
#ifdef DEFAULT_PROCESS_ENCODING
arg = EXPORT_STR(arg);
s = RSTRING_PTR(arg);
#endif
rb_str_buf_cat(argv_buf, s, RSTRING_LEN(arg) + 1); /* include '\0' */
}
eargp->invoke.cmd.argv_buf = argv_buf;
}
if (!eargp->use_shell) {
const char *p, *ep, *null=NULL;
VALUE argv_str;
argv_str = hide_obj(rb_str_buf_new(sizeof(char*) * (argc + 2)));
rb_str_buf_cat(argv_str, (char *)&null, sizeof(null)); /* place holder for /bin/sh of try_with_sh. */
p = RSTRING_PTR(eargp->invoke.cmd.argv_buf);
ep = p + RSTRING_LEN(eargp->invoke.cmd.argv_buf);
while (p < ep) {
rb_str_buf_cat(argv_str, (char *)&p, sizeof(p));
p += strlen(p) + 1;
}
rb_str_buf_cat(argv_str, (char *)&null, sizeof(null)); /* terminator for execve. */
eargp->invoke.cmd.argv_str = argv_str;
}
RB_GC_GUARD(execarg_obj);
}
VALUE
rb_execarg_new(int argc, const VALUE *argv, int accept_shell)
{
VALUE execarg_obj;
struct rb_execarg *eargp;
execarg_obj = TypedData_Make_Struct(rb_cData, struct rb_execarg, &exec_arg_data_type, eargp);
hide_obj(execarg_obj);
rb_execarg_init(argc, argv, accept_shell, execarg_obj);
return execarg_obj;
}
struct rb_execarg *
rb_execarg_get(VALUE execarg_obj)
{
struct rb_execarg *eargp;
TypedData_Get_Struct(execarg_obj, struct rb_execarg, &exec_arg_data_type, eargp);
return eargp;
}
VALUE
rb_execarg_init(int argc, const VALUE *orig_argv, int accept_shell, VALUE execarg_obj)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
VALUE prog, ret;
VALUE env = Qnil, opthash = Qnil;
VALUE argv_buf;
VALUE *argv = ALLOCV_N(VALUE, argv_buf, argc);
MEMCPY(argv, orig_argv, VALUE, argc);
prog = rb_exec_getargs(&argc, &argv, accept_shell, &env, &opthash);
rb_exec_fillarg(prog, argc, argv, env, opthash, execarg_obj);
ALLOCV_END(argv_buf);
ret = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
RB_GC_GUARD(execarg_obj);
return ret;
}
void
rb_execarg_setenv(VALUE execarg_obj, VALUE env)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
env = !NIL_P(env) ? rb_check_exec_env(env) : Qfalse;
eargp->env_modification = env;
}
static int
fill_envp_buf_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE envp_buf = (VALUE)arg;
rb_str_buf_cat2(envp_buf, StringValueCStr(key));
rb_str_buf_cat2(envp_buf, "=");
rb_str_buf_cat2(envp_buf, StringValueCStr(val));
rb_str_buf_cat(envp_buf, "", 1); /* append '\0' */
return ST_CONTINUE;
}
static long run_exec_dup2_tmpbuf_size(long n);
struct open_struct {
VALUE fname;
int oflags;
mode_t perm;
int ret;
int err;
};
static void *
open_func(void *ptr)
{
struct open_struct *data = ptr;
const char *fname = RSTRING_PTR(data->fname);
data->ret = parent_redirect_open(fname, data->oflags, data->perm);
data->err = errno;
return NULL;
}
static VALUE
rb_execarg_parent_start1(VALUE execarg_obj)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
int unsetenv_others;
VALUE envopts;
VALUE ary;
ary = eargp->fd_open;
if (ary != Qfalse) {
long i;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int fd = FIX2INT(RARRAY_AREF(elt, 0));
VALUE param = RARRAY_AREF(elt, 1);
VALUE vpath = RARRAY_AREF(param, 0);
int flags = NUM2INT(RARRAY_AREF(param, 1));
int perm = NUM2INT(RARRAY_AREF(param, 2));
VALUE fd2v = RARRAY_AREF(param, 3);
int fd2;
if (NIL_P(fd2v)) {
struct open_struct open_data;
FilePathValue(vpath);
vpath = rb_str_encode_ospath(vpath);
again:
open_data.fname = vpath;
open_data.oflags = flags;
open_data.perm = perm;
open_data.ret = -1;
open_data.err = EINTR;
rb_thread_call_without_gvl2(open_func, (void *)&open_data, RUBY_UBF_IO, 0);
if (open_data.ret == -1) {
if (open_data.err == EINTR) {
rb_thread_check_ints();
goto again;
}
rb_syserr_fail_str(open_data.err, vpath);
}
fd2 = open_data.ret;
rb_update_max_fd(fd2);
RARRAY_ASET(param, 3, INT2FIX(fd2));
rb_thread_check_ints();
}
else {
fd2 = NUM2INT(fd2v);
}
rb_execarg_addopt(execarg_obj, INT2FIX(fd), INT2FIX(fd2));
}
}
eargp->redirect_fds = check_exec_fds(eargp);
ary = eargp->fd_dup2;
if (ary != Qfalse) {
size_t len = run_exec_dup2_tmpbuf_size(RARRAY_LEN(ary));
VALUE tmpbuf = hide_obj(rb_str_new(0, len));
rb_str_set_len(tmpbuf, len);
eargp->dup2_tmpbuf = tmpbuf;
}
unsetenv_others = eargp->unsetenv_others_given && eargp->unsetenv_others_do;
envopts = eargp->env_modification;
if (ALWAYS_NEED_ENVP || unsetenv_others || envopts != Qfalse) {
VALUE envtbl, envp_str, envp_buf;
char *p, *ep;
if (unsetenv_others) {
envtbl = rb_hash_new();
}
else {
envtbl = rb_const_get(rb_cObject, id_ENV);
envtbl = rb_convert_type(envtbl, T_HASH, "Hash", "to_hash");
}
hide_obj(envtbl);
if (envopts != Qfalse) {
st_table *stenv = RHASH_TBL_RAW(envtbl);
long i;
for (i = 0; i < RARRAY_LEN(envopts); i++) {
VALUE pair = RARRAY_AREF(envopts, i);
VALUE key = RARRAY_AREF(pair, 0);
VALUE val = RARRAY_AREF(pair, 1);
if (NIL_P(val)) {
st_data_t stkey = (st_data_t)key;
st_delete(stenv, &stkey, NULL);
}
else {
st_insert(stenv, (st_data_t)key, (st_data_t)val);
RB_OBJ_WRITTEN(envtbl, Qundef, key);
RB_OBJ_WRITTEN(envtbl, Qundef, val);
}
}
}
envp_buf = rb_str_buf_new(0);
hide_obj(envp_buf);
st_foreach(RHASH_TBL_RAW(envtbl), fill_envp_buf_i, (st_data_t)envp_buf);
envp_str = rb_str_buf_new(sizeof(char*) * (RHASH_SIZE(envtbl) + 1));
hide_obj(envp_str);
p = RSTRING_PTR(envp_buf);
ep = p + RSTRING_LEN(envp_buf);
while (p < ep) {
rb_str_buf_cat(envp_str, (char *)&p, sizeof(p));
p += strlen(p) + 1;
}
p = NULL;
rb_str_buf_cat(envp_str, (char *)&p, sizeof(p));
eargp->envp_str = envp_str;
eargp->envp_buf = envp_buf;
/*
char **tmp_envp = (char **)RSTRING_PTR(envp_str);
while (*tmp_envp) {
printf("%s\n", *tmp_envp);
tmp_envp++;
}
*/
}
RB_GC_GUARD(execarg_obj);
return Qnil;
}
void
rb_execarg_parent_start(VALUE execarg_obj)
{
int state;
rb_protect(rb_execarg_parent_start1, execarg_obj, &state);
if (state) {
rb_execarg_parent_end(execarg_obj);
rb_jump_tag(state);
}
}
static VALUE
execarg_parent_end(VALUE execarg_obj)
{
struct rb_execarg *eargp = rb_execarg_get(execarg_obj);
int err = errno;
VALUE ary;
ary = eargp->fd_open;
if (ary != Qfalse) {
long i;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
VALUE param = RARRAY_AREF(elt, 1);
VALUE fd2v;
int fd2;
fd2v = RARRAY_AREF(param, 3);
if (!NIL_P(fd2v)) {
fd2 = FIX2INT(fd2v);
parent_redirect_close(fd2);
RARRAY_ASET(param, 3, Qnil);
}
}
}
errno = err;
return execarg_obj;
}
void
rb_execarg_parent_end(VALUE execarg_obj)
{
execarg_parent_end(execarg_obj);
RB_GC_GUARD(execarg_obj);
}
static void
rb_exec_fail(struct rb_execarg *eargp, int err, const char *errmsg)
{
if (!errmsg || !*errmsg) return;
if (strcmp(errmsg, "chdir") == 0) {
rb_sys_fail_str(eargp->chdir_dir);
}
rb_sys_fail(errmsg);
}
#if 0
void
rb_execarg_fail(VALUE execarg_obj, int err, const char *errmsg)
{
if (!errmsg || !*errmsg) return;
rb_exec_fail(rb_execarg_get(execarg_obj), err, errmsg);
RB_GC_GUARD(execarg_obj);
}
#endif
/*
* call-seq:
* exec([env,] command... [,options])
*
* Replaces the current process by running the given external _command_, which
* can take one of the following forms:
*
* [<code>exec(commandline)</code>]
* command line string which is passed to the standard shell
* [<code>exec(cmdname, arg1, ...)</code>]
* command name and one or more arguments (no shell)
* [<code>exec([cmdname, argv0], arg1, ...)</code>]
* command name, argv[0] and zero or more arguments (no shell)
*
* In the first form, the string is taken as a command line that is subject to
* shell expansion before being executed.
*
* The standard shell always means <code>"/bin/sh"</code> on Unix-like systems,
* same as <code>ENV["RUBYSHELL"]</code>
* (or <code>ENV["COMSPEC"]</code> on Windows NT series), and similar.
*
* If the string from the first form (<code>exec("command")</code>) follows
* these simple rules:
*
* * no meta characters
* * no shell reserved word and no special built-in
* * Ruby invokes the command directly without shell
*
* You can force shell invocation by adding ";" to the string (because ";" is
* a meta character).
*
* Note that this behavior is observable by pid obtained
* (return value of spawn() and IO#pid for IO.popen) is the pid of the invoked
* command, not shell.
*
* In the second form (<code>exec("command1", "arg1", ...)</code>), the first
* is taken as a command name and the rest are passed as parameters to command
* with no shell expansion.
*
* In the third form (<code>exec(["command", "argv0"], "arg1", ...)</code>),
* starting a two-element array at the beginning of the command, the first
* element is the command to be executed, and the second argument is used as
* the <code>argv[0]</code> value, which may show up in process listings.
*
* In order to execute the command, one of the <code>exec(2)</code> system
* calls are used, so the running command may inherit some of the environment
* of the original program (including open file descriptors).
*
* This behavior is modified by the given +env+ and +options+ parameters. See
* ::spawn for details.
*
* If the command fails to execute (typically <code>Errno::ENOENT</code> when
* it was not found) a SystemCallError exception is raised.
*
* This method modifies process attributes according to given +options+ before
* <code>exec(2)</code> system call. See ::spawn for more details about the
* given +options+.
*
* The modified attributes may be retained when <code>exec(2)</code> system
* call fails.
*
* For example, hard resource limits are not restorable.
*
* Consider to create a child process using ::spawn or Kernel#system if this
* is not acceptable.
*
* exec "echo *" # echoes list of files in current directory
* # never get here
*
* exec "echo", "*" # echoes an asterisk
* # never get here
*/
VALUE
rb_f_exec(int argc, const VALUE *argv)
{
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
#define CHILD_ERRMSG_BUFLEN 80
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
int err;
execarg_obj = rb_execarg_new(argc, argv, TRUE);
eargp = rb_execarg_get(execarg_obj);
before_exec(); /* stop timer thread before redirects */
rb_execarg_parent_start(execarg_obj);
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
rb_exec_async_signal_safe(eargp, errmsg, sizeof(errmsg));
err = errno;
after_exec(); /* restart timer thread */
rb_exec_fail(eargp, err, errmsg);
RB_GC_GUARD(execarg_obj);
rb_syserr_fail_str(err, fail_str);
return Qnil; /* dummy */
}
#define ERRMSG(str) do { if (errmsg && 0 < errmsg_buflen) strlcpy(errmsg, (str), errmsg_buflen); } while (0)
#define ERRMSG1(str, a) do { if (errmsg && 0 < errmsg_buflen) snprintf(errmsg, errmsg_buflen, (str), (a)); } while (0)
#define ERRMSG2(str, a, b) do { if (errmsg && 0 < errmsg_buflen) snprintf(errmsg, errmsg_buflen, (str), (a), (b)); } while (0)
static int fd_get_cloexec(int fd, char *errmsg, size_t errmsg_buflen);
static int fd_set_cloexec(int fd, char *errmsg, size_t errmsg_buflen);
static int fd_clear_cloexec(int fd, char *errmsg, size_t errmsg_buflen);
static int
save_redirect_fd(int fd, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
if (sargp) {
VALUE newary, redirection;
int save_fd = redirect_cloexec_dup(fd), cloexec;
if (save_fd == -1) {
if (errno == EBADF)
return 0;
ERRMSG("dup");
return -1;
}
rb_update_max_fd(save_fd);
newary = sargp->fd_dup2;
if (newary == Qfalse) {
newary = hide_obj(rb_ary_new());
sargp->fd_dup2 = newary;
}
cloexec = fd_get_cloexec(fd, errmsg, errmsg_buflen);
redirection = hide_obj(rb_assoc_new(INT2FIX(fd), INT2FIX(save_fd)));
if (cloexec) rb_ary_push(redirection, Qtrue);
rb_ary_push(newary, redirection);
newary = sargp->fd_close;
if (newary == Qfalse) {
newary = hide_obj(rb_ary_new());
sargp->fd_close = newary;
}
rb_ary_push(newary, hide_obj(rb_assoc_new(INT2FIX(save_fd), Qnil)));
}
return 0;
}
static int
intcmp(const void *a, const void *b)
{
return *(int*)a - *(int*)b;
}
static int
intrcmp(const void *a, const void *b)
{
return *(int*)b - *(int*)a;
}
struct run_exec_dup2_fd_pair {
int oldfd;
int newfd;
long older_index;
long num_newer;
int cloexec;
};
static long
run_exec_dup2_tmpbuf_size(long n)
{
return sizeof(struct run_exec_dup2_fd_pair) * n;
}
/* This function should be async-signal-safe. Actually it is. */
static int
fd_get_cloexec(int fd, char *errmsg, size_t errmsg_buflen)
{
#ifdef F_GETFD
int ret = 0;
ret = fcntl(fd, F_GETFD); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_GETFD)");
return -1;
}
if (ret & FD_CLOEXEC) return 1;
#endif
return 0;
}
/* This function should be async-signal-safe. Actually it is. */
static int
fd_set_cloexec(int fd, char *errmsg, size_t errmsg_buflen)
{
#ifdef F_GETFD
int ret = 0;
ret = fcntl(fd, F_GETFD); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_GETFD)");
return -1;
}
if (!(ret & FD_CLOEXEC)) {
ret |= FD_CLOEXEC;
ret = fcntl(fd, F_SETFD, ret); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_SETFD)");
return -1;
}
}
#endif
return 0;
}
/* This function should be async-signal-safe. Actually it is. */
static int
fd_clear_cloexec(int fd, char *errmsg, size_t errmsg_buflen)
{
#ifdef F_GETFD
int ret;
ret = fcntl(fd, F_GETFD); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_GETFD)");
return -1;
}
if (ret & FD_CLOEXEC) {
ret &= ~FD_CLOEXEC;
ret = fcntl(fd, F_SETFD, ret); /* async-signal-safe */
if (ret == -1) {
ERRMSG("fcntl(F_SETFD)");
return -1;
}
}
#endif
return 0;
}
/* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */
static int
run_exec_dup2(VALUE ary, VALUE tmpbuf, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
long n, i;
int ret;
int extra_fd = -1;
struct run_exec_dup2_fd_pair *pairs = 0;
n = RARRAY_LEN(ary);
pairs = (struct run_exec_dup2_fd_pair *)RSTRING_PTR(tmpbuf);
/* initialize oldfd and newfd: O(n) */
for (i = 0; i < n; i++) {
VALUE elt = RARRAY_AREF(ary, i);
pairs[i].oldfd = FIX2INT(RARRAY_AREF(elt, 1));
pairs[i].newfd = FIX2INT(RARRAY_AREF(elt, 0)); /* unique */
pairs[i].cloexec = RARRAY_LEN(elt) > 2 && RTEST(RARRAY_AREF(elt, 2));
pairs[i].older_index = -1;
}
/* sort the table by oldfd: O(n log n) */
if (!sargp)
qsort(pairs, n, sizeof(struct run_exec_dup2_fd_pair), intcmp); /* hopefully async-signal-safe */
else
qsort(pairs, n, sizeof(struct run_exec_dup2_fd_pair), intrcmp);
/* initialize older_index and num_newer: O(n log n) */
for (i = 0; i < n; i++) {
int newfd = pairs[i].newfd;
struct run_exec_dup2_fd_pair key, *found;
key.oldfd = newfd;
found = bsearch(&key, pairs, n, sizeof(struct run_exec_dup2_fd_pair), intcmp); /* hopefully async-signal-safe */
pairs[i].num_newer = 0;
if (found) {
while (pairs < found && (found-1)->oldfd == newfd)
found--;
while (found < pairs+n && found->oldfd == newfd) {
pairs[i].num_newer++;
found->older_index = i;
found++;
}
}
}
/* non-cyclic redirection: O(n) */
for (i = 0; i < n; i++) {
long j = i;
while (j != -1 && pairs[j].oldfd != -1 && pairs[j].num_newer == 0) {
if (save_redirect_fd(pairs[j].newfd, sargp, errmsg, errmsg_buflen) < 0) /* async-signal-safe */
goto fail;
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("dup2");
goto fail;
}
if (pairs[j].cloexec &&
fd_set_cloexec(pairs[j].newfd, errmsg, errmsg_buflen)) {
goto fail;
}
rb_update_max_fd(pairs[j].newfd); /* async-signal-safe but don't need to call it in a child process. */
pairs[j].oldfd = -1;
j = pairs[j].older_index;
if (j != -1)
pairs[j].num_newer--;
}
}
/* cyclic redirection: O(n) */
for (i = 0; i < n; i++) {
long j;
if (pairs[i].oldfd == -1)
continue;
if (pairs[i].oldfd == pairs[i].newfd) { /* self cycle */
if (fd_clear_cloexec(pairs[i].oldfd, errmsg, errmsg_buflen) == -1) /* async-signal-safe */
goto fail;
pairs[i].oldfd = -1;
continue;
}
if (extra_fd == -1) {
extra_fd = redirect_dup(pairs[i].oldfd); /* async-signal-safe */
if (extra_fd == -1) {
ERRMSG("dup");
goto fail;
}
rb_update_max_fd(extra_fd);
}
else {
ret = redirect_dup2(pairs[i].oldfd, extra_fd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("dup2");
goto fail;
}
rb_update_max_fd(extra_fd);
}
pairs[i].oldfd = extra_fd;
j = pairs[i].older_index;
pairs[i].older_index = -1;
while (j != -1) {
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("dup2");
goto fail;
}
rb_update_max_fd(ret);
pairs[j].oldfd = -1;
j = pairs[j].older_index;
}
}
if (extra_fd != -1) {
ret = redirect_close(extra_fd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("close");
goto fail;
}
}
return 0;
fail:
return -1;
}
/* This function should be async-signal-safe. Actually it is. */
static int
run_exec_close(VALUE ary, char *errmsg, size_t errmsg_buflen)
{
long i;
int ret;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int fd = FIX2INT(RARRAY_AREF(elt, 0));
ret = redirect_close(fd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("close");
return -1;
}
}
return 0;
}
/* This function should be async-signal-safe when sargp is NULL. Actually it is. */
static int
run_exec_dup2_child(VALUE ary, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
long i;
int ret;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int newfd = FIX2INT(RARRAY_AREF(elt, 0));
int oldfd = FIX2INT(RARRAY_AREF(elt, 1));
if (save_redirect_fd(newfd, sargp, errmsg, errmsg_buflen) < 0) /* async-signal-safe */
return -1;
ret = redirect_dup2(oldfd, newfd); /* async-signal-safe */
if (ret == -1) {
ERRMSG("dup2");
return -1;
}
rb_update_max_fd(newfd);
}
return 0;
}
#ifdef HAVE_SETPGID
/* This function should be async-signal-safe when sargp is NULL. Actually it is. */
static int
run_exec_pgroup(const struct rb_execarg *eargp, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
/*
* If FD_CLOEXEC is available, rb_fork_async_signal_safe waits the child's execve.
* So setpgid is done in the child when rb_fork_async_signal_safe is returned in
* the parent.
* No race condition, even without setpgid from the parent.
* (Is there an environment which has setpgid but no FD_CLOEXEC?)
*/
int ret;
rb_pid_t pgroup;
pgroup = eargp->pgroup_pgid;
if (pgroup == -1)
return 0;
if (sargp) {
/* maybe meaningless with no fork environment... */
sargp->pgroup_given = 1;
sargp->pgroup_pgid = getpgrp();
}
if (pgroup == 0) {
pgroup = getpid(); /* async-signal-safe */
}
ret = setpgid(getpid(), pgroup); /* async-signal-safe */
if (ret == -1) ERRMSG("setpgid");
return ret;
}
#endif
#if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM)
/* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */
static int
run_exec_rlimit(VALUE ary, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
long i;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_AREF(ary, i);
int rtype = NUM2INT(RARRAY_AREF(elt, 0));
struct rlimit rlim;
if (sargp) {
VALUE tmp, newary;
if (getrlimit(rtype, &rlim) == -1) {
ERRMSG("getrlimit");
return -1;
}
tmp = hide_obj(rb_ary_new3(3, RARRAY_AREF(elt, 0),
RLIM2NUM(rlim.rlim_cur),
RLIM2NUM(rlim.rlim_max)));
if (sargp->rlimit_limits == Qfalse)
newary = sargp->rlimit_limits = hide_obj(rb_ary_new());
else
newary = sargp->rlimit_limits;
rb_ary_push(newary, tmp);
}
rlim.rlim_cur = NUM2RLIM(RARRAY_AREF(elt, 1));
rlim.rlim_max = NUM2RLIM(RARRAY_AREF(elt, 2));
if (setrlimit(rtype, &rlim) == -1) { /* hopefully async-signal-safe */
ERRMSG("setrlimit");
return -1;
}
}
return 0;
}
#endif
#if !defined(HAVE_WORKING_FORK)
static VALUE
save_env_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
{
rb_ary_push(ary, hide_obj(rb_ary_dup(argv[0])));
return Qnil;
}
static void
save_env(struct rb_execarg *sargp)
{
if (!sargp)
return;
if (sargp->env_modification == Qfalse) {
VALUE env = rb_const_get(rb_cObject, id_ENV);
if (RTEST(env)) {
VALUE ary = hide_obj(rb_ary_new());
rb_block_call(env, idEach, 0, 0, save_env_i,
(VALUE)ary);
sargp->env_modification = ary;
}
sargp->unsetenv_others_given = 1;
sargp->unsetenv_others_do = 1;
}
}
#endif
#ifdef _WIN32
#undef chdir
#define chdir(p) rb_w32_uchdir(p)
#endif
/* This function should be async-signal-safe when sargp is NULL. Hopefully it is. */
int
rb_execarg_run_options(const struct rb_execarg *eargp, struct rb_execarg *sargp, char *errmsg, size_t errmsg_buflen)
{
VALUE obj;
if (sargp) {
/* assume that sargp is always NULL on fork-able environments */
MEMZERO(sargp, struct rb_execarg, 1);
sargp->redirect_fds = Qnil;
}
#ifdef HAVE_SETPGID
if (eargp->pgroup_given) {
if (run_exec_pgroup(eargp, sargp, errmsg, errmsg_buflen) == -1) /* async-signal-safe */
return -1;
}
#endif
#if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM)
obj = eargp->rlimit_limits;
if (obj != Qfalse) {
if (run_exec_rlimit(obj, sargp, errmsg, errmsg_buflen) == -1) /* hopefully async-signal-safe */
return -1;
}
#endif
#if !defined(HAVE_WORKING_FORK)
if (eargp->unsetenv_others_given && eargp->unsetenv_others_do) {
save_env(sargp);
rb_env_clear();
}
obj = eargp->env_modification;
if (obj != Qfalse) {
long i;
save_env(sargp);
for (i = 0; i < RARRAY_LEN(obj); i++) {
VALUE pair = RARRAY_AREF(obj, i);
VALUE key = RARRAY_AREF(pair, 0);
VALUE val = RARRAY_AREF(pair, 1);
if (NIL_P(val))
ruby_setenv(StringValueCStr(key), 0);
else
ruby_setenv(StringValueCStr(key), StringValueCStr(val));
}
}
#endif
if (eargp->umask_given) {
mode_t mask = eargp->umask_mask;
mode_t oldmask = umask(mask); /* never fail */ /* async-signal-safe */
if (sargp) {
sargp->umask_given = 1;
sargp->umask_mask = oldmask;
}
}
obj = eargp->fd_dup2;
if (obj != Qfalse) {
if (run_exec_dup2(obj, eargp->dup2_tmpbuf, sargp, errmsg, errmsg_buflen) == -1) /* hopefully async-signal-safe */
return -1;
}
obj = eargp->fd_close;
if (obj != Qfalse) {
if (sargp)
rb_warn("cannot close fd before spawn");
else {
if (run_exec_close(obj, errmsg, errmsg_buflen) == -1) /* async-signal-safe */
return -1;
}
}
#ifdef HAVE_WORKING_FORK
if (!eargp->close_others_given || eargp->close_others_do) {
rb_close_before_exec(3, eargp->close_others_maxhint, eargp->redirect_fds); /* async-signal-safe */
}
#endif
obj = eargp->fd_dup2_child;
if (obj != Qfalse) {
if (run_exec_dup2_child(obj, sargp, errmsg, errmsg_buflen) == -1) /* async-signal-safe */
return -1;
}
if (eargp->chdir_given) {
if (sargp) {
char *cwd = my_getcwd();
sargp->chdir_given = 1;
sargp->chdir_dir = hide_obj(rb_str_new2(cwd));
xfree(cwd);
}
if (chdir(RSTRING_PTR(eargp->chdir_dir)) == -1) { /* async-signal-safe */
ERRMSG("chdir");
return -1;
}
}
#ifdef HAVE_SETGID
if (eargp->gid_given) {
if (setgid(eargp->gid) < 0) {
ERRMSG("setgid");
return -1;
}
}
#endif
#ifdef HAVE_SETUID
if (eargp->uid_given) {
if (setuid(eargp->uid) < 0) {
ERRMSG("setuid");
return -1;
}
}
#endif
if (sargp) {
VALUE ary = sargp->fd_dup2;
if (ary != Qfalse) {
size_t len = run_exec_dup2_tmpbuf_size(RARRAY_LEN(ary));
VALUE tmpbuf = hide_obj(rb_str_new(0, len));
rb_str_set_len(tmpbuf, len);
sargp->dup2_tmpbuf = tmpbuf;
}
}
return 0;
}
/* This function should be async-signal-safe. Hopefully it is. */
int
rb_exec_async_signal_safe(const struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen)
{
#if !defined(HAVE_WORKING_FORK)
struct rb_execarg sarg, *const sargp = &sarg;
#else
struct rb_execarg *const sargp = NULL;
#endif
if (rb_execarg_run_options(eargp, sargp, errmsg, errmsg_buflen) < 0) { /* hopefully async-signal-safe */
goto failure;
}
if (eargp->use_shell) {
proc_exec_sh(RSTRING_PTR(eargp->invoke.sh.shell_script), eargp->envp_str); /* async-signal-safe */
}
else {
char *abspath = NULL;
if (!NIL_P(eargp->invoke.cmd.command_abspath))
abspath = RSTRING_PTR(eargp->invoke.cmd.command_abspath);
proc_exec_cmd(abspath, eargp->invoke.cmd.argv_str, eargp->envp_str); /* async-signal-safe */
}
#if !defined(HAVE_WORKING_FORK)
preserving_errno(rb_execarg_run_options(sargp, NULL, errmsg, errmsg_buflen));
#endif
failure:
return -1;
}
#ifdef HAVE_WORKING_FORK
/* This function should be async-signal-safe. Hopefully it is. */
static int
rb_exec_atfork(void* arg, char *errmsg, size_t errmsg_buflen)
{
return rb_exec_async_signal_safe(arg, errmsg, errmsg_buflen); /* hopefully async-signal-safe */
}
#endif
#ifdef HAVE_WORKING_FORK
#if SIZEOF_INT == SIZEOF_LONG
#define proc_syswait (VALUE (*)(VALUE))rb_syswait
#else
static VALUE
proc_syswait(VALUE pid)
{
rb_syswait((int)pid);
return Qnil;
}
#endif
static int
move_fds_to_avoid_crash(int *fdp, int n, VALUE fds)
{
int min = 0;
int i;
for (i = 0; i < n; i++) {
int ret;
while (RTEST(rb_hash_lookup(fds, INT2FIX(fdp[i])))) {
if (min <= fdp[i])
min = fdp[i]+1;
while (RTEST(rb_hash_lookup(fds, INT2FIX(min))))
min++;
ret = rb_cloexec_fcntl_dupfd(fdp[i], min);
if (ret == -1)
return -1;
rb_update_max_fd(ret);
close(fdp[i]);
fdp[i] = ret;
}
}
return 0;
}
static int
pipe_nocrash(int filedes[2], VALUE fds)
{
int ret;
ret = rb_pipe(filedes);
if (ret == -1)
return -1;
if (RTEST(fds)) {
int save = errno;
if (move_fds_to_avoid_crash(filedes, 2, fds) == -1) {
close(filedes[0]);
close(filedes[1]);
return -1;
}
errno = save;
}
return ret;
}
#ifndef O_BINARY
#define O_BINARY 0
#endif
static int
handle_fork_error(int *status, int *ep, volatile int *try_gc_p)
{
int state = 0;
switch (errno) {
case ENOMEM:
if ((*try_gc_p)-- > 0 && !rb_during_gc()) {
rb_gc();
return 0;
}
break;
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
if (!status && !ep) {
rb_thread_sleep(1);
return 0;
}
else {
rb_protect((VALUE (*)())rb_thread_sleep, 1, &state);
if (status) *status = state;
if (!state) return 0;
}
break;
}
if (ep) {
preserving_errno((close(ep[0]), close(ep[1])));
}
if (state && !status) rb_jump_tag(state);
return -1;
}
#define prefork() ( \
rb_io_flush(rb_stdout), \
rb_io_flush(rb_stderr) \
)
/*
* Forks child process, and returns the process ID in the parent
* process.
*
* If +status+ is given, protects from any exceptions and sets the
* jump status to it, and returns -1. If failed to fork new process
* but no exceptions occurred, sets 0 to it. Otherwise, if forked
* successfully, the value of +status+ is undetermined.
*
* In the child process, just returns 0 if +chfunc+ is +NULL+.
* Otherwise +chfunc+ will be called with +charg+, and then the child
* process exits with +EXIT_SUCCESS+ when it returned zero.
*
* In the case of the function is called and returns non-zero value,
* the child process exits with non-+EXIT_SUCCESS+ value (normally
* 127). And, on the platforms where +FD_CLOEXEC+ is available,
* +errno+ is propagated to the parent process, and this function
* returns -1 in the parent process. On the other platforms, just
* returns pid.
*
* If fds is not Qnil, internal pipe for the errno propagation is
* arranged to avoid conflicts of the hash keys in +fds+.
*
* +chfunc+ must not raise any exceptions.
*/
static ssize_t
write_retry(int fd, const void *buf, size_t len)
{
ssize_t w;
do {
w = write(fd, buf, len);
} while (w < 0 && errno == EINTR);
return w;
}
static ssize_t
read_retry(int fd, void *buf, size_t len)
{
ssize_t r;
do {
r = read(fd, buf, len);
} while (r < 0 && errno == EINTR);
return r;
}
static void
send_child_error(int fd, char *errmsg, size_t errmsg_buflen)
{
int err;
err = errno;
if (write_retry(fd, &err, sizeof(err)) < 0) err = errno;
if (errmsg && 0 < errmsg_buflen) {
errmsg[errmsg_buflen-1] = '\0';
errmsg_buflen = strlen(errmsg);
if (errmsg_buflen > 0 && write_retry(fd, errmsg, errmsg_buflen) < 0)
err = errno;
}
}
static int
recv_child_error(int fd, int *errp, char *errmsg, size_t errmsg_buflen)
{
int err;
ssize_t size;
if ((size = read_retry(fd, &err, sizeof(err))) < 0) {
err = errno;
}
*errp = err;
if (size == sizeof(err) &&
errmsg && 0 < errmsg_buflen) {
ssize_t ret = read_retry(fd, errmsg, errmsg_buflen-1);
if (0 <= ret) {
errmsg[ret] = '\0';
}
}
close(fd);
return size != 0;
}
#ifdef HAVE_WORKING_VFORK
#if !defined(HAVE_GETRESUID) && defined(HAVE_GETUIDX)
/* AIX 7.1 */
static int
getresuid(rb_uid_t *ruid, rb_uid_t *euid, rb_uid_t *suid)
{
rb_uid_t ret;
*ruid = getuid();
*euid = geteuid();
ret = getuidx(ID_SAVED);
if (ret == (rb_uid_t)-1)
return -1;
*suid = ret;
return 0;
}
#define HAVE_GETRESUID
#endif
#if !defined(HAVE_GETRESGID) && defined(HAVE_GETGIDX)
/* AIX 7.1 */
static int
getresgid(rb_gid_t *rgid, rb_gid_t *egid, rb_gid_t *sgid)
{
rb_gid_t ret;
*rgid = getgid();
*egid = getegid();
ret = getgidx(ID_SAVED);
if (ret == (rb_gid_t)-1)
return -1;
*sgid = ret;
return 0;
}
#define HAVE_GETRESGID
#endif
static int
has_privilege(void)
{
/*
* has_privilege() is used to choose vfork() or fork().
*
* If the process has privilege, the parent process or
* the child process can change UID/GID.
* If vfork() is used to create the child process and
* the parent or child process change effective UID/GID,
* different privileged processes shares memory.
* It is a bad situation.
* So, fork() should be used.
*/
rb_uid_t ruid, euid;
rb_gid_t rgid, egid;
#if defined HAVE_ISSETUGID
if (issetugid())
return 1;
#endif
#ifdef HAVE_GETRESUID
{
int ret;
rb_uid_t suid;
ret = getresuid(&ruid, &euid, &suid);
if (ret == -1)
rb_sys_fail("getresuid(2)");
if (euid != suid)
return 1;
}
#else
ruid = getuid();
euid = geteuid();
#endif
if (euid == 0 || euid != ruid)
return 1;
#ifdef HAVE_GETRESGID
{
int ret;
rb_gid_t sgid;
ret = getresgid(&rgid, &egid, &sgid);
if (ret == -1)
rb_sys_fail("getresgid(2)");
if (egid != sgid)
return 1;
}
#else
rgid = getgid();
egid = getegid();
#endif
if (egid != rgid)
return 1;
return 0;
}
#endif
struct child_handler_disabler_state
{
sigset_t sigmask;
int cancelstate;
};
static void
disable_child_handler_before_fork(struct child_handler_disabler_state *old)
{
int ret;
sigset_t all;
#ifdef HAVE_PTHREAD_SIGMASK
ret = sigfillset(&all);
if (ret == -1)
rb_sys_fail("sigfillset");
ret = pthread_sigmask(SIG_SETMASK, &all, &old->sigmask); /* not async-signal-safe */
if (ret != 0) {
rb_syserr_fail(ret, "pthread_sigmask");
}
#else
# pragma GCC warning "pthread_sigmask on fork is not available. potentially dangerous"
#endif
#ifdef PTHREAD_CANCEL_DISABLE
ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old->cancelstate);
if (ret != 0) {
rb_syserr_fail(ret, "pthread_setcancelstate");
}
#endif
}
static void
disable_child_handler_fork_parent(struct child_handler_disabler_state *old)
{
int ret;
#ifdef PTHREAD_CANCEL_DISABLE
ret = pthread_setcancelstate(old->cancelstate, NULL);
if (ret != 0) {
rb_syserr_fail(ret, "pthread_setcancelstate");
}
#endif
#ifdef HAVE_PTHREAD_SIGMASK
ret = pthread_sigmask(SIG_SETMASK, &old->sigmask, NULL); /* not async-signal-safe */
if (ret != 0) {
rb_syserr_fail(ret, "pthread_sigmask");
}
#else
# pragma GCC warning "pthread_sigmask on fork is not available. potentially dangerous"
#endif
}
/* This function should be async-signal-safe. Actually it is. */
static int
disable_child_handler_fork_child(struct child_handler_disabler_state *old, char *errmsg, size_t errmsg_buflen)
{
int sig;
int ret;
#ifdef POSIX_SIGNAL
struct sigaction act, oact;
act.sa_handler = SIG_DFL;
act.sa_flags = 0;
ret = sigemptyset(&act.sa_mask); /* async-signal-safe */
if (ret == -1) {
ERRMSG("sigemptyset");
return -1;
}
#else
sig_t handler;
#endif
for (sig = 1; sig < NSIG; sig++) {
int reset = 0;
#ifdef SIGPIPE
if (sig == SIGPIPE)
reset = 1;
#endif
if (!reset) {
#ifdef POSIX_SIGNAL
ret = sigaction(sig, NULL, &oact); /* async-signal-safe */
if (ret == -1 && errno == EINVAL) {
continue; /* Ignore invalid signal number. */
}
if (ret == -1) {
ERRMSG("sigaction to obtain old action");
return -1;
}
reset = (oact.sa_flags & SA_SIGINFO) ||
(oact.sa_handler != SIG_IGN && oact.sa_handler != SIG_DFL);
#else
handler = signal(sig, SIG_DFL);
if (handler == SIG_ERR && errno == EINVAL) {
continue; /* Ignore invalid signal number */
}
if (handler == SIG_ERR) {
ERRMSG("signal to obtain old action");
return -1;
}
reset = (handler != SIG_IGN && handler != SIG_DFL);
#endif
}
if (reset) {
#ifdef POSIX_SIGNAL
ret = sigaction(sig, &act, NULL); /* async-signal-safe */
if (ret == -1) {
ERRMSG("sigaction to set default action");
return -1;
}
#else
handler = signal(sig, handler);
if (handler == SIG_ERR) {
ERRMSG("signal to set default action");
return -1;
}
#endif
}
}
ret = sigprocmask(SIG_SETMASK, &old->sigmask, NULL); /* async-signal-safe */
if (ret != 0) {
ERRMSG("sigprocmask");
return -1;
}
return 0;
}
static rb_pid_t
retry_fork_async_signal_safe(int *status, int *ep,
int (*chfunc)(void*, char *, size_t), void *charg,
char *errmsg, size_t errmsg_buflen)
{
rb_pid_t pid;
volatile int try_gc = 1;
struct child_handler_disabler_state old;
while (1) {
prefork();
disable_child_handler_before_fork(&old);
#ifdef HAVE_WORKING_VFORK
if (!has_privilege())
pid = vfork();
else
pid = fork();
#else
pid = fork();
#endif
if (pid == 0) {/* fork succeed, child process */
int ret;
close(ep[0]);
ret = disable_child_handler_fork_child(&old, errmsg, errmsg_buflen); /* async-signal-safe */
if (ret == 0) {
ret = chfunc(charg, errmsg, errmsg_buflen);
if (!ret) _exit(EXIT_SUCCESS);
}
send_child_error(ep[1], errmsg, errmsg_buflen);
#if EXIT_SUCCESS == 127
_exit(EXIT_FAILURE);
#else
_exit(127);
#endif
}
preserving_errno(disable_child_handler_fork_parent(&old));
if (0 < pid) /* fork succeed, parent process */
return pid;
/* fork failed */
if (handle_fork_error(status, ep, &try_gc))
return -1;
}
}
rb_pid_t
rb_fork_async_signal_safe(int *status, int (*chfunc)(void*, char *, size_t), void *charg, VALUE fds,
char *errmsg, size_t errmsg_buflen)
{
rb_pid_t pid;
int err;
int ep[2];
int error_occurred;
if (status) *status = 0;
if (pipe_nocrash(ep, fds)) return -1;
pid = retry_fork_async_signal_safe(status, ep, chfunc, charg, errmsg, errmsg_buflen);
if (pid < 0)
return pid;
close(ep[1]);
error_occurred = recv_child_error(ep[0], &err, errmsg, errmsg_buflen);
if (error_occurred) {
if (status) {
rb_protect(proc_syswait, (VALUE)pid, status);
}
else {
rb_syswait(pid);
}
errno = err;
return -1;
}
return pid;
}
static rb_pid_t
retry_fork_ruby(int *status)
{
rb_pid_t pid;
int try_gc = 1;
while (1) {
prefork();
before_fork_ruby();
pid = fork();
if (pid == 0) /* fork succeed, child process */
return pid;
preserving_errno(after_fork_ruby());
if (0 < pid) /* fork succeed, parent process */
return pid;
/* fork failed */
if (handle_fork_error(status, NULL, &try_gc))
return -1;
}
}
rb_pid_t
rb_fork_ruby(int *status)
{
rb_pid_t pid;
if (status) *status = 0;
pid = retry_fork_ruby(status);
if (pid < 0)
return pid;
if (!pid) {
after_fork_ruby();
}
return pid;
}
#endif
#if defined(HAVE_WORKING_FORK) && !defined(CANNOT_FORK_WITH_PTHREAD)
/*
* call-seq:
* Kernel.fork [{ block }] -> fixnum or nil
* Process.fork [{ block }] -> fixnum or nil
*
* Creates a subprocess. If a block is specified, that block is run
* in the subprocess, and the subprocess terminates with a status of
* zero. Otherwise, the +fork+ call returns twice, once in
* the parent, returning the process ID of the child, and once in
* the child, returning _nil_. The child process can exit using
* <code>Kernel.exit!</code> to avoid running any
* <code>at_exit</code> functions. The parent process should
* use <code>Process.wait</code> to collect the termination statuses
* of its children or use <code>Process.detach</code> to register
* disinterest in their status; otherwise, the operating system
* may accumulate zombie processes.
*
* The thread calling fork is the only thread in the created child process.
* fork doesn't copy other threads.
*
* If fork is not usable, Process.respond_to?(:fork) returns false.
*
* Note that fork(2) is not available on some platforms like Windows and NetBSD 4.
* Therefore you should use spawn() instead of fork().
*/
static VALUE
rb_f_fork(VALUE obj)
{
rb_pid_t pid;
switch (pid = rb_fork_ruby(NULL)) {
case 0:
rb_thread_atfork();
if (rb_block_given_p()) {
int status;
rb_protect(rb_yield, Qundef, &status);
ruby_stop(status);
}
return Qnil;
case -1:
rb_sys_fail("fork(2)");
return Qnil;
default:
return PIDT2NUM(pid);
}
}
#else
#define rb_f_fork rb_f_notimplement
#endif
static int
exit_status_code(VALUE status)
{
int istatus;
switch (status) {
case Qtrue:
istatus = EXIT_SUCCESS;
break;
case Qfalse:
istatus = EXIT_FAILURE;
break;
default:
istatus = NUM2INT(status);
#if EXIT_SUCCESS != 0
if (istatus == 0)
istatus = EXIT_SUCCESS;
#endif
break;
}
return istatus;
}
/*
* call-seq:
* Process.exit!(status=false)
*
* Exits the process immediately. No exit handlers are
* run. <em>status</em> is returned to the underlying system as the
* exit status.
*
* Process.exit!(true)
*/
static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
int istatus;
if (rb_check_arity(argc, 0, 1) == 1) {
istatus = exit_status_code(argv[0]);
}
else {
istatus = EXIT_FAILURE;
}
_exit(istatus);
UNREACHABLE;
}
void
rb_exit(int status)
{
if (GET_THREAD()->tag) {
VALUE args[2];
args[0] = INT2NUM(status);
args[1] = rb_str_new2("exit");
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
ruby_stop(status);
}
/*
* call-seq:
* exit(status=true)
* Kernel::exit(status=true)
* Process::exit(status=true)
*
* Initiates the termination of the Ruby script by raising the
* <code>SystemExit</code> exception. This exception may be caught. The
* optional parameter is used to return a status code to the invoking
* environment.
* +true+ and +FALSE+ of _status_ means success and failure
* respectively. The interpretation of other integer values are
* system dependent.
*
* begin
* exit
* puts "never get here"
* rescue SystemExit
* puts "rescued a SystemExit exception"
* end
* puts "after begin block"
*
* <em>produces:</em>
*
* rescued a SystemExit exception
* after begin block
*
* Just prior to termination, Ruby executes any <code>at_exit</code> functions
* (see Kernel::at_exit) and runs any object finalizers (see
* ObjectSpace::define_finalizer).
*
* at_exit { puts "at_exit function" }
* ObjectSpace.define_finalizer("string", proc { puts "in finalizer" })
* exit
*
* <em>produces:</em>
*
* at_exit function
* in finalizer
*/
VALUE
rb_f_exit(int argc, const VALUE *argv)
{
int istatus;
if (rb_check_arity(argc, 0, 1) == 1) {
istatus = exit_status_code(argv[0]);
}
else {
istatus = EXIT_SUCCESS;
}
rb_exit(istatus);
UNREACHABLE;
}
/*
* call-seq:
* abort
* Kernel::abort([msg])
* Process::abort([msg])
*
* Terminate execution immediately, effectively by calling
* <code>Kernel.exit(false)</code>. If _msg_ is given, it is written
* to STDERR prior to terminating.
*/
VALUE
rb_f_abort(int argc, const VALUE *argv)
{
rb_check_arity(argc, 0, 1);
if (argc == 0) {
if (!NIL_P(GET_THREAD()->errinfo)) {
ruby_error_print();
}
rb_exit(EXIT_FAILURE);
}
else {
VALUE args[2];
args[1] = args[0] = argv[0];
StringValue(args[0]);
rb_io_puts(1, args, rb_stderr);
args[0] = INT2NUM(EXIT_FAILURE);
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
UNREACHABLE;
}
void
rb_syswait(rb_pid_t pid)
{
int status;
rb_waitpid(pid, &status, 0);
}
static rb_pid_t
rb_spawn_process(struct rb_execarg *eargp, char *errmsg, size_t errmsg_buflen)
{
rb_pid_t pid;
#if !defined HAVE_WORKING_FORK || USE_SPAWNV
VALUE prog;
struct rb_execarg sarg;
#endif
#if defined HAVE_WORKING_FORK && !USE_SPAWNV
pid = rb_fork_async_signal_safe(NULL, rb_exec_atfork, eargp, eargp->redirect_fds, errmsg, errmsg_buflen);
#else
prog = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
if (rb_execarg_run_options(eargp, &sarg, errmsg, errmsg_buflen) < 0) {
return -1;
}
if (prog && !eargp->use_shell) {
char **argv = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str);
argv[0] = RSTRING_PTR(prog);
}
# if defined HAVE_SPAWNV
if (eargp->use_shell) {
pid = proc_spawn_sh(RSTRING_PTR(prog));
}
else {
char **argv = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str);
pid = proc_spawn_cmd(argv, prog, eargp);
}
if (pid == -1)
rb_last_status_set(0x7f << 8, 0);
# else
if (!eargp->use_shell) {
char **argv = ARGVSTR2ARGV(eargp->invoke.cmd.argv_str);
int argc = ARGVSTR2ARGC(eargp->invoke.cmd.argv_str);
prog = rb_ary_join(rb_ary_new4(argc, argv), rb_str_new2(" "));
}
status = system(StringValuePtr(prog));
rb_last_status_set((status & 0xff) << 8, 0);
pid = 1; /* dummy */
# endif
rb_execarg_run_options(&sarg, NULL, errmsg, errmsg_buflen);
#endif
return pid;
}
struct spawn_args {
VALUE execarg;
struct {
char *ptr;
size_t buflen;
} errmsg;
};
static VALUE
do_spawn_process(VALUE arg)
{
struct spawn_args *argp = (struct spawn_args *)arg;
rb_execarg_parent_start1(argp->execarg);
return (VALUE)rb_spawn_process(DATA_PTR(argp->execarg),
argp->errmsg.ptr, argp->errmsg.buflen);
}
static rb_pid_t
rb_execarg_spawn(VALUE execarg_obj, char *errmsg, size_t errmsg_buflen)
{
struct spawn_args args;
args.execarg = execarg_obj;
args.errmsg.ptr = errmsg;
args.errmsg.buflen = errmsg_buflen;
return (rb_pid_t)rb_ensure(do_spawn_process, (VALUE)&args,
execarg_parent_end, execarg_obj);
}
static rb_pid_t
rb_spawn_internal(int argc, const VALUE *argv, char *errmsg, size_t errmsg_buflen)
{
VALUE execarg_obj;
execarg_obj = rb_execarg_new(argc, argv, TRUE);
return rb_execarg_spawn(execarg_obj, errmsg, errmsg_buflen);
}
rb_pid_t
rb_spawn_err(int argc, const VALUE *argv, char *errmsg, size_t errmsg_buflen)
{
return rb_spawn_internal(argc, argv, errmsg, errmsg_buflen);
}
rb_pid_t
rb_spawn(int argc, const VALUE *argv)
{
return rb_spawn_internal(argc, argv, NULL, 0);
}
/*
* call-seq:
* system([env,] command... [,options]) -> true, false or nil
*
* Executes _command..._ in a subshell.
* _command..._ is one of following forms.
*
* commandline : command line string which is passed to the standard shell
* cmdname, arg1, ... : command name and one or more arguments (no shell)
* [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
*
* system returns +true+ if the command gives zero exit status,
* +false+ for non zero exit status.
* Returns +nil+ if command execution fails.
* An error status is available in <code>$?</code>.
* The arguments are processed in the same way as
* for <code>Kernel.spawn</code>.
*
* The hash arguments, env and options, are same as
* <code>exec</code> and <code>spawn</code>.
* See <code>Kernel.spawn</code> for details.
*
* system("echo *")
* system("echo", "*")
*
* <em>produces:</em>
*
* config.h main.rb
* *
*
* See <code>Kernel.exec</code> for the standard shell.
*/
static VALUE
rb_f_system(int argc, VALUE *argv)
{
rb_pid_t pid;
int status;
#if defined(SIGCLD) && !defined(SIGCHLD)
# define SIGCHLD SIGCLD
#endif
#ifdef SIGCHLD
RETSIGTYPE (*chfunc)(int);
rb_last_status_clear();
chfunc = signal(SIGCHLD, SIG_DFL);
#endif
pid = rb_spawn_internal(argc, argv, NULL, 0);
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
if (pid > 0) {
int ret, status;
ret = rb_waitpid(pid, &status, 0);
if (ret == (rb_pid_t)-1)
rb_sys_fail("Another thread waited the process started by system().");
}
#endif
#ifdef SIGCHLD
signal(SIGCHLD, chfunc);
#endif
if (pid < 0) {
return Qnil;
}
status = PST2INT(rb_last_status_get());
if (status == EXIT_SUCCESS) return Qtrue;
return Qfalse;
}
/*
* call-seq:
* spawn([env,] command... [,options]) -> pid
* Process.spawn([env,] command... [,options]) -> pid
*
* spawn executes specified command and return its pid.
*
* pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2")
* Process.wait pid
*
* pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'")
* Process.wait pid
*
* This method is similar to Kernel#system but it doesn't wait for the command
* to finish.
*
* The parent process should
* use <code>Process.wait</code> to collect
* the termination status of its child or
* use <code>Process.detach</code> to register
* disinterest in their status;
* otherwise, the operating system may accumulate zombie processes.
*
* spawn has bunch of options to specify process attributes:
*
* env: hash
* name => val : set the environment variable
* name => nil : unset the environment variable
*
* the keys and the values except for +nil+ must be strings.
* command...:
* commandline : command line string which is passed to the standard shell
* cmdname, arg1, ... : command name and one or more arguments (This form does not use the shell. See below for caveats.)
* [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
* options: hash
* clearing environment variables:
* :unsetenv_others => true : clear environment variables except specified by env
* :unsetenv_others => false : don't clear (default)
* process group:
* :pgroup => true or 0 : make a new process group
* :pgroup => pgid : join the specified process group
* :pgroup => nil : don't change the process group (default)
* create new process group: Windows only
* :new_pgroup => true : the new process is the root process of a new process group
* :new_pgroup => false : don't create a new process group (default)
* resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit.
* :rlimit_resourcename => limit
* :rlimit_resourcename => [cur_limit, max_limit]
* umask:
* :umask => int
* redirection:
* key:
* FD : single file descriptor in child process
* [FD, FD, ...] : multiple file descriptor in child process
* value:
* FD : redirect to the file descriptor in parent process
* string : redirect to file with open(string, "r" or "w")
* [string] : redirect to file with open(string, File::RDONLY)
* [string, open_mode] : redirect to file with open(string, open_mode, 0644)
* [string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
* [:child, FD] : redirect to the redirected file descriptor
* :close : close the file descriptor in child process
* FD is one of follows
* :in : the file descriptor 0 which is the standard input
* :out : the file descriptor 1 which is the standard output
* :err : the file descriptor 2 which is the standard error
* integer : the file descriptor of specified the integer
* io : the file descriptor specified as io.fileno
* file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
* :close_others => true : don't inherit
* current directory:
* :chdir => str
*
* The 'cmdname, arg1, ...' form does not use the shell. However,
* on different OSes, different things are provided as built-in
* commands. An example of this is 'echo', which is a built-in
* on Windows, but is a normal program on Linux and Mac OS X.
* This means that `Process.spawn 'echo', '%Path%'` will display
* the contents of the `%Path%` environment variable on Windows,
* but `Process.spawn 'echo', '$PATH'` prints the literal '$PATH'.
*
* If a hash is given as +env+, the environment is
* updated by +env+ before <code>exec(2)</code> in the child process.
* If a pair in +env+ has nil as the value, the variable is deleted.
*
* # set FOO as BAR and unset BAZ.
* pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
*
* If a hash is given as +options+,
* it specifies
* process group,
* create new process group,
* resource limit,
* current directory,
* umask and
* redirects for the child process.
* Also, it can be specified to clear environment variables.
*
* The <code>:unsetenv_others</code> key in +options+ specifies
* to clear environment variables, other than specified by +env+.
*
* pid = spawn(command, :unsetenv_others=>true) # no environment variable
* pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
*
* The <code>:pgroup</code> key in +options+ specifies a process group.
* The corresponding value should be true, zero, a positive integer, or nil.
* true and zero cause the process to be a process leader of a new process group.
* A non-zero positive integer causes the process to join the provided process group.
* The default value, nil, causes the process to remain in the same process group.
*
* pid = spawn(command, :pgroup=>true) # process leader
* pid = spawn(command, :pgroup=>10) # belongs to the process group 10
*
* The <code>:new_pgroup</code> key in +options+ specifies to pass
* +CREATE_NEW_PROCESS_GROUP+ flag to <code>CreateProcessW()</code> that is
* Windows API. This option is only for Windows.
* true means the new process is the root process of the new process group.
* The new process has CTRL+C disabled. This flag is necessary for
* <code>Process.kill(:SIGINT, pid)</code> on the subprocess.
* :new_pgroup is false by default.
*
* pid = spawn(command, :new_pgroup=>true) # new process group
* pid = spawn(command, :new_pgroup=>false) # same process group
*
* The <code>:rlimit_</code><em>foo</em> key specifies a resource limit.
* <em>foo</em> should be one of resource types such as <code>core</code>.
* The corresponding value should be an integer or an array which have one or
* two integers: same as cur_limit and max_limit arguments for
* Process.setrlimit.
*
* cur, max = Process.getrlimit(:CORE)
* pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
* pid = spawn(command, :rlimit_core=>max) # enable core dump
* pid = spawn(command, :rlimit_core=>0) # never dump core.
*
* The <code>:umask</code> key in +options+ specifies the umask.
*
* pid = spawn(command, :umask=>077)
*
* The :in, :out, :err, a fixnum, an IO and an array key specifies a redirection.
* The redirection maps a file descriptor in the child process.
*
* For example, stderr can be merged into stdout as follows:
*
* pid = spawn(command, :err=>:out)
* pid = spawn(command, 2=>1)
* pid = spawn(command, STDERR=>:out)
* pid = spawn(command, STDERR=>STDOUT)
*
* The hash keys specifies a file descriptor
* in the child process started by <code>spawn</code>.
* :err, 2 and STDERR specifies the standard error stream (stderr).
*
* The hash values specifies a file descriptor
* in the parent process which invokes <code>spawn</code>.
* :out, 1 and STDOUT specifies the standard output stream (stdout).
*
* In the above example,
* the standard output in the child process is not specified.
* So it is inherited from the parent process.
*
* The standard input stream (stdin) can be specified by :in, 0 and STDIN.
*
* A filename can be specified as a hash value.
*
* pid = spawn(command, :in=>"/dev/null") # read mode
* pid = spawn(command, :out=>"/dev/null") # write mode
* pid = spawn(command, :err=>"log") # write mode
* pid = spawn(command, [:out, :err]=>"/dev/null") # write mode
* pid = spawn(command, 3=>"/dev/null") # read mode
*
* For stdout and stderr (and combination of them),
* it is opened in write mode.
* Otherwise read mode is used.
*
* For specifying flags and permission of file creation explicitly,
* an array is used instead.
*
* pid = spawn(command, :in=>["file"]) # read mode is assumed
* pid = spawn(command, :in=>["file", "r"])
* pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
* pid = spawn(command, :out=>["log", "w", 0600])
* pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
*
* The array specifies a filename, flags and permission.
* The flags can be a string or an integer.
* If the flags is omitted or nil, File::RDONLY is assumed.
* The permission should be an integer.
* If the permission is omitted or nil, 0644 is assumed.
*
* If an array of IOs and integers are specified as a hash key,
* all the elements are redirected.
*
* # stdout and stderr is redirected to log file.
* # The file "log" is opened just once.
* pid = spawn(command, [:out, :err]=>["log", "w"])
*
* Another way to merge multiple file descriptors is [:child, fd].
* \[:child, fd] means the file descriptor in the child process.
* This is different from fd.
* For example, :err=>:out means redirecting child stderr to parent stdout.
* But :err=>[:child, :out] means redirecting child stderr to child stdout.
* They differ if stdout is redirected in the child process as follows.
*
* # stdout and stderr is redirected to log file.
* # The file "log" is opened just once.
* pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])
*
* \[:child, :out] can be used to merge stderr into stdout in IO.popen.
* In this case, IO.popen redirects stdout to a pipe in the child process
* and [:child, :out] refers the redirected stdout.
*
* io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
* p io.read #=> "out\nerr\n"
*
* The <code>:chdir</code> key in +options+ specifies the current directory.
*
* pid = spawn(command, :chdir=>"/var/tmp")
*
* spawn closes all non-standard unspecified descriptors by default.
* The "standard" descriptors are 0, 1 and 2.
* This behavior is specified by :close_others option.
* :close_others doesn't affect the standard descriptors which are
* closed only if :close is specified explicitly.
*
* pid = spawn(command, :close_others=>true) # close 3,4,5,... (default)
* pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
*
* :close_others is true by default for spawn and IO.popen.
*
* Note that fds which close-on-exec flag is already set are closed
* regardless of :close_others option.
*
* So IO.pipe and spawn can be used as IO.popen.
*
* # similar to r = IO.popen(command)
* r, w = IO.pipe
* pid = spawn(command, :out=>w) # r, w is closed in the child process.
* w.close
*
* :close is specified as a hash value to close a fd individually.
*
* f = open(foo)
* system(command, f=>:close) # don't inherit f.
*
* If a file descriptor need to be inherited,
* io=>io can be used.
*
* # valgrind has --log-fd option for log destination.
* # log_w=>log_w indicates log_w.fileno inherits to child process.
* log_r, log_w = IO.pipe
* pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
* log_w.close
* p log_r.read
*
* It is also possible to exchange file descriptors.
*
* pid = spawn(command, :out=>:err, :err=>:out)
*
* The hash keys specify file descriptors in the child process.
* The hash values specifies file descriptors in the parent process.
* So the above specifies exchanging stdout and stderr.
* Internally, +spawn+ uses an extra file descriptor to resolve such cyclic
* file descriptor mapping.
*
* See <code>Kernel.exec</code> for the standard shell.
*/
static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
rb_pid_t pid;
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
VALUE execarg_obj, fail_str;
struct rb_execarg *eargp;
execarg_obj = rb_execarg_new(argc, argv, TRUE);
eargp = rb_execarg_get(execarg_obj);
fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name;
pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg));
if (pid == -1) {
int err = errno;
rb_exec_fail(eargp, err, errmsg);
RB_GC_GUARD(execarg_obj);
rb_syserr_fail_str(err, fail_str);
}
#if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV)
return PIDT2NUM(pid);
#else
return Qnil;
#endif
}
/*
* call-seq:
* sleep([duration]) -> fixnum
*
* Suspends the current thread for _duration_ seconds (which may be any number,
* including a +Float+ with fractional seconds). Returns the actual number of
* seconds slept (rounded), which may be less than that asked for if another
* thread calls <code>Thread#run</code>. Called without an argument, sleep()
* will sleep forever.
*
* Time.new #=> 2008-03-08 19:56:19 +0900
* sleep 1.2 #=> 1
* Time.new #=> 2008-03-08 19:56:20 +0900
* sleep 1.9 #=> 2
* Time.new #=> 2008-03-08 19:56:22 +0900
*/
static VALUE
rb_f_sleep(int argc, VALUE *argv)
{
time_t beg, end;
beg = time(0);
if (argc == 0) {
rb_thread_sleep_forever();
}
else {
rb_check_arity(argc, 0, 1);
rb_thread_wait_for(rb_time_interval(argv[0]));
}
end = time(0) - beg;
return INT2FIX(end);
}
#if (defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)) || defined(HAVE_GETPGID)
/*
* call-seq:
* Process.getpgrp -> integer
*
* Returns the process group ID for this process. Not available on
* all platforms.
*
* Process.getpgid(0) #=> 25527
* Process.getpgrp #=> 25527
*/
static VALUE
proc_getpgrp(void)
{
rb_pid_t pgrp;
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
pgrp = getpgrp();
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
pgrp = getpgid(0);
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#endif
}
#else
#define proc_getpgrp rb_f_notimplement
#endif
#if defined(HAVE_SETPGID) || (defined(HAVE_SETPGRP) && defined(SETPGRP_VOID))
/*
* call-seq:
* Process.setpgrp -> 0
*
* Equivalent to <code>setpgid(0,0)</code>. Not available on all
* platforms.
*/
static VALUE
proc_setpgrp(void)
{
/* check for posix setpgid() first; this matches the posix */
/* getpgrp() above. It appears that configure will set SETPGRP_VOID */
/* even though setpgrp(0,0) would be preferred. The posix call avoids */
/* this confusion. */
#ifdef HAVE_SETPGID
if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
if (setpgrp() < 0) rb_sys_fail(0);
#endif
return INT2FIX(0);
}
#else
#define proc_setpgrp rb_f_notimplement
#endif
#if defined(HAVE_GETPGID)
/*
* call-seq:
* Process.getpgid(pid) -> integer
*
* Returns the process group ID for the given process id. Not
* available on all platforms.
*
* Process.getpgid(Process.ppid()) #=> 25527
*/
static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
rb_pid_t i;
i = getpgid(NUM2PIDT(pid));
if (i < 0) rb_sys_fail(0);
return PIDT2NUM(i);
}
#else
#define proc_getpgid rb_f_notimplement
#endif
#ifdef HAVE_SETPGID
/*
* call-seq:
* Process.setpgid(pid, integer) -> 0
*
* Sets the process group ID of _pid_ (0 indicates this
* process) to <em>integer</em>. Not available on all platforms.
*/
static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
rb_pid_t ipid, ipgrp;
ipid = NUM2PIDT(pid);
ipgrp = NUM2PIDT(pgrp);
if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
return INT2FIX(0);
}
#else
#define proc_setpgid rb_f_notimplement
#endif
#ifdef HAVE_GETSID
/*
* call-seq:
* Process.getsid() -> integer
* Process.getsid(pid) -> integer
*
* Returns the session ID for the given process id. If not given,
* return current process sid. Not available on all platforms.
*
* Process.getsid() #=> 27422
* Process.getsid(0) #=> 27422
* Process.getsid(Process.pid()) #=> 27422
*/
static VALUE
proc_getsid(int argc, VALUE *argv)
{
rb_pid_t sid;
rb_pid_t pid = 0;
if (rb_check_arity(argc, 0, 1) == 1 && !NIL_P(argv[0]))
pid = NUM2PIDT(argv[0]);
sid = getsid(pid);
if (sid < 0) rb_sys_fail(0);
return PIDT2NUM(sid);
}
#else
#define proc_getsid rb_f_notimplement
#endif
#if defined(HAVE_SETSID) || (defined(HAVE_SETPGRP) && defined(TIOCNOTTY))
#if !defined(HAVE_SETSID)
static rb_pid_t ruby_setsid(void);
#define setsid() ruby_setsid()
#endif
/*
* call-seq:
* Process.setsid -> fixnum
*
* Establishes this process as a new session and process group
* leader, with no controlling tty. Returns the session id. Not
* available on all platforms.
*
* Process.setsid #=> 27422
*/
static VALUE
proc_setsid(void)
{
rb_pid_t pid;
pid = setsid();
if (pid < 0) rb_sys_fail(0);
return PIDT2NUM(pid);
}
#if !defined(HAVE_SETSID)
#define HAVE_SETSID 1
static rb_pid_t
ruby_setsid(void)
{
rb_pid_t pid;
int ret;
pid = getpid();
#if defined(SETPGRP_VOID)
ret = setpgrp();
/* If `pid_t setpgrp(void)' is equivalent to setsid(),
`ret' will be the same value as `pid', and following open() will fail.
In Linux, `int setpgrp(void)' is equivalent to setpgid(0, 0). */
#else
ret = setpgrp(0, pid);
#endif
if (ret == -1) return -1;
if ((fd = rb_cloexec_open("/dev/tty", O_RDWR, 0)) >= 0) {
rb_update_max_fd(fd);
ioctl(fd, TIOCNOTTY, NULL);
close(fd);
}
return pid;
}
#endif
#else
#define proc_setsid rb_f_notimplement
#endif
#ifdef HAVE_GETPRIORITY
/*
* call-seq:
* Process.getpriority(kind, integer) -> fixnum
*
* Gets the scheduling priority for specified process, process group,
* or user. <em>kind</em> indicates the kind of entity to find: one
* of <code>Process::PRIO_PGRP</code>,
* <code>Process::PRIO_USER</code>, or
* <code>Process::PRIO_PROCESS</code>. _integer_ is an id
* indicating the particular process, process group, or user (an id
* of 0 means _current_). Lower priorities are more favorable
* for scheduling. Not available on all platforms.
*
* Process.getpriority(Process::PRIO_USER, 0) #=> 19
* Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
*/
static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
int prio, iwhich, iwho;
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
errno = 0;
prio = getpriority(iwhich, iwho);
if (errno) rb_sys_fail(0);
return INT2FIX(prio);
}
#else
#define proc_getpriority rb_f_notimplement
#endif
#ifdef HAVE_GETPRIORITY
/*
* call-seq:
* Process.setpriority(kind, integer, priority) -> 0
*
* See <code>Process#getpriority</code>.
*
* Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0
* Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0
* Process.getpriority(Process::PRIO_USER, 0) #=> 19
* Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
*/
static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
int iwhich, iwho, iprio;
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
iprio = NUM2INT(prio);
if (setpriority(iwhich, iwho, iprio) < 0)
rb_sys_fail(0);
return INT2FIX(0);
}
#else
#define proc_setpriority rb_f_notimplement
#endif
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
static int
rlimit_resource_name2int(const char *name, int casetype)
{
int resource;
const char *p;
#define RESCHECK(r) \
do { \
if (STRCASECMP(name, #r) == 0) { \
resource = RLIMIT_##r; \
goto found; \
} \
} while (0)
switch (TOUPPER(*name)) {
case 'A':
#ifdef RLIMIT_AS
RESCHECK(AS);
#endif
break;
case 'C':
#ifdef RLIMIT_CORE
RESCHECK(CORE);
#endif
#ifdef RLIMIT_CPU
RESCHECK(CPU);
#endif
break;
case 'D':
#ifdef RLIMIT_DATA
RESCHECK(DATA);
#endif
break;
case 'F':
#ifdef RLIMIT_FSIZE
RESCHECK(FSIZE);
#endif
break;
case 'M':
#ifdef RLIMIT_MEMLOCK
RESCHECK(MEMLOCK);
#endif
#ifdef RLIMIT_MSGQUEUE
RESCHECK(MSGQUEUE);
#endif
break;
case 'N':
#ifdef RLIMIT_NOFILE
RESCHECK(NOFILE);
#endif
#ifdef RLIMIT_NPROC
RESCHECK(NPROC);
#endif
#ifdef RLIMIT_NICE
RESCHECK(NICE);
#endif
break;
case 'R':
#ifdef RLIMIT_RSS
RESCHECK(RSS);
#endif
#ifdef RLIMIT_RTPRIO
RESCHECK(RTPRIO);
#endif
#ifdef RLIMIT_RTTIME
RESCHECK(RTTIME);
#endif
break;
case 'S':
#ifdef RLIMIT_STACK
RESCHECK(STACK);
#endif
#ifdef RLIMIT_SBSIZE
RESCHECK(SBSIZE);
#endif
#ifdef RLIMIT_SIGPENDING
RESCHECK(SIGPENDING);
#endif
break;
}
return -1;
found:
switch (casetype) {
case 0:
for (p = name; *p; p++)
if (!ISUPPER(*p))
return -1;
break;
case 1:
for (p = name; *p; p++)
if (!ISLOWER(*p))
return -1;
break;
default:
rb_bug("unexpected casetype");
}
return resource;
#undef RESCHECK
}
static int
rlimit_type_by_hname(const char *name)
{
return rlimit_resource_name2int(name, 0);
}
static int
rlimit_type_by_lname(const char *name)
{
return rlimit_resource_name2int(name, 1);
}
static int
rlimit_resource_type(VALUE rtype)
{
const char *name;
VALUE v;
int r;
switch (TYPE(rtype)) {
case T_SYMBOL:
v = rb_sym2str(rtype);
name = RSTRING_PTR(v);
break;
default:
v = rb_check_string_type(rtype);
if (!NIL_P(v)) {
rtype = v;
case T_STRING:
name = StringValueCStr(rtype);
break;
}
/* fall through */
case T_FIXNUM:
case T_BIGNUM:
return NUM2INT(rtype);
}
r = rlimit_type_by_hname(name);
if (r != -1)
return r;
rb_raise(rb_eArgError, "invalid resource name: %"PRIsVALUE, rtype);
UNREACHABLE;
}
static rlim_t
rlimit_resource_value(VALUE rval)
{
const char *name;
VALUE v;
switch (TYPE(rval)) {
case T_SYMBOL:
v = rb_sym2str(rval);
name = RSTRING_PTR(v);
break;
default:
v = rb_check_string_type(rval);
if (!NIL_P(v)) {
rval = v;
case T_STRING:
name = StringValueCStr(rval);
break;
}
/* fall through */
case T_FIXNUM:
case T_BIGNUM:
return NUM2RLIM(rval);
}
#ifdef RLIM_INFINITY
if (strcmp(name, "INFINITY") == 0) return RLIM_INFINITY;
#endif
#ifdef RLIM_SAVED_MAX
if (strcmp(name, "SAVED_MAX") == 0) return RLIM_SAVED_MAX;
#endif
#ifdef RLIM_SAVED_CUR
if (strcmp(name, "SAVED_CUR") == 0) return RLIM_SAVED_CUR;
#endif
rb_raise(rb_eArgError, "invalid resource value: %"PRIsVALUE, rval);
UNREACHABLE;
}
#endif
#if defined(HAVE_GETRLIMIT) && defined(RLIM2NUM)
/*
* call-seq:
* Process.getrlimit(resource) -> [cur_limit, max_limit]
*
* Gets the resource limit of the process.
* _cur_limit_ means current (soft) limit and
* _max_limit_ means maximum (hard) limit.
*
* _resource_ indicates the kind of resource to limit.
* It is specified as a symbol such as <code>:CORE</code>,
* a string such as <code>"CORE"</code> or
* a constant such as <code>Process::RLIMIT_CORE</code>.
* See Process.setrlimit for details.
*
* _cur_limit_ and _max_limit_ may be <code>Process::RLIM_INFINITY</code>,
* <code>Process::RLIM_SAVED_MAX</code> or
* <code>Process::RLIM_SAVED_CUR</code>.
* See Process.setrlimit and the system getrlimit(2) manual for details.
*/
static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
struct rlimit rlim;
if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("getrlimit");
}
return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}
#else
#define proc_getrlimit rb_f_notimplement
#endif
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
/*
* call-seq:
* Process.setrlimit(resource, cur_limit, max_limit) -> nil
* Process.setrlimit(resource, cur_limit) -> nil
*
* Sets the resource limit of the process.
* _cur_limit_ means current (soft) limit and
* _max_limit_ means maximum (hard) limit.
*
* If _max_limit_ is not given, _cur_limit_ is used.
*
* _resource_ indicates the kind of resource to limit.
* It should be a symbol such as <code>:CORE</code>,
* a string such as <code>"CORE"</code> or
* a constant such as <code>Process::RLIMIT_CORE</code>.
* The available resources are OS dependent.
* Ruby may support following resources.
*
* [AS] total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)
* [CORE] core size (bytes) (SUSv3)
* [CPU] CPU time (seconds) (SUSv3)
* [DATA] data segment (bytes) (SUSv3)
* [FSIZE] file size (bytes) (SUSv3)
* [MEMLOCK] total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)
* [MSGQUEUE] allocation for POSIX message queues (bytes) (GNU/Linux)
* [NICE] ceiling on process's nice(2) value (number) (GNU/Linux)
* [NOFILE] file descriptors (number) (SUSv3)
* [NPROC] number of processes for the user (number) (4.4BSD, GNU/Linux)
* [RSS] resident memory size (bytes) (4.2BSD, GNU/Linux)
* [RTPRIO] ceiling on the process's real-time priority (number) (GNU/Linux)
* [RTTIME] CPU time for real-time process (us) (GNU/Linux)
* [SBSIZE] all socket buffers (bytes) (NetBSD, FreeBSD)
* [SIGPENDING] number of queued signals allowed (signals) (GNU/Linux)
* [STACK] stack size (bytes) (SUSv3)
*
* _cur_limit_ and _max_limit_ may be
* <code>:INFINITY</code>, <code>"INFINITY"</code> or
* <code>Process::RLIM_INFINITY</code>,
* which means that the resource is not limited.
* They may be <code>Process::RLIM_SAVED_MAX</code>,
* <code>Process::RLIM_SAVED_CUR</code> and
* corresponding symbols and strings too.
* See system setrlimit(2) manual for details.
*
* The following example raises the soft limit of core size to
* the hard limit to try to make core dump possible.
*
* Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
*
*/
static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
VALUE resource, rlim_cur, rlim_max;
struct rlimit rlim;
rb_check_arity(argc, 2, 3);
resource = argv[0];
rlim_cur = argv[1];
if (argc < 3 || NIL_P(rlim_max = argv[2]))
rlim_max = rlim_cur;
rlim.rlim_cur = rlimit_resource_value(rlim_cur);
rlim.rlim_max = rlimit_resource_value(rlim_max);
if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("setrlimit");
}
return Qnil;
}
#else
#define proc_setrlimit rb_f_notimplement
#endif
static int under_uid_switch = 0;
static void
check_uid_switch(void)
{
if (under_uid_switch) {
rb_raise(rb_eRuntimeError, "can't handle UID while evaluating block given to Process::UID.switch method");
}
}
static int under_gid_switch = 0;
static void
check_gid_switch(void)
{
if (under_gid_switch) {
rb_raise(rb_eRuntimeError, "can't handle GID while evaluating block given to Process::UID.switch method");
}
}
/*********************************************************************
* Document-class: Process::Sys
*
* The <code>Process::Sys</code> module contains UID and GID
* functions which provide direct bindings to the system calls of the
* same names instead of the more-portable versions of the same
* functionality found in the <code>Process</code>,
* <code>Process::UID</code>, and <code>Process::GID</code> modules.
*/
#if defined(HAVE_PWD_H)
static rb_uid_t
obj2uid(VALUE id
# ifdef USE_GETPWNAM_R
, VALUE *getpw_tmp
# endif
)
{
rb_uid_t uid;
VALUE tmp;
if (FIXNUM_P(id) || NIL_P(tmp = rb_check_string_type(id))) {
uid = NUM2UIDT(id);
}
else {
const char *usrname = StringValueCStr(id);
struct passwd *pwptr;
#ifdef USE_GETPWNAM_R
struct passwd pwbuf;
char *getpw_buf;
long getpw_buf_len;
if (!*getpw_tmp) {
getpw_buf_len = GETPW_R_SIZE_INIT;
if (getpw_buf_len < 0) getpw_buf_len = GETPW_R_SIZE_DEFAULT;
getpw_buf = rb_alloc_tmp_buffer(getpw_tmp, getpw_buf_len);
}
else {
getpw_buf = RSTRING_PTR(*getpw_tmp);
getpw_buf_len = rb_str_capacity(*getpw_tmp);
}
errno = ERANGE;
/* gepwnam_r() on MacOS X doesn't set errno if buffer size is insufficient */
while (getpwnam_r(usrname, &pwbuf, getpw_buf, getpw_buf_len, &pwptr)) {
int e = errno;
if (e != ERANGE || getpw_buf_len >= GETPW_R_SIZE_LIMIT) {
rb_free_tmp_buffer(getpw_tmp);
rb_syserr_fail(e, "getpwnam_r");
}
rb_str_modify_expand(*getpw_tmp, getpw_buf_len);
getpw_buf = RSTRING_PTR(*getpw_tmp);
getpw_buf_len = rb_str_capacity(*getpw_tmp);
}
#else
pwptr = getpwnam(usrname);
#endif
if (!pwptr) {
#ifndef USE_GETPWNAM_R
endpwent();
#endif
rb_raise(rb_eArgError, "can't find user for %s", usrname);
}
uid = pwptr->pw_uid;
#ifndef USE_GETPWNAM_R
endpwent();
#endif
}
return uid;
}
# ifdef p_uid_from_name
/*
* call-seq:
* Process::UID.from_name(name) -> uid
*
* Get the user ID by the _name_.
* If the user is not found, +ArgumentError+ will be raised.
*
* Process::UID.from_name("root") #=> 0
* Process::UID.from_name("nosuchuser") #=> can't find user for nosuchuser (ArgumentError)
*/
static VALUE
p_uid_from_name(VALUE self, VALUE id)
{
return UIDT2NUM(OBJ2UID(id));
}
# endif
#endif
#if defined(HAVE_GRP_H)
static rb_gid_t
obj2gid(VALUE id
# ifdef USE_GETGRNAM_R
, VALUE *getgr_tmp
# endif
)
{
rb_gid_t gid;
VALUE tmp;
if (FIXNUM_P(id) || NIL_P(tmp = rb_check_string_type(id))) {
gid = NUM2GIDT(id);
}
else {
const char *grpname = StringValueCStr(id);
struct group *grptr;
#ifdef USE_GETGRNAM_R
struct group grbuf;
char *getgr_buf;
long getgr_buf_len;
if (!*getgr_tmp) {
getgr_buf_len = GETGR_R_SIZE_INIT;
if (getgr_buf_len < 0) getgr_buf_len = GETGR_R_SIZE_DEFAULT;
getgr_buf = rb_alloc_tmp_buffer(getgr_tmp, getgr_buf_len);
}
else {
getgr_buf = RSTRING_PTR(*getgr_tmp);
getgr_buf_len = rb_str_capacity(*getgr_tmp);
}
errno = ERANGE;
/* gegrnam_r() on MacOS X doesn't set errno if buffer size is insufficient */
while (getgrnam_r(grpname, &grbuf, getgr_buf, getgr_buf_len, &grptr)) {
int e = errno;
if (e != ERANGE || getgr_buf_len >= GETGR_R_SIZE_LIMIT) {
rb_free_tmp_buffer(getgr_tmp);
rb_syserr_fail(e, "getgrnam_r");
}
rb_str_modify_expand(*getgr_tmp, getgr_buf_len);
getgr_buf = RSTRING_PTR(*getgr_tmp);
getgr_buf_len = rb_str_capacity(*getgr_tmp);
}
#elif defined(HAVE_GETGRNAM)
grptr = getgrnam(grpname);
#else
grptr = NULL;
#endif
if (!grptr) {
#if !defined(USE_GETGRNAM_R) && defined(HAVE_ENDGRENT)
endgrent();
#endif
rb_raise(rb_eArgError, "can't find group for %s", grpname);
}
gid = grptr->gr_gid;
#if !defined(USE_GETGRNAM_R) && defined(HAVE_ENDGRENT)
endgrent();
#endif
}
return gid;
}
# ifdef p_gid_from_name
/*
* call-seq:
* Process::GID.from_name(name) -> gid
*
* Get the group ID by the _name_.
* If the group is not found, +ArgumentError+ will be raised.
*
* Process::GID.from_name("wheel") #=> 0
* Process::GID.from_name("nosuchgroup") #=> can't find group for nosuchgroup (ArgumentError)
*/
static VALUE
p_gid_from_name(VALUE self, VALUE id)
{
return GIDT2NUM(OBJ2GID(id));
}
# endif
#endif
#if defined HAVE_SETUID
/*
* call-seq:
* Process::Sys.setuid(user) -> nil
*
* Set the user ID of the current process to _user_. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setuid(VALUE obj, VALUE id)
{
check_uid_switch();
if (setuid(OBJ2UID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setuid rb_f_notimplement
#endif
#if defined HAVE_SETRUID
/*
* call-seq:
* Process::Sys.setruid(user) -> nil
*
* Set the real user ID of the calling process to _user_.
* Not available on all platforms.
*
*/
static VALUE
p_sys_setruid(VALUE obj, VALUE id)
{
check_uid_switch();
if (setruid(OBJ2UID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setruid rb_f_notimplement
#endif
#if defined HAVE_SETEUID
/*
* call-seq:
* Process::Sys.seteuid(user) -> nil
*
* Set the effective user ID of the calling process to
* _user_. Not available on all platforms.
*
*/
static VALUE
p_sys_seteuid(VALUE obj, VALUE id)
{
check_uid_switch();
if (seteuid(OBJ2UID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_seteuid rb_f_notimplement
#endif
#if defined HAVE_SETREUID
/*
* call-seq:
* Process::Sys.setreuid(rid, eid) -> nil
*
* Sets the (user) real and/or effective user IDs of the current
* process to _rid_ and _eid_, respectively. A value of
* <code>-1</code> for either means to leave that ID unchanged. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setreuid(VALUE obj, VALUE rid, VALUE eid)
{
rb_uid_t ruid, euid;
PREPARE_GETPWNAM;
check_uid_switch();
ruid = OBJ2UID1(rid);
euid = OBJ2UID1(eid);
FINISH_GETPWNAM;
if (setreuid(ruid, euid) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setreuid rb_f_notimplement
#endif
#if defined HAVE_SETRESUID
/*
* call-seq:
* Process::Sys.setresuid(rid, eid, sid) -> nil
*
* Sets the (user) real, effective, and saved user IDs of the
* current process to _rid_, _eid_, and _sid_ respectively. A
* value of <code>-1</code> for any value means to
* leave that ID unchanged. Not available on all platforms.
*
*/
static VALUE
p_sys_setresuid(VALUE obj, VALUE rid, VALUE eid, VALUE sid)
{
rb_uid_t ruid, euid, suid;
PREPARE_GETPWNAM;
check_uid_switch();
ruid = OBJ2UID1(rid);
euid = OBJ2UID1(eid);
suid = OBJ2UID1(sid);
FINISH_GETPWNAM;
if (setresuid(ruid, euid, suid) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setresuid rb_f_notimplement
#endif
/*
* call-seq:
* Process.uid -> fixnum
* Process::UID.rid -> fixnum
* Process::Sys.getuid -> fixnum
*
* Returns the (real) user ID of this process.
*
* Process.uid #=> 501
*/
static VALUE
proc_getuid(VALUE obj)
{
rb_uid_t uid = getuid();
return UIDT2NUM(uid);
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETRUID) || defined(HAVE_SETUID)
/*
* call-seq:
* Process.uid= user -> numeric
*
* Sets the (user) user ID for this process. Not available on all
* platforms.
*/
static VALUE
proc_setuid(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = OBJ2UID(id);
#if defined(HAVE_SETRESUID)
if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
{
if (geteuid() == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return id;
}
#else
#define proc_setuid rb_f_notimplement
#endif
/********************************************************************
*
* Document-class: Process::UID
*
* The <code>Process::UID</code> module contains a collection of
* module functions which can be used to portably get, set, and
* switch the current process's real, effective, and saved user IDs.
*
*/
static rb_uid_t SAVED_USER_ID = -1;
#ifdef BROKEN_SETREUID
int
setreuid(rb_uid_t ruid, rb_uid_t euid)
{
if (ruid != (rb_uid_t)-1 && ruid != getuid()) {
if (euid == (rb_uid_t)-1) euid = geteuid();
if (setuid(ruid) < 0) return -1;
}
if (euid != (rb_uid_t)-1 && euid != geteuid()) {
if (seteuid(euid) < 0) return -1;
}
return 0;
}
#endif
/*
* call-seq:
* Process::UID.change_privilege(user) -> fixnum
*
* Change the current process's real and effective user ID to that
* specified by _user_. Returns the new user ID. Not
* available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 0]
* Process::UID.change_privilege(31) #=> 31
* [Process.uid, Process.euid] #=> [31, 31]
*/
static VALUE
p_uid_change_privilege(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = OBJ2UID(id);
if (geteuid() == 0) { /* root-user */
#if defined(HAVE_SETRESUID)
if (setresuid(uid, uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETUID)
if (setuid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (getuid() == uid) {
if (SAVED_USER_ID == uid) {
if (setreuid(-1, uid) < 0) rb_sys_fail(0);
}
else {
if (uid == 0) { /* (r,e,s) == (root, root, x) */
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0);
if (setreuid(SAVED_USER_ID, 0) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0; /* (r,e,s) == (x, root, root) */
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
else {
if (setreuid(0, -1) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
}
}
else {
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID)
if (getuid() == uid) {
if (SAVED_USER_ID == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
}
else {
if (uid == 0) {
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (setruid(0) < 0) rb_sys_fail(0);
}
else {
if (setruid(0) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
}
}
else {
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
#else
(void)uid;
rb_notimplement();
#endif
}
else { /* unprivileged user */
#if defined(HAVE_SETRESUID)
if (setresuid((getuid() == uid)? (rb_uid_t)-1: uid,
(geteuid() == uid)? (rb_uid_t)-1: uid,
(SAVED_USER_ID == uid)? (rb_uid_t)-1: uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (SAVED_USER_ID == uid) {
if (setreuid((getuid() == uid)? (rb_uid_t)-1: uid,
(geteuid() == uid)? (rb_uid_t)-1: uid) < 0)
rb_sys_fail(0);
}
else if (getuid() != uid) {
if (setreuid(uid, (geteuid() == uid)? (rb_uid_t)-1: uid) < 0)
rb_sys_fail(0);
SAVED_USER_ID = uid;
}
else if (/* getuid() == uid && */ geteuid() != uid) {
if (setreuid(geteuid(), uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
}
else { /* getuid() == uid && geteuid() == uid */
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0);
if (setreuid(SAVED_USER_ID, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID)
if (SAVED_USER_ID == uid) {
if (geteuid() != uid && seteuid(uid) < 0) rb_sys_fail(0);
if (getuid() != uid && setruid(uid) < 0) rb_sys_fail(0);
}
else if (/* SAVED_USER_ID != uid && */ geteuid() == uid) {
if (getuid() != uid) {
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
else {
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setruid(uid) < 0) rb_sys_fail(0);
}
}
else if (/* geteuid() != uid && */ getuid() == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setruid(uid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_44BSD_SETUID
if (getuid() == uid) {
/* (r,e,s)==(uid,?,?) ==> (uid,uid,uid) */
if (setuid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_SETEUID
if (getuid() == uid && SAVED_USER_ID == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_SETUID
if (getuid() == uid && SAVED_USER_ID == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#else
rb_notimplement();
#endif
}
return id;
}
#if defined HAVE_SETGID
/*
* call-seq:
* Process::Sys.setgid(group) -> nil
*
* Set the group ID of the current process to _group_. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setgid(VALUE obj, VALUE id)
{
check_gid_switch();
if (setgid(OBJ2GID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setgid rb_f_notimplement
#endif
#if defined HAVE_SETRGID
/*
* call-seq:
* Process::Sys.setrgid(group) -> nil
*
* Set the real group ID of the calling process to _group_.
* Not available on all platforms.
*
*/
static VALUE
p_sys_setrgid(VALUE obj, VALUE id)
{
check_gid_switch();
if (setrgid(OBJ2GID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setrgid rb_f_notimplement
#endif
#if defined HAVE_SETEGID
/*
* call-seq:
* Process::Sys.setegid(group) -> nil
*
* Set the effective group ID of the calling process to
* _group_. Not available on all platforms.
*
*/
static VALUE
p_sys_setegid(VALUE obj, VALUE id)
{
check_gid_switch();
if (setegid(OBJ2GID(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setegid rb_f_notimplement
#endif
#if defined HAVE_SETREGID
/*
* call-seq:
* Process::Sys.setregid(rid, eid) -> nil
*
* Sets the (group) real and/or effective group IDs of the current
* process to <em>rid</em> and <em>eid</em>, respectively. A value of
* <code>-1</code> for either means to leave that ID unchanged. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setregid(VALUE obj, VALUE rid, VALUE eid)
{
rb_gid_t rgid, egid;
PREPARE_GETGRNAM;
check_gid_switch();
rgid = OBJ2GID(rid);
egid = OBJ2GID(eid);
FINISH_GETGRNAM;
if (setregid(rgid, egid) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setregid rb_f_notimplement
#endif
#if defined HAVE_SETRESGID
/*
* call-seq:
* Process::Sys.setresgid(rid, eid, sid) -> nil
*
* Sets the (group) real, effective, and saved user IDs of the
* current process to <em>rid</em>, <em>eid</em>, and <em>sid</em>
* respectively. A value of <code>-1</code> for any value means to
* leave that ID unchanged. Not available on all platforms.
*
*/
static VALUE
p_sys_setresgid(VALUE obj, VALUE rid, VALUE eid, VALUE sid)
{
rb_gid_t rgid, egid, sgid;
PREPARE_GETGRNAM;
check_gid_switch();
rgid = OBJ2GID(rid);
egid = OBJ2GID(eid);
sgid = OBJ2GID(sid);
FINISH_GETGRNAM;
if (setresgid(rgid, egid, sgid) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setresgid rb_f_notimplement
#endif
#if defined HAVE_ISSETUGID
/*
* call-seq:
* Process::Sys.issetugid -> true or false
*
* Returns +true+ if the process was created as a result
* of an execve(2) system call which had either of the setuid or
* setgid bits set (and extra privileges were given as a result) or
* if it has changed any of its real, effective or saved user or
* group IDs since it began execution.
*
*/
static VALUE
p_sys_issetugid(VALUE obj)
{
if (issetugid()) {
return Qtrue;
}
else {
return Qfalse;
}
}
#else
#define p_sys_issetugid rb_f_notimplement
#endif
/*
* call-seq:
* Process.gid -> fixnum
* Process::GID.rid -> fixnum
* Process::Sys.getgid -> fixnum
*
* Returns the (real) group ID for this process.
*
* Process.gid #=> 500
*/
static VALUE
proc_getgid(VALUE obj)
{
rb_gid_t gid = getgid();
return GIDT2NUM(gid);
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETRGID) || defined(HAVE_SETGID)
/*
* call-seq:
* Process.gid= fixnum -> fixnum
*
* Sets the group ID for this process.
*/
static VALUE
proc_setgid(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = OBJ2GID(id);
#if defined(HAVE_SETRESGID)
if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
{
if (getegid() == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return GIDT2NUM(gid);
}
#else
#define proc_setgid rb_f_notimplement
#endif
#if defined(_SC_NGROUPS_MAX) || defined(NGROUPS_MAX)
/*
* Maximum supplementary groups are platform dependent.
* FWIW, 65536 is enough big for our supported OSs.
*
* OS Name max groups
* -----------------------------------------------
* Linux Kernel >= 2.6.3 65536
* Linux Kernel < 2.6.3 32
* IBM AIX 5.2 64
* IBM AIX 5.3 ... 6.1 128
* IBM AIX 7.1 128 (can be configured to be up to 2048)
* OpenBSD, NetBSD 16
* FreeBSD < 8.0 16
* FreeBSD >=8.0 1023
* Darwin (Mac OS X) 16
* Sun Solaris 7,8,9,10 16
* Sun Solaris 11 / OpenSolaris 1024
* HP-UX 20
* Windows 1015
*/
static int _maxgroups = -1;
static int
get_sc_ngroups_max(void)
{
#ifdef _SC_NGROUPS_MAX
return (int)sysconf(_SC_NGROUPS_MAX);
#elif defined(NGROUPS_MAX)
return (int)NGROUPS_MAX;
#else
return -1;
#endif
}
static int
maxgroups(void)
{
if (_maxgroups < 0) {
_maxgroups = get_sc_ngroups_max();
if (_maxgroups < 0)
_maxgroups = RB_MAX_GROUPS;
}
return _maxgroups;
}
#endif
#ifdef HAVE_GETGROUPS
/*
* call-seq:
* Process.groups -> array
*
* Get an <code>Array</code> of the gids of groups in the
* supplemental group access list for this process.
*
* Process.groups #=> [27, 6, 10, 11]
*
*/
static VALUE
proc_getgroups(VALUE obj)
{
VALUE ary, tmp;
int i, ngroups;
rb_gid_t *groups;
ngroups = getgroups(0, NULL);
if (ngroups == -1)
rb_sys_fail(0);
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
ngroups = getgroups(ngroups, groups);
if (ngroups == -1)
rb_sys_fail(0);
ary = rb_ary_new();
for (i = 0; i < ngroups; i++)
rb_ary_push(ary, GIDT2NUM(groups[i]));
ALLOCV_END(tmp);
return ary;
}
#else
#define proc_getgroups rb_f_notimplement
#endif
#ifdef HAVE_SETGROUPS
/*
* call-seq:
* Process.groups= array -> array
*
* Set the supplemental group access list to the given
* <code>Array</code> of group IDs.
*
* Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
* Process.groups = [27, 6, 10, 11] #=> [27, 6, 10, 11]
* Process.groups #=> [27, 6, 10, 11]
*
*/
static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
int ngroups, i;
rb_gid_t *groups;
VALUE tmp;
PREPARE_GETGRNAM;
Check_Type(ary, T_ARRAY);
ngroups = RARRAY_LENINT(ary);
if (ngroups > maxgroups())
rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());
groups = ALLOCV_N(rb_gid_t, tmp, ngroups);
for (i = 0; i < ngroups; i++) {
VALUE g = RARRAY_AREF(ary, i);
groups[i] = OBJ2GID1(g);
}
FINISH_GETGRNAM;
if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
rb_sys_fail(0);
ALLOCV_END(tmp);
return proc_getgroups(obj);
}
#else
#define proc_setgroups rb_f_notimplement
#endif
#ifdef HAVE_INITGROUPS
/*
* call-seq:
* Process.initgroups(username, gid) -> array
*
* Initializes the supplemental group access list by reading the
* system group database and using all groups of which the given user
* is a member. The group with the specified <em>gid</em> is also
* added to the list. Returns the resulting <code>Array</code> of the
* gids of all the groups in the supplementary group access list. Not
* available on all platforms.
*
* Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
* Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11]
* Process.groups #=> [30, 6, 10, 11]
*
*/
static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
if (initgroups(StringValuePtr(uname), OBJ2GID(base_grp)) != 0) {
rb_sys_fail(0);
}
return proc_getgroups(obj);
}
#else
#define proc_initgroups rb_f_notimplement
#endif
#if defined(_SC_NGROUPS_MAX) || defined(NGROUPS_MAX)
/*
* call-seq:
* Process.maxgroups -> fixnum
*
* Returns the maximum number of gids allowed in the supplemental
* group access list.
*
* Process.maxgroups #=> 32
*/
static VALUE
proc_getmaxgroups(VALUE obj)
{
return INT2FIX(maxgroups());
}
#else
#define proc_getmaxgroups rb_f_notimplement
#endif
#ifdef HAVE_SETGROUPS
/*
* call-seq:
* Process.maxgroups= fixnum -> fixnum
*
* Sets the maximum number of gids allowed in the supplemental group
* access list.
*/
static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
int ngroups = FIX2INT(val);
int ngroups_max = get_sc_ngroups_max();
if (ngroups <= 0)
rb_raise(rb_eArgError, "maxgroups %d shold be positive", ngroups);
if (ngroups > RB_MAX_GROUPS)
ngroups = RB_MAX_GROUPS;
if (ngroups_max > 0 && ngroups > ngroups_max)
ngroups = ngroups_max;
_maxgroups = ngroups;
return INT2FIX(_maxgroups);
}
#else
#define proc_setmaxgroups rb_f_notimplement
#endif
#if defined(HAVE_DAEMON) || (defined(HAVE_WORKING_FORK) && defined(HAVE_SETSID))
static int rb_daemon(int nochdir, int noclose);
/*
* call-seq:
* Process.daemon() -> 0
* Process.daemon(nochdir=nil,noclose=nil) -> 0
*
* Detach the process from controlling terminal and run in
* the background as system daemon. Unless the argument
* nochdir is true (i.e. non false), it changes the current
* working directory to the root ("/"). Unless the argument
* noclose is true, daemon() will redirect standard input,
* standard output and standard error to /dev/null.
* Return zero on success, or raise one of Errno::*.
*/
static VALUE
proc_daemon(int argc, VALUE *argv)
{
int n, nochdir = FALSE, noclose = FALSE;
switch (rb_check_arity(argc, 0, 2)) {
case 2: noclose = RTEST(argv[1]);
case 1: nochdir = RTEST(argv[0]);
}
prefork();
n = rb_daemon(nochdir, noclose);
if (n < 0) rb_sys_fail("daemon");
return INT2FIX(n);
}
static int
rb_daemon(int nochdir, int noclose)
{
int err = 0;
#ifdef HAVE_DAEMON
before_fork_ruby();
err = daemon(nochdir, noclose);
after_fork_ruby();
rb_thread_atfork();
#else
int n;
#define fork_daemon() \
switch (rb_fork_ruby(NULL)) { \
case -1: return -1; \
case 0: rb_thread_atfork(); break; \
default: _exit(EXIT_SUCCESS); \
}
fork_daemon();
if (setsid() < 0) return -1;
/* must not be process-leader */
fork_daemon();
if (!nochdir)
err = chdir("/");
if (!noclose && (n = rb_cloexec_open("/dev/null", O_RDWR, 0)) != -1) {
rb_update_max_fd(n);
(void)dup2(n, 0);
(void)dup2(n, 1);
(void)dup2(n, 2);
if (n > 2)
(void)close (n);
}
#endif
return err;
}
#else
#define proc_daemon rb_f_notimplement
#endif
/********************************************************************
*
* Document-class: Process::GID
*
* The <code>Process::GID</code> module contains a collection of
* module functions which can be used to portably get, set, and
* switch the current process's real, effective, and saved group IDs.
*
*/
static rb_gid_t SAVED_GROUP_ID = -1;
#ifdef BROKEN_SETREGID
int
setregid(rb_gid_t rgid, rb_gid_t egid)
{
if (rgid != (rb_gid_t)-1 && rgid != getgid()) {
if (egid == (rb_gid_t)-1) egid = getegid();
if (setgid(rgid) < 0) return -1;
}
if (egid != (rb_gid_t)-1 && egid != getegid()) {
if (setegid(egid) < 0) return -1;
}
return 0;
}
#endif
/*
* call-seq:
* Process::GID.change_privilege(group) -> fixnum
*
* Change the current process's real and effective group ID to that
* specified by _group_. Returns the new group ID. Not
* available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 0]
* Process::GID.change_privilege(33) #=> 33
* [Process.gid, Process.egid] #=> [33, 33]
*/
static VALUE
p_gid_change_privilege(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = OBJ2GID(id);
if (geteuid() == 0) { /* root-user */
#if defined(HAVE_SETRESGID)
if (setresgid(gid, gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined HAVE_SETGID
if (setgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (getgid() == gid) {
if (SAVED_GROUP_ID == gid) {
if (setregid(-1, gid) < 0) rb_sys_fail(0);
}
else {
if (gid == 0) { /* (r,e,s) == (root, y, x) */
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0);
if (setregid(SAVED_GROUP_ID, 0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0; /* (r,e,s) == (x, root, root) */
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
else { /* (r,e,s) == (z, y, x) */
if (setregid(0, 0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
}
}
else {
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
#elif defined(HAVE_SETRGID) && defined (HAVE_SETEGID)
if (getgid() == gid) {
if (SAVED_GROUP_ID == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
}
else {
if (gid == 0) {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setrgid(0) < 0) rb_sys_fail(0);
}
else {
if (setrgid(0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
}
}
else {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
#else
rb_notimplement();
#endif
}
else { /* unprivileged user */
#if defined(HAVE_SETRESGID)
if (setresgid((getgid() == gid)? (rb_gid_t)-1: gid,
(getegid() == gid)? (rb_gid_t)-1: gid,
(SAVED_GROUP_ID == gid)? (rb_gid_t)-1: gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (SAVED_GROUP_ID == gid) {
if (setregid((getgid() == gid)? (rb_uid_t)-1: gid,
(getegid() == gid)? (rb_uid_t)-1: gid) < 0)
rb_sys_fail(0);
}
else if (getgid() != gid) {
if (setregid(gid, (getegid() == gid)? (rb_uid_t)-1: gid) < 0)
rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
else if (/* getgid() == gid && */ getegid() != gid) {
if (setregid(getegid(), gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setregid(gid, -1) < 0) rb_sys_fail(0);
}
else { /* getgid() == gid && getegid() == gid */
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0);
if (setregid(SAVED_GROUP_ID, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setregid(gid, -1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETRGID) && defined(HAVE_SETEGID)
if (SAVED_GROUP_ID == gid) {
if (getegid() != gid && setegid(gid) < 0) rb_sys_fail(0);
if (getgid() != gid && setrgid(gid) < 0) rb_sys_fail(0);
}
else if (/* SAVED_GROUP_ID != gid && */ getegid() == gid) {
if (getgid() != gid) {
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
else {
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setrgid(gid) < 0) rb_sys_fail(0);
}
}
else if (/* getegid() != gid && */ getgid() == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setrgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_44BSD_SETGID
if (getgid() == gid) {
/* (r,e,s)==(gid,?,?) ==> (gid,gid,gid) */
if (setgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_SETEGID
if (getgid() == gid && SAVED_GROUP_ID == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#elif defined HAVE_SETGID
if (getgid() == gid && SAVED_GROUP_ID == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_syserr_fail(EPERM, 0);
}
#else
(void)gid;
rb_notimplement();
#endif
}
return id;
}
/*
* call-seq:
* Process.euid -> fixnum
* Process::UID.eid -> fixnum
* Process::Sys.geteuid -> fixnum
*
* Returns the effective user ID for this process.
*
* Process.euid #=> 501
*/
static VALUE
proc_geteuid(VALUE obj)
{
rb_uid_t euid = geteuid();
return UIDT2NUM(euid);
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID) || defined(_POSIX_SAVED_IDS)
static void
proc_seteuid(rb_uid_t uid)
{
#if defined(HAVE_SETRESUID)
if (setresuid(-1, uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(-1, uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEUID
if (seteuid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
if (uid == getuid()) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
#else
rb_notimplement();
#endif
}
#endif
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID)
/*
* call-seq:
* Process.euid= user
*
* Sets the effective user ID for this process. Not available on all
* platforms.
*/
static VALUE
proc_seteuid_m(VALUE mod, VALUE euid)
{
check_uid_switch();
proc_seteuid(OBJ2UID(euid));
return euid;
}
#else
#define proc_seteuid_m rb_f_notimplement
#endif
static rb_uid_t
rb_seteuid_core(rb_uid_t euid)
{
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID))
rb_uid_t uid;
#endif
check_uid_switch();
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID))
uid = getuid();
#endif
#if defined(HAVE_SETRESUID)
if (uid != euid) {
if (setresuid(-1,euid,euid) < 0) rb_sys_fail(0);
SAVED_USER_ID = euid;
}
else {
if (setresuid(-1,euid,-1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (setreuid(-1, euid) < 0) rb_sys_fail(0);
if (uid != euid) {
if (setreuid(euid,uid) < 0) rb_sys_fail(0);
if (setreuid(uid,euid) < 0) rb_sys_fail(0);
SAVED_USER_ID = euid;
}
#elif defined HAVE_SETEUID
if (seteuid(euid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
if (geteuid() == 0) rb_sys_fail(0);
if (setuid(euid) < 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return euid;
}
/*
* call-seq:
* Process::UID.grant_privilege(user) -> fixnum
* Process::UID.eid= user -> fixnum
*
* Set the effective user ID, and if possible, the saved user ID of
* the process to the given _user_. Returns the new
* effective user ID. Not available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 0]
* Process::UID.grant_privilege(31) #=> 31
* [Process.uid, Process.euid] #=> [0, 31]
*/
static VALUE
p_uid_grant_privilege(VALUE obj, VALUE id)
{
rb_seteuid_core(OBJ2UID(id));
return id;
}
/*
* call-seq:
* Process.egid -> fixnum
* Process::GID.eid -> fixnum
* Process::Sys.geteid -> fixnum
*
* Returns the effective group ID for this process. Not available on
* all platforms.
*
* Process.egid #=> 500
*/
static VALUE
proc_getegid(VALUE obj)
{
rb_gid_t egid = getegid();
return GIDT2NUM(egid);
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) || defined(_POSIX_SAVED_IDS)
/*
* call-seq:
* Process.egid = fixnum -> fixnum
*
* Sets the effective group ID for this process. Not available on all
* platforms.
*/
static VALUE
proc_setegid(VALUE obj, VALUE egid)
{
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID)
rb_gid_t gid;
#endif
check_gid_switch();
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID)
gid = OBJ2GID(egid);
#endif
#if defined(HAVE_SETRESGID)
if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(-1, gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEGID
if (setegid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
if (gid == getgid()) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
#else
rb_notimplement();
#endif
return egid;
}
#endif
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID)
#define proc_setegid_m proc_setegid
#else
#define proc_setegid_m rb_f_notimplement
#endif
static rb_gid_t
rb_setegid_core(rb_gid_t egid)
{
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID))
rb_gid_t gid;
#endif
check_gid_switch();
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID))
gid = getgid();
#endif
#if defined(HAVE_SETRESGID)
if (gid != egid) {
if (setresgid(-1,egid,egid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = egid;
}
else {
if (setresgid(-1,egid,-1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (setregid(-1, egid) < 0) rb_sys_fail(0);
if (gid != egid) {
if (setregid(egid,gid) < 0) rb_sys_fail(0);
if (setregid(gid,egid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = egid;
}
#elif defined HAVE_SETEGID
if (setegid(egid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
if (geteuid() == 0 /* root user */) rb_sys_fail(0);
if (setgid(egid) < 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return egid;
}
/*
* call-seq:
* Process::GID.grant_privilege(group) -> fixnum
* Process::GID.eid = group -> fixnum
*
* Set the effective group ID, and if possible, the saved group ID of
* the process to the given _group_. Returns the new
* effective group ID. Not available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 0]
* Process::GID.grant_privilege(31) #=> 33
* [Process.gid, Process.egid] #=> [0, 33]
*/
static VALUE
p_gid_grant_privilege(VALUE obj, VALUE id)
{
rb_setegid_core(OBJ2GID(id));
return id;
}
/*
* call-seq:
* Process::UID.re_exchangeable? -> true or false
*
* Returns +true+ if the real and effective user IDs of a
* process may be exchanged on the current platform.
*
*/
static VALUE
p_uid_exchangeable(void)
{
#if defined(HAVE_SETRESUID)
return Qtrue;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
return Qtrue;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* Process::UID.re_exchange -> fixnum
*
* Exchange real and effective user IDs and return the new effective
* user ID. Not available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 31]
* Process::UID.re_exchange #=> 0
* [Process.uid, Process.euid] #=> [31, 0]
*/
static VALUE
p_uid_exchange(VALUE obj)
{
rb_uid_t uid;
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID))
rb_uid_t euid;
#endif
check_uid_switch();
uid = getuid();
#if defined(HAVE_SETRESUID) || (defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID))
euid = geteuid();
#endif
#if defined(HAVE_SETRESUID)
if (setresuid(euid, uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (setreuid(euid,uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#else
rb_notimplement();
#endif
return UIDT2NUM(uid);
}
/*
* call-seq:
* Process::GID.re_exchangeable? -> true or false
*
* Returns +true+ if the real and effective group IDs of a
* process may be exchanged on the current platform.
*
*/
static VALUE
p_gid_exchangeable(void)
{
#if defined(HAVE_SETRESGID)
return Qtrue;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
return Qtrue;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* Process::GID.re_exchange -> fixnum
*
* Exchange real and effective group IDs and return the new effective
* group ID. Not available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 33]
* Process::GID.re_exchange #=> 0
* [Process.gid, Process.egid] #=> [33, 0]
*/
static VALUE
p_gid_exchange(VALUE obj)
{
rb_gid_t gid;
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID))
rb_gid_t egid;
#endif
check_gid_switch();
gid = getgid();
#if defined(HAVE_SETRESGID) || (defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID))
egid = getegid();
#endif
#if defined(HAVE_SETRESGID)
if (setresgid(egid, gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (setregid(egid,gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#else
rb_notimplement();
#endif
return GIDT2NUM(gid);
}
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */
/*
* call-seq:
* Process::UID.sid_available? -> true or false
*
* Returns +true+ if the current platform has saved user
* ID functionality.
*
*/
static VALUE
p_uid_have_saved_id(void)
{
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS)
return Qtrue;
#else
return Qfalse;
#endif
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS)
static VALUE
p_uid_sw_ensure(rb_uid_t id)
{
under_uid_switch = 0;
id = rb_seteuid_core(id);
return UIDT2NUM(id);
}
/*
* call-seq:
* Process::UID.switch -> fixnum
* Process::UID.switch {|| block} -> object
*
* Switch the effective and real user IDs of the current process. If
* a <em>block</em> is given, the user IDs will be switched back
* after the block is executed. Returns the new effective user ID if
* called without a block, and the return value of the block if one
* is given.
*
*/
static VALUE
p_uid_switch(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
if (uid != euid) {
proc_seteuid(uid);
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, SAVED_USER_ID);
}
else {
return UIDT2NUM(euid);
}
}
else if (euid != SAVED_USER_ID) {
proc_seteuid(SAVED_USER_ID);
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, euid);
}
else {
return UIDT2NUM(uid);
}
}
else {
rb_syserr_fail(EPERM, 0);
}
UNREACHABLE;
}
#else
static VALUE
p_uid_sw_ensure(VALUE obj)
{
under_uid_switch = 0;
return p_uid_exchange(obj);
}
static VALUE
p_uid_switch(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
if (uid == euid) {
rb_syserr_fail(EPERM, 0);
}
p_uid_exchange(obj);
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, obj);
}
else {
return UIDT2NUM(euid);
}
}
#endif
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */
/*
* call-seq:
* Process::GID.sid_available? -> true or false
*
* Returns +true+ if the current platform has saved group
* ID functionality.
*
*/
static VALUE
p_gid_have_saved_id(void)
{
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS)
return Qtrue;
#else
return Qfalse;
#endif
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS)
static VALUE
p_gid_sw_ensure(rb_gid_t id)
{
under_gid_switch = 0;
id = rb_setegid_core(id);
return GIDT2NUM(id);
}
/*
* call-seq:
* Process::GID.switch -> fixnum
* Process::GID.switch {|| block} -> object
*
* Switch the effective and real group IDs of the current process. If
* a <em>block</em> is given, the group IDs will be switched back
* after the block is executed. Returns the new effective group ID if
* called without a block, and the return value of the block if one
* is given.
*
*/
static VALUE
p_gid_switch(VALUE obj)
{
rb_gid_t gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
if (gid != egid) {
proc_setegid(obj, GIDT2NUM(gid));
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, SAVED_GROUP_ID);
}
else {
return GIDT2NUM(egid);
}
}
else if (egid != SAVED_GROUP_ID) {
proc_setegid(obj, GIDT2NUM(SAVED_GROUP_ID));
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, egid);
}
else {
return GIDT2NUM(gid);
}
}
else {
rb_syserr_fail(EPERM, 0);
}
UNREACHABLE;
}
#else
static VALUE
p_gid_sw_ensure(VALUE obj)
{
under_gid_switch = 0;
return p_gid_exchange(obj);
}
static VALUE
p_gid_switch(VALUE obj)
{
rb_gid_t gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
if (gid == egid) {
rb_syserr_fail(EPERM, 0);
}
p_gid_exchange(obj);
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, obj);
}
else {
return GIDT2NUM(egid);
}
}
#endif
#if defined(HAVE_TIMES)
static long
get_clk_tck(void)
{
long hertz =
#ifdef HAVE__SC_CLK_TCK
(double)sysconf(_SC_CLK_TCK);
#else
#ifndef HZ
# ifdef CLK_TCK
# define HZ CLK_TCK
# else
# define HZ 60
# endif
#endif /* HZ */
HZ;
#endif
return hertz;
}
/*
* call-seq:
* Process.times -> aProcessTms
*
* Returns a <code>Tms</code> structure (see <code>Process::Tms</code>)
* that contains user and system CPU times for this process,
* and also for children processes.
*
* t = Process.times
* [ t.utime, t.stime, t.cutime, t.cstime ] #=> [0.0, 0.02, 0.00, 0.00]
*/
VALUE
rb_proc_times(VALUE obj)
{
const double hertz = get_clk_tck();
struct tms buf;
VALUE utime, stime, cutime, cstime, ret;
times(&buf);
utime = DBL2NUM(buf.tms_utime / hertz);
stime = DBL2NUM(buf.tms_stime / hertz);
cutime = DBL2NUM(buf.tms_cutime / hertz);
cstime = DBL2NUM(buf.tms_cstime / hertz);
ret = rb_struct_new(rb_cProcessTms, utime, stime, cutime, cstime);
RB_GC_GUARD(utime);
RB_GC_GUARD(stime);
RB_GC_GUARD(cutime);
RB_GC_GUARD(cstime);
return ret;
}
#else
#define rb_proc_times rb_f_notimplement
#endif
#ifdef HAVE_LONG_LONG
typedef LONG_LONG timetick_int_t;
#define TIMETICK_INT_MIN LLONG_MIN
#define TIMETICK_INT_MAX LLONG_MAX
#define TIMETICK_INT2NUM(v) LL2NUM(v)
#else
typedef long timetick_int_t;
#define TIMETICK_INT_MIN LONG_MIN
#define TIMETICK_INT_MAX LONG_MAX
#define TIMETICK_INT2NUM(v) LONG2NUM(v)
#endif
static timetick_int_t
gcd_timetick_int(timetick_int_t a, timetick_int_t b)
{
timetick_int_t t;
if (a < b) {
t = a;
a = b;
b = t;
}
while (1) {
t = a % b;
if (t == 0)
return b;
a = b;
b = t;
}
}
static void
reduce_fraction(timetick_int_t *np, timetick_int_t *dp)
{
timetick_int_t gcd = gcd_timetick_int(*np, *dp);
if (gcd != 1) {
*np /= gcd;
*dp /= gcd;
}
}
static void
reduce_factors(timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{
int i, j;
for (i = 0; i < num_numerators; i++) {
if (numerators[i] == 1)
continue;
for (j = 0; j < num_denominators; j++) {
if (denominators[j] == 1)
continue;
reduce_fraction(&numerators[i], &denominators[j]);
}
}
}
struct timetick {
timetick_int_t giga_count;
int32_t count; /* 0 .. 999999999 */
};
static VALUE
timetick2dblnum(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{
double d;
int i;
reduce_factors(numerators, num_numerators,
denominators, num_denominators);
d = ttp->giga_count * 1e9 + ttp->count;
for (i = 0; i < num_numerators; i++)
d *= numerators[i];
for (i = 0; i < num_denominators; i++)
d /= denominators[i];
return DBL2NUM(d);
}
static VALUE
timetick2dblnum_reciprocal(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{
double d;
int i;
reduce_factors(numerators, num_numerators,
denominators, num_denominators);
d = 1.0;
for (i = 0; i < num_denominators; i++)
d *= denominators[i];
for (i = 0; i < num_numerators; i++)
d /= numerators[i];
d /= ttp->giga_count * 1e9 + ttp->count;
return DBL2NUM(d);
}
#define NDIV(x,y) (-(-((x)+1)/(y))-1)
#define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
static VALUE
timetick2integer(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{
VALUE v;
int i;
reduce_factors(numerators, num_numerators,
denominators, num_denominators);
if (!MUL_OVERFLOW_SIGNED_INTEGER_P(1000000000, ttp->giga_count,
TIMETICK_INT_MIN, TIMETICK_INT_MAX-ttp->count)) {
timetick_int_t t = ttp->giga_count * 1000000000 + ttp->count;
for (i = 0; i < num_numerators; i++) {
timetick_int_t factor = numerators[i];
if (MUL_OVERFLOW_SIGNED_INTEGER_P(factor, t,
TIMETICK_INT_MIN, TIMETICK_INT_MAX))
goto generic;
t *= factor;
}
for (i = 0; i < num_denominators; i++) {
t = DIV(t, denominators[i]);
}
return TIMETICK_INT2NUM(t);
}
generic:
v = TIMETICK_INT2NUM(ttp->giga_count);
v = rb_funcall(v, '*', 1, LONG2FIX(1000000000));
v = rb_funcall(v, '+', 1, LONG2FIX(ttp->count));
for (i = 0; i < num_numerators; i++) {
timetick_int_t factor = numerators[i];
if (factor == 1)
continue;
v = rb_funcall(v, '*', 1, TIMETICK_INT2NUM(factor));
}
for (i = 0; i < num_denominators; i++) {
v = rb_funcall(v, '/', 1, TIMETICK_INT2NUM(denominators[i])); /* Ruby's '/' is div. */
}
return v;
}
static VALUE
make_clock_result(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators,
VALUE unit)
{
if (unit == ID2SYM(id_nanosecond)) {
numerators[num_numerators++] = 1000000000;
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_microsecond)) {
numerators[num_numerators++] = 1000000;
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_millisecond)) {
numerators[num_numerators++] = 1000;
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_second)) {
return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_float_microsecond)) {
numerators[num_numerators++] = 1000000;
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(id_float_millisecond)) {
numerators[num_numerators++] = 1000;
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (NIL_P(unit) || unit == ID2SYM(id_float_second)) {
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators);
}
else
rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit);
}
#ifdef __APPLE__
static mach_timebase_info_data_t *
get_mach_timebase_info(void)
{
static mach_timebase_info_data_t sTimebaseInfo;
if ( sTimebaseInfo.denom == 0 ) {
(void) mach_timebase_info(&sTimebaseInfo);
}
return &sTimebaseInfo;
}
#endif
/*
* call-seq:
* Process.clock_gettime(clock_id [, unit]) -> number
*
* Returns a time returned by POSIX clock_gettime() function.
*
* p Process.clock_gettime(Process::CLOCK_MONOTONIC)
* #=> 896053.968060096
*
* +clock_id+ specifies a kind of clock.
* It is specified as a constant which begins with <code>Process::CLOCK_</code>
* such as Process::CLOCK_REALTIME and Process::CLOCK_MONOTONIC.
*
* The supported constants depends on OS and version.
* Ruby provides following types of +clock_id+ if available.
*
* [CLOCK_REALTIME] SUSv2 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 2.1
* [CLOCK_MONOTONIC] SUSv3 to 4, Linux 2.5.63, FreeBSD 3.0, NetBSD 2.0, OpenBSD 3.4
* [CLOCK_PROCESS_CPUTIME_ID] SUSv3 to 4, Linux 2.5.63, OpenBSD 5.4
* [CLOCK_THREAD_CPUTIME_ID] SUSv3 to 4, Linux 2.5.63, FreeBSD 7.1, OpenBSD 5.4
* [CLOCK_VIRTUAL] FreeBSD 3.0, OpenBSD 2.1
* [CLOCK_PROF] FreeBSD 3.0, OpenBSD 2.1
* [CLOCK_REALTIME_FAST] FreeBSD 8.1
* [CLOCK_REALTIME_PRECISE] FreeBSD 8.1
* [CLOCK_REALTIME_COARSE] Linux 2.6.32
* [CLOCK_REALTIME_ALARM] Linux 3.0
* [CLOCK_MONOTONIC_FAST] FreeBSD 8.1
* [CLOCK_MONOTONIC_PRECISE] FreeBSD 8.1
* [CLOCK_MONOTONIC_COARSE] Linux 2.6.32
* [CLOCK_MONOTONIC_RAW] Linux 2.6.28
* [CLOCK_BOOTTIME] Linux 2.6.39
* [CLOCK_BOOTTIME_ALARM] Linux 3.0
* [CLOCK_UPTIME] FreeBSD 7.0, OpenBSD 5.5
* [CLOCK_UPTIME_FAST] FreeBSD 8.1
* [CLOCK_UPTIME_PRECISE] FreeBSD 8.1
* [CLOCK_SECOND] FreeBSD 8.1
*
* Note that SUS stands for Single Unix Specification.
* SUS contains POSIX and clock_gettime is defined in the POSIX part.
* SUS defines CLOCK_REALTIME mandatory but
* CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID are optional.
*
* Also, several symbols are accepted as +clock_id+.
* There are emulations for clock_gettime().
*
* For example, Process::CLOCK_REALTIME is defined as
* +:GETTIMEOFDAY_BASED_CLOCK_REALTIME+ when clock_gettime() is not available.
*
* Emulations for +CLOCK_REALTIME+:
* [:GETTIMEOFDAY_BASED_CLOCK_REALTIME]
* Use gettimeofday() defined by SUS.
* (SUSv4 obsoleted it, though.)
* The resolution is 1 microsecond.
* [:TIME_BASED_CLOCK_REALTIME]
* Use time() defined by ISO C.
* The resolution is 1 second.
*
* Emulations for +CLOCK_MONOTONIC+:
* [:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC]
* Use mach_absolute_time(), available on Darwin.
* The resolution is CPU dependent.
* [:TIMES_BASED_CLOCK_MONOTONIC]
* Use the result value of times() defined by POSIX.
* POSIX defines it as "times() shall return the elapsed real time, in clock ticks, since an arbitrary point in the past (for example, system start-up time)".
* For example, GNU/Linux returns a value based on jiffies and it is monotonic.
* However, 4.4BSD uses gettimeofday() and it is not monotonic.
* (FreeBSD uses clock_gettime(CLOCK_MONOTONIC) instead, though.)
* The resolution is the clock tick.
* "getconf CLK_TCK" command shows the clock ticks per second.
* (The clock ticks per second is defined by HZ macro in older systems.)
* If it is 100 and clock_t is 32 bits integer type, the resolution is 10 millisecond and
* cannot represent over 497 days.
*
* Emulations for +CLOCK_PROCESS_CPUTIME_ID+:
* [:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID]
* Use getrusage() defined by SUS.
* getrusage() is used with RUSAGE_SELF to obtain the time only for
* the calling process (excluding the time for child processes).
* The result is addition of user time (ru_utime) and system time (ru_stime).
* The resolution is 1 microsecond.
* [:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID]
* Use times() defined by POSIX.
* The result is addition of user time (tms_utime) and system time (tms_stime).
* tms_cutime and tms_cstime are ignored to exclude the time for child processes.
* The resolution is the clock tick.
* "getconf CLK_TCK" command shows the clock ticks per second.
* (The clock ticks per second is defined by HZ macro in older systems.)
* If it is 100, the resolution is 10 millisecond.
* [:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID]
* Use clock() defined by ISO C.
* The resolution is 1/CLOCKS_PER_SEC.
* CLOCKS_PER_SEC is the C-level macro defined by time.h.
* SUS defines CLOCKS_PER_SEC is 1000000.
* Non-Unix systems may define it a different value, though.
* If CLOCKS_PER_SEC is 1000000 as SUS, the resolution is 1 microsecond.
* If CLOCKS_PER_SEC is 1000000 and clock_t is 32 bits integer type, it cannot represent over 72 minutes.
*
* If the given +clock_id+ is not supported, Errno::EINVAL is raised.
*
* +unit+ specifies a type of the return value.
*
* [:float_second] number of seconds as a float (default)
* [:float_millisecond] number of milliseconds as a float
* [:float_microsecond] number of microseconds as a float
* [:second] number of seconds as an integer
* [:millisecond] number of milliseconds as an integer
* [:microsecond] number of microseconds as an integer
* [:nanosecond] number of nanoseconds as an integer
*
* The underlying function, clock_gettime(), returns a number of nanoseconds.
* Float object (IEEE 754 double) is not enough to represent
* the return value for CLOCK_REALTIME.
* If the exact nanoseconds value is required, use +:nanoseconds+ as the +unit+.
*
* The origin (zero) of the returned value varies.
* For example, system start up time, process start up time, the Epoch, etc.
*
* The origin in CLOCK_REALTIME is defined as the Epoch
* (1970-01-01 00:00:00 UTC).
* But some systems count leap seconds and others doesn't.
* So the result can be interpreted differently across systems.
* Time.now is recommended over CLOCK_REALTIME.
*/
VALUE
rb_clock_gettime(int argc, VALUE *argv)
{
int ret;
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
VALUE clk_id = argv[0];
if (SYMBOL_P(clk_id)) {
/*
* Non-clock_gettime clocks are provided by symbol clk_id.
*
* gettimeofday is always available on platforms supported by Ruby.
* GETTIMEOFDAY_BASED_CLOCK_REALTIME is used for
* CLOCK_REALTIME if clock_gettime is not available.
*/
#define RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME ID2SYM(id_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
struct timeval tv;
ret = gettimeofday(&tv, 0);
if (ret != 0)
rb_sys_fail("gettimeofday");
tt.giga_count = tv.tv_sec;
tt.count = (int32_t)tv.tv_usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#define RUBY_TIME_BASED_CLOCK_REALTIME ID2SYM(id_TIME_BASED_CLOCK_REALTIME)
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
time_t t;
t = time(NULL);
if (t == (time_t)-1)
rb_sys_fail("time");
tt.giga_count = t;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_MONOTONIC \
ID2SYM(id_TIMES_BASED_CLOCK_MONOTONIC)
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
struct tms buf;
clock_t c;
unsigned_clock_t uc;
c = times(&buf);
if (c == (clock_t)-1)
rb_sys_fail("times");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = (uc / 1000000000);
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUSAGE_SELF
#define RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct rusage usage;
int32_t usec;
ret = getrusage(RUSAGE_SELF, &usage);
if (ret != 0)
rb_sys_fail("getrusage");
tt.giga_count = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
usec = (int32_t)(usage.ru_utime.tv_usec + usage.ru_stime.tv_usec);
if (1000000 <= usec) {
tt.giga_count++;
usec -= 1000000;
}
tt.count = usec * 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef HAVE_TIMES
#define RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct tms buf;
unsigned_clock_t utime, stime;
if (times(&buf) == (clock_t)-1)
rb_sys_fail("times");
utime = (unsigned_clock_t)buf.tms_utime;
stime = (unsigned_clock_t)buf.tms_stime;
tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
if (1000000000 <= tt.count) {
tt.count -= 1000000000;
tt.giga_count++;
}
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#define RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID \
ID2SYM(id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID)
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
clock_t c;
unsigned_clock_t uc;
errno = 0;
c = clock();
if (c == (clock_t)-1)
rb_sys_fail("clock");
uc = (unsigned_clock_t)c;
tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = uc / 1000000000;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#ifdef __APPLE__
#define RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC ID2SYM(id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
uint64_t t = mach_absolute_time();
tt.count = (int32_t)(t % 1000000000);
tt.giga_count = t / 1000000000;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETTIME)
struct timespec ts;
clockid_t c;
c = NUM2CLOCKID(clk_id);
ret = clock_gettime(c, &ts);
if (ret == -1)
rb_sys_fail("clock_gettime");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_gettime behavior when clock_id is invalid. */
rb_syserr_fail(EINVAL, 0);
success:
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
/*
* call-seq:
* Process.clock_getres(clock_id [, unit]) -> number
*
* Returns the time resolution returned by POSIX clock_getres() function.
*
* +clock_id+ specifies a kind of clock.
* See the document of +Process.clock_gettime+ for details.
*
* +clock_id+ can be a symbol as +Process.clock_gettime+.
* However the result may not be accurate.
* For example, +Process.clock_getres(:GETTIMEOFDAY_BASED_CLOCK_REALTIME)+
* returns 1.0e-06 which means 1 microsecond, but actual resolution can be more coarse.
*
* If the given +clock_id+ is not supported, Errno::EINVAL is raised.
*
* +unit+ specifies a type of the return value.
* +Process.clock_getres+ accepts +unit+ as +Process.clock_gettime+.
* The default value, +:float_second+, is also same as
* +Process.clock_gettime+.
*
* +Process.clock_getres+ also accepts +:hertz+ as +unit+.
* +:hertz+ means a the reciprocal of +:float_second+.
*
* +:hertz+ can be used to obtain the exact value of
* the clock ticks per second for times() function and
* CLOCKS_PER_SEC for clock() function.
*
* +Process.clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz)+
* returns the clock ticks per second.
*
* +Process.clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID, :hertz)+
* returns CLOCKS_PER_SEC.
*
* p Process.clock_getres(Process::CLOCK_MONOTONIC)
* #=> 1.0e-09
*
*/
VALUE
rb_clock_getres(int argc, VALUE *argv)
{
struct timetick tt;
timetick_int_t numerators[2];
timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
VALUE unit = (rb_check_arity(argc, 1, 2) == 2) ? argv[1] : Qnil;
VALUE clk_id = argv[0];
if (SYMBOL_P(clk_id)) {
#ifdef RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME
if (clk_id == RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIME_BASED_CLOCK_REALTIME
if (clk_id == RUBY_TIME_BASED_CLOCK_REALTIME) {
tt.giga_count = 1;
tt.count = 0;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_TIMES_BASED_CLOCK_MONOTONIC) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.giga_count = 0;
tt.count = 1000;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
#ifdef RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = get_clk_tck();
goto success;
}
#endif
#ifdef RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
if (clk_id == RUBY_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID) {
tt.count = 1;
tt.giga_count = 0;
denominators[num_denominators++] = CLOCKS_PER_SEC;
goto success;
}
#endif
#ifdef RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
if (clk_id == RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC) {
mach_timebase_info_data_t *info = get_mach_timebase_info();
tt.count = 1;
tt.giga_count = 0;
numerators[num_numerators++] = info->numer;
denominators[num_denominators++] = info->denom;
denominators[num_denominators++] = 1000000000;
goto success;
}
#endif
}
else {
#if defined(HAVE_CLOCK_GETRES)
struct timespec ts;
clockid_t c = NUM2CLOCKID(clk_id);
int ret = clock_getres(c, &ts);
if (ret == -1)
rb_sys_fail("clock_getres");
tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec;
denominators[num_denominators++] = 1000000000;
goto success;
#endif
}
/* EINVAL emulates clock_getres behavior when clock_id is invalid. */
rb_syserr_fail(EINVAL, 0);
success:
if (unit == ID2SYM(id_hertz)) {
return timetick2dblnum_reciprocal(&tt, numerators, num_numerators, denominators, num_denominators);
}
else {
return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
}
}
VALUE rb_mProcess;
VALUE rb_mProcUID;
VALUE rb_mProcGID;
VALUE rb_mProcID_Syscall;
/*
* The <code>Process</code> module is a collection of methods used to
* manipulate processes.
*/
void
InitVM_process(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
rb_define_virtual_variable("$?", rb_last_status_get, 0);
rb_define_virtual_variable("$$", get_pid, 0);
rb_define_global_function("exec", rb_f_exec, -1);
rb_define_global_function("fork", rb_f_fork, 0);
rb_define_global_function("exit!", rb_f_exit_bang, -1);
rb_define_global_function("system", rb_f_system, -1);
rb_define_global_function("spawn", rb_f_spawn, -1);
rb_define_global_function("sleep", rb_f_sleep, -1);
rb_define_global_function("exit", rb_f_exit, -1);
rb_define_global_function("abort", rb_f_abort, -1);
rb_mProcess = rb_define_module("Process");
#ifdef WNOHANG
/* see Process.wait */
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(WNOHANG));
#else
/* see Process.wait */
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(0));
#endif
#ifdef WUNTRACED
/* see Process.wait */
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(WUNTRACED));
#else
/* see Process.wait */
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(0));
#endif
rb_define_singleton_method(rb_mProcess, "exec", rb_f_exec, -1);
rb_define_singleton_method(rb_mProcess, "fork", rb_f_fork, 0);
rb_define_singleton_method(rb_mProcess, "spawn", rb_f_spawn, -1);
rb_define_singleton_method(rb_mProcess, "exit!", rb_f_exit_bang, -1);
rb_define_singleton_method(rb_mProcess, "exit", rb_f_exit, -1);
rb_define_singleton_method(rb_mProcess, "abort", rb_f_abort, -1);
rb_define_module_function(rb_mProcess, "kill", rb_f_kill, -1); /* in signal.c */
rb_define_module_function(rb_mProcess, "wait", proc_wait, -1);
rb_define_module_function(rb_mProcess, "wait2", proc_wait2, -1);
rb_define_module_function(rb_mProcess, "waitpid", proc_wait, -1);
rb_define_module_function(rb_mProcess, "waitpid2", proc_wait2, -1);
rb_define_module_function(rb_mProcess, "waitall", proc_waitall, 0);
rb_define_module_function(rb_mProcess, "detach", proc_detach, 1);
rb_cWaiter = rb_define_class_under(rb_mProcess, "Waiter", rb_cThread);
rb_undef_alloc_func(rb_cWaiter);
rb_undef_method(CLASS_OF(rb_cWaiter), "new");
rb_define_method(rb_cWaiter, "pid", detach_process_pid, 0);
rb_cProcessStatus = rb_define_class_under(rb_mProcess, "Status", rb_cObject);
rb_undef_method(CLASS_OF(rb_cProcessStatus), "new");
rb_define_method(rb_cProcessStatus, "==", pst_equal, 1);
rb_define_method(rb_cProcessStatus, "&", pst_bitand, 1);
rb_define_method(rb_cProcessStatus, ">>", pst_rshift, 1);
rb_define_method(rb_cProcessStatus, "to_i", pst_to_i, 0);
rb_define_method(rb_cProcessStatus, "to_s", pst_to_s, 0);
rb_define_method(rb_cProcessStatus, "inspect", pst_inspect, 0);
rb_define_method(rb_cProcessStatus, "pid", pst_pid, 0);
rb_define_method(rb_cProcessStatus, "stopped?", pst_wifstopped, 0);
rb_define_method(rb_cProcessStatus, "stopsig", pst_wstopsig, 0);
rb_define_method(rb_cProcessStatus, "signaled?", pst_wifsignaled, 0);
rb_define_method(rb_cProcessStatus, "termsig", pst_wtermsig, 0);
rb_define_method(rb_cProcessStatus, "exited?", pst_wifexited, 0);
rb_define_method(rb_cProcessStatus, "exitstatus", pst_wexitstatus, 0);
rb_define_method(rb_cProcessStatus, "success?", pst_success_p, 0);
rb_define_method(rb_cProcessStatus, "coredump?", pst_wcoredump, 0);
rb_define_module_function(rb_mProcess, "pid", get_pid, 0);
rb_define_module_function(rb_mProcess, "ppid", get_ppid, 0);
rb_define_module_function(rb_mProcess, "getpgrp", proc_getpgrp, 0);
rb_define_module_function(rb_mProcess, "setpgrp", proc_setpgrp, 0);
rb_define_module_function(rb_mProcess, "getpgid", proc_getpgid, 1);
rb_define_module_function(rb_mProcess, "setpgid", proc_setpgid, 2);
rb_define_module_function(rb_mProcess, "getsid", proc_getsid, -1);
rb_define_module_function(rb_mProcess, "setsid", proc_setsid, 0);
rb_define_module_function(rb_mProcess, "getpriority", proc_getpriority, 2);
rb_define_module_function(rb_mProcess, "setpriority", proc_setpriority, 3);
#ifdef HAVE_GETPRIORITY
/* see Process.setpriority */
rb_define_const(rb_mProcess, "PRIO_PROCESS", INT2FIX(PRIO_PROCESS));
/* see Process.setpriority */
rb_define_const(rb_mProcess, "PRIO_PGRP", INT2FIX(PRIO_PGRP));
/* see Process.setpriority */
rb_define_const(rb_mProcess, "PRIO_USER", INT2FIX(PRIO_USER));
#endif
rb_define_module_function(rb_mProcess, "getrlimit", proc_getrlimit, 1);
rb_define_module_function(rb_mProcess, "setrlimit", proc_setrlimit, -1);
#if defined(RLIM2NUM) && defined(RLIM_INFINITY)
{
VALUE inf = RLIM2NUM(RLIM_INFINITY);
#ifdef RLIM_SAVED_MAX
{
VALUE v = RLIM_INFINITY == RLIM_SAVED_MAX ? inf : RLIM2NUM(RLIM_SAVED_MAX);
/* see Process.setrlimit */
rb_define_const(rb_mProcess, "RLIM_SAVED_MAX", v);
}
#endif
/* see Process.setrlimit */
rb_define_const(rb_mProcess, "RLIM_INFINITY", inf);
#ifdef RLIM_SAVED_CUR
{
VALUE v = RLIM_INFINITY == RLIM_SAVED_CUR ? inf : RLIM2NUM(RLIM_SAVED_CUR);
/* see Process.setrlimit */
rb_define_const(rb_mProcess, "RLIM_SAVED_CUR", v);
}
#endif
}
#ifdef RLIMIT_AS
/* Maximum size of the process's virtual memory (address space) in bytes.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_AS", INT2FIX(RLIMIT_AS));
#endif
#ifdef RLIMIT_CORE
/* Maximum size of the core file.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_CORE", INT2FIX(RLIMIT_CORE));
#endif
#ifdef RLIMIT_CPU
/* CPU time limit in seconds.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_CPU", INT2FIX(RLIMIT_CPU));
#endif
#ifdef RLIMIT_DATA
/* Maximum size of the process's data segment.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_DATA", INT2FIX(RLIMIT_DATA));
#endif
#ifdef RLIMIT_FSIZE
/* Maximum size of files that the process may create.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_FSIZE", INT2FIX(RLIMIT_FSIZE));
#endif
#ifdef RLIMIT_MEMLOCK
/* Maximum number of bytes of memory that may be locked into RAM.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_MEMLOCK", INT2FIX(RLIMIT_MEMLOCK));
#endif
#ifdef RLIMIT_MSGQUEUE
/* Specifies the limit on the number of bytes that can be allocated
* for POSIX message queues for the real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_MSGQUEUE", INT2FIX(RLIMIT_MSGQUEUE));
#endif
#ifdef RLIMIT_NICE
/* Specifies a ceiling to which the process's nice value can be raised.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NICE", INT2FIX(RLIMIT_NICE));
#endif
#ifdef RLIMIT_NOFILE
/* Specifies a value one greater than the maximum file descriptor
* number that can be opened by this process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NOFILE", INT2FIX(RLIMIT_NOFILE));
#endif
#ifdef RLIMIT_NPROC
/* The maximum number of processes that can be created for the
* real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NPROC", INT2FIX(RLIMIT_NPROC));
#endif
#ifdef RLIMIT_RSS
/* Specifies the limit (in pages) of the process's resident set.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_RSS", INT2FIX(RLIMIT_RSS));
#endif
#ifdef RLIMIT_RTPRIO
/* Specifies a ceiling on the real-time priority that may be set for this process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_RTPRIO", INT2FIX(RLIMIT_RTPRIO));
#endif
#ifdef RLIMIT_RTTIME
/* Specifies limit on CPU time this process scheduled under a real-time
* scheduling policy can consume.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_RTTIME", INT2FIX(RLIMIT_RTTIME));
#endif
#ifdef RLIMIT_SBSIZE
/* Maximum size of the socket buffer.
*/
rb_define_const(rb_mProcess, "RLIMIT_SBSIZE", INT2FIX(RLIMIT_SBSIZE));
#endif
#ifdef RLIMIT_SIGPENDING
/* Specifies a limit on the number of signals that may be queued for
* the real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_SIGPENDING", INT2FIX(RLIMIT_SIGPENDING));
#endif
#ifdef RLIMIT_STACK
/* Maximum size of the stack, in bytes.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_STACK", INT2FIX(RLIMIT_STACK));
#endif
#endif
rb_define_module_function(rb_mProcess, "uid", proc_getuid, 0);
rb_define_module_function(rb_mProcess, "uid=", proc_setuid, 1);
rb_define_module_function(rb_mProcess, "gid", proc_getgid, 0);
rb_define_module_function(rb_mProcess, "gid=", proc_setgid, 1);
rb_define_module_function(rb_mProcess, "euid", proc_geteuid, 0);
rb_define_module_function(rb_mProcess, "euid=", proc_seteuid_m, 1);
rb_define_module_function(rb_mProcess, "egid", proc_getegid, 0);
rb_define_module_function(rb_mProcess, "egid=", proc_setegid_m, 1);
rb_define_module_function(rb_mProcess, "initgroups", proc_initgroups, 2);
rb_define_module_function(rb_mProcess, "groups", proc_getgroups, 0);
rb_define_module_function(rb_mProcess, "groups=", proc_setgroups, 1);
rb_define_module_function(rb_mProcess, "maxgroups", proc_getmaxgroups, 0);
rb_define_module_function(rb_mProcess, "maxgroups=", proc_setmaxgroups, 1);
rb_define_module_function(rb_mProcess, "daemon", proc_daemon, -1);
rb_define_module_function(rb_mProcess, "times", rb_proc_times, 0);
#ifdef CLOCK_REALTIME
rb_define_const(rb_mProcess, "CLOCK_REALTIME", CLOCKID2NUM(CLOCK_REALTIME));
#elif defined(RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME)
rb_define_const(rb_mProcess, "CLOCK_REALTIME", RUBY_GETTIMEOFDAY_BASED_CLOCK_REALTIME);
#endif
#ifdef CLOCK_MONOTONIC
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC", CLOCKID2NUM(CLOCK_MONOTONIC));
#elif defined(RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC)
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC", RUBY_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC);
#endif
#ifdef CLOCK_PROCESS_CPUTIME_ID
rb_define_const(rb_mProcess, "CLOCK_PROCESS_CPUTIME_ID", CLOCKID2NUM(CLOCK_PROCESS_CPUTIME_ID));
#elif defined(RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID)
rb_define_const(rb_mProcess, "CLOCK_PROCESS_CPUTIME_ID", RUBY_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID);
#endif
#ifdef CLOCK_THREAD_CPUTIME_ID
rb_define_const(rb_mProcess, "CLOCK_THREAD_CPUTIME_ID", CLOCKID2NUM(CLOCK_THREAD_CPUTIME_ID));
#endif
#ifdef CLOCK_VIRTUAL
rb_define_const(rb_mProcess, "CLOCK_VIRTUAL", CLOCKID2NUM(CLOCK_VIRTUAL));
#endif
#ifdef CLOCK_PROF
rb_define_const(rb_mProcess, "CLOCK_PROF", CLOCKID2NUM(CLOCK_PROF));
#endif
#ifdef CLOCK_REALTIME_FAST
rb_define_const(rb_mProcess, "CLOCK_REALTIME_FAST", CLOCKID2NUM(CLOCK_REALTIME_FAST));
#endif
#ifdef CLOCK_REALTIME_PRECISE
rb_define_const(rb_mProcess, "CLOCK_REALTIME_PRECISE", CLOCKID2NUM(CLOCK_REALTIME_PRECISE));
#endif
#ifdef CLOCK_REALTIME_COARSE
rb_define_const(rb_mProcess, "CLOCK_REALTIME_COARSE", CLOCKID2NUM(CLOCK_REALTIME_COARSE));
#endif
#ifdef CLOCK_REALTIME_ALARM
rb_define_const(rb_mProcess, "CLOCK_REALTIME_ALARM", CLOCKID2NUM(CLOCK_REALTIME_ALARM));
#endif
#ifdef CLOCK_MONOTONIC_FAST
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_FAST", CLOCKID2NUM(CLOCK_MONOTONIC_FAST));
#endif
#ifdef CLOCK_MONOTONIC_PRECISE
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_PRECISE", CLOCKID2NUM(CLOCK_MONOTONIC_PRECISE));
#endif
#ifdef CLOCK_MONOTONIC_RAW
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_RAW", CLOCKID2NUM(CLOCK_MONOTONIC_RAW));
#endif
#ifdef CLOCK_MONOTONIC_COARSE
rb_define_const(rb_mProcess, "CLOCK_MONOTONIC_COARSE", CLOCKID2NUM(CLOCK_MONOTONIC_COARSE));
#endif
#ifdef CLOCK_BOOTTIME
rb_define_const(rb_mProcess, "CLOCK_BOOTTIME", CLOCKID2NUM(CLOCK_BOOTTIME));
#endif
#ifdef CLOCK_BOOTTIME_ALARM
rb_define_const(rb_mProcess, "CLOCK_BOOTTIME_ALARM", CLOCKID2NUM(CLOCK_BOOTTIME_ALARM));
#endif
#ifdef CLOCK_UPTIME
rb_define_const(rb_mProcess, "CLOCK_UPTIME", CLOCKID2NUM(CLOCK_UPTIME));
#endif
#ifdef CLOCK_UPTIME_FAST
rb_define_const(rb_mProcess, "CLOCK_UPTIME_FAST", CLOCKID2NUM(CLOCK_UPTIME_FAST));
#endif
#ifdef CLOCK_UPTIME_PRECISE
rb_define_const(rb_mProcess, "CLOCK_UPTIME_PRECISE", CLOCKID2NUM(CLOCK_UPTIME_PRECISE));
#endif
#ifdef CLOCK_SECOND
rb_define_const(rb_mProcess, "CLOCK_SECOND", CLOCKID2NUM(CLOCK_SECOND));
#endif
rb_define_module_function(rb_mProcess, "clock_gettime", rb_clock_gettime, -1);
rb_define_module_function(rb_mProcess, "clock_getres", rb_clock_getres, -1);
#if defined(HAVE_TIMES) || defined(_WIN32)
rb_cProcessTms = rb_struct_define_under(rb_mProcess, "Tms", "utime", "stime", "cutime", "cstime", NULL);
rb_define_const(rb_cStruct, "Tms", rb_cProcessTms); /* for the backward compatibility */
#endif
SAVED_USER_ID = geteuid();
SAVED_GROUP_ID = getegid();
rb_mProcUID = rb_define_module_under(rb_mProcess, "UID");
rb_mProcGID = rb_define_module_under(rb_mProcess, "GID");
rb_define_module_function(rb_mProcUID, "rid", proc_getuid, 0);
rb_define_module_function(rb_mProcGID, "rid", proc_getgid, 0);
rb_define_module_function(rb_mProcUID, "eid", proc_geteuid, 0);
rb_define_module_function(rb_mProcGID, "eid", proc_getegid, 0);
rb_define_module_function(rb_mProcUID, "change_privilege", p_uid_change_privilege, 1);
rb_define_module_function(rb_mProcGID, "change_privilege", p_gid_change_privilege, 1);
rb_define_module_function(rb_mProcUID, "grant_privilege", p_uid_grant_privilege, 1);
rb_define_module_function(rb_mProcGID, "grant_privilege", p_gid_grant_privilege, 1);
rb_define_alias(rb_singleton_class(rb_mProcUID), "eid=", "grant_privilege");
rb_define_alias(rb_singleton_class(rb_mProcGID), "eid=", "grant_privilege");
rb_define_module_function(rb_mProcUID, "re_exchange", p_uid_exchange, 0);
rb_define_module_function(rb_mProcGID, "re_exchange", p_gid_exchange, 0);
rb_define_module_function(rb_mProcUID, "re_exchangeable?", p_uid_exchangeable, 0);
rb_define_module_function(rb_mProcGID, "re_exchangeable?", p_gid_exchangeable, 0);
rb_define_module_function(rb_mProcUID, "sid_available?", p_uid_have_saved_id, 0);
rb_define_module_function(rb_mProcGID, "sid_available?", p_gid_have_saved_id, 0);
rb_define_module_function(rb_mProcUID, "switch", p_uid_switch, 0);
rb_define_module_function(rb_mProcGID, "switch", p_gid_switch, 0);
#ifdef p_uid_from_name
rb_define_module_function(rb_mProcUID, "from_name", p_uid_from_name, 1);
#endif
#ifdef p_gid_from_name
rb_define_module_function(rb_mProcGID, "from_name", p_gid_from_name, 1);
#endif
rb_mProcID_Syscall = rb_define_module_under(rb_mProcess, "Sys");
rb_define_module_function(rb_mProcID_Syscall, "getuid", proc_getuid, 0);
rb_define_module_function(rb_mProcID_Syscall, "geteuid", proc_geteuid, 0);
rb_define_module_function(rb_mProcID_Syscall, "getgid", proc_getgid, 0);
rb_define_module_function(rb_mProcID_Syscall, "getegid", proc_getegid, 0);
rb_define_module_function(rb_mProcID_Syscall, "setuid", p_sys_setuid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setgid", p_sys_setgid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setruid", p_sys_setruid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setrgid", p_sys_setrgid, 1);
rb_define_module_function(rb_mProcID_Syscall, "seteuid", p_sys_seteuid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setegid", p_sys_setegid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setreuid", p_sys_setreuid, 2);
rb_define_module_function(rb_mProcID_Syscall, "setregid", p_sys_setregid, 2);
rb_define_module_function(rb_mProcID_Syscall, "setresuid", p_sys_setresuid, 3);
rb_define_module_function(rb_mProcID_Syscall, "setresgid", p_sys_setresgid, 3);
rb_define_module_function(rb_mProcID_Syscall, "issetugid", p_sys_issetugid, 0);
}
void
Init_process(void)
{
id_in = rb_intern("in");
id_out = rb_intern("out");
id_err = rb_intern("err");
id_pid = rb_intern("pid");
id_uid = rb_intern("uid");
id_gid = rb_intern("gid");
id_close = rb_intern("close");
id_child = rb_intern("child");
#ifdef HAVE_SETPGID
id_pgroup = rb_intern("pgroup");
#endif
#ifdef _WIN32
id_new_pgroup = rb_intern("new_pgroup");
#endif
id_unsetenv_others = rb_intern("unsetenv_others");
id_chdir = rb_intern("chdir");
id_umask = rb_intern("umask");
id_close_others = rb_intern("close_others");
id_ENV = rb_intern("ENV");
id_nanosecond = rb_intern("nanosecond");
id_microsecond = rb_intern("microsecond");
id_millisecond = rb_intern("millisecond");
id_second = rb_intern("second");
id_float_microsecond = rb_intern("float_microsecond");
id_float_millisecond = rb_intern("float_millisecond");
id_float_second = rb_intern("float_second");
id_GETTIMEOFDAY_BASED_CLOCK_REALTIME = rb_intern("GETTIMEOFDAY_BASED_CLOCK_REALTIME");
id_TIME_BASED_CLOCK_REALTIME = rb_intern("TIME_BASED_CLOCK_REALTIME");
#ifdef HAVE_TIMES
id_TIMES_BASED_CLOCK_MONOTONIC = rb_intern("TIMES_BASED_CLOCK_MONOTONIC");
id_TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID = rb_intern("TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID");
#endif
#ifdef RUSAGE_SELF
id_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID = rb_intern("GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID");
#endif
id_CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID = rb_intern("CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID");
#ifdef __APPLE__
id_MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC = rb_intern("MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC");
#endif
id_hertz = rb_intern("hertz");
InitVM(process);
}