зеркало из https://github.com/github/ruby.git
483 строки
11 KiB
C
483 строки
11 KiB
C
#include <string.h>
|
|
#include <stdio.h>
|
|
#include "siphash.h"
|
|
#ifndef SIP_HASH_STREAMING
|
|
#define SIP_HASH_STREAMING 1
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
#define BYTE_ORDER __LITTLE_ENDIAN
|
|
#elif !defined BYTE_ORDER
|
|
#include <endian.h>
|
|
#endif
|
|
#ifndef LITTLE_ENDIAN
|
|
#define LITTLE_ENDIAN __LITTLE_ENDIAN
|
|
#endif
|
|
#ifndef BIG_ENDIAN
|
|
#define BIG_ENDIAN __BIG_ENDIAN
|
|
#endif
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
#define lo u32[0]
|
|
#define hi u32[1]
|
|
#elif BYTE_ORDER == BIG_ENDIAN
|
|
#define hi u32[0]
|
|
#define lo u32[1]
|
|
#else
|
|
#error "Only strictly little or big endian supported"
|
|
#endif
|
|
|
|
#ifndef UNALIGNED_WORD_ACCESS
|
|
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
|
|
defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || \
|
|
defined(__powerpc64__) || \
|
|
defined(__mc68020__)
|
|
# define UNALIGNED_WORD_ACCESS 1
|
|
# endif
|
|
#endif
|
|
#ifndef UNALIGNED_WORD_ACCESS
|
|
# define UNALIGNED_WORD_ACCESS 0
|
|
#endif
|
|
|
|
#define U8TO32_LE(p) \
|
|
(((uint32_t)((p)[0]) ) | ((uint32_t)((p)[1]) << 8) | \
|
|
((uint32_t)((p)[2]) << 16) | ((uint32_t)((p)[3]) << 24)) \
|
|
|
|
#define U32TO8_LE(p, v) \
|
|
do { \
|
|
(p)[0] = (uint8_t)((v) ); \
|
|
(p)[1] = (uint8_t)((v) >> 8); \
|
|
(p)[2] = (uint8_t)((v) >> 16); \
|
|
(p)[3] = (uint8_t)((v) >> 24); \
|
|
} while (0)
|
|
|
|
#ifdef HAVE_UINT64_T
|
|
#define U8TO64_LE(p) \
|
|
((uint64_t)U8TO32_LE(p) | ((uint64_t)U8TO32_LE((p) + 4)) << 32 )
|
|
|
|
#define U64TO8_LE(p, v) \
|
|
do { \
|
|
U32TO8_LE((p), (uint32_t)((v) )); \
|
|
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); \
|
|
} while (0)
|
|
|
|
#define ROTL64(v, s) \
|
|
((v) << (s)) | ((v) >> (64 - (s)))
|
|
|
|
#define ROTL64_TO(v, s) ((v) = ROTL64((v), (s)))
|
|
|
|
#define ADD64_TO(v, s) ((v) += (s))
|
|
#define XOR64_TO(v, s) ((v) ^= (s))
|
|
#define XOR64_INT(v, x) ((v) ^= (x))
|
|
#else
|
|
#define U8TO64_LE(p) u8to64_le(p)
|
|
static inline uint64_t
|
|
u8to64_le(const uint8_t *p)
|
|
{
|
|
uint64_t ret;
|
|
ret.lo = U8TO32_LE(p);
|
|
ret.hi = U8TO32_LE(p + 4);
|
|
return ret;
|
|
}
|
|
|
|
#define U64TO8_LE(p, v) u64to8_le(p, v)
|
|
static inline void
|
|
u64to8_le(uint8_t *p, uint64_t v)
|
|
{
|
|
U32TO8_LE(p, v.lo);
|
|
U32TO8_LE(p + 4, v.hi);
|
|
}
|
|
|
|
#define ROTL64_TO(v, s) ((s) > 32 ? rotl64_swap(rotl64_to(&(v), (s) - 32)) : \
|
|
(s) == 32 ? rotl64_swap(&(v)) : rotl64_to(&(v), (s)))
|
|
static inline uint64_t *
|
|
rotl64_to(uint64_t *v, unsigned int s)
|
|
{
|
|
uint32_t uhi = (v->hi << s) | (v->lo >> (32 - s));
|
|
uint32_t ulo = (v->lo << s) | (v->hi >> (32 - s));
|
|
v->hi = uhi;
|
|
v->lo = ulo;
|
|
return v;
|
|
}
|
|
|
|
static inline uint64_t *
|
|
rotl64_swap(uint64_t *v)
|
|
{
|
|
uint32_t t = v->lo;
|
|
v->lo = v->hi;
|
|
v->hi = t;
|
|
return v;
|
|
}
|
|
|
|
#define ADD64_TO(v, s) add64_to(&(v), (s))
|
|
static inline uint64_t *
|
|
add64_to(uint64_t *v, const uint64_t s)
|
|
{
|
|
v->lo += s.lo;
|
|
v->hi += s.hi;
|
|
if (v->lo < s.lo) v->hi++;
|
|
return v;
|
|
}
|
|
|
|
#define XOR64_TO(v, s) xor64_to(&(v), (s))
|
|
static inline uint64_t *
|
|
xor64_to(uint64_t *v, const uint64_t s)
|
|
{
|
|
v->lo ^= s.lo;
|
|
v->hi ^= s.hi;
|
|
return v;
|
|
}
|
|
|
|
#define XOR64_INT(v, x) ((v).lo ^= (x))
|
|
#endif
|
|
|
|
static const union {
|
|
char bin[32];
|
|
uint64_t u64[4];
|
|
} sip_init_state_bin = {"uespemos""modnarod""arenegyl""setybdet"};
|
|
#define sip_init_state sip_init_state_bin.u64
|
|
|
|
#if SIP_HASH_STREAMING
|
|
struct sip_interface_st {
|
|
void (*init)(sip_state *s, const uint8_t *key);
|
|
void (*update)(sip_state *s, const uint8_t *data, size_t len);
|
|
void (*final)(sip_state *s, uint64_t *digest);
|
|
};
|
|
|
|
static void int_sip_init(sip_state *state, const uint8_t *key);
|
|
static void int_sip_update(sip_state *state, const uint8_t *data, size_t len);
|
|
static void int_sip_final(sip_state *state, uint64_t *digest);
|
|
|
|
static const sip_interface sip_methods = {
|
|
int_sip_init,
|
|
int_sip_update,
|
|
int_sip_final
|
|
};
|
|
#endif /* SIP_HASH_STREAMING */
|
|
|
|
#define SIP_COMPRESS(v0, v1, v2, v3) \
|
|
do { \
|
|
ADD64_TO((v0), (v1)); \
|
|
ADD64_TO((v2), (v3)); \
|
|
ROTL64_TO((v1), 13); \
|
|
ROTL64_TO((v3), 16); \
|
|
XOR64_TO((v1), (v0)); \
|
|
XOR64_TO((v3), (v2)); \
|
|
ROTL64_TO((v0), 32); \
|
|
ADD64_TO((v2), (v1)); \
|
|
ADD64_TO((v0), (v3)); \
|
|
ROTL64_TO((v1), 17); \
|
|
ROTL64_TO((v3), 21); \
|
|
XOR64_TO((v1), (v2)); \
|
|
XOR64_TO((v3), (v0)); \
|
|
ROTL64_TO((v2), 32); \
|
|
} while(0)
|
|
|
|
#if SIP_HASH_STREAMING
|
|
static void
|
|
int_sip_dump(sip_state *state)
|
|
{
|
|
int v;
|
|
|
|
for (v = 0; v < 4; v++) {
|
|
#if HAVE_UINT64_T
|
|
printf("v%d: %" PRIx64 "\n", v, state->v[v]);
|
|
#else
|
|
printf("v%d: %" PRIx32 "%.8" PRIx32 "\n", v, state->v[v].hi, state->v[v].lo);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
int_sip_init(sip_state *state, const uint8_t key[16])
|
|
{
|
|
uint64_t k0, k1;
|
|
|
|
k0 = U8TO64_LE(key);
|
|
k1 = U8TO64_LE(key + sizeof(uint64_t));
|
|
|
|
state->v[0] = k0; XOR64_TO(state->v[0], sip_init_state[0]);
|
|
state->v[1] = k1; XOR64_TO(state->v[1], sip_init_state[1]);
|
|
state->v[2] = k0; XOR64_TO(state->v[2], sip_init_state[2]);
|
|
state->v[3] = k1; XOR64_TO(state->v[3], sip_init_state[3]);
|
|
}
|
|
|
|
static inline void
|
|
int_sip_round(sip_state *state, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
SIP_COMPRESS(state->v[0], state->v[1], state->v[2], state->v[3]);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
int_sip_update_block(sip_state *state, uint64_t m)
|
|
{
|
|
XOR64_TO(state->v[3], m);
|
|
int_sip_round(state, state->c);
|
|
XOR64_TO(state->v[0], m);
|
|
}
|
|
|
|
static inline void
|
|
int_sip_pre_update(sip_state *state, const uint8_t **pdata, size_t *plen)
|
|
{
|
|
int to_read;
|
|
uint64_t m;
|
|
|
|
if (!state->buflen) return;
|
|
|
|
to_read = sizeof(uint64_t) - state->buflen;
|
|
memcpy(state->buf + state->buflen, *pdata, to_read);
|
|
m = U8TO64_LE(state->buf);
|
|
int_sip_update_block(state, m);
|
|
*pdata += to_read;
|
|
*plen -= to_read;
|
|
state->buflen = 0;
|
|
}
|
|
|
|
static inline void
|
|
int_sip_post_update(sip_state *state, const uint8_t *data, size_t len)
|
|
{
|
|
uint8_t r = len % sizeof(uint64_t);
|
|
if (r) {
|
|
memcpy(state->buf, data + len - r, r);
|
|
state->buflen = r;
|
|
}
|
|
}
|
|
|
|
static void
|
|
int_sip_update(sip_state *state, const uint8_t *data, size_t len)
|
|
{
|
|
uint64_t *end;
|
|
uint64_t *data64;
|
|
|
|
state->msglen_byte = state->msglen_byte + (len % 256);
|
|
data64 = (uint64_t *) data;
|
|
|
|
int_sip_pre_update(state, &data, &len);
|
|
|
|
end = data64 + (len / sizeof(uint64_t));
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
while (data64 != end) {
|
|
int_sip_update_block(state, *data64++);
|
|
}
|
|
#elif BYTE_ORDER == BIG_ENDIAN
|
|
{
|
|
uint64_t m;
|
|
uint8_t *data8 = data;
|
|
for (; data8 != (uint8_t *) end; data8 += sizeof(uint64_t)) {
|
|
m = U8TO64_LE(data8);
|
|
int_sip_update_block(state, m);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int_sip_post_update(state, data, len);
|
|
}
|
|
|
|
static inline void
|
|
int_sip_pad_final_block(sip_state *state)
|
|
{
|
|
int i;
|
|
/* pad with 0's and finalize with msg_len mod 256 */
|
|
for (i = state->buflen; i < sizeof(uint64_t); i++) {
|
|
state->buf[i] = 0x00;
|
|
}
|
|
state->buf[sizeof(uint64_t) - 1] = state->msglen_byte;
|
|
}
|
|
|
|
static void
|
|
int_sip_final(sip_state *state, uint64_t *digest)
|
|
{
|
|
uint64_t m;
|
|
|
|
int_sip_pad_final_block(state);
|
|
|
|
m = U8TO64_LE(state->buf);
|
|
int_sip_update_block(state, m);
|
|
|
|
XOR64_INT(state->v[2], 0xff);
|
|
|
|
int_sip_round(state, state->d);
|
|
|
|
*digest = state->v[0];
|
|
XOR64_TO(*digest, state->v[1]);
|
|
XOR64_TO(*digest, state->v[2]);
|
|
XOR64_TO(*digest, state->v[3]);
|
|
}
|
|
|
|
sip_hash *
|
|
sip_hash_new(const uint8_t key[16], int c, int d)
|
|
{
|
|
sip_hash *h = NULL;
|
|
|
|
if (!(h = (sip_hash *) malloc(sizeof(sip_hash)))) return NULL;
|
|
return sip_hash_init(h, key, c, d);
|
|
}
|
|
|
|
sip_hash *
|
|
sip_hash_init(sip_hash *h, const uint8_t key[16], int c, int d)
|
|
{
|
|
h->state->c = c;
|
|
h->state->d = d;
|
|
h->state->buflen = 0;
|
|
h->state->msglen_byte = 0;
|
|
h->methods = &sip_methods;
|
|
h->methods->init(h->state, key);
|
|
return h;
|
|
}
|
|
|
|
int
|
|
sip_hash_update(sip_hash *h, const uint8_t *msg, size_t len)
|
|
{
|
|
h->methods->update(h->state, msg, len);
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
sip_hash_final(sip_hash *h, uint8_t **digest, size_t* len)
|
|
{
|
|
uint64_t digest64;
|
|
uint8_t *ret;
|
|
|
|
h->methods->final(h->state, &digest64);
|
|
if (!(ret = (uint8_t *)malloc(sizeof(uint64_t)))) return 0;
|
|
U64TO8_LE(ret, digest64);
|
|
*len = sizeof(uint64_t);
|
|
*digest = ret;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
sip_hash_final_integer(sip_hash *h, uint64_t *digest)
|
|
{
|
|
h->methods->final(h->state, digest);
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
sip_hash_digest(sip_hash *h, const uint8_t *data, size_t data_len, uint8_t **digest, size_t *digest_len)
|
|
{
|
|
if (!sip_hash_update(h, data, data_len)) return 0;
|
|
return sip_hash_final(h, digest, digest_len);
|
|
}
|
|
|
|
int
|
|
sip_hash_digest_integer(sip_hash *h, const uint8_t *data, size_t data_len, uint64_t *digest)
|
|
{
|
|
if (!sip_hash_update(h, data, data_len)) return 0;
|
|
return sip_hash_final_integer(h, digest);
|
|
}
|
|
|
|
void
|
|
sip_hash_free(sip_hash *h)
|
|
{
|
|
free(h);
|
|
}
|
|
|
|
void
|
|
sip_hash_dump(sip_hash *h)
|
|
{
|
|
int_sip_dump(h->state);
|
|
}
|
|
#endif /* SIP_HASH_STREAMING */
|
|
|
|
#define SIP_ROUND(m, v0, v1, v2, v3) \
|
|
do { \
|
|
XOR64_TO((v3), (m)); \
|
|
SIP_COMPRESS(v0, v1, v2, v3); \
|
|
XOR64_TO((v0), (m)); \
|
|
} while (0)
|
|
|
|
uint64_t
|
|
sip_hash13(const uint8_t key[16], const uint8_t *data, size_t len)
|
|
{
|
|
uint64_t k0, k1;
|
|
uint64_t v0, v1, v2, v3;
|
|
uint64_t m, last;
|
|
const uint8_t *end = data + len - (len % sizeof(uint64_t));
|
|
|
|
k0 = U8TO64_LE(key);
|
|
k1 = U8TO64_LE(key + sizeof(uint64_t));
|
|
|
|
v0 = k0; XOR64_TO(v0, sip_init_state[0]);
|
|
v1 = k1; XOR64_TO(v1, sip_init_state[1]);
|
|
v2 = k0; XOR64_TO(v2, sip_init_state[2]);
|
|
v3 = k1; XOR64_TO(v3, sip_init_state[3]);
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN && UNALIGNED_WORD_ACCESS
|
|
{
|
|
uint64_t *data64 = (uint64_t *)data;
|
|
while (data64 != (uint64_t *) end) {
|
|
m = *data64++;
|
|
SIP_ROUND(m, v0, v1, v2, v3);
|
|
}
|
|
}
|
|
#else
|
|
for (; data != end; data += sizeof(uint64_t)) {
|
|
m = U8TO64_LE(data);
|
|
SIP_ROUND(m, v0, v1, v2, v3);
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_UINT64_T
|
|
last = (uint64_t)len << 56;
|
|
#define OR_BYTE(n) (last |= ((uint64_t) end[n]) << ((n) * 8))
|
|
#else
|
|
last.hi = len << 24;
|
|
last.lo = 0;
|
|
#define OR_BYTE(n) do { \
|
|
if (n >= 4) \
|
|
last.hi |= ((uint32_t) end[n]) << ((n) >= 4 ? (n) * 8 - 32 : 0); \
|
|
else \
|
|
last.lo |= ((uint32_t) end[n]) << ((n) >= 4 ? 0 : (n) * 8); \
|
|
} while (0)
|
|
#endif
|
|
|
|
switch (len % sizeof(uint64_t)) {
|
|
case 7:
|
|
OR_BYTE(6);
|
|
case 6:
|
|
OR_BYTE(5);
|
|
case 5:
|
|
OR_BYTE(4);
|
|
case 4:
|
|
#if BYTE_ORDER == LITTLE_ENDIAN && UNALIGNED_WORD_ACCESS
|
|
#if HAVE_UINT64_T
|
|
last |= (uint64_t) ((uint32_t *) end)[0];
|
|
#else
|
|
last.lo |= ((uint32_t *) end)[0];
|
|
#endif
|
|
break;
|
|
#else
|
|
OR_BYTE(3);
|
|
#endif
|
|
case 3:
|
|
OR_BYTE(2);
|
|
case 2:
|
|
OR_BYTE(1);
|
|
case 1:
|
|
OR_BYTE(0);
|
|
break;
|
|
case 0:
|
|
break;
|
|
}
|
|
|
|
SIP_ROUND(last, v0, v1, v2, v3);
|
|
|
|
XOR64_INT(v2, 0xff);
|
|
|
|
SIP_COMPRESS(v0, v1, v2, v3);
|
|
SIP_COMPRESS(v0, v1, v2, v3);
|
|
SIP_COMPRESS(v0, v1, v2, v3);
|
|
|
|
XOR64_TO(v0, v1);
|
|
XOR64_TO(v0, v2);
|
|
XOR64_TO(v0, v3);
|
|
return v0;
|
|
}
|