ruby/gc.c

3908 строки
96 KiB
C

/**********************************************************************
gc.c -
$Author$
created at: Tue Oct 5 09:44:46 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/st.h"
#include "ruby/re.h"
#include "ruby/io.h"
#include "ruby/util.h"
#include "eval_intern.h"
#include "vm_core.h"
#include "internal.h"
#include "gc.h"
#include "constant.h"
#include <stdio.h>
#include <setjmp.h>
#include <sys/types.h>
#include <assert.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if defined _WIN32 || defined __CYGWIN__
#include <windows.h>
#elif defined(HAVE_POSIX_MEMALIGN)
#elif defined(HAVE_MEMALIGN)
#include <malloc.h>
#endif
#ifdef HAVE_VALGRIND_MEMCHECK_H
# include <valgrind/memcheck.h>
# ifndef VALGRIND_MAKE_MEM_DEFINED
# define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE((p), (n))
# endif
# ifndef VALGRIND_MAKE_MEM_UNDEFINED
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE((p), (n))
# endif
#else
# define VALGRIND_MAKE_MEM_DEFINED(p, n) /* empty */
# define VALGRIND_MAKE_MEM_UNDEFINED(p, n) /* empty */
#endif
#define rb_setjmp(env) RUBY_SETJMP(env)
#define rb_jmp_buf rb_jmpbuf_t
/* Make alloca work the best possible way. */
#ifdef __GNUC__
# ifndef atarist
# ifndef alloca
# define alloca __builtin_alloca
# endif
# endif /* atarist */
#else
# ifdef HAVE_ALLOCA_H
# include <alloca.h>
# else
# ifdef _AIX
#pragma alloca
# else
# ifndef alloca /* predefined by HP cc +Olibcalls */
void *alloca ();
# endif
# endif /* AIX */
# endif /* HAVE_ALLOCA_H */
#endif /* __GNUC__ */
#ifndef GC_MALLOC_LIMIT
#define GC_MALLOC_LIMIT 8000000
#endif
#define HEAP_MIN_SLOTS 10000
#define FREE_MIN 4096
typedef struct {
unsigned int initial_malloc_limit;
unsigned int initial_heap_min_slots;
unsigned int initial_free_min;
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
int gc_stress;
#endif
} ruby_gc_params_t;
static ruby_gc_params_t initial_params = {
GC_MALLOC_LIMIT,
HEAP_MIN_SLOTS,
FREE_MIN,
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
FALSE,
#endif
};
#define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
#define MARK_STACK_MAX 1024
int ruby_gc_debug_indent = 0;
/* for GC profile */
#ifndef GC_PROFILE_MORE_DETAIL
#define GC_PROFILE_MORE_DETAIL 0
#endif
typedef struct gc_profile_record {
double gc_time;
double gc_mark_time;
double gc_sweep_time;
double gc_invoke_time;
size_t heap_use_slots;
size_t heap_live_objects;
size_t heap_free_objects;
size_t heap_total_objects;
size_t heap_use_size;
size_t heap_total_size;
int have_finalize;
int is_marked;
size_t allocate_increase;
size_t allocate_limit;
} gc_profile_record;
static double
getrusage_time(void)
{
#ifdef RUSAGE_SELF
struct rusage usage;
struct timeval time;
getrusage(RUSAGE_SELF, &usage);
time = usage.ru_utime;
return time.tv_sec + time.tv_usec * 1e-6;
#elif defined _WIN32
FILETIME creation_time, exit_time, kernel_time, user_time;
ULARGE_INTEGER ui;
LONG_LONG q;
double t;
if (GetProcessTimes(GetCurrentProcess(),
&creation_time, &exit_time, &kernel_time, &user_time) == 0)
{
return 0.0;
}
memcpy(&ui, &user_time, sizeof(FILETIME));
q = ui.QuadPart / 10L;
t = (DWORD)(q % 1000000L) * 1e-6;
q /= 1000000L;
#ifdef __GNUC__
t += q;
#else
t += (double)(DWORD)(q >> 16) * (1 << 16);
t += (DWORD)q & ~(~0 << 16);
#endif
return t;
#else
return 0.0;
#endif
}
#define GC_PROF_TIMER_START do {\
if (objspace->profile.run) {\
if (!objspace->profile.record) {\
objspace->profile.size = 1000;\
objspace->profile.record = malloc(sizeof(gc_profile_record) * objspace->profile.size);\
}\
if (count >= objspace->profile.size) {\
objspace->profile.size += 1000;\
objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);\
}\
if (!objspace->profile.record) {\
rb_bug("gc_profile malloc or realloc miss");\
}\
MEMZERO(&objspace->profile.record[count], gc_profile_record, 1);\
gc_time = getrusage_time();\
objspace->profile.record[count].gc_invoke_time = gc_time - objspace->profile.invoke_time;\
}\
} while(0)
#define GC_PROF_TIMER_STOP(marked) do {\
if (objspace->profile.run) {\
gc_time = getrusage_time() - gc_time;\
if (gc_time < 0) gc_time = 0;\
objspace->profile.record[count].gc_time = gc_time;\
objspace->profile.record[count].is_marked = !!(marked);\
GC_PROF_SET_HEAP_INFO(objspace->profile.record[count]);\
objspace->profile.count++;\
}\
} while(0)
#if GC_PROFILE_MORE_DETAIL
#define INIT_GC_PROF_PARAMS double gc_time = 0, sweep_time = 0;\
size_t count = objspace->profile.count, total = 0, live = 0
#define GC_PROF_MARK_TIMER_START double mark_time = 0;\
do {\
if (objspace->profile.run) {\
mark_time = getrusage_time();\
}\
} while(0)
#define GC_PROF_MARK_TIMER_STOP do {\
if (objspace->profile.run) {\
mark_time = getrusage_time() - mark_time;\
if (mark_time < 0) mark_time = 0;\
objspace->profile.record[objspace->profile.count].gc_mark_time = mark_time;\
}\
} while(0)
#define GC_PROF_SWEEP_TIMER_START do {\
if (objspace->profile.run) {\
sweep_time = getrusage_time();\
}\
} while(0)
#define GC_PROF_SWEEP_TIMER_STOP do {\
if (objspace->profile.run) {\
sweep_time = getrusage_time() - sweep_time;\
if (sweep_time < 0) sweep_time = 0;\
objspace->profile.record[count].gc_sweep_time = sweep_time;\
}\
} while(0)
#define GC_PROF_SET_MALLOC_INFO do {\
if (objspace->profile.run) {\
gc_profile_record *record = &objspace->profile.record[objspace->profile.count];\
record->allocate_increase = malloc_increase;\
record->allocate_limit = malloc_limit; \
}\
} while(0)
#define GC_PROF_SET_HEAP_INFO(record) do {\
live = objspace->heap.live_num;\
total = heaps_used * HEAP_OBJ_LIMIT;\
(record).heap_use_slots = heaps_used;\
(record).heap_live_objects = live;\
(record).heap_free_objects = total - live;\
(record).heap_total_objects = total;\
(record).have_finalize = deferred_final_list ? Qtrue : Qfalse;\
(record).heap_use_size = live * sizeof(RVALUE);\
(record).heap_total_size = total * sizeof(RVALUE);\
} while(0)
#define GC_PROF_INC_LIVE_NUM objspace->heap.live_num++
#define GC_PROF_DEC_LIVE_NUM objspace->heap.live_num--
#else
#define INIT_GC_PROF_PARAMS double gc_time = 0;\
size_t count = objspace->profile.count, total = 0, live = 0
#define GC_PROF_MARK_TIMER_START
#define GC_PROF_MARK_TIMER_STOP
#define GC_PROF_SWEEP_TIMER_START
#define GC_PROF_SWEEP_TIMER_STOP
#define GC_PROF_SET_MALLOC_INFO
#define GC_PROF_SET_HEAP_INFO(record) do {\
live = objspace->heap.live_num;\
total = heaps_used * HEAP_OBJ_LIMIT;\
(record).heap_total_objects = total;\
(record).heap_use_size = live * sizeof(RVALUE);\
(record).heap_total_size = total * sizeof(RVALUE);\
} while(0)
#define GC_PROF_INC_LIVE_NUM
#define GC_PROF_DEC_LIVE_NUM
#endif
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
#endif
typedef struct RVALUE {
union {
struct {
VALUE flags; /* always 0 for freed obj */
struct RVALUE *next;
} free;
struct RBasic basic;
struct RObject object;
struct RClass klass;
struct RFloat flonum;
struct RString string;
struct RArray array;
struct RRegexp regexp;
struct RHash hash;
struct RData data;
struct RTypedData typeddata;
struct RStruct rstruct;
struct RBignum bignum;
struct RFile file;
struct RNode node;
struct RMatch match;
struct RRational rational;
struct RComplex complex;
} as;
#ifdef GC_DEBUG
const char *file;
int line;
#endif
} RVALUE;
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
#pragma pack(pop)
#endif
struct heaps_slot {
void *membase;
RVALUE *slot;
size_t limit;
uintptr_t *bits;
RVALUE *freelist;
struct heaps_slot *next;
struct heaps_slot *prev;
struct heaps_slot *free_next;
};
struct heaps_header {
struct heaps_slot *base;
uintptr_t *bits;
};
struct sorted_heaps_slot {
RVALUE *start;
RVALUE *end;
struct heaps_slot *slot;
};
struct heaps_free_bitmap {
struct heaps_free_bitmap *next;
};
struct gc_list {
VALUE *varptr;
struct gc_list *next;
};
#ifndef CALC_EXACT_MALLOC_SIZE
#define CALC_EXACT_MALLOC_SIZE 0
#endif
typedef struct rb_objspace {
struct {
size_t limit;
size_t increase;
#if CALC_EXACT_MALLOC_SIZE
size_t allocated_size;
size_t allocations;
#endif
} malloc_params;
struct {
size_t increment;
struct heaps_slot *ptr;
struct heaps_slot *sweep_slots;
struct heaps_slot *free_slots;
struct sorted_heaps_slot *sorted;
size_t length;
size_t used;
struct heaps_free_bitmap *free_bitmap;
RVALUE *range[2];
RVALUE *freed;
size_t live_num;
size_t free_num;
size_t free_min;
size_t final_num;
size_t do_heap_free;
} heap;
struct {
int dont_gc;
int dont_lazy_sweep;
int during_gc;
rb_atomic_t finalizing;
} flags;
struct {
st_table *table;
RVALUE *deferred;
} final;
struct {
VALUE buffer[MARK_STACK_MAX];
VALUE *ptr;
int overflow;
} markstack;
struct {
int run;
gc_profile_record *record;
size_t count;
size_t size;
double invoke_time;
} profile;
struct gc_list *global_list;
size_t count;
int gc_stress;
} rb_objspace_t;
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
#define rb_objspace (*GET_VM()->objspace)
#define ruby_initial_gc_stress initial_params.gc_stress
int *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
#else
static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT}, {HEAP_MIN_SLOTS}};
int *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress;
#endif
#define malloc_limit objspace->malloc_params.limit
#define malloc_increase objspace->malloc_params.increase
#define heaps objspace->heap.ptr
#define heaps_length objspace->heap.length
#define heaps_used objspace->heap.used
#define lomem objspace->heap.range[0]
#define himem objspace->heap.range[1]
#define heaps_inc objspace->heap.increment
#define heaps_freed objspace->heap.freed
#define dont_gc objspace->flags.dont_gc
#define during_gc objspace->flags.during_gc
#define finalizing objspace->flags.finalizing
#define finalizer_table objspace->final.table
#define deferred_final_list objspace->final.deferred
#define mark_stack objspace->markstack.buffer
#define mark_stack_ptr objspace->markstack.ptr
#define mark_stack_overflow objspace->markstack.overflow
#define global_List objspace->global_list
#define ruby_gc_stress objspace->gc_stress
#define initial_malloc_limit initial_params.initial_malloc_limit
#define initial_heap_min_slots initial_params.initial_heap_min_slots
#define initial_free_min initial_params.initial_free_min
#define is_lazy_sweeping(objspace) ((objspace)->heap.sweep_slots != 0)
#define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG)
#define HEAP_HEADER(p) ((struct heaps_header *)(p))
static void rb_objspace_call_finalizer(rb_objspace_t *objspace);
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
rb_objspace_t *
rb_objspace_alloc(void)
{
rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t));
memset(objspace, 0, sizeof(*objspace));
malloc_limit = initial_malloc_limit;
ruby_gc_stress = ruby_initial_gc_stress;
return objspace;
}
#endif
static void initial_expand_heap(rb_objspace_t *objspace);
void
rb_gc_set_params(void)
{
char *malloc_limit_ptr, *heap_min_slots_ptr, *free_min_ptr;
if (rb_safe_level() > 0) return;
malloc_limit_ptr = getenv("RUBY_GC_MALLOC_LIMIT");
if (malloc_limit_ptr != NULL) {
int malloc_limit_i = atoi(malloc_limit_ptr);
if (RTEST(ruby_verbose))
fprintf(stderr, "malloc_limit=%d (%d)\n",
malloc_limit_i, initial_malloc_limit);
if (malloc_limit_i > 0) {
initial_malloc_limit = malloc_limit_i;
}
}
heap_min_slots_ptr = getenv("RUBY_HEAP_MIN_SLOTS");
if (heap_min_slots_ptr != NULL) {
int heap_min_slots_i = atoi(heap_min_slots_ptr);
if (RTEST(ruby_verbose))
fprintf(stderr, "heap_min_slots=%d (%d)\n",
heap_min_slots_i, initial_heap_min_slots);
if (heap_min_slots_i > 0) {
initial_heap_min_slots = heap_min_slots_i;
initial_expand_heap(&rb_objspace);
}
}
free_min_ptr = getenv("RUBY_FREE_MIN");
if (free_min_ptr != NULL) {
int free_min_i = atoi(free_min_ptr);
if (RTEST(ruby_verbose))
fprintf(stderr, "free_min=%d (%d)\n", free_min_i, initial_free_min);
if (free_min_i > 0) {
initial_free_min = free_min_i;
}
}
}
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
static void gc_sweep(rb_objspace_t *);
static void slot_sweep(rb_objspace_t *, struct heaps_slot *);
static void gc_clear_mark_on_sweep_slots(rb_objspace_t *);
static void aligned_free(void *);
void
rb_objspace_free(rb_objspace_t *objspace)
{
gc_clear_mark_on_sweep_slots(objspace);
gc_sweep(objspace);
if (objspace->profile.record) {
free(objspace->profile.record);
objspace->profile.record = 0;
}
if (global_List) {
struct gc_list *list, *next;
for (list = global_List; list; list = next) {
next = list->next;
xfree(list);
}
}
if (objspace->heap.free_bitmap) {
struct heaps_free_bitmap *list, *next;
for (list = objspace->heap.free_bitmap; list; list = next) {
next = list->next;
free(list);
}
}
if (objspace->heap.sorted) {
size_t i;
for (i = 0; i < heaps_used; ++i) {
free(objspace->heap.sorted[i].slot->bits);
aligned_free(objspace->heap.sorted[i].slot->membase);
free(objspace->heap.sorted[i].slot);
}
free(objspace->heap.sorted);
heaps_used = 0;
heaps = 0;
}
free(objspace);
}
#endif
#ifndef HEAP_ALIGN_LOG
/* default tiny heap size: 16KB */
#define HEAP_ALIGN_LOG 14
#endif
#define HEAP_ALIGN (1UL << HEAP_ALIGN_LOG)
#define HEAP_ALIGN_MASK (~(~0UL << HEAP_ALIGN_LOG))
#define REQUIRED_SIZE_BY_MALLOC (sizeof(size_t) * 5)
#define HEAP_SIZE (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC)
#define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod))
#define HEAP_OBJ_LIMIT (unsigned int)((HEAP_SIZE - sizeof(struct heaps_header))/sizeof(struct RVALUE))
#define HEAP_BITMAP_LIMIT CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), sizeof(uintptr_t)*8)
#define GET_HEAP_HEADER(x) (HEAP_HEADER(((uintptr_t)x) & ~(HEAP_ALIGN_MASK)))
#define GET_HEAP_SLOT(x) (GET_HEAP_HEADER(x)->base)
#define GET_HEAP_BITMAP(x) (GET_HEAP_HEADER(x)->bits)
#define NUM_IN_SLOT(p) (((uintptr_t)p & HEAP_ALIGN_MASK)/sizeof(RVALUE))
#define BITMAP_INDEX(p) (NUM_IN_SLOT(p) / (sizeof(uintptr_t) * 8))
#define BITMAP_OFFSET(p) (NUM_IN_SLOT(p) & ((sizeof(uintptr_t) * 8)-1))
#define MARKED_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] & ((uintptr_t)1 << BITMAP_OFFSET(p)))
#define MARK_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] = bits[BITMAP_INDEX(p)] | ((uintptr_t)1 << BITMAP_OFFSET(p)))
#define CLEAR_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] &= ~((uintptr_t)1 << BITMAP_OFFSET(p)))
extern st_table *rb_class_tbl;
int ruby_disable_gc_stress = 0;
static void run_final(rb_objspace_t *objspace, VALUE obj);
static int garbage_collect(rb_objspace_t *objspace);
static int gc_lazy_sweep(rb_objspace_t *objspace);
void
rb_global_variable(VALUE *var)
{
rb_gc_register_address(var);
}
static void *
ruby_memerror_body(void *dummy)
{
rb_memerror();
return 0;
}
static void
ruby_memerror(void)
{
if (ruby_thread_has_gvl_p()) {
rb_memerror();
}
else {
if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(ruby_memerror_body, 0);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
}
}
void
rb_memerror(void)
{
rb_thread_t *th = GET_THREAD();
if (!nomem_error ||
(rb_thread_raised_p(th, RAISED_NOMEMORY) && rb_safe_level() < 4)) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
rb_thread_raised_clear(th);
GET_THREAD()->errinfo = nomem_error;
JUMP_TAG(TAG_RAISE);
}
rb_thread_raised_set(th, RAISED_NOMEMORY);
rb_exc_raise(nomem_error);
}
/*
* call-seq:
* GC.stress -> true or false
*
* returns current status of GC stress mode.
*/
static VALUE
gc_stress_get(VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return ruby_gc_stress ? Qtrue : Qfalse;
}
/*
* call-seq:
* GC.stress = bool -> bool
*
* Updates the GC stress mode.
*
* When stress mode is enabled the GC is invoked at every GC opportunity:
* all memory and object allocations.
*
* Enabling stress mode makes Ruby very slow, it is only for debugging.
*/
static VALUE
gc_stress_set(VALUE self, VALUE flag)
{
rb_objspace_t *objspace = &rb_objspace;
rb_secure(2);
ruby_gc_stress = RTEST(flag);
return flag;
}
/*
* call-seq:
* GC::Profiler.enable? -> true or false
*
* The current status of GC profile mode.
*/
static VALUE
gc_profile_enable_get(VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
return objspace->profile.run;
}
/*
* call-seq:
* GC::Profiler.enable -> nil
*
* Starts the GC profiler.
*
*/
static VALUE
gc_profile_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.run = TRUE;
return Qnil;
}
/*
* call-seq:
* GC::Profiler.disable -> nil
*
* Stops the GC profiler.
*
*/
static VALUE
gc_profile_disable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->profile.run = FALSE;
return Qnil;
}
/*
* call-seq:
* GC::Profiler.clear -> nil
*
* Clears the GC profiler data.
*
*/
static VALUE
gc_profile_clear(void)
{
rb_objspace_t *objspace = &rb_objspace;
MEMZERO(objspace->profile.record, gc_profile_record, objspace->profile.size);
objspace->profile.count = 0;
return Qnil;
}
static void *
negative_size_allocation_error_with_gvl(void *ptr)
{
rb_raise(rb_eNoMemError, "%s", (const char *)ptr);
return 0; /* should not be reached */
}
static void
negative_size_allocation_error(const char *msg)
{
if (ruby_thread_has_gvl_p()) {
rb_raise(rb_eNoMemError, "%s", msg);
}
else {
if (ruby_native_thread_p()) {
rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg);
}
else {
fprintf(stderr, "[FATAL] %s\n", msg);
exit(EXIT_FAILURE);
}
}
}
static void *
gc_with_gvl(void *ptr)
{
return (void *)(VALUE)garbage_collect((rb_objspace_t *)ptr);
}
static int
garbage_collect_with_gvl(rb_objspace_t *objspace)
{
if (dont_gc) return TRUE;
if (ruby_thread_has_gvl_p()) {
return garbage_collect(objspace);
}
else {
if (ruby_native_thread_p()) {
return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)objspace);
}
else {
/* no ruby thread */
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
}
}
static void vm_xfree(rb_objspace_t *objspace, void *ptr);
static inline size_t
vm_malloc_prepare(rb_objspace_t *objspace, size_t size)
{
if ((ssize_t)size < 0) {
negative_size_allocation_error("negative allocation size (or too big)");
}
if (size == 0) size = 1;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
#endif
if ((ruby_gc_stress && !ruby_disable_gc_stress) ||
(malloc_increase+size) > malloc_limit) {
garbage_collect_with_gvl(objspace);
}
return size;
}
static inline void *
vm_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
{
malloc_increase += size;
#if CALC_EXACT_MALLOC_SIZE
objspace->malloc_params.allocated_size += size;
objspace->malloc_params.allocations++;
((size_t *)mem)[0] = size;
mem = (size_t *)mem + 1;
#endif
return mem;
}
#define TRY_WITH_GC(alloc) do { \
if (!(alloc) && \
(!garbage_collect_with_gvl(objspace) || \
!(alloc))) { \
ruby_memerror(); \
} \
} while (0)
static void *
vm_xmalloc(rb_objspace_t *objspace, size_t size)
{
void *mem;
size = vm_malloc_prepare(objspace, size);
TRY_WITH_GC(mem = malloc(size));
return vm_malloc_fixup(objspace, mem, size);
}
static void *
vm_xrealloc(rb_objspace_t *objspace, void *ptr, size_t size)
{
void *mem;
if ((ssize_t)size < 0) {
negative_size_allocation_error("negative re-allocation size");
}
if (!ptr) return vm_xmalloc(objspace, size);
if (size == 0) {
vm_xfree(objspace, ptr);
return 0;
}
if (ruby_gc_stress && !ruby_disable_gc_stress)
garbage_collect_with_gvl(objspace);
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
objspace->malloc_params.allocated_size -= size;
ptr = (size_t *)ptr - 1;
#endif
mem = realloc(ptr, size);
if (!mem) {
if (garbage_collect_with_gvl(objspace)) {
mem = realloc(ptr, size);
}
if (!mem) {
ruby_memerror();
}
}
malloc_increase += size;
#if CALC_EXACT_MALLOC_SIZE
objspace->malloc_params.allocated_size += size;
((size_t *)mem)[0] = size;
mem = (size_t *)mem + 1;
#endif
return mem;
}
static void
vm_xfree(rb_objspace_t *objspace, void *ptr)
{
#if CALC_EXACT_MALLOC_SIZE
size_t size;
ptr = ((size_t *)ptr) - 1;
size = ((size_t*)ptr)[0];
if (size) {
objspace->malloc_params.allocated_size -= size;
objspace->malloc_params.allocations--;
}
#endif
free(ptr);
}
void *
ruby_xmalloc(size_t size)
{
return vm_xmalloc(&rb_objspace, size);
}
static inline size_t
xmalloc2_size(size_t n, size_t size)
{
size_t len = size * n;
if (n != 0 && size != len / n) {
rb_raise(rb_eArgError, "malloc: possible integer overflow");
}
return len;
}
void *
ruby_xmalloc2(size_t n, size_t size)
{
return vm_xmalloc(&rb_objspace, xmalloc2_size(n, size));
}
static void *
vm_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize)
{
void *mem;
size_t size;
size = xmalloc2_size(count, elsize);
size = vm_malloc_prepare(objspace, size);
TRY_WITH_GC(mem = calloc(1, size));
return vm_malloc_fixup(objspace, mem, size);
}
void *
ruby_xcalloc(size_t n, size_t size)
{
return vm_xcalloc(&rb_objspace, n, size);
}
void *
ruby_xrealloc(void *ptr, size_t size)
{
return vm_xrealloc(&rb_objspace, ptr, size);
}
void *
ruby_xrealloc2(void *ptr, size_t n, size_t size)
{
size_t len = size * n;
if (n != 0 && size != len / n) {
rb_raise(rb_eArgError, "realloc: possible integer overflow");
}
return ruby_xrealloc(ptr, len);
}
void
ruby_xfree(void *x)
{
if (x)
vm_xfree(&rb_objspace, x);
}
/* Mimic ruby_xmalloc, but need not rb_objspace.
* should return pointer suitable for ruby_xfree
*/
void *
ruby_mimmalloc(size_t size)
{
void *mem;
#if CALC_EXACT_MALLOC_SIZE
size += sizeof(size_t);
#endif
mem = malloc(size);
#if CALC_EXACT_MALLOC_SIZE
/* set 0 for consistency of allocated_size/allocations */
((size_t *)mem)[0] = 0;
mem = (size_t *)mem + 1;
#endif
return mem;
}
/*
* call-seq:
* GC.enable -> true or false
*
* Enables garbage collection, returning <code>true</code> if garbage
* collection was previously disabled.
*
* GC.disable #=> false
* GC.enable #=> true
* GC.enable #=> false
*
*/
VALUE
rb_gc_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
int old = dont_gc;
dont_gc = FALSE;
return old ? Qtrue : Qfalse;
}
/*
* call-seq:
* GC.disable -> true or false
*
* Disables garbage collection, returning <code>true</code> if garbage
* collection was already disabled.
*
* GC.disable #=> false
* GC.disable #=> true
*
*/
VALUE
rb_gc_disable(void)
{
rb_objspace_t *objspace = &rb_objspace;
int old = dont_gc;
dont_gc = TRUE;
return old ? Qtrue : Qfalse;
}
VALUE rb_mGC;
void
rb_gc_register_mark_object(VALUE obj)
{
VALUE ary = GET_THREAD()->vm->mark_object_ary;
rb_ary_push(ary, obj);
}
void
rb_gc_register_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp;
tmp = ALLOC(struct gc_list);
tmp->next = global_List;
tmp->varptr = addr;
global_List = tmp;
}
void
rb_gc_unregister_address(VALUE *addr)
{
rb_objspace_t *objspace = &rb_objspace;
struct gc_list *tmp = global_List;
if (tmp->varptr == addr) {
global_List = tmp->next;
xfree(tmp);
return;
}
while (tmp->next) {
if (tmp->next->varptr == addr) {
struct gc_list *t = tmp->next;
tmp->next = tmp->next->next;
xfree(t);
break;
}
tmp = tmp->next;
}
}
static void
allocate_sorted_heaps(rb_objspace_t *objspace, size_t next_heaps_length)
{
struct sorted_heaps_slot *p;
struct heaps_free_bitmap *bits;
size_t size, add, i;
size = next_heaps_length*sizeof(struct sorted_heaps_slot);
add = next_heaps_length - heaps_used;
if (heaps_used > 0) {
p = (struct sorted_heaps_slot *)realloc(objspace->heap.sorted, size);
if (p) objspace->heap.sorted = p;
}
else {
p = objspace->heap.sorted = (struct sorted_heaps_slot *)malloc(size);
}
if (p == 0) {
during_gc = 0;
rb_memerror();
}
for (i = 0; i < add; i++) {
bits = (struct heaps_free_bitmap *)malloc(HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
if (bits == 0) {
during_gc = 0;
rb_memerror();
return;
}
bits->next = objspace->heap.free_bitmap;
objspace->heap.free_bitmap = bits;
}
}
static void *
aligned_malloc(size_t alignment, size_t size)
{
void *res;
#if defined __MINGW32__
res = __mingw_aligned_malloc(size, alignment);
#elif defined _WIN32 && !defined __CYGWIN__
res = _aligned_malloc(size, alignment);
#elif defined(HAVE_POSIX_MEMALIGN)
if (posix_memalign(&res, alignment, size) == 0) {
return res;
} else {
return NULL;
}
#elif defined(HAVE_MEMALIGN)
res = memalign(alignment, size);
#else
#error no memalign function
#endif
return res;
}
static void
aligned_free(void *ptr)
{
#if defined __MINGW32__
__mingw_aligned_free(ptr);
#elif defined _WIN32 && !defined __CYGWIN__
_aligned_free(ptr);
#else
free(ptr);
#endif
}
static void
link_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
{
slot->free_next = objspace->heap.free_slots;
objspace->heap.free_slots = slot;
}
static void
unlink_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
{
objspace->heap.free_slots = slot->free_next;
slot->free_next = NULL;
}
static void
assign_heap_slot(rb_objspace_t *objspace)
{
RVALUE *p, *pend, *membase;
struct heaps_slot *slot;
size_t hi, lo, mid;
size_t objs;
objs = HEAP_OBJ_LIMIT;
p = (RVALUE*)aligned_malloc(HEAP_ALIGN, HEAP_SIZE);
if (p == 0) {
during_gc = 0;
rb_memerror();
}
slot = (struct heaps_slot *)malloc(sizeof(struct heaps_slot));
if (slot == 0) {
aligned_free(p);
during_gc = 0;
rb_memerror();
}
MEMZERO((void*)slot, struct heaps_slot, 1);
slot->next = heaps;
if (heaps) heaps->prev = slot;
heaps = slot;
membase = p;
p = (RVALUE*)((VALUE)p + sizeof(struct heaps_header));
if ((VALUE)p % sizeof(RVALUE) != 0) {
p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE)));
objs = (HEAP_SIZE - (size_t)((VALUE)p - (VALUE)membase))/sizeof(RVALUE);
}
lo = 0;
hi = heaps_used;
while (lo < hi) {
register RVALUE *mid_membase;
mid = (lo + hi) / 2;
mid_membase = objspace->heap.sorted[mid].slot->membase;
if (mid_membase < membase) {
lo = mid + 1;
}
else if (mid_membase > membase) {
hi = mid;
}
else {
rb_bug("same heap slot is allocated: %p at %"PRIuVALUE, (void *)membase, (VALUE)mid);
}
}
if (hi < heaps_used) {
MEMMOVE(&objspace->heap.sorted[hi+1], &objspace->heap.sorted[hi], struct sorted_heaps_slot, heaps_used - hi);
}
objspace->heap.sorted[hi].slot = slot;
objspace->heap.sorted[hi].start = p;
objspace->heap.sorted[hi].end = (p + objs);
heaps->membase = membase;
heaps->slot = p;
heaps->limit = objs;
assert(objspace->heap.free_bitmap != NULL);
heaps->bits = (uintptr_t *)objspace->heap.free_bitmap;
objspace->heap.free_bitmap = objspace->heap.free_bitmap->next;
HEAP_HEADER(membase)->base = heaps;
HEAP_HEADER(membase)->bits = heaps->bits;
memset(heaps->bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
objspace->heap.free_num += objs;
pend = p + objs;
if (lomem == 0 || lomem > p) lomem = p;
if (himem < pend) himem = pend;
heaps_used++;
while (p < pend) {
p->as.free.flags = 0;
p->as.free.next = heaps->freelist;
heaps->freelist = p;
p++;
}
link_free_heap_slot(objspace, heaps);
}
static void
add_heap_slots(rb_objspace_t *objspace, size_t add)
{
size_t i;
size_t next_heaps_length;
next_heaps_length = heaps_used + add;
if (next_heaps_length > heaps_length) {
allocate_sorted_heaps(objspace, next_heaps_length);
heaps_length = next_heaps_length;
}
for (i = 0; i < add; i++) {
assign_heap_slot(objspace);
}
heaps_inc = 0;
}
static void
init_heap(rb_objspace_t *objspace)
{
add_heap_slots(objspace, HEAP_MIN_SLOTS / HEAP_OBJ_LIMIT);
#ifdef USE_SIGALTSTACK
{
/* altstack of another threads are allocated in another place */
rb_thread_t *th = GET_THREAD();
void *tmp = th->altstack;
th->altstack = malloc(ALT_STACK_SIZE);
free(tmp); /* free previously allocated area */
}
#endif
objspace->profile.invoke_time = getrusage_time();
finalizer_table = st_init_numtable();
}
static void
initial_expand_heap(rb_objspace_t *objspace)
{
size_t min_size = initial_heap_min_slots / HEAP_OBJ_LIMIT;
if (min_size > heaps_used) {
add_heap_slots(objspace, min_size - heaps_used);
}
}
static void
set_heaps_increment(rb_objspace_t *objspace)
{
size_t next_heaps_length = (size_t)(heaps_used * 1.8);
if (next_heaps_length == heaps_used) {
next_heaps_length++;
}
heaps_inc = next_heaps_length - heaps_used;
if (next_heaps_length > heaps_length) {
allocate_sorted_heaps(objspace, next_heaps_length);
heaps_length = next_heaps_length;
}
}
static int
heaps_increment(rb_objspace_t *objspace)
{
if (heaps_inc > 0) {
assign_heap_slot(objspace);
heaps_inc--;
return TRUE;
}
return FALSE;
}
int
rb_during_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
return during_gc;
}
#define RANY(o) ((RVALUE*)(o))
#define has_free_object (objspace->heap.free_slots && objspace->heap.free_slots->freelist)
VALUE
rb_newobj(void)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE obj;
if (UNLIKELY(during_gc)) {
dont_gc = 1;
during_gc = 0;
rb_bug("object allocation during garbage collection phase");
}
if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) {
if (!garbage_collect(objspace)) {
during_gc = 0;
rb_memerror();
}
}
if (UNLIKELY(!has_free_object)) {
if (!gc_lazy_sweep(objspace)) {
during_gc = 0;
rb_memerror();
}
}
obj = (VALUE)objspace->heap.free_slots->freelist;
objspace->heap.free_slots->freelist = RANY(obj)->as.free.next;
if (objspace->heap.free_slots->freelist == NULL) {
unlink_free_heap_slot(objspace, objspace->heap.free_slots);
}
MEMZERO((void*)obj, RVALUE, 1);
#ifdef GC_DEBUG
RANY(obj)->file = rb_sourcefile();
RANY(obj)->line = rb_sourceline();
#endif
GC_PROF_INC_LIVE_NUM;
return obj;
}
NODE*
rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
{
NODE *n = (NODE*)rb_newobj();
n->flags |= T_NODE;
nd_set_type(n, type);
n->u1.value = a0;
n->u2.value = a1;
n->u3.value = a2;
return n;
}
VALUE
rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
{
NEWOBJ(data, struct RData);
if (klass) Check_Type(klass, T_CLASS);
OBJSETUP(data, klass, T_DATA);
data->data = datap;
data->dfree = dfree;
data->dmark = dmark;
return (VALUE)data;
}
VALUE
rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type)
{
NEWOBJ(data, struct RTypedData);
if (klass) Check_Type(klass, T_CLASS);
OBJSETUP(data, klass, T_DATA);
data->data = datap;
data->typed_flag = 1;
data->type = type;
return (VALUE)data;
}
size_t
rb_objspace_data_type_memsize(VALUE obj)
{
if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) {
return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj));
}
else {
return 0;
}
}
const char *
rb_objspace_data_type_name(VALUE obj)
{
if (RTYPEDDATA_P(obj)) {
return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
}
else {
return 0;
}
}
#ifdef __ia64
#define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
#else
#define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
#endif
#define STACK_START (th->machine_stack_start)
#define STACK_END (th->machine_stack_end)
#define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
#if STACK_GROW_DIRECTION < 0
# define STACK_LENGTH (size_t)(STACK_START - STACK_END)
#elif STACK_GROW_DIRECTION > 0
# define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1)
#else
# define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
: (size_t)(STACK_END - STACK_START + 1))
#endif
#if !STACK_GROW_DIRECTION
int ruby_stack_grow_direction;
int
ruby_get_stack_grow_direction(volatile VALUE *addr)
{
VALUE *end;
SET_MACHINE_STACK_END(&end);
if (end > addr) return ruby_stack_grow_direction = 1;
return ruby_stack_grow_direction = -1;
}
#endif
#define GC_LEVEL_MAX 250
#define STACKFRAME_FOR_GC_MARK (GC_LEVEL_MAX * GC_MARK_STACKFRAME_WORD)
size_t
ruby_stack_length(VALUE **p)
{
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
return STACK_LENGTH;
}
static int
stack_check(int water_mark)
{
int ret;
rb_thread_t *th = GET_THREAD();
SET_STACK_END;
ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark;
#ifdef __ia64
if (!ret) {
ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start >
th->machine_register_stack_maxsize/sizeof(VALUE) - water_mark;
}
#endif
return ret;
}
#define STACKFRAME_FOR_CALL_CFUNC 512
int
ruby_stack_check(void)
{
#if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)
return 0;
#else
return stack_check(STACKFRAME_FOR_CALL_CFUNC);
#endif
}
static void
init_mark_stack(rb_objspace_t *objspace)
{
mark_stack_overflow = 0;
mark_stack_ptr = mark_stack;
}
#define MARK_STACK_EMPTY (mark_stack_ptr == mark_stack)
static void gc_mark(rb_objspace_t *objspace, VALUE ptr, int lev);
static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr, int lev);
static void
gc_mark_all(rb_objspace_t *objspace)
{
RVALUE *p, *pend;
size_t i;
init_mark_stack(objspace);
for (i = 0; i < heaps_used; i++) {
p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end;
while (p < pend) {
if (MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p) &&
p->as.basic.flags) {
gc_mark_children(objspace, (VALUE)p, 0);
}
p++;
}
}
}
static void
gc_mark_rest(rb_objspace_t *objspace)
{
VALUE tmp_arry[MARK_STACK_MAX];
VALUE *p;
p = (mark_stack_ptr - mark_stack) + tmp_arry;
MEMCPY(tmp_arry, mark_stack, VALUE, p - tmp_arry);
init_mark_stack(objspace);
while (p != tmp_arry) {
p--;
gc_mark_children(objspace, *p, 0);
}
}
static inline int
is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
{
register RVALUE *p = RANY(ptr);
register struct sorted_heaps_slot *heap;
register size_t hi, lo, mid;
if (p < lomem || p > himem) return FALSE;
if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE;
/* check if p looks like a pointer using bsearch*/
lo = 0;
hi = heaps_used;
while (lo < hi) {
mid = (lo + hi) / 2;
heap = &objspace->heap.sorted[mid];
if (heap->start <= p) {
if (p < heap->end)
return TRUE;
lo = mid + 1;
}
else {
hi = mid;
}
}
return FALSE;
}
static void
mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n)
{
VALUE v;
while (n--) {
v = *x;
VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v));
if (is_pointer_to_heap(objspace, (void *)v)) {
gc_mark(objspace, v, 0);
}
x++;
}
}
static void
gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end)
{
long n;
if (end <= start) return;
n = end - start;
mark_locations_array(objspace, start, n);
}
void
rb_gc_mark_locations(VALUE *start, VALUE *end)
{
gc_mark_locations(&rb_objspace, start, end);
}
#define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end))
struct mark_tbl_arg {
rb_objspace_t *objspace;
int lev;
};
static int
mark_entry(st_data_t key, st_data_t value, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, (VALUE)value, arg->lev);
return ST_CONTINUE;
}
static void
mark_tbl(rb_objspace_t *objspace, st_table *tbl, int lev)
{
struct mark_tbl_arg arg;
if (!tbl || tbl->num_entries == 0) return;
arg.objspace = objspace;
arg.lev = lev;
st_foreach(tbl, mark_entry, (st_data_t)&arg);
}
static int
mark_key(st_data_t key, st_data_t value, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, (VALUE)key, arg->lev);
return ST_CONTINUE;
}
static void
mark_set(rb_objspace_t *objspace, st_table *tbl, int lev)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
arg.lev = lev;
st_foreach(tbl, mark_key, (st_data_t)&arg);
}
void
rb_mark_set(st_table *tbl)
{
mark_set(&rb_objspace, tbl, 0);
}
static int
mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, (VALUE)key, arg->lev);
gc_mark(arg->objspace, (VALUE)value, arg->lev);
return ST_CONTINUE;
}
static void
mark_hash(rb_objspace_t *objspace, st_table *tbl, int lev)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
arg.lev = lev;
st_foreach(tbl, mark_keyvalue, (st_data_t)&arg);
}
void
rb_mark_hash(st_table *tbl)
{
mark_hash(&rb_objspace, tbl, 0);
}
static void
mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me, int lev)
{
const rb_method_definition_t *def = me->def;
gc_mark(objspace, me->klass, lev);
if (!def) return;
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
gc_mark(objspace, def->body.iseq->self, lev);
break;
case VM_METHOD_TYPE_BMETHOD:
gc_mark(objspace, def->body.proc, lev);
break;
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
gc_mark(objspace, def->body.attr.location, lev);
break;
default:
break; /* ignore */
}
}
void
rb_mark_method_entry(const rb_method_entry_t *me)
{
mark_method_entry(&rb_objspace, me, 0);
}
static int
mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
mark_method_entry(arg->objspace, me, arg->lev);
return ST_CONTINUE;
}
static void
mark_m_tbl(rb_objspace_t *objspace, st_table *tbl, int lev)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
arg.lev = lev;
st_foreach(tbl, mark_method_entry_i, (st_data_t)&arg);
}
static int
free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data)
{
rb_free_method_entry(me);
return ST_CONTINUE;
}
void
rb_free_m_table(st_table *tbl)
{
st_foreach(tbl, free_method_entry_i, 0);
st_free_table(tbl);
}
static int
mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data)
{
struct mark_tbl_arg *arg = (void*)data;
gc_mark(arg->objspace, ce->value, arg->lev);
gc_mark(arg->objspace, ce->file, arg->lev);
return ST_CONTINUE;
}
static void
mark_const_tbl(rb_objspace_t *objspace, st_table *tbl, int lev)
{
struct mark_tbl_arg arg;
if (!tbl) return;
arg.objspace = objspace;
arg.lev = lev;
st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg);
}
static int
free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data)
{
xfree(ce);
return ST_CONTINUE;
}
void
rb_free_const_table(st_table *tbl)
{
st_foreach(tbl, free_const_entry_i, 0);
st_free_table(tbl);
}
void
rb_mark_tbl(st_table *tbl)
{
mark_tbl(&rb_objspace, tbl, 0);
}
void
rb_gc_mark_maybe(VALUE obj)
{
if (is_pointer_to_heap(&rb_objspace, (void *)obj)) {
gc_mark(&rb_objspace, obj, 0);
}
}
static void
gc_mark(rb_objspace_t *objspace, VALUE ptr, int lev)
{
register RVALUE *obj;
register uintptr_t *bits;
obj = RANY(ptr);
if (rb_special_const_p(ptr)) return; /* special const not marked */
if (obj->as.basic.flags == 0) return; /* free cell */
bits = GET_HEAP_BITMAP(ptr);
if (MARKED_IN_BITMAP(bits, ptr)) return; /* already marked */
MARK_IN_BITMAP(bits, ptr);
objspace->heap.live_num++;
if (lev > GC_LEVEL_MAX || (lev == 0 && stack_check(STACKFRAME_FOR_GC_MARK))) {
if (!mark_stack_overflow) {
if (mark_stack_ptr - mark_stack < MARK_STACK_MAX) {
*mark_stack_ptr = ptr;
mark_stack_ptr++;
}
else {
mark_stack_overflow = 1;
}
}
return;
}
gc_mark_children(objspace, ptr, lev+1);
}
void
rb_gc_mark(VALUE ptr)
{
gc_mark(&rb_objspace, ptr, 0);
}
static void
gc_mark_children(rb_objspace_t *objspace, VALUE ptr, int lev)
{
register RVALUE *obj = RANY(ptr);
register uintptr_t *bits;
goto marking; /* skip */
again:
obj = RANY(ptr);
if (rb_special_const_p(ptr)) return; /* special const not marked */
if (obj->as.basic.flags == 0) return; /* free cell */
bits = GET_HEAP_BITMAP(ptr);
if (MARKED_IN_BITMAP(bits, ptr)) return; /* already marked */
MARK_IN_BITMAP(bits, ptr);
objspace->heap.live_num++;
marking:
if (FL_TEST(obj, FL_EXIVAR)) {
rb_mark_generic_ivar(ptr);
}
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
rb_bug("rb_gc_mark() called for broken object");
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_IF: /* 1,2,3 */
case NODE_FOR:
case NODE_ITER:
case NODE_WHEN:
case NODE_MASGN:
case NODE_RESCUE:
case NODE_RESBODY:
case NODE_CLASS:
case NODE_BLOCK_PASS:
gc_mark(objspace, (VALUE)obj->as.node.u2.node, lev);
/* fall through */
case NODE_BLOCK: /* 1,3 */
case NODE_OPTBLOCK:
case NODE_ARRAY:
case NODE_DSTR:
case NODE_DXSTR:
case NODE_DREGX:
case NODE_DREGX_ONCE:
case NODE_ENSURE:
case NODE_CALL:
case NODE_DEFS:
case NODE_OP_ASGN1:
gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
/* fall through */
case NODE_SUPER: /* 3 */
case NODE_FCALL:
case NODE_DEFN:
case NODE_ARGS_AUX:
ptr = (VALUE)obj->as.node.u3.node;
goto again;
case NODE_WHILE: /* 1,2 */
case NODE_UNTIL:
case NODE_AND:
case NODE_OR:
case NODE_CASE:
case NODE_SCLASS:
case NODE_DOT2:
case NODE_DOT3:
case NODE_FLIP2:
case NODE_FLIP3:
case NODE_MATCH2:
case NODE_MATCH3:
case NODE_OP_ASGN_OR:
case NODE_OP_ASGN_AND:
case NODE_MODULE:
case NODE_ALIAS:
case NODE_VALIAS:
case NODE_ARGSCAT:
gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
/* fall through */
case NODE_GASGN: /* 2 */
case NODE_LASGN:
case NODE_DASGN:
case NODE_DASGN_CURR:
case NODE_IASGN:
case NODE_IASGN2:
case NODE_CVASGN:
case NODE_COLON3:
case NODE_OPT_N:
case NODE_EVSTR:
case NODE_UNDEF:
case NODE_POSTEXE:
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_HASH: /* 1 */
case NODE_LIT:
case NODE_STR:
case NODE_XSTR:
case NODE_DEFINED:
case NODE_MATCH:
case NODE_RETURN:
case NODE_BREAK:
case NODE_NEXT:
case NODE_YIELD:
case NODE_COLON2:
case NODE_SPLAT:
case NODE_TO_ARY:
ptr = (VALUE)obj->as.node.u1.node;
goto again;
case NODE_SCOPE: /* 2,3 */
case NODE_CDECL:
case NODE_OPT_ARG:
gc_mark(objspace, (VALUE)obj->as.node.u3.node, lev);
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_ARGS: /* custom */
{
struct rb_args_info *args = obj->as.node.u3.args;
if (args) {
if (args->pre_init) gc_mark(objspace, (VALUE)args->pre_init, lev);
if (args->post_init) gc_mark(objspace, (VALUE)args->post_init, lev);
if (args->opt_args) gc_mark(objspace, (VALUE)args->opt_args, lev);
if (args->kw_args) gc_mark(objspace, (VALUE)args->kw_args, lev);
if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg, lev);
}
}
ptr = (VALUE)obj->as.node.u2.node;
goto again;
case NODE_ZARRAY: /* - */
case NODE_ZSUPER:
case NODE_VCALL:
case NODE_GVAR:
case NODE_LVAR:
case NODE_DVAR:
case NODE_IVAR:
case NODE_CVAR:
case NODE_NTH_REF:
case NODE_BACK_REF:
case NODE_REDO:
case NODE_RETRY:
case NODE_SELF:
case NODE_NIL:
case NODE_TRUE:
case NODE_FALSE:
case NODE_ERRINFO:
case NODE_BLOCK_ARG:
break;
case NODE_ALLOCA:
mark_locations_array(objspace,
(VALUE*)obj->as.node.u1.value,
obj->as.node.u3.cnt);
ptr = (VALUE)obj->as.node.u2.node;
goto again;
default: /* unlisted NODE */
if (is_pointer_to_heap(objspace, obj->as.node.u1.node)) {
gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev);
}
if (is_pointer_to_heap(objspace, obj->as.node.u2.node)) {
gc_mark(objspace, (VALUE)obj->as.node.u2.node, lev);
}
if (is_pointer_to_heap(objspace, obj->as.node.u3.node)) {
gc_mark(objspace, (VALUE)obj->as.node.u3.node, lev);
}
}
return; /* no need to mark class. */
}
gc_mark(objspace, obj->as.basic.klass, lev);
switch (BUILTIN_TYPE(obj)) {
case T_ICLASS:
case T_CLASS:
case T_MODULE:
mark_m_tbl(objspace, RCLASS_M_TBL(obj), lev);
if (!RCLASS_EXT(obj)) break;
mark_tbl(objspace, RCLASS_IV_TBL(obj), lev);
mark_const_tbl(objspace, RCLASS_CONST_TBL(obj), lev);
ptr = RCLASS_SUPER(obj);
goto again;
case T_ARRAY:
if (FL_TEST(obj, ELTS_SHARED)) {
ptr = obj->as.array.as.heap.aux.shared;
goto again;
}
else {
long i, len = RARRAY_LEN(obj);
VALUE *ptr = RARRAY_PTR(obj);
for (i=0; i < len; i++) {
gc_mark(objspace, *ptr++, lev);
}
}
break;
case T_HASH:
mark_hash(objspace, obj->as.hash.ntbl, lev);
ptr = obj->as.hash.ifnone;
goto again;
case T_STRING:
#define STR_ASSOC FL_USER3 /* copied from string.c */
if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) {
ptr = obj->as.string.as.heap.aux.shared;
goto again;
}
break;
case T_DATA:
if (RTYPEDDATA_P(obj)) {
RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark;
if (mark_func) (*mark_func)(DATA_PTR(obj));
}
else {
if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
}
break;
case T_OBJECT:
{
long i, len = ROBJECT_NUMIV(obj);
VALUE *ptr = ROBJECT_IVPTR(obj);
for (i = 0; i < len; i++) {
gc_mark(objspace, *ptr++, lev);
}
}
break;
case T_FILE:
if (obj->as.file.fptr) {
gc_mark(objspace, obj->as.file.fptr->pathv, lev);
gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing, lev);
gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat, lev);
gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts, lev);
gc_mark(objspace, obj->as.file.fptr->encs.ecopts, lev);
gc_mark(objspace, obj->as.file.fptr->write_lock, lev);
}
break;
case T_REGEXP:
gc_mark(objspace, obj->as.regexp.src, lev);
break;
case T_FLOAT:
case T_BIGNUM:
case T_ZOMBIE:
break;
case T_MATCH:
gc_mark(objspace, obj->as.match.regexp, lev);
if (obj->as.match.str) {
ptr = obj->as.match.str;
goto again;
}
break;
case T_RATIONAL:
gc_mark(objspace, obj->as.rational.num, lev);
gc_mark(objspace, obj->as.rational.den, lev);
break;
case T_COMPLEX:
gc_mark(objspace, obj->as.complex.real, lev);
gc_mark(objspace, obj->as.complex.imag, lev);
break;
case T_STRUCT:
{
long len = RSTRUCT_LEN(obj);
VALUE *ptr = RSTRUCT_PTR(obj);
while (len--) {
gc_mark(objspace, *ptr++, lev);
}
}
break;
default:
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
BUILTIN_TYPE(obj), (void *)obj,
is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object");
}
}
static int obj_free(rb_objspace_t *, VALUE);
static inline struct heaps_slot *
add_slot_local_freelist(rb_objspace_t *objspace, RVALUE *p)
{
struct heaps_slot *slot;
VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
p->as.free.flags = 0;
slot = GET_HEAP_SLOT(p);
p->as.free.next = slot->freelist;
slot->freelist = p;
return slot;
}
static void
finalize_list(rb_objspace_t *objspace, RVALUE *p)
{
while (p) {
RVALUE *tmp = p->as.free.next;
run_final(objspace, (VALUE)p);
if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */
add_slot_local_freelist(objspace, p);
if (!is_lazy_sweeping(objspace)) {
GC_PROF_DEC_LIVE_NUM;
}
}
else {
struct heaps_slot *slot = (struct heaps_slot *)(VALUE)RDATA(p)->dmark;
slot->limit--;
}
p = tmp;
}
}
static void
unlink_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot)
{
if (slot->prev)
slot->prev->next = slot->next;
if (slot->next)
slot->next->prev = slot->prev;
if (heaps == slot)
heaps = slot->next;
if (objspace->heap.sweep_slots == slot)
objspace->heap.sweep_slots = slot->next;
slot->prev = NULL;
slot->next = NULL;
}
static void
free_unused_heaps(rb_objspace_t *objspace)
{
size_t i, j;
RVALUE *last = 0;
for (i = j = 1; j < heaps_used; i++) {
if (objspace->heap.sorted[i].slot->limit == 0) {
struct heaps_slot* h = objspace->heap.sorted[i].slot;
((struct heaps_free_bitmap *)(h->bits))->next =
objspace->heap.free_bitmap;
objspace->heap.free_bitmap = (struct heaps_free_bitmap *)h->bits;
if (!last) {
last = objspace->heap.sorted[i].slot->membase;
}
else {
aligned_free(objspace->heap.sorted[i].slot->membase);
}
free(objspace->heap.sorted[i].slot);
heaps_used--;
}
else {
if (i != j) {
objspace->heap.sorted[j] = objspace->heap.sorted[i];
}
j++;
}
}
if (last) {
if (last < heaps_freed) {
aligned_free(heaps_freed);
heaps_freed = last;
}
else {
aligned_free(last);
}
}
}
static void
gc_clear_slot_bits(struct heaps_slot *slot)
{
memset(GET_HEAP_BITMAP(slot->slot), 0,
HEAP_BITMAP_LIMIT * sizeof(uintptr_t));
}
static void
slot_sweep(rb_objspace_t *objspace, struct heaps_slot *sweep_slot)
{
size_t free_num = 0, final_num = 0;
RVALUE *p, *pend;
RVALUE *final = deferred_final_list;
int deferred;
uintptr_t *bits;
p = sweep_slot->slot; pend = p + sweep_slot->limit;
bits = GET_HEAP_BITMAP(p);
while (p < pend) {
if ((!(MARKED_IN_BITMAP(bits, p))) && BUILTIN_TYPE(p) != T_ZOMBIE) {
if (p->as.basic.flags) {
if ((deferred = obj_free(objspace, (VALUE)p)) ||
(FL_TEST(p, FL_FINALIZE))) {
if (!deferred) {
p->as.free.flags = T_ZOMBIE;
RDATA(p)->dfree = 0;
}
p->as.free.next = deferred_final_list;
deferred_final_list = p;
assert(BUILTIN_TYPE(p) == T_ZOMBIE);
final_num++;
}
else {
VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
p->as.free.flags = 0;
p->as.free.next = sweep_slot->freelist;
sweep_slot->freelist = p;
free_num++;
}
}
else {
free_num++;
}
}
p++;
}
gc_clear_slot_bits(sweep_slot);
if (final_num + free_num == sweep_slot->limit &&
objspace->heap.free_num > objspace->heap.do_heap_free) {
RVALUE *pp;
for (pp = deferred_final_list; pp != final; pp = pp->as.free.next) {
RDATA(pp)->dmark = (void (*)(void *))(VALUE)sweep_slot;
pp->as.free.flags |= FL_SINGLETON; /* freeing page mark */
}
sweep_slot->limit = final_num;
unlink_heap_slot(objspace, sweep_slot);
}
else {
if (free_num > 0) {
link_free_heap_slot(objspace, sweep_slot);
}
else {
sweep_slot->free_next = NULL;
}
objspace->heap.free_num += free_num;
}
objspace->heap.final_num += final_num;
if (deferred_final_list && !finalizing) {
rb_thread_t *th = GET_THREAD();
if (th) {
RUBY_VM_SET_FINALIZER_INTERRUPT(th);
}
}
}
static int
ready_to_gc(rb_objspace_t *objspace)
{
if (dont_gc || during_gc) {
if (!has_free_object) {
if (!heaps_increment(objspace)) {
set_heaps_increment(objspace);
heaps_increment(objspace);
}
}
return FALSE;
}
return TRUE;
}
static void
before_gc_sweep(rb_objspace_t *objspace)
{
objspace->heap.do_heap_free = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.65);
objspace->heap.free_min = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.2);
if (objspace->heap.free_min < initial_free_min) {
objspace->heap.do_heap_free = heaps_used * HEAP_OBJ_LIMIT;
objspace->heap.free_min = initial_free_min;
}
objspace->heap.sweep_slots = heaps;
objspace->heap.free_num = 0;
objspace->heap.free_slots = NULL;
/* sweep unlinked method entries */
if (GET_VM()->unlinked_method_entry_list) {
rb_sweep_method_entry(GET_VM());
}
}
static void
after_gc_sweep(rb_objspace_t *objspace)
{
GC_PROF_SET_MALLOC_INFO;
if (objspace->heap.free_num < objspace->heap.free_min) {
set_heaps_increment(objspace);
heaps_increment(objspace);
}
if (malloc_increase > malloc_limit) {
malloc_limit += (size_t)((malloc_increase - malloc_limit) * (double)objspace->heap.live_num / (heaps_used * HEAP_OBJ_LIMIT));
if (malloc_limit < initial_malloc_limit) malloc_limit = initial_malloc_limit;
}
malloc_increase = 0;
free_unused_heaps(objspace);
}
static int
lazy_sweep(rb_objspace_t *objspace)
{
struct heaps_slot *next;
heaps_increment(objspace);
while (objspace->heap.sweep_slots) {
next = objspace->heap.sweep_slots->next;
slot_sweep(objspace, objspace->heap.sweep_slots);
objspace->heap.sweep_slots = next;
if (has_free_object) {
during_gc = 0;
return TRUE;
}
}
return FALSE;
}
static void
rest_sweep(rb_objspace_t *objspace)
{
if (objspace->heap.sweep_slots) {
while (objspace->heap.sweep_slots) {
lazy_sweep(objspace);
}
after_gc_sweep(objspace);
}
}
static void gc_marks(rb_objspace_t *objspace);
static int
gc_lazy_sweep(rb_objspace_t *objspace)
{
int res;
INIT_GC_PROF_PARAMS;
if (objspace->flags.dont_lazy_sweep)
return garbage_collect(objspace);
if (!ready_to_gc(objspace)) return TRUE;
during_gc++;
GC_PROF_TIMER_START;
GC_PROF_SWEEP_TIMER_START;
if (objspace->heap.sweep_slots) {
res = lazy_sweep(objspace);
if (res) {
GC_PROF_SWEEP_TIMER_STOP;
GC_PROF_SET_MALLOC_INFO;
GC_PROF_TIMER_STOP(Qfalse);
return res;
}
after_gc_sweep(objspace);
}
else {
if (heaps_increment(objspace)) {
during_gc = 0;
return TRUE;
}
}
gc_marks(objspace);
before_gc_sweep(objspace);
if (objspace->heap.free_min > (heaps_used * HEAP_OBJ_LIMIT - objspace->heap.live_num)) {
set_heaps_increment(objspace);
}
GC_PROF_SWEEP_TIMER_START;
if (!(res = lazy_sweep(objspace))) {
after_gc_sweep(objspace);
if (has_free_object) {
res = TRUE;
during_gc = 0;
}
}
GC_PROF_SWEEP_TIMER_STOP;
GC_PROF_TIMER_STOP(Qtrue);
return res;
}
static void
gc_sweep(rb_objspace_t *objspace)
{
struct heaps_slot *next;
before_gc_sweep(objspace);
while (objspace->heap.sweep_slots) {
next = objspace->heap.sweep_slots->next;
slot_sweep(objspace, objspace->heap.sweep_slots);
objspace->heap.sweep_slots = next;
}
after_gc_sweep(objspace);
during_gc = 0;
}
void
rb_gc_force_recycle(VALUE p)
{
rb_objspace_t *objspace = &rb_objspace;
struct heaps_slot *slot;
if (MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p)) {
add_slot_local_freelist(objspace, (RVALUE *)p);
}
else {
GC_PROF_DEC_LIVE_NUM;
slot = add_slot_local_freelist(objspace, (RVALUE *)p);
if (slot->free_next == NULL) {
link_free_heap_slot(objspace, slot);
}
}
}
static inline void
make_deferred(RVALUE *p)
{
p->as.basic.flags = (p->as.basic.flags & ~T_MASK) | T_ZOMBIE;
}
static inline void
make_io_deferred(RVALUE *p)
{
rb_io_t *fptr = p->as.file.fptr;
make_deferred(p);
p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize;
p->as.data.data = fptr;
}
static int
obj_free(rb_objspace_t *objspace, VALUE obj)
{
switch (BUILTIN_TYPE(obj)) {
case T_NIL:
case T_FIXNUM:
case T_TRUE:
case T_FALSE:
rb_bug("obj_free() called for broken object");
break;
}
if (FL_TEST(obj, FL_EXIVAR)) {
rb_free_generic_ivar((VALUE)obj);
FL_UNSET(obj, FL_EXIVAR);
}
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
RANY(obj)->as.object.as.heap.ivptr) {
xfree(RANY(obj)->as.object.as.heap.ivptr);
}
break;
case T_MODULE:
case T_CLASS:
rb_clear_cache_by_class((VALUE)obj);
rb_free_m_table(RCLASS_M_TBL(obj));
if (RCLASS_IV_TBL(obj)) {
st_free_table(RCLASS_IV_TBL(obj));
}
if (RCLASS_CONST_TBL(obj)) {
rb_free_const_table(RCLASS_CONST_TBL(obj));
}
if (RCLASS_IV_INDEX_TBL(obj)) {
st_free_table(RCLASS_IV_INDEX_TBL(obj));
}
xfree(RANY(obj)->as.klass.ptr);
break;
case T_STRING:
rb_str_free(obj);
break;
case T_ARRAY:
rb_ary_free(obj);
break;
case T_HASH:
if (RANY(obj)->as.hash.ntbl) {
st_free_table(RANY(obj)->as.hash.ntbl);
}
break;
case T_REGEXP:
if (RANY(obj)->as.regexp.ptr) {
onig_free(RANY(obj)->as.regexp.ptr);
}
break;
case T_DATA:
if (DATA_PTR(obj)) {
if (RTYPEDDATA_P(obj)) {
RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree;
}
if (RANY(obj)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
xfree(DATA_PTR(obj));
}
else if (RANY(obj)->as.data.dfree) {
make_deferred(RANY(obj));
return 1;
}
}
break;
case T_MATCH:
if (RANY(obj)->as.match.rmatch) {
struct rmatch *rm = RANY(obj)->as.match.rmatch;
onig_region_free(&rm->regs, 0);
if (rm->char_offset)
xfree(rm->char_offset);
xfree(rm);
}
break;
case T_FILE:
if (RANY(obj)->as.file.fptr) {
make_io_deferred(RANY(obj));
return 1;
}
break;
case T_RATIONAL:
case T_COMPLEX:
break;
case T_ICLASS:
/* iClass shares table with the module */
xfree(RANY(obj)->as.klass.ptr);
break;
case T_FLOAT:
break;
case T_BIGNUM:
if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) {
xfree(RBIGNUM_DIGITS(obj));
}
break;
case T_NODE:
switch (nd_type(obj)) {
case NODE_SCOPE:
if (RANY(obj)->as.node.u1.tbl) {
xfree(RANY(obj)->as.node.u1.tbl);
}
break;
case NODE_ARGS:
if (RANY(obj)->as.node.u3.args) {
xfree(RANY(obj)->as.node.u3.args);
}
break;
case NODE_ALLOCA:
xfree(RANY(obj)->as.node.u1.node);
break;
}
break; /* no need to free iv_tbl */
case T_STRUCT:
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
RANY(obj)->as.rstruct.as.heap.ptr) {
xfree(RANY(obj)->as.rstruct.as.heap.ptr);
}
break;
default:
rb_bug("gc_sweep(): unknown data type 0x%x(%p)",
BUILTIN_TYPE(obj), (void*)obj);
}
return 0;
}
#define GC_NOTIFY 0
#if STACK_GROW_DIRECTION < 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
#elif STACK_GROW_DIRECTION > 0
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
#else
#define GET_STACK_BOUNDS(start, end, appendix) \
((STACK_END < STACK_START) ? \
((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
#endif
#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
static void
mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th)
{
union {
rb_jmp_buf j;
VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)];
} save_regs_gc_mark;
VALUE *stack_start, *stack_end;
FLUSH_REGISTER_WINDOWS;
/* This assumes that all registers are saved into the jmp_buf (and stack) */
rb_setjmp(save_regs_gc_mark.j);
SET_STACK_END;
GET_STACK_BOUNDS(stack_start, stack_end, 1);
mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v));
rb_gc_mark_locations(stack_start, stack_end);
#ifdef __ia64
rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
#endif
#if defined(__mc68000__)
mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2),
(STACK_START - STACK_END));
#endif
}
static void
gc_clear_mark_on_sweep_slots(rb_objspace_t *objspace)
{
struct heaps_slot *scan;
if (objspace->heap.sweep_slots) {
while (heaps_increment(objspace));
while (objspace->heap.sweep_slots) {
scan = objspace->heap.sweep_slots;
gc_clear_slot_bits(scan);
objspace->heap.sweep_slots = objspace->heap.sweep_slots->next;
}
}
}
static void
gc_marks(rb_objspace_t *objspace)
{
struct gc_list *list;
rb_thread_t *th = GET_THREAD();
GC_PROF_MARK_TIMER_START;
objspace->heap.live_num = 0;
objspace->count++;
gc_clear_mark_on_sweep_slots(objspace);
SET_STACK_END;
init_mark_stack(objspace);
th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm);
mark_tbl(objspace, finalizer_table, 0);
mark_current_machine_context(objspace, th);
rb_gc_mark_symbols();
rb_gc_mark_encodings();
/* mark protected global variables */
for (list = global_List; list; list = list->next) {
rb_gc_mark_maybe(*list->varptr);
}
rb_mark_end_proc();
rb_gc_mark_global_tbl();
mark_tbl(objspace, rb_class_tbl, 0);
/* mark generic instance variables for special constants */
rb_mark_generic_ivar_tbl();
rb_gc_mark_parser();
rb_gc_mark_unlinked_live_method_entries(th->vm);
/* gc_mark objects whose marking are not completed*/
while (!MARK_STACK_EMPTY) {
if (mark_stack_overflow) {
gc_mark_all(objspace);
}
else {
gc_mark_rest(objspace);
}
}
GC_PROF_MARK_TIMER_STOP;
}
static int
garbage_collect(rb_objspace_t *objspace)
{
INIT_GC_PROF_PARAMS;
if (GC_NOTIFY) printf("start garbage_collect()\n");
if (!heaps) {
return FALSE;
}
if (!ready_to_gc(objspace)) {
return TRUE;
}
GC_PROF_TIMER_START;
during_gc++;
gc_marks(objspace);
GC_PROF_SWEEP_TIMER_START;
gc_sweep(objspace);
GC_PROF_SWEEP_TIMER_STOP;
GC_PROF_TIMER_STOP(Qtrue);
if (GC_NOTIFY) printf("end garbage_collect()\n");
return TRUE;
}
int
rb_garbage_collect(void)
{
return garbage_collect(&rb_objspace);
}
void
rb_gc_mark_machine_stack(rb_thread_t *th)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE *stack_start, *stack_end;
GET_STACK_BOUNDS(stack_start, stack_end, 0);
rb_gc_mark_locations(stack_start, stack_end);
#ifdef __ia64
rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
#endif
}
/*
* call-seq:
* GC.start -> nil
* gc.garbage_collect -> nil
* ObjectSpace.garbage_collect -> nil
*
* Initiates garbage collection, unless manually disabled.
*
*/
VALUE
rb_gc_start(void)
{
rb_gc();
return Qnil;
}
#undef Init_stack
void
Init_stack(volatile VALUE *addr)
{
ruby_init_stack(addr);
}
/*
* Document-class: ObjectSpace
*
* The <code>ObjectSpace</code> module contains a number of routines
* that interact with the garbage collection facility and allow you to
* traverse all living objects with an iterator.
*
* <code>ObjectSpace</code> also provides support for object
* finalizers, procs that will be called when a specific object is
* about to be destroyed by garbage collection.
*
* include ObjectSpace
*
*
* a = "A"
* b = "B"
* c = "C"
*
*
* define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
* define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })
* define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })
*
* <em>produces:</em>
*
* Finalizer three on 537763470
* Finalizer one on 537763480
* Finalizer two on 537763480
*
*/
void
Init_heap(void)
{
init_heap(&rb_objspace);
}
static VALUE
lazy_sweep_enable(void)
{
rb_objspace_t *objspace = &rb_objspace;
objspace->flags.dont_lazy_sweep = FALSE;
return Qnil;
}
typedef int each_obj_callback(void *, void *, size_t, void *);
struct each_obj_args {
each_obj_callback *callback;
void *data;
};
static VALUE
objspace_each_objects(VALUE arg)
{
size_t i;
RVALUE *membase = 0;
RVALUE *pstart, *pend;
rb_objspace_t *objspace = &rb_objspace;
struct each_obj_args *args = (struct each_obj_args *)arg;
volatile VALUE v;
i = 0;
while (i < heaps_used) {
while (0 < i && (uintptr_t)membase < (uintptr_t)objspace->heap.sorted[i-1].slot->membase)
i--;
while (i < heaps_used && (uintptr_t)objspace->heap.sorted[i].slot->membase <= (uintptr_t)membase)
i++;
if (heaps_used <= i)
break;
membase = objspace->heap.sorted[i].slot->membase;
pstart = objspace->heap.sorted[i].slot->slot;
pend = pstart + objspace->heap.sorted[i].slot->limit;
for (; pstart != pend; pstart++) {
if (pstart->as.basic.flags) {
v = (VALUE)pstart; /* acquire to save this object */
break;
}
}
if (pstart != pend) {
if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) {
break;
}
}
}
RB_GC_GUARD(v);
return Qnil;
}
/*
* rb_objspace_each_objects() is special C API to walk through
* Ruby object space. This C API is too difficult to use it.
* To be frank, you should not use it. Or you need to read the
* source code of this function and understand what this function does.
*
* 'callback' will be called several times (the number of heap slot,
* at current implementation) with:
* vstart: a pointer to the first living object of the heap_slot.
* vend: a pointer to next to the valid heap_slot area.
* stride: a distance to next VALUE.
*
* If callback() returns non-zero, the iteration will be stopped.
*
* This is a sample callback code to iterate liveness objects:
*
* int
* sample_callback(void *vstart, void *vend, int stride, void *data) {
* VALUE v = (VALUE)vstart;
* for (; v != (VALUE)vend; v += stride) {
* if (RBASIC(v)->flags) { // liveness check
* // do something with live object 'v'
* }
* return 0; // continue to iteration
* }
*
* Note: 'vstart' is not a top of heap_slot. This point the first
* living object to grasp at least one object to avoid GC issue.
* This means that you can not walk through all Ruby object slot
* including freed object slot.
*
* Note: On this implementation, 'stride' is same as sizeof(RVALUE).
* However, there are possibilities to pass variable values with
* 'stride' with some reasons. You must use stride instead of
* use some constant value in the iteration.
*/
void
rb_objspace_each_objects(each_obj_callback *callback, void *data)
{
struct each_obj_args args;
rb_objspace_t *objspace = &rb_objspace;
rest_sweep(objspace);
objspace->flags.dont_lazy_sweep = TRUE;
args.callback = callback;
args.data = data;
rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil);
}
struct os_each_struct {
size_t num;
VALUE of;
};
static int
os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
{
struct os_each_struct *oes = (struct os_each_struct *)data;
RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend;
volatile VALUE v;
for (; p != pend; p++) {
if (p->as.basic.flags) {
switch (BUILTIN_TYPE(p)) {
case T_NONE:
case T_ICLASS:
case T_NODE:
case T_ZOMBIE:
continue;
case T_CLASS:
if (FL_TEST(p, FL_SINGLETON))
continue;
default:
if (!p->as.basic.klass) continue;
v = (VALUE)p;
if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
rb_yield(v);
oes->num++;
}
}
}
}
return 0;
}
static VALUE
os_obj_of(VALUE of)
{
struct os_each_struct oes;
oes.num = 0;
oes.of = of;
rb_objspace_each_objects(os_obj_of_i, &oes);
return SIZET2NUM(oes.num);
}
/*
* call-seq:
* ObjectSpace.each_object([module]) {|obj| ... } -> fixnum
* ObjectSpace.each_object([module]) -> an_enumerator
*
* Calls the block once for each living, nonimmediate object in this
* Ruby process. If <i>module</i> is specified, calls the block
* for only those classes or modules that match (or are a subclass of)
* <i>module</i>. Returns the number of objects found. Immediate
* objects (<code>Fixnum</code>s, <code>Symbol</code>s
* <code>true</code>, <code>false</code>, and <code>nil</code>) are
* never returned. In the example below, <code>each_object</code>
* returns both the numbers we defined and several constants defined in
* the <code>Math</code> module.
*
* If no block is given, an enumerator is returned instead.
*
* a = 102.7
* b = 95 # Won't be returned
* c = 12345678987654321
* count = ObjectSpace.each_object(Numeric) {|x| p x }
* puts "Total count: #{count}"
*
* <em>produces:</em>
*
* 12345678987654321
* 102.7
* 2.71828182845905
* 3.14159265358979
* 2.22044604925031e-16
* 1.7976931348623157e+308
* 2.2250738585072e-308
* Total count: 7
*
*/
static VALUE
os_each_obj(int argc, VALUE *argv, VALUE os)
{
VALUE of;
rb_secure(4);
if (argc == 0) {
of = 0;
}
else {
rb_scan_args(argc, argv, "01", &of);
}
RETURN_ENUMERATOR(os, 1, &of);
return os_obj_of(of);
}
/*
* call-seq:
* ObjectSpace.undefine_finalizer(obj)
*
* Removes all finalizers for <i>obj</i>.
*
*/
static VALUE
undefine_final(VALUE os, VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
st_data_t data = obj;
rb_check_frozen(obj);
st_delete(finalizer_table, &data, 0);
FL_UNSET(obj, FL_FINALIZE);
return obj;
}
/*
* call-seq:
* ObjectSpace.define_finalizer(obj, aProc=proc())
*
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
* was destroyed.
*
*/
static VALUE
define_final(int argc, VALUE *argv, VALUE os)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE obj, block, table;
st_data_t data;
rb_scan_args(argc, argv, "11", &obj, &block);
rb_check_frozen(obj);
if (argc == 1) {
block = rb_block_proc();
}
else if (!rb_respond_to(block, rb_intern("call"))) {
rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
rb_obj_classname(block));
}
if (!FL_ABLE(obj)) {
rb_raise(rb_eArgError, "cannot define finalizer for %s",
rb_obj_classname(obj));
}
RBASIC(obj)->flags |= FL_FINALIZE;
block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
OBJ_FREEZE(block);
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
rb_ary_push(table, block);
}
else {
table = rb_ary_new3(1, block);
RBASIC(table)->klass = 0;
st_add_direct(finalizer_table, obj, table);
}
return block;
}
void
rb_gc_copy_finalizer(VALUE dest, VALUE obj)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE table;
st_data_t data;
if (!FL_TEST(obj, FL_FINALIZE)) return;
if (st_lookup(finalizer_table, obj, &data)) {
table = (VALUE)data;
st_insert(finalizer_table, dest, table);
}
FL_SET(dest, FL_FINALIZE);
}
static VALUE
run_single_final(VALUE arg)
{
VALUE *args = (VALUE *)arg;
rb_eval_cmd(args[0], args[1], (int)args[2]);
return Qnil;
}
static void
run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
{
long i;
int status;
VALUE args[3];
VALUE objid = nonspecial_obj_id(obj);
if (RARRAY_LEN(table) > 0) {
args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
}
else {
args[1] = 0;
}
args[2] = (VALUE)rb_safe_level();
for (i=0; i<RARRAY_LEN(table); i++) {
VALUE final = RARRAY_PTR(table)[i];
args[0] = RARRAY_PTR(final)[1];
args[2] = FIX2INT(RARRAY_PTR(final)[0]);
status = 0;
rb_protect(run_single_final, (VALUE)args, &status);
if (status)
rb_set_errinfo(Qnil);
}
}
static void
run_final(rb_objspace_t *objspace, VALUE obj)
{
RUBY_DATA_FUNC free_func = 0;
st_data_t key, table;
objspace->heap.final_num--;
RBASIC(obj)->klass = 0;
if (RTYPEDDATA_P(obj)) {
free_func = RTYPEDDATA_TYPE(obj)->function.dfree;
}
else {
free_func = RDATA(obj)->dfree;
}
if (free_func) {
(*free_func)(DATA_PTR(obj));
}
key = (st_data_t)obj;
if (st_delete(finalizer_table, &key, &table)) {
run_finalizer(objspace, obj, (VALUE)table);
}
}
static void
finalize_deferred(rb_objspace_t *objspace)
{
RVALUE *p = deferred_final_list;
deferred_final_list = 0;
if (p) {
finalize_list(objspace, p);
}
}
void
rb_gc_finalize_deferred(void)
{
rb_objspace_t *objspace = &rb_objspace;
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
finalize_deferred(objspace);
ATOMIC_SET(finalizing, 0);
}
static int
chain_finalized_object(st_data_t key, st_data_t val, st_data_t arg)
{
RVALUE *p = (RVALUE *)key, **final_list = (RVALUE **)arg;
if ((p->as.basic.flags & FL_FINALIZE) == FL_FINALIZE &&
!MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p)) {
if (BUILTIN_TYPE(p) != T_ZOMBIE) {
p->as.free.flags = T_ZOMBIE;
RDATA(p)->dfree = 0;
}
p->as.free.next = *final_list;
*final_list = p;
}
return ST_CONTINUE;
}
struct force_finalize_list {
VALUE obj;
VALUE table;
struct force_finalize_list *next;
};
static int
force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
{
struct force_finalize_list **prev = (struct force_finalize_list **)arg;
struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
curr->obj = key;
curr->table = val;
curr->next = *prev;
*prev = curr;
return ST_CONTINUE;
}
void
rb_gc_call_finalizer_at_exit(void)
{
rb_objspace_call_finalizer(&rb_objspace);
}
static void
rb_objspace_call_finalizer(rb_objspace_t *objspace)
{
RVALUE *p, *pend;
RVALUE *final_list = 0;
size_t i;
/* run finalizers */
gc_clear_mark_on_sweep_slots(objspace);
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
do {
/* XXX: this loop will make no sense */
/* because mark will not be removed */
finalize_deferred(objspace);
mark_tbl(objspace, finalizer_table, 0);
st_foreach(finalizer_table, chain_finalized_object,
(st_data_t)&deferred_final_list);
} while (deferred_final_list);
/* force to run finalizer */
while (finalizer_table->num_entries) {
struct force_finalize_list *list = 0;
st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
while (list) {
struct force_finalize_list *curr = list;
st_data_t obj = (st_data_t)curr->obj;
run_finalizer(objspace, curr->obj, curr->table);
st_delete(finalizer_table, &obj, 0);
list = curr->next;
xfree(curr);
}
}
/* finalizers are part of garbage collection */
during_gc++;
/* run data object's finalizers */
for (i = 0; i < heaps_used; i++) {
p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end;
while (p < pend) {
if (BUILTIN_TYPE(p) == T_DATA &&
DATA_PTR(p) && RANY(p)->as.data.dfree &&
!rb_obj_is_thread((VALUE)p) && !rb_obj_is_mutex((VALUE)p) &&
!rb_obj_is_fiber((VALUE)p)) {
p->as.free.flags = 0;
if (RTYPEDDATA_P(p)) {
RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
}
if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
xfree(DATA_PTR(p));
}
else if (RANY(p)->as.data.dfree) {
make_deferred(RANY(p));
RANY(p)->as.free.next = final_list;
final_list = p;
}
}
else if (BUILTIN_TYPE(p) == T_FILE) {
if (RANY(p)->as.file.fptr) {
make_io_deferred(RANY(p));
RANY(p)->as.free.next = final_list;
final_list = p;
}
}
p++;
}
}
during_gc = 0;
if (final_list) {
finalize_list(objspace, final_list);
}
st_free_table(finalizer_table);
finalizer_table = 0;
ATOMIC_SET(finalizing, 0);
}
void
rb_gc(void)
{
rb_objspace_t *objspace = &rb_objspace;
garbage_collect(objspace);
if (!finalizing) finalize_deferred(objspace);
free_unused_heaps(objspace);
}
static inline int
is_id_value(rb_objspace_t *objspace, VALUE ptr)
{
if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE;
if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE;
if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE;
return TRUE;
}
static inline int
is_dead_object(rb_objspace_t *objspace, VALUE ptr)
{
struct heaps_slot *slot = objspace->heap.sweep_slots;
if (!is_lazy_sweeping(objspace) || MARKED_IN_BITMAP(GET_HEAP_BITMAP(ptr), ptr))
return FALSE;
while (slot) {
if ((VALUE)slot->slot <= ptr && ptr < (VALUE)(slot->slot + slot->limit))
return TRUE;
slot = slot->next;
}
return FALSE;
}
static inline int
is_live_object(rb_objspace_t *objspace, VALUE ptr)
{
if (BUILTIN_TYPE(ptr) == 0) return FALSE;
if (RBASIC(ptr)->klass == 0) return FALSE;
if (is_dead_object(objspace, ptr)) return FALSE;
return TRUE;
}
/*
* call-seq:
* ObjectSpace._id2ref(object_id) -> an_object
*
* Converts an object id to a reference to the object. May not be
* called on an object id passed as a parameter to a finalizer.
*
* s = "I am a string" #=> "I am a string"
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
* r == s #=> true
*
*/
static VALUE
id2ref(VALUE obj, VALUE objid)
{
#if SIZEOF_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULONG(x)
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
#define NUM2PTR(x) NUM2ULL(x)
#endif
rb_objspace_t *objspace = &rb_objspace;
VALUE ptr;
void *p0;
rb_secure(4);
ptr = NUM2PTR(objid);
p0 = (void *)ptr;
if (ptr == Qtrue) return Qtrue;
if (ptr == Qfalse) return Qfalse;
if (ptr == Qnil) return Qnil;
if (FIXNUM_P(ptr)) return (VALUE)ptr;
ptr = objid ^ FIXNUM_FLAG; /* unset FIXNUM_FLAG */
if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
ID symid = ptr / sizeof(RVALUE);
if (rb_id2name(symid) == 0)
rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
return ID2SYM(symid);
}
if (!is_id_value(objspace, ptr)) {
rb_raise(rb_eRangeError, "%p is not id value", p0);
}
if (!is_live_object(objspace, ptr)) {
rb_raise(rb_eRangeError, "%p is recycled object", p0);
}
return (VALUE)ptr;
}
/*
* Document-method: __id__
* Document-method: object_id
*
* call-seq:
* obj.__id__ -> fixnum
* obj.object_id -> fixnum
*
* Returns an integer identifier for <i>obj</i>. The same number will
* be returned on all calls to <code>id</code> for a given object, and
* no two active objects will share an id.
* <code>Object#object_id</code> is a different concept from the
* <code>:name</code> notation, which returns the symbol id of
* <code>name</code>. Replaces the deprecated <code>Object#id</code>.
*/
/*
* call-seq:
* obj.hash -> fixnum
*
* Generates a <code>Fixnum</code> hash value for this object. This
* function must have the property that <code>a.eql?(b)</code> implies
* <code>a.hash == b.hash</code>. The hash value is used by class
* <code>Hash</code>. Any hash value that exceeds the capacity of a
* <code>Fixnum</code> will be truncated before being used.
*/
VALUE
rb_obj_id(VALUE obj)
{
/*
* 32-bit VALUE space
* MSB ------------------------ LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol ssssssssssssssssssssssss00001110
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
* fixnum fffffffffffffffffffffffffffffff1
*
* object_id space
* LSB
* false 00000000000000000000000000000000
* true 00000000000000000000000000000010
* nil 00000000000000000000000000000100
* undef 00000000000000000000000000000110
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
*
* where A = sizeof(RVALUE)/4
*
* sizeof(RVALUE) is
* 20 if 32-bit, double is 4-byte aligned
* 24 if 32-bit, double is 8-byte aligned
* 40 if 64-bit
*/
if (SYMBOL_P(obj)) {
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
}
if (SPECIAL_CONST_P(obj)) {
return LONG2NUM((SIGNED_VALUE)obj);
}
return nonspecial_obj_id(obj);
}
static int
set_zero(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE k = (VALUE)key;
VALUE hash = (VALUE)arg;
rb_hash_aset(hash, k, INT2FIX(0));
return ST_CONTINUE;
}
/*
* call-seq:
* ObjectSpace.count_objects([result_hash]) -> hash
*
* Counts objects for each type.
*
* It returns a hash as:
* {:TOTAL=>10000, :FREE=>3011, :T_OBJECT=>6, :T_CLASS=>404, ...}
*
* If the optional argument, result_hash, is given,
* it is overwritten and returned.
* This is intended to avoid probe effect.
*
* The contents of the returned hash is implementation defined.
* It may be changed in future.
*
* This method is not expected to work except C Ruby.
*
*/
static VALUE
count_objects(int argc, VALUE *argv, VALUE os)
{
rb_objspace_t *objspace = &rb_objspace;
size_t counts[T_MASK+1];
size_t freed = 0;
size_t total = 0;
size_t i;
VALUE hash;
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
if (!RB_TYPE_P(hash, T_HASH))
rb_raise(rb_eTypeError, "non-hash given");
}
for (i = 0; i <= T_MASK; i++) {
counts[i] = 0;
}
for (i = 0; i < heaps_used; i++) {
RVALUE *p, *pend;
p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end;
for (;p < pend; p++) {
if (p->as.basic.flags) {
counts[BUILTIN_TYPE(p)]++;
}
else {
freed++;
}
}
total += objspace->heap.sorted[i].slot->limit;
}
if (hash == Qnil) {
hash = rb_hash_new();
}
else if (!RHASH_EMPTY_P(hash)) {
st_foreach(RHASH_TBL(hash), set_zero, hash);
}
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
for (i = 0; i <= T_MASK; i++) {
VALUE type;
switch (i) {
#define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break;
COUNT_TYPE(T_NONE);
COUNT_TYPE(T_OBJECT);
COUNT_TYPE(T_CLASS);
COUNT_TYPE(T_MODULE);
COUNT_TYPE(T_FLOAT);
COUNT_TYPE(T_STRING);
COUNT_TYPE(T_REGEXP);
COUNT_TYPE(T_ARRAY);
COUNT_TYPE(T_HASH);
COUNT_TYPE(T_STRUCT);
COUNT_TYPE(T_BIGNUM);
COUNT_TYPE(T_FILE);
COUNT_TYPE(T_DATA);
COUNT_TYPE(T_MATCH);
COUNT_TYPE(T_COMPLEX);
COUNT_TYPE(T_RATIONAL);
COUNT_TYPE(T_NIL);
COUNT_TYPE(T_TRUE);
COUNT_TYPE(T_FALSE);
COUNT_TYPE(T_SYMBOL);
COUNT_TYPE(T_FIXNUM);
COUNT_TYPE(T_UNDEF);
COUNT_TYPE(T_NODE);
COUNT_TYPE(T_ICLASS);
COUNT_TYPE(T_ZOMBIE);
#undef COUNT_TYPE
default: type = INT2NUM(i); break;
}
if (counts[i])
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
}
return hash;
}
/*
* call-seq:
* GC.count -> Integer
*
* The number of times GC occurred.
*
* It returns the number of times GC occurred since the process started.
*
*/
static VALUE
gc_count(VALUE self)
{
return UINT2NUM((&rb_objspace)->count);
}
/*
* call-seq:
* GC.stat -> Hash
*
* Returns a Hash containing information about the GC.
*
* The hash includes information about internal statistics about GC such as:
*
* {
* :count => 18,
* :heap_used => 77,
* :heap_length => 77,
* :heap_increment => 0,
* :heap_live_num => 23287,
* :heap_free_num => 8115,
* :heap_final_num => 0,
* }
*
* The contents of the hash are implementation defined and may be changed in
* the future.
*
* This method is only expected to work on C Ruby.
*
*/
static VALUE
gc_stat(int argc, VALUE *argv, VALUE self)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE hash;
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
if (!RB_TYPE_P(hash, T_HASH))
rb_raise(rb_eTypeError, "non-hash given");
}
if (hash == Qnil) {
hash = rb_hash_new();
}
rest_sweep(objspace);
rb_hash_aset(hash, ID2SYM(rb_intern("count")), SIZET2NUM(objspace->count));
/* implementation dependent counters */
rb_hash_aset(hash, ID2SYM(rb_intern("heap_used")), SIZET2NUM(objspace->heap.used));
rb_hash_aset(hash, ID2SYM(rb_intern("heap_length")), SIZET2NUM(objspace->heap.length));
rb_hash_aset(hash, ID2SYM(rb_intern("heap_increment")), SIZET2NUM(objspace->heap.increment));
rb_hash_aset(hash, ID2SYM(rb_intern("heap_live_num")), SIZET2NUM(objspace->heap.live_num));
rb_hash_aset(hash, ID2SYM(rb_intern("heap_free_num")), SIZET2NUM(objspace->heap.free_num));
rb_hash_aset(hash, ID2SYM(rb_intern("heap_final_num")), SIZET2NUM(objspace->heap.final_num));
return hash;
}
#if CALC_EXACT_MALLOC_SIZE
/*
* call-seq:
* GC.malloc_allocated_size -> Integer
*
* The allocated size by malloc().
*
* It returns the allocated size by malloc().
*/
static VALUE
gc_malloc_allocated_size(VALUE self)
{
return UINT2NUM((&rb_objspace)->malloc_params.allocated_size);
}
/*
* call-seq:
* GC.malloc_allocations -> Integer
*
* The number of allocated memory object by malloc().
*
* It returns the number of allocated memory object by malloc().
*/
static VALUE
gc_malloc_allocations(VALUE self)
{
return UINT2NUM((&rb_objspace)->malloc_params.allocations);
}
#endif
/*
* call-seq:
* GC::Profiler.raw_data -> [Hash, ...]
*
* Returns an Array of individual raw profile data Hashes ordered
* from earliest to latest by <tt>:GC_INVOKE_TIME</tt>. For example:
*
* [{:GC_TIME=>1.3000000000000858e-05,
* :GC_INVOKE_TIME=>0.010634999999999999,
* :HEAP_USE_SIZE=>289640,
* :HEAP_TOTAL_SIZE=>588960,
* :HEAP_TOTAL_OBJECTS=>14724,
* :GC_IS_MARKED=>false},
* ...
* ]
*
* The keys mean:
*
* +:GC_TIME+:: Time taken for this run in milliseconds
* +:GC_INVOKE_TIME+:: Time the GC was invoked since startup in seconds
* +:HEAP_USE_SIZE+:: Bytes of heap used
* +:HEAP_TOTAL_SIZE+:: Size of heap in bytes
* +:HEAP_TOTAL_OBJECTS+:: Number of objects
* +:GC_IS_MARKED+:: Is the GC in the mark phase
*
*/
static VALUE
gc_profile_record_get(void)
{
VALUE prof;
VALUE gc_profile = rb_ary_new();
size_t i;
rb_objspace_t *objspace = (&rb_objspace);
if (!objspace->profile.run) {
return Qnil;
}
for (i =0; i < objspace->profile.count; i++) {
prof = rb_hash_new();
rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(objspace->profile.record[i].gc_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(objspace->profile.record[i].gc_invoke_time));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_use_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_total_size));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_total_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), objspace->profile.record[i].is_marked);
#if GC_PROFILE_MORE_DETAIL
rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(objspace->profile.record[i].gc_mark_time));
rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(objspace->profile.record[i].gc_sweep_time));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(objspace->profile.record[i].allocate_increase));
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(objspace->profile.record[i].allocate_limit));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SLOTS")), SIZET2NUM(objspace->profile.record[i].heap_use_slots));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_live_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_free_objects));
rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), objspace->profile.record[i].have_finalize);
#endif
rb_ary_push(gc_profile, prof);
}
return gc_profile;
}
/*
* call-seq:
* GC::Profiler.result -> String
*
* Returns a profile data report such as:
*
* GC 1 invokes.
* Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
* 1 0.012 159240 212940 10647 0.00000000000001530000
*/
static VALUE
gc_profile_result(void)
{
rb_objspace_t *objspace = &rb_objspace;
VALUE record;
VALUE result;
int i, index;
record = gc_profile_record_get();
if (objspace->profile.run && objspace->profile.count) {
result = rb_sprintf("GC %d invokes.\n", NUM2INT(gc_count(0)));
index = 1;
rb_str_cat2(result, "Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n");
for (i = 0; i < (int)RARRAY_LEN(record); i++) {
VALUE r = RARRAY_PTR(record)[i];
#if !GC_PROFILE_MORE_DETAIL
if (rb_hash_aref(r, ID2SYM(rb_intern("GC_IS_MARKED")))) {
#endif
rb_str_catf(result, "%5d %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
index++, NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_INVOKE_TIME")))),
(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_USE_SIZE")))),
(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")))),
(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")))),
NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_TIME"))))*1000);
#if !GC_PROFILE_MORE_DETAIL
}
#endif
}
#if GC_PROFILE_MORE_DETAIL
rb_str_cat2(result, "\n\n");
rb_str_cat2(result, "More detail.\n");
rb_str_cat2(result, "Index Allocate Increase Allocate Limit Use Slot Have Finalize Mark Time(ms) Sweep Time(ms)\n");
index = 1;
for (i = 0; i < (int)RARRAY_LEN(record); i++) {
VALUE r = RARRAY_PTR(record)[i];
rb_str_catf(result, "%5d %17"PRIuSIZE" %17"PRIuSIZE" %9"PRIuSIZE" %14s %25.20f %25.20f\n",
index++, (size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("ALLOCATE_INCREASE")))),
(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("ALLOCATE_LIMIT")))),
(size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_USE_SLOTS")))),
rb_hash_aref(r, ID2SYM(rb_intern("HAVE_FINALIZE")))? "true" : "false",
NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_MARK_TIME"))))*1000,
NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_SWEEP_TIME"))))*1000);
}
#endif
}
else {
result = rb_str_new2("");
}
return result;
}
/*
* call-seq:
* GC::Profiler.report
* GC::Profiler.report io
*
* Writes the GC::Profiler#result to <tt>$stdout</tt> or the given IO object.
*
*/
static VALUE
gc_profile_report(int argc, VALUE *argv, VALUE self)
{
VALUE out;
if (argc == 0) {
out = rb_stdout;
}
else {
rb_scan_args(argc, argv, "01", &out);
}
rb_io_write(out, gc_profile_result());
return Qnil;
}
/*
* call-seq:
* GC::Profiler.total_time -> float
*
* The total time used for garbage collection in milliseconds
*/
static VALUE
gc_profile_total_time(VALUE self)
{
double time = 0;
rb_objspace_t *objspace = &rb_objspace;
size_t i;
if (objspace->profile.run && objspace->profile.count) {
for (i = 0; i < objspace->profile.count; i++) {
time += objspace->profile.record[i].gc_time;
}
}
return DBL2NUM(time);
}
/* Document-class: GC::Profiler
*
* The GC profiler provides access to information on GC runs including time,
* length and object space size.
*
* Example:
*
* GC::Profiler.enable
*
* require 'rdoc/rdoc'
*
* puts GC::Profiler.result
*
* GC::Profiler.disable
*
* See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
*/
/*
* The <code>GC</code> module provides an interface to Ruby's mark and
* sweep garbage collection mechanism. Some of the underlying methods
* are also available via the ObjectSpace module.
*
* You may obtain information about the operation of the GC through
* GC::Profiler.
*/
void
Init_GC(void)
{
VALUE rb_mObSpace;
VALUE rb_mProfiler;
rb_mGC = rb_define_module("GC");
rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0);
rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
rb_define_singleton_method(rb_mGC, "count", gc_count, 0);
rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1);
rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0);
rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
rb_mObSpace = rb_define_module("ObjectSpace");
rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1);
rb_define_module_function(rb_mObSpace, "garbage_collect", rb_gc_start, 0);
rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1);
rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1);
rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1);
nomem_error = rb_exc_new3(rb_eNoMemError,
rb_obj_freeze(rb_str_new2("failed to allocate memory")));
OBJ_TAINT(nomem_error);
OBJ_FREEZE(nomem_error);
rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
rb_define_module_function(rb_mObSpace, "count_objects", count_objects, -1);
#if CALC_EXACT_MALLOC_SIZE
rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
#endif
}