ruby/vm_core.h

2217 строки
63 KiB
C

#ifndef RUBY_VM_CORE_H
#define RUBY_VM_CORE_H
/**********************************************************************
vm_core.h -
$Author$
created at: 04/01/01 19:41:38 JST
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
/*
* Enable check mode.
* 1: enable local assertions.
*/
#ifndef VM_CHECK_MODE
// respect RUBY_DUBUG: if given n is 0, then use RUBY_DEBUG
#define N_OR_RUBY_DEBUG(n) (((n) > 0) ? (n) : RUBY_DEBUG)
#define VM_CHECK_MODE N_OR_RUBY_DEBUG(0)
#endif
/**
* VM Debug Level
*
* debug level:
* 0: no debug output
* 1: show instruction name
* 2: show stack frame when control stack frame is changed
* 3: show stack status
* 4: show register
* 5:
* 10: gc check
*/
#ifndef VMDEBUG
#define VMDEBUG 0
#endif
#if 0
#undef VMDEBUG
#define VMDEBUG 3
#endif
#include "ruby/internal/config.h"
#include <stddef.h>
#include <signal.h>
#include <stdarg.h>
#include "ruby_assert.h"
#define RVALUE_SIZE (sizeof(struct RBasic) + sizeof(VALUE[RBIMPL_RVALUE_EMBED_LEN_MAX]))
#if VM_CHECK_MODE > 0
#define VM_ASSERT(expr, ...) \
RUBY_ASSERT_MESG_WHEN(VM_CHECK_MODE > 0, expr, #expr RBIMPL_VA_OPT_ARGS(__VA_ARGS__))
#define VM_UNREACHABLE(func) rb_bug(#func ": unreachable")
#define RUBY_ASSERT_CRITICAL_SECTION
#define RUBY_DEBUG_THREAD_SCHEDULE() rb_thread_schedule()
#else
#define VM_ASSERT(/*expr, */...) ((void)0)
#define VM_UNREACHABLE(func) UNREACHABLE
#define RUBY_DEBUG_THREAD_SCHEDULE()
#endif
#define RUBY_ASSERT_MUTEX_OWNED(mutex) VM_ASSERT(rb_mutex_owned_p(mutex))
#if defined(RUBY_ASSERT_CRITICAL_SECTION)
// TODO add documentation
extern int ruby_assert_critical_section_entered;
#define RUBY_ASSERT_CRITICAL_SECTION_ENTER() do{ruby_assert_critical_section_entered += 1;}while(false)
#define RUBY_ASSERT_CRITICAL_SECTION_LEAVE() do{VM_ASSERT(ruby_assert_critical_section_entered > 0);ruby_assert_critical_section_entered -= 1;}while(false)
#else
#define RUBY_ASSERT_CRITICAL_SECTION_ENTER()
#define RUBY_ASSERT_CRITICAL_SECTION_LEAVE()
#endif
#if defined(__wasm__) && !defined(__EMSCRIPTEN__)
# include "wasm/setjmp.h"
#else
# include <setjmp.h>
#endif
#if defined(__linux__) || defined(__FreeBSD__)
# define RB_THREAD_T_HAS_NATIVE_ID
#endif
#include "ruby/internal/stdbool.h"
#include "ccan/list/list.h"
#include "id.h"
#include "internal.h"
#include "internal/array.h"
#include "internal/basic_operators.h"
#include "internal/sanitizers.h"
#include "internal/serial.h"
#include "internal/vm.h"
#include "method.h"
#include "node.h"
#include "ruby/ruby.h"
#include "ruby/st.h"
#include "ruby_atomic.h"
#include "vm_opts.h"
#include "ruby/thread_native.h"
/*
* implementation selector of get_insn_info algorithm
* 0: linear search
* 1: binary search
* 2: succinct bitvector
*/
#ifndef VM_INSN_INFO_TABLE_IMPL
# define VM_INSN_INFO_TABLE_IMPL 2
#endif
#if defined(NSIG_MAX) /* POSIX issue 8 */
# undef NSIG
# define NSIG NSIG_MAX
#elif defined(_SIG_MAXSIG) /* FreeBSD */
# undef NSIG
# define NSIG _SIG_MAXSIG
#elif defined(_SIGMAX) /* QNX */
# define NSIG (_SIGMAX + 1)
#elif defined(NSIG) /* 99% of everything else */
# /* take it */
#else /* Last resort */
# define NSIG (sizeof(sigset_t) * CHAR_BIT + 1)
#endif
#define RUBY_NSIG NSIG
#if defined(SIGCLD)
# define RUBY_SIGCHLD (SIGCLD)
#elif defined(SIGCHLD)
# define RUBY_SIGCHLD (SIGCHLD)
#endif
#if defined(SIGSEGV) && defined(HAVE_SIGALTSTACK) && defined(SA_SIGINFO) && !defined(__NetBSD__)
# define USE_SIGALTSTACK
void *rb_allocate_sigaltstack(void);
void *rb_register_sigaltstack(void *);
# define RB_ALTSTACK_INIT(var, altstack) var = rb_register_sigaltstack(altstack)
# define RB_ALTSTACK_FREE(var) free(var)
# define RB_ALTSTACK(var) var
#else /* noop */
# define RB_ALTSTACK_INIT(var, altstack)
# define RB_ALTSTACK_FREE(var)
# define RB_ALTSTACK(var) (0)
#endif
#include THREAD_IMPL_H
#define RUBY_VM_THREAD_MODEL 2
/*****************/
/* configuration */
/*****************/
/* gcc ver. check */
#if defined(__GNUC__) && __GNUC__ >= 2
#if OPT_TOKEN_THREADED_CODE
#if OPT_DIRECT_THREADED_CODE
#undef OPT_DIRECT_THREADED_CODE
#endif
#endif
#else /* defined(__GNUC__) && __GNUC__ >= 2 */
/* disable threaded code options */
#if OPT_DIRECT_THREADED_CODE
#undef OPT_DIRECT_THREADED_CODE
#endif
#if OPT_TOKEN_THREADED_CODE
#undef OPT_TOKEN_THREADED_CODE
#endif
#endif
/* call threaded code */
#if OPT_CALL_THREADED_CODE
#if OPT_DIRECT_THREADED_CODE
#undef OPT_DIRECT_THREADED_CODE
#endif /* OPT_DIRECT_THREADED_CODE */
#endif /* OPT_CALL_THREADED_CODE */
void rb_vm_encoded_insn_data_table_init(void);
typedef unsigned long rb_num_t;
typedef signed long rb_snum_t;
enum ruby_tag_type {
RUBY_TAG_NONE = 0x0,
RUBY_TAG_RETURN = 0x1,
RUBY_TAG_BREAK = 0x2,
RUBY_TAG_NEXT = 0x3,
RUBY_TAG_RETRY = 0x4,
RUBY_TAG_REDO = 0x5,
RUBY_TAG_RAISE = 0x6,
RUBY_TAG_THROW = 0x7,
RUBY_TAG_FATAL = 0x8,
RUBY_TAG_MASK = 0xf
};
#define TAG_NONE RUBY_TAG_NONE
#define TAG_RETURN RUBY_TAG_RETURN
#define TAG_BREAK RUBY_TAG_BREAK
#define TAG_NEXT RUBY_TAG_NEXT
#define TAG_RETRY RUBY_TAG_RETRY
#define TAG_REDO RUBY_TAG_REDO
#define TAG_RAISE RUBY_TAG_RAISE
#define TAG_THROW RUBY_TAG_THROW
#define TAG_FATAL RUBY_TAG_FATAL
#define TAG_MASK RUBY_TAG_MASK
enum ruby_vm_throw_flags {
VM_THROW_NO_ESCAPE_FLAG = 0x8000,
VM_THROW_STATE_MASK = 0xff
};
/* forward declarations */
struct rb_thread_struct;
struct rb_control_frame_struct;
/* iseq data type */
typedef struct rb_compile_option_struct rb_compile_option_t;
union ic_serial_entry {
rb_serial_t raw;
VALUE data[2];
};
// imemo_constcache
struct iseq_inline_constant_cache_entry {
VALUE flags;
VALUE value; // v0
VALUE _unused1; // v1
VALUE _unused2; // v2
const rb_cref_t *ic_cref; // v3
};
STATIC_ASSERT(sizeof_iseq_inline_constant_cache_entry,
(offsetof(struct iseq_inline_constant_cache_entry, ic_cref) +
sizeof(const rb_cref_t *)) <= RVALUE_SIZE);
struct iseq_inline_constant_cache {
struct iseq_inline_constant_cache_entry *entry;
/**
* A null-terminated list of ids, used to represent a constant's path
* idNULL is used to represent the :: prefix, and 0 is used to donate the end
* of the list.
*
* For example
* FOO {rb_intern("FOO"), 0}
* FOO::BAR {rb_intern("FOO"), rb_intern("BAR"), 0}
* ::FOO {idNULL, rb_intern("FOO"), 0}
* ::FOO::BAR {idNULL, rb_intern("FOO"), rb_intern("BAR"), 0}
*/
const ID *segments;
};
struct iseq_inline_iv_cache_entry {
uintptr_t value; // attr_index in lower bits, dest_shape_id in upper bits
ID iv_set_name;
};
struct iseq_inline_cvar_cache_entry {
struct rb_cvar_class_tbl_entry *entry;
};
union iseq_inline_storage_entry {
struct {
struct rb_thread_struct *running_thread;
VALUE value;
} once;
struct iseq_inline_constant_cache ic_cache;
struct iseq_inline_iv_cache_entry iv_cache;
};
struct rb_calling_info {
const struct rb_call_data *cd;
const struct rb_callcache *cc;
VALUE block_handler;
VALUE recv;
int argc;
bool kw_splat;
VALUE heap_argv;
};
#ifndef VM_ARGC_STACK_MAX
#define VM_ARGC_STACK_MAX 128
#endif
# define CALLING_ARGC(calling) ((calling)->heap_argv ? RARRAY_LENINT((calling)->heap_argv) : (calling)->argc)
struct rb_execution_context_struct;
#if 1
#define CoreDataFromValue(obj, type) (type*)DATA_PTR(obj)
#else
#define CoreDataFromValue(obj, type) (type*)rb_data_object_get(obj)
#endif
#define GetCoreDataFromValue(obj, type, ptr) ((ptr) = CoreDataFromValue((obj), type))
typedef struct rb_iseq_location_struct {
VALUE pathobj; /* String (path) or Array [path, realpath]. Frozen. */
VALUE base_label; /* String */
VALUE label; /* String */
int first_lineno;
int node_id;
rb_code_location_t code_location;
} rb_iseq_location_t;
#define PATHOBJ_PATH 0
#define PATHOBJ_REALPATH 1
static inline VALUE
pathobj_path(VALUE pathobj)
{
if (RB_TYPE_P(pathobj, T_STRING)) {
return pathobj;
}
else {
VM_ASSERT(RB_TYPE_P(pathobj, T_ARRAY));
return RARRAY_AREF(pathobj, PATHOBJ_PATH);
}
}
static inline VALUE
pathobj_realpath(VALUE pathobj)
{
if (RB_TYPE_P(pathobj, T_STRING)) {
return pathobj;
}
else {
VM_ASSERT(RB_TYPE_P(pathobj, T_ARRAY));
return RARRAY_AREF(pathobj, PATHOBJ_REALPATH);
}
}
/* Forward declarations */
struct rb_rjit_unit;
typedef uintptr_t iseq_bits_t;
#define ISEQ_IS_SIZE(body) (body->ic_size + body->ivc_size + body->ise_size + body->icvarc_size)
/* [ TS_IVC | TS_ICVARC | TS_ISE | TS_IC ] */
#define ISEQ_IS_IC_ENTRY(body, idx) (body->is_entries[(idx) + body->ise_size + body->icvarc_size + body->ivc_size].ic_cache);
/* instruction sequence type */
enum rb_iseq_type {
ISEQ_TYPE_TOP,
ISEQ_TYPE_METHOD,
ISEQ_TYPE_BLOCK,
ISEQ_TYPE_CLASS,
ISEQ_TYPE_RESCUE,
ISEQ_TYPE_ENSURE,
ISEQ_TYPE_EVAL,
ISEQ_TYPE_MAIN,
ISEQ_TYPE_PLAIN
};
// Attributes specified by Primitive.attr!
enum rb_builtin_attr {
// The iseq does not call methods.
BUILTIN_ATTR_LEAF = 0x01,
// This iseq only contains single `opt_invokebuiltin_delegate_leave` instruction with 0 arguments.
BUILTIN_ATTR_SINGLE_NOARG_LEAF = 0x02,
// This attribute signals JIT to duplicate the iseq for each block iseq so that its `yield` will be monomorphic.
BUILTIN_ATTR_INLINE_BLOCK = 0x04,
};
typedef VALUE (*rb_jit_func_t)(struct rb_execution_context_struct *, struct rb_control_frame_struct *);
struct rb_iseq_constant_body {
enum rb_iseq_type type;
unsigned int iseq_size;
VALUE *iseq_encoded; /* encoded iseq (insn addr and operands) */
/**
* parameter information
*
* def m(a1, a2, ..., aM, # mandatory
* b1=(...), b2=(...), ..., bN=(...), # optional
* *c, # rest
* d1, d2, ..., dO, # post
* e1:(...), e2:(...), ..., eK:(...), # keyword
* **f, # keyword_rest
* &g) # block
* =>
*
* lead_num = M
* opt_num = N
* rest_start = M+N
* post_start = M+N+(*1)
* post_num = O
* keyword_num = K
* block_start = M+N+(*1)+O+K
* keyword_bits = M+N+(*1)+O+K+(&1)
* size = M+N+O+(*1)+K+(&1)+(**1) // parameter size.
*/
struct {
struct {
unsigned int has_lead : 1;
unsigned int has_opt : 1;
unsigned int has_rest : 1;
unsigned int has_post : 1;
unsigned int has_kw : 1;
unsigned int has_kwrest : 1;
unsigned int has_block : 1;
unsigned int ambiguous_param0 : 1; /* {|a|} */
unsigned int accepts_no_kwarg : 1;
unsigned int ruby2_keywords: 1;
unsigned int anon_rest: 1;
unsigned int anon_kwrest: 1;
unsigned int use_block: 1;
unsigned int forwardable: 1;
} flags;
unsigned int size;
int lead_num;
int opt_num;
int rest_start;
int post_start;
int post_num;
int block_start;
const VALUE *opt_table; /* (opt_num + 1) entries. */
/* opt_num and opt_table:
*
* def foo o1=e1, o2=e2, ..., oN=eN
* #=>
* # prologue code
* A1: e1
* A2: e2
* ...
* AN: eN
* AL: body
* opt_num = N
* opt_table = [A1, A2, ..., AN, AL]
*/
const struct rb_iseq_param_keyword {
int num;
int required_num;
int bits_start;
int rest_start;
const ID *table;
VALUE *default_values;
} *keyword;
} param;
rb_iseq_location_t location;
/* insn info, must be freed */
struct iseq_insn_info {
const struct iseq_insn_info_entry *body;
unsigned int *positions;
unsigned int size;
#if VM_INSN_INFO_TABLE_IMPL == 2
struct succ_index_table *succ_index_table;
#endif
} insns_info;
const ID *local_table; /* must free */
/* catch table */
struct iseq_catch_table *catch_table;
/* for child iseq */
const struct rb_iseq_struct *parent_iseq;
struct rb_iseq_struct *local_iseq; /* local_iseq->flip_cnt can be modified */
union iseq_inline_storage_entry *is_entries; /* [ TS_IVC | TS_ICVARC | TS_ISE | TS_IC ] */
struct rb_call_data *call_data; //struct rb_call_data calls[ci_size];
struct {
rb_snum_t flip_count;
VALUE script_lines;
VALUE coverage;
VALUE pc2branchindex;
VALUE *original_iseq;
} variable;
unsigned int local_table_size;
unsigned int ic_size; // Number of IC caches
unsigned int ise_size; // Number of ISE caches
unsigned int ivc_size; // Number of IVC caches
unsigned int icvarc_size; // Number of ICVARC caches
unsigned int ci_size;
unsigned int stack_max; /* for stack overflow check */
unsigned int builtin_attrs; // Union of rb_builtin_attr
bool prism; // ISEQ was generated from prism compiler
union {
iseq_bits_t * list; /* Find references for GC */
iseq_bits_t single;
} mark_bits;
struct rb_id_table *outer_variables;
const rb_iseq_t *mandatory_only_iseq;
#if USE_RJIT || USE_YJIT
// Function pointer for JIT code on jit_exec()
rb_jit_func_t jit_entry;
// Number of calls on jit_exec()
long unsigned jit_entry_calls;
#endif
#if USE_YJIT
// Function pointer for JIT code on jit_exec_exception()
rb_jit_func_t jit_exception;
// Number of calls on jit_exec_exception()
long unsigned jit_exception_calls;
#endif
#if USE_RJIT
// RJIT stores some data on each iseq.
VALUE rjit_blocks;
#endif
#if USE_YJIT
// YJIT stores some data on each iseq.
void *yjit_payload;
// Used to estimate how frequently this ISEQ gets called
uint64_t yjit_calls_at_interv;
#endif
};
/* T_IMEMO/iseq */
/* typedef rb_iseq_t is in method.h */
struct rb_iseq_struct {
VALUE flags; /* 1 */
VALUE wrapper; /* 2 */
struct rb_iseq_constant_body *body; /* 3 */
union { /* 4, 5 words */
struct iseq_compile_data *compile_data; /* used at compile time */
struct {
VALUE obj;
int index;
} loader;
struct {
struct rb_hook_list_struct *local_hooks;
rb_event_flag_t global_trace_events;
} exec;
} aux;
};
#define ISEQ_BODY(iseq) ((iseq)->body)
#if !defined(USE_LAZY_LOAD) || !(USE_LAZY_LOAD+0)
#define USE_LAZY_LOAD 0
#endif
#if !USE_LAZY_LOAD
static inline const rb_iseq_t *rb_iseq_complete(const rb_iseq_t *iseq) {return 0;}
#endif
const rb_iseq_t *rb_iseq_complete(const rb_iseq_t *iseq);
static inline const rb_iseq_t *
rb_iseq_check(const rb_iseq_t *iseq)
{
if (USE_LAZY_LOAD && ISEQ_BODY(iseq) == NULL) {
rb_iseq_complete((rb_iseq_t *)iseq);
}
return iseq;
}
static inline const rb_iseq_t *
def_iseq_ptr(rb_method_definition_t *def)
{
//TODO: re-visit. to check the bug, enable this assertion.
#if VM_CHECK_MODE > 0
if (def->type != VM_METHOD_TYPE_ISEQ) rb_bug("def_iseq_ptr: not iseq (%d)", def->type);
#endif
return rb_iseq_check(def->body.iseq.iseqptr);
}
enum ruby_special_exceptions {
ruby_error_reenter,
ruby_error_nomemory,
ruby_error_sysstack,
ruby_error_stackfatal,
ruby_error_stream_closed,
ruby_special_error_count
};
#define GetVMPtr(obj, ptr) \
GetCoreDataFromValue((obj), rb_vm_t, (ptr))
struct rb_vm_struct;
typedef void rb_vm_at_exit_func(struct rb_vm_struct*);
typedef struct rb_at_exit_list {
rb_vm_at_exit_func *func;
struct rb_at_exit_list *next;
} rb_at_exit_list;
void *rb_objspace_alloc(void);
void rb_objspace_free(void *objspace);
void rb_objspace_call_finalizer(void);
typedef struct rb_hook_list_struct {
struct rb_event_hook_struct *hooks;
rb_event_flag_t events;
unsigned int running;
bool need_clean;
bool is_local;
} rb_hook_list_t;
// see builtin.h for definition
typedef const struct rb_builtin_function *RB_BUILTIN;
struct global_object_list {
VALUE *varptr;
struct global_object_list *next;
};
typedef struct rb_vm_struct {
VALUE self;
struct {
struct ccan_list_head set;
unsigned int cnt;
unsigned int blocking_cnt;
struct rb_ractor_struct *main_ractor;
struct rb_thread_struct *main_thread; // == vm->ractor.main_ractor->threads.main
struct {
// monitor
rb_nativethread_lock_t lock;
struct rb_ractor_struct *lock_owner;
unsigned int lock_rec;
// join at exit
rb_nativethread_cond_t terminate_cond;
bool terminate_waiting;
#ifndef RUBY_THREAD_PTHREAD_H
bool barrier_waiting;
unsigned int barrier_cnt;
rb_nativethread_cond_t barrier_cond;
#endif
} sync;
// ractor scheduling
struct {
rb_nativethread_lock_t lock;
struct rb_ractor_struct *lock_owner;
bool locked;
rb_nativethread_cond_t cond; // GRQ
unsigned int snt_cnt; // count of shared NTs
unsigned int dnt_cnt; // count of dedicated NTs
unsigned int running_cnt;
unsigned int max_cpu;
struct ccan_list_head grq; // // Global Ready Queue
unsigned int grq_cnt;
// running threads
struct ccan_list_head running_threads;
// threads which switch context by timeslice
struct ccan_list_head timeslice_threads;
struct ccan_list_head zombie_threads;
// true if timeslice timer is not enable
bool timeslice_wait_inf;
// barrier
rb_nativethread_cond_t barrier_complete_cond;
rb_nativethread_cond_t barrier_release_cond;
bool barrier_waiting;
unsigned int barrier_waiting_cnt;
unsigned int barrier_serial;
} sched;
} ractor;
#ifdef USE_SIGALTSTACK
void *main_altstack;
#endif
rb_serial_t fork_gen;
struct ccan_list_head waiting_fds; /* <=> struct waiting_fd */
/* set in single-threaded processes only: */
volatile int ubf_async_safe;
unsigned int running: 1;
unsigned int thread_abort_on_exception: 1;
unsigned int thread_report_on_exception: 1;
unsigned int thread_ignore_deadlock: 1;
/* object management */
VALUE mark_object_ary;
struct global_object_list *global_object_list;
const VALUE special_exceptions[ruby_special_error_count];
/* load */
VALUE top_self;
VALUE load_path;
VALUE load_path_snapshot;
VALUE load_path_check_cache;
VALUE expanded_load_path;
VALUE loaded_features;
VALUE loaded_features_snapshot;
VALUE loaded_features_realpaths;
VALUE loaded_features_realpath_map;
struct st_table *loaded_features_index;
struct st_table *loading_table;
// For running the init function of statically linked
// extensions when they are loaded
struct st_table *static_ext_inits;
/* signal */
struct {
VALUE cmd[RUBY_NSIG];
} trap_list;
/* postponed_job (async-signal-safe, and thread-safe) */
struct rb_postponed_job_queue *postponed_job_queue;
int src_encoding_index;
/* workqueue (thread-safe, NOT async-signal-safe) */
struct ccan_list_head workqueue; /* <=> rb_workqueue_job.jnode */
rb_nativethread_lock_t workqueue_lock;
VALUE orig_progname, progname;
VALUE coverages, me2counter;
int coverage_mode;
struct rb_objspace *objspace;
rb_at_exit_list *at_exit;
st_table *frozen_strings;
const struct rb_builtin_function *builtin_function_table;
st_table *ci_table;
struct rb_id_table *negative_cme_table;
st_table *overloaded_cme_table; // cme -> overloaded_cme
st_table *unused_block_warning_table;
bool unused_block_warning_strict;
// This id table contains a mapping from ID to ICs. It does this with ID
// keys and nested st_tables as values. The nested tables have ICs as keys
// and Qtrue as values. It is used when inline constant caches need to be
// invalidated or ISEQs are being freed.
struct rb_id_table *constant_cache;
#ifndef VM_GLOBAL_CC_CACHE_TABLE_SIZE
#define VM_GLOBAL_CC_CACHE_TABLE_SIZE 1023
#endif
const struct rb_callcache *global_cc_cache_table[VM_GLOBAL_CC_CACHE_TABLE_SIZE]; // vm_eval.c
#if defined(USE_VM_CLOCK) && USE_VM_CLOCK
uint32_t clock;
#endif
/* params */
struct { /* size in byte */
size_t thread_vm_stack_size;
size_t thread_machine_stack_size;
size_t fiber_vm_stack_size;
size_t fiber_machine_stack_size;
} default_params;
} rb_vm_t;
/* default values */
#define RUBY_VM_SIZE_ALIGN 4096
#define RUBY_VM_THREAD_VM_STACK_SIZE ( 128 * 1024 * sizeof(VALUE)) /* 512 KB or 1024 KB */
#define RUBY_VM_THREAD_VM_STACK_SIZE_MIN ( 2 * 1024 * sizeof(VALUE)) /* 8 KB or 16 KB */
#define RUBY_VM_THREAD_MACHINE_STACK_SIZE ( 128 * 1024 * sizeof(VALUE)) /* 512 KB or 1024 KB */
#define RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN ( 16 * 1024 * sizeof(VALUE)) /* 64 KB or 128 KB */
#define RUBY_VM_FIBER_VM_STACK_SIZE ( 16 * 1024 * sizeof(VALUE)) /* 64 KB or 128 KB */
#define RUBY_VM_FIBER_VM_STACK_SIZE_MIN ( 2 * 1024 * sizeof(VALUE)) /* 8 KB or 16 KB */
#define RUBY_VM_FIBER_MACHINE_STACK_SIZE ( 64 * 1024 * sizeof(VALUE)) /* 256 KB or 512 KB */
#if defined(__powerpc64__) || defined(__ppc64__) // macOS has __ppc64__
#define RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN ( 32 * 1024 * sizeof(VALUE)) /* 128 KB or 256 KB */
#else
#define RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN ( 16 * 1024 * sizeof(VALUE)) /* 64 KB or 128 KB */
#endif
#if __has_feature(memory_sanitizer) || __has_feature(address_sanitizer)
/* It seems sanitizers consume A LOT of machine stacks */
#undef RUBY_VM_THREAD_MACHINE_STACK_SIZE
#define RUBY_VM_THREAD_MACHINE_STACK_SIZE (1024 * 1024 * sizeof(VALUE))
#undef RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN
#define RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN ( 512 * 1024 * sizeof(VALUE))
#undef RUBY_VM_FIBER_MACHINE_STACK_SIZE
#define RUBY_VM_FIBER_MACHINE_STACK_SIZE ( 256 * 1024 * sizeof(VALUE))
#undef RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN
#define RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN ( 128 * 1024 * sizeof(VALUE))
#endif
#ifndef VM_DEBUG_BP_CHECK
#define VM_DEBUG_BP_CHECK 0
#endif
#ifndef VM_DEBUG_VERIFY_METHOD_CACHE
#define VM_DEBUG_VERIFY_METHOD_CACHE (VMDEBUG != 0)
#endif
struct rb_captured_block {
VALUE self;
const VALUE *ep;
union {
const rb_iseq_t *iseq;
const struct vm_ifunc *ifunc;
VALUE val;
} code;
};
enum rb_block_handler_type {
block_handler_type_iseq,
block_handler_type_ifunc,
block_handler_type_symbol,
block_handler_type_proc
};
enum rb_block_type {
block_type_iseq,
block_type_ifunc,
block_type_symbol,
block_type_proc
};
struct rb_block {
union {
struct rb_captured_block captured;
VALUE symbol;
VALUE proc;
} as;
enum rb_block_type type;
};
typedef struct rb_control_frame_struct {
const VALUE *pc; // cfp[0]
VALUE *sp; // cfp[1]
const rb_iseq_t *iseq; // cfp[2]
VALUE self; // cfp[3] / block[0]
const VALUE *ep; // cfp[4] / block[1]
const void *block_code; // cfp[5] / block[2] -- iseq, ifunc, or forwarded block handler
void *jit_return; // cfp[6] -- return address for JIT code
#if VM_DEBUG_BP_CHECK
VALUE *bp_check; // cfp[7]
#endif
} rb_control_frame_t;
extern const rb_data_type_t ruby_threadptr_data_type;
static inline struct rb_thread_struct *
rb_thread_ptr(VALUE thval)
{
return (struct rb_thread_struct *)rb_check_typeddata(thval, &ruby_threadptr_data_type);
}
enum rb_thread_status {
THREAD_RUNNABLE,
THREAD_STOPPED,
THREAD_STOPPED_FOREVER,
THREAD_KILLED
};
#ifdef RUBY_JMP_BUF
typedef RUBY_JMP_BUF rb_jmpbuf_t;
#else
typedef void *rb_jmpbuf_t[5];
#endif
/*
`rb_vm_tag_jmpbuf_t` type represents a buffer used to
long jump to a C frame associated with `rb_vm_tag`.
Use-site of `rb_vm_tag_jmpbuf_t` is responsible for calling the
following functions:
- `rb_vm_tag_jmpbuf_init` once `rb_vm_tag_jmpbuf_t` is allocated.
- `rb_vm_tag_jmpbuf_deinit` once `rb_vm_tag_jmpbuf_t` is no longer necessary.
`RB_VM_TAG_JMPBUF_GET` transforms a `rb_vm_tag_jmpbuf_t` into a
`rb_jmpbuf_t` to be passed to `rb_setjmp/rb_longjmp`.
*/
#if defined(__wasm__) && !defined(__EMSCRIPTEN__)
/*
WebAssembly target with Asyncify-based SJLJ needs
to capture the execution context by unwind/rewind-ing
call frames into a jump buffer. The buffer space tends
to be considerably large unlike other architectures'
register-based buffers.
Therefore, we allocates the buffer on the heap on such
environments.
*/
typedef rb_jmpbuf_t *rb_vm_tag_jmpbuf_t;
#define RB_VM_TAG_JMPBUF_GET(buf) (*buf)
static inline void
rb_vm_tag_jmpbuf_init(rb_vm_tag_jmpbuf_t *jmpbuf)
{
*jmpbuf = ruby_xmalloc(sizeof(rb_jmpbuf_t));
}
static inline void
rb_vm_tag_jmpbuf_deinit(const rb_vm_tag_jmpbuf_t *jmpbuf)
{
ruby_xfree(*jmpbuf);
}
#else
typedef rb_jmpbuf_t rb_vm_tag_jmpbuf_t;
#define RB_VM_TAG_JMPBUF_GET(buf) (buf)
static inline void
rb_vm_tag_jmpbuf_init(rb_vm_tag_jmpbuf_t *jmpbuf)
{
// no-op
}
static inline void
rb_vm_tag_jmpbuf_deinit(const rb_vm_tag_jmpbuf_t *jmpbuf)
{
// no-op
}
#endif
/*
the members which are written in EC_PUSH_TAG() should be placed at
the beginning and the end, so that entire region is accessible.
*/
struct rb_vm_tag {
VALUE tag;
VALUE retval;
rb_vm_tag_jmpbuf_t buf;
struct rb_vm_tag *prev;
enum ruby_tag_type state;
unsigned int lock_rec;
};
STATIC_ASSERT(rb_vm_tag_buf_offset, offsetof(struct rb_vm_tag, buf) > 0);
STATIC_ASSERT(rb_vm_tag_buf_end,
offsetof(struct rb_vm_tag, buf) + sizeof(rb_vm_tag_jmpbuf_t) <
sizeof(struct rb_vm_tag));
struct rb_unblock_callback {
rb_unblock_function_t *func;
void *arg;
};
struct rb_mutex_struct;
typedef struct rb_fiber_struct rb_fiber_t;
struct rb_waiting_list {
struct rb_waiting_list *next;
struct rb_thread_struct *thread;
struct rb_fiber_struct *fiber;
};
struct rb_execution_context_struct {
/* execution information */
VALUE *vm_stack; /* must free, must mark */
size_t vm_stack_size; /* size in word (byte size / sizeof(VALUE)) */
rb_control_frame_t *cfp;
struct rb_vm_tag *tag;
/* interrupt flags */
rb_atomic_t interrupt_flag;
rb_atomic_t interrupt_mask; /* size should match flag */
#if defined(USE_VM_CLOCK) && USE_VM_CLOCK
uint32_t checked_clock;
#endif
rb_fiber_t *fiber_ptr;
struct rb_thread_struct *thread_ptr;
/* storage (ec (fiber) local) */
struct rb_id_table *local_storage;
VALUE local_storage_recursive_hash;
VALUE local_storage_recursive_hash_for_trace;
/* Inheritable fiber storage. */
VALUE storage;
/* eval env */
const VALUE *root_lep;
VALUE root_svar;
/* trace information */
struct rb_trace_arg_struct *trace_arg;
/* temporary places */
VALUE errinfo;
VALUE passed_block_handler; /* for rb_iterate */
uint8_t raised_flag; /* only 3 bits needed */
/* n.b. only 7 bits needed, really: */
BITFIELD(enum method_missing_reason, method_missing_reason, 8);
VALUE private_const_reference;
/* for GC */
struct {
VALUE *stack_start;
VALUE *stack_end;
size_t stack_maxsize;
RUBY_ALIGNAS(SIZEOF_VALUE) jmp_buf regs;
#ifdef RUBY_ASAN_ENABLED
void *asan_fake_stack_handle;
#endif
} machine;
};
#ifndef rb_execution_context_t
typedef struct rb_execution_context_struct rb_execution_context_t;
#define rb_execution_context_t rb_execution_context_t
#endif
// for builtin.h
#define VM_CORE_H_EC_DEFINED 1
// Set the vm_stack pointer in the execution context.
void rb_ec_set_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size);
// Initialize the vm_stack pointer in the execution context and push the initial stack frame.
// @param ec the execution context to update.
// @param stack a pointer to the stack to use.
// @param size the size of the stack, as in `VALUE stack[size]`.
void rb_ec_initialize_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size);
// Clear (set to `NULL`) the vm_stack pointer.
// @param ec the execution context to update.
void rb_ec_clear_vm_stack(rb_execution_context_t *ec);
struct rb_ext_config {
bool ractor_safe;
};
typedef struct rb_ractor_struct rb_ractor_t;
struct rb_native_thread;
typedef struct rb_thread_struct {
struct ccan_list_node lt_node; // managed by a ractor
VALUE self;
rb_ractor_t *ractor;
rb_vm_t *vm;
struct rb_native_thread *nt;
rb_execution_context_t *ec;
struct rb_thread_sched_item sched;
bool mn_schedulable;
rb_atomic_t serial; // only for RUBY_DEBUG_LOG()
VALUE last_status; /* $? */
/* for cfunc */
struct rb_calling_info *calling;
/* for load(true) */
VALUE top_self;
VALUE top_wrapper;
/* thread control */
BITFIELD(enum rb_thread_status, status, 2);
/* bit flags */
unsigned int has_dedicated_nt : 1;
unsigned int to_kill : 1;
unsigned int abort_on_exception: 1;
unsigned int report_on_exception: 1;
unsigned int pending_interrupt_queue_checked: 1;
int8_t priority; /* -3 .. 3 (RUBY_THREAD_PRIORITY_{MIN,MAX}) */
uint32_t running_time_us; /* 12500..800000 */
void *blocking_region_buffer;
VALUE thgroup;
VALUE value;
/* temporary place of retval on OPT_CALL_THREADED_CODE */
#if OPT_CALL_THREADED_CODE
VALUE retval;
#endif
/* async errinfo queue */
VALUE pending_interrupt_queue;
VALUE pending_interrupt_mask_stack;
/* interrupt management */
rb_nativethread_lock_t interrupt_lock;
struct rb_unblock_callback unblock;
VALUE locking_mutex;
struct rb_mutex_struct *keeping_mutexes;
struct rb_waiting_list *join_list;
union {
struct {
VALUE proc;
VALUE args;
int kw_splat;
} proc;
struct {
VALUE (*func)(void *);
void *arg;
} func;
} invoke_arg;
enum thread_invoke_type {
thread_invoke_type_none = 0,
thread_invoke_type_proc,
thread_invoke_type_ractor_proc,
thread_invoke_type_func
} invoke_type;
/* statistics data for profiler */
VALUE stat_insn_usage;
/* fiber */
rb_fiber_t *root_fiber;
VALUE scheduler;
unsigned int blocking;
/* misc */
VALUE name;
void **specific_storage;
struct rb_ext_config ext_config;
} rb_thread_t;
static inline unsigned int
rb_th_serial(const rb_thread_t *th)
{
return th ? (unsigned int)th->serial : 0;
}
typedef enum {
VM_DEFINECLASS_TYPE_CLASS = 0x00,
VM_DEFINECLASS_TYPE_SINGLETON_CLASS = 0x01,
VM_DEFINECLASS_TYPE_MODULE = 0x02,
/* 0x03..0x06 is reserved */
VM_DEFINECLASS_TYPE_MASK = 0x07
} rb_vm_defineclass_type_t;
#define VM_DEFINECLASS_TYPE(x) ((rb_vm_defineclass_type_t)(x) & VM_DEFINECLASS_TYPE_MASK)
#define VM_DEFINECLASS_FLAG_SCOPED 0x08
#define VM_DEFINECLASS_FLAG_HAS_SUPERCLASS 0x10
#define VM_DEFINECLASS_SCOPED_P(x) ((x) & VM_DEFINECLASS_FLAG_SCOPED)
#define VM_DEFINECLASS_HAS_SUPERCLASS_P(x) \
((x) & VM_DEFINECLASS_FLAG_HAS_SUPERCLASS)
/* iseq.c */
RUBY_SYMBOL_EXPORT_BEGIN
/* node -> iseq */
rb_iseq_t *rb_iseq_new (const VALUE ast_value, VALUE name, VALUE path, VALUE realpath, const rb_iseq_t *parent, enum rb_iseq_type);
rb_iseq_t *rb_iseq_new_top (const VALUE ast_value, VALUE name, VALUE path, VALUE realpath, const rb_iseq_t *parent);
rb_iseq_t *rb_iseq_new_main (const VALUE ast_value, VALUE path, VALUE realpath, const rb_iseq_t *parent, int opt);
rb_iseq_t *rb_iseq_new_eval (const VALUE ast_value, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, int isolated_depth);
rb_iseq_t *rb_iseq_new_with_opt( VALUE ast_value, VALUE name, VALUE path, VALUE realpath, int first_lineno, const rb_iseq_t *parent, int isolated_depth,
enum rb_iseq_type, const rb_compile_option_t*,
VALUE script_lines);
struct iseq_link_anchor;
struct rb_iseq_new_with_callback_callback_func {
VALUE flags;
VALUE reserved;
void (*func)(rb_iseq_t *, struct iseq_link_anchor *, const void *);
const void *data;
};
static inline struct rb_iseq_new_with_callback_callback_func *
rb_iseq_new_with_callback_new_callback(
void (*func)(rb_iseq_t *, struct iseq_link_anchor *, const void *), const void *ptr)
{
struct rb_iseq_new_with_callback_callback_func *memo =
IMEMO_NEW(struct rb_iseq_new_with_callback_callback_func, imemo_ifunc, Qfalse);
memo->func = func;
memo->data = ptr;
return memo;
}
rb_iseq_t *rb_iseq_new_with_callback(const struct rb_iseq_new_with_callback_callback_func * ifunc,
VALUE name, VALUE path, VALUE realpath, int first_lineno,
const rb_iseq_t *parent, enum rb_iseq_type, const rb_compile_option_t*);
VALUE rb_iseq_disasm(const rb_iseq_t *iseq);
int rb_iseq_disasm_insn(VALUE str, const VALUE *iseqval, size_t pos, const rb_iseq_t *iseq, VALUE child);
VALUE rb_iseq_coverage(const rb_iseq_t *iseq);
RUBY_EXTERN VALUE rb_cISeq;
RUBY_EXTERN VALUE rb_cRubyVM;
RUBY_EXTERN VALUE rb_mRubyVMFrozenCore;
RUBY_EXTERN VALUE rb_block_param_proxy;
RUBY_SYMBOL_EXPORT_END
#define GetProcPtr(obj, ptr) \
GetCoreDataFromValue((obj), rb_proc_t, (ptr))
typedef struct {
const struct rb_block block;
unsigned int is_from_method: 1; /* bool */
unsigned int is_lambda: 1; /* bool */
unsigned int is_isolated: 1; /* bool */
} rb_proc_t;
RUBY_SYMBOL_EXPORT_BEGIN
VALUE rb_proc_isolate(VALUE self);
VALUE rb_proc_isolate_bang(VALUE self);
VALUE rb_proc_ractor_make_shareable(VALUE self);
RUBY_SYMBOL_EXPORT_END
typedef struct {
VALUE flags; /* imemo header */
rb_iseq_t *iseq;
const VALUE *ep;
const VALUE *env;
unsigned int env_size;
} rb_env_t;
extern const rb_data_type_t ruby_binding_data_type;
#define GetBindingPtr(obj, ptr) \
GetCoreDataFromValue((obj), rb_binding_t, (ptr))
typedef struct {
const struct rb_block block;
const VALUE pathobj;
int first_lineno;
} rb_binding_t;
/* used by compile time and send insn */
enum vm_check_match_type {
VM_CHECKMATCH_TYPE_WHEN = 1,
VM_CHECKMATCH_TYPE_CASE = 2,
VM_CHECKMATCH_TYPE_RESCUE = 3
};
#define VM_CHECKMATCH_TYPE_MASK 0x03
#define VM_CHECKMATCH_ARRAY 0x04
enum vm_opt_newarray_send_type {
VM_OPT_NEWARRAY_SEND_MAX = 1,
VM_OPT_NEWARRAY_SEND_MIN = 2,
VM_OPT_NEWARRAY_SEND_HASH = 3,
VM_OPT_NEWARRAY_SEND_PACK = 4,
VM_OPT_NEWARRAY_SEND_PACK_BUFFER = 5,
};
enum vm_special_object_type {
VM_SPECIAL_OBJECT_VMCORE = 1,
VM_SPECIAL_OBJECT_CBASE,
VM_SPECIAL_OBJECT_CONST_BASE
};
enum vm_svar_index {
VM_SVAR_LASTLINE = 0, /* $_ */
VM_SVAR_BACKREF = 1, /* $~ */
VM_SVAR_EXTRA_START = 2,
VM_SVAR_FLIPFLOP_START = 2 /* flipflop */
};
/* inline cache */
typedef struct iseq_inline_constant_cache *IC;
typedef struct iseq_inline_iv_cache_entry *IVC;
typedef struct iseq_inline_cvar_cache_entry *ICVARC;
typedef union iseq_inline_storage_entry *ISE;
typedef const struct rb_callinfo *CALL_INFO;
typedef const struct rb_callcache *CALL_CACHE;
typedef struct rb_call_data *CALL_DATA;
typedef VALUE CDHASH;
#ifndef FUNC_FASTCALL
#define FUNC_FASTCALL(x) x
#endif
typedef rb_control_frame_t *
(FUNC_FASTCALL(*rb_insn_func_t))(rb_execution_context_t *, rb_control_frame_t *);
#define VM_TAGGED_PTR_SET(p, tag) ((VALUE)(p) | (tag))
#define VM_TAGGED_PTR_REF(v, mask) ((void *)((v) & ~mask))
#define GC_GUARDED_PTR(p) VM_TAGGED_PTR_SET((p), 0x01)
#define GC_GUARDED_PTR_REF(p) VM_TAGGED_PTR_REF((p), 0x03)
#define GC_GUARDED_PTR_P(p) (((VALUE)(p)) & 0x01)
enum vm_frame_env_flags {
/* Frame/Environment flag bits:
* MMMM MMMM MMMM MMMM ____ FFFF FFFE EEEX (LSB)
*
* X : tag for GC marking (It seems as Fixnum)
* EEE : 4 bits Env flags
* FF..: 7 bits Frame flags
* MM..: 15 bits frame magic (to check frame corruption)
*/
/* frame types */
VM_FRAME_MAGIC_METHOD = 0x11110001,
VM_FRAME_MAGIC_BLOCK = 0x22220001,
VM_FRAME_MAGIC_CLASS = 0x33330001,
VM_FRAME_MAGIC_TOP = 0x44440001,
VM_FRAME_MAGIC_CFUNC = 0x55550001,
VM_FRAME_MAGIC_IFUNC = 0x66660001,
VM_FRAME_MAGIC_EVAL = 0x77770001,
VM_FRAME_MAGIC_RESCUE = 0x78880001,
VM_FRAME_MAGIC_DUMMY = 0x79990001,
VM_FRAME_MAGIC_MASK = 0x7fff0001,
/* frame flag */
VM_FRAME_FLAG_FINISH = 0x0020,
VM_FRAME_FLAG_BMETHOD = 0x0040,
VM_FRAME_FLAG_CFRAME = 0x0080,
VM_FRAME_FLAG_LAMBDA = 0x0100,
VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM = 0x0200,
VM_FRAME_FLAG_CFRAME_KW = 0x0400,
VM_FRAME_FLAG_PASSED = 0x0800,
/* env flag */
VM_ENV_FLAG_LOCAL = 0x0002,
VM_ENV_FLAG_ESCAPED = 0x0004,
VM_ENV_FLAG_WB_REQUIRED = 0x0008,
VM_ENV_FLAG_ISOLATED = 0x0010,
};
#define VM_ENV_DATA_SIZE ( 3)
#define VM_ENV_DATA_INDEX_ME_CREF (-2) /* ep[-2] */
#define VM_ENV_DATA_INDEX_SPECVAL (-1) /* ep[-1] */
#define VM_ENV_DATA_INDEX_FLAGS ( 0) /* ep[ 0] */
#define VM_ENV_DATA_INDEX_ENV ( 1) /* ep[ 1] */
#define VM_ENV_INDEX_LAST_LVAR (-VM_ENV_DATA_SIZE)
static inline void VM_FORCE_WRITE_SPECIAL_CONST(const VALUE *ptr, VALUE special_const_value);
static inline void
VM_ENV_FLAGS_SET(const VALUE *ep, VALUE flag)
{
VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
VM_ASSERT(FIXNUM_P(flags));
VM_FORCE_WRITE_SPECIAL_CONST(&ep[VM_ENV_DATA_INDEX_FLAGS], flags | flag);
}
static inline void
VM_ENV_FLAGS_UNSET(const VALUE *ep, VALUE flag)
{
VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
VM_ASSERT(FIXNUM_P(flags));
VM_FORCE_WRITE_SPECIAL_CONST(&ep[VM_ENV_DATA_INDEX_FLAGS], flags & ~flag);
}
static inline unsigned long
VM_ENV_FLAGS(const VALUE *ep, long flag)
{
VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
VM_ASSERT(FIXNUM_P(flags));
return flags & flag;
}
static inline unsigned long
VM_FRAME_TYPE(const rb_control_frame_t *cfp)
{
return VM_ENV_FLAGS(cfp->ep, VM_FRAME_MAGIC_MASK);
}
static inline int
VM_FRAME_LAMBDA_P(const rb_control_frame_t *cfp)
{
return VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_LAMBDA) != 0;
}
static inline int
VM_FRAME_CFRAME_KW_P(const rb_control_frame_t *cfp)
{
return VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_CFRAME_KW) != 0;
}
static inline int
VM_FRAME_FINISHED_P(const rb_control_frame_t *cfp)
{
return VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_FINISH) != 0;
}
static inline int
VM_FRAME_BMETHOD_P(const rb_control_frame_t *cfp)
{
return VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_BMETHOD) != 0;
}
static inline int
rb_obj_is_iseq(VALUE iseq)
{
return imemo_type_p(iseq, imemo_iseq);
}
#if VM_CHECK_MODE > 0
#define RUBY_VM_NORMAL_ISEQ_P(iseq) rb_obj_is_iseq((VALUE)iseq)
#endif
static inline int
VM_FRAME_CFRAME_P(const rb_control_frame_t *cfp)
{
int cframe_p = VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_CFRAME) != 0;
VM_ASSERT(RUBY_VM_NORMAL_ISEQ_P(cfp->iseq) != cframe_p ||
(VM_FRAME_TYPE(cfp) & VM_FRAME_MAGIC_MASK) == VM_FRAME_MAGIC_DUMMY);
return cframe_p;
}
static inline int
VM_FRAME_RUBYFRAME_P(const rb_control_frame_t *cfp)
{
return !VM_FRAME_CFRAME_P(cfp);
}
#define RUBYVM_CFUNC_FRAME_P(cfp) \
(VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_CFUNC)
#define VM_GUARDED_PREV_EP(ep) GC_GUARDED_PTR(ep)
#define VM_BLOCK_HANDLER_NONE 0
static inline int
VM_ENV_LOCAL_P(const VALUE *ep)
{
return VM_ENV_FLAGS(ep, VM_ENV_FLAG_LOCAL) ? 1 : 0;
}
static inline const VALUE *
VM_ENV_PREV_EP(const VALUE *ep)
{
VM_ASSERT(VM_ENV_LOCAL_P(ep) == 0);
return GC_GUARDED_PTR_REF(ep[VM_ENV_DATA_INDEX_SPECVAL]);
}
static inline VALUE
VM_ENV_BLOCK_HANDLER(const VALUE *ep)
{
VM_ASSERT(VM_ENV_LOCAL_P(ep));
return ep[VM_ENV_DATA_INDEX_SPECVAL];
}
#if VM_CHECK_MODE > 0
int rb_vm_ep_in_heap_p(const VALUE *ep);
#endif
static inline int
VM_ENV_ESCAPED_P(const VALUE *ep)
{
VM_ASSERT(rb_vm_ep_in_heap_p(ep) == !!VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED));
return VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED) ? 1 : 0;
}
#if VM_CHECK_MODE > 0
static inline int
vm_assert_env(VALUE obj)
{
VM_ASSERT(imemo_type_p(obj, imemo_env));
return 1;
}
#endif
RBIMPL_ATTR_NONNULL((1))
static inline VALUE
VM_ENV_ENVVAL(const VALUE *ep)
{
VALUE envval = ep[VM_ENV_DATA_INDEX_ENV];
VM_ASSERT(VM_ENV_ESCAPED_P(ep));
VM_ASSERT(vm_assert_env(envval));
return envval;
}
RBIMPL_ATTR_NONNULL((1))
static inline const rb_env_t *
VM_ENV_ENVVAL_PTR(const VALUE *ep)
{
return (const rb_env_t *)VM_ENV_ENVVAL(ep);
}
static inline const rb_env_t *
vm_env_new(VALUE *env_ep, VALUE *env_body, unsigned int env_size, const rb_iseq_t *iseq)
{
rb_env_t *env = IMEMO_NEW(rb_env_t, imemo_env, (VALUE)iseq);
env->ep = env_ep;
env->env = env_body;
env->env_size = env_size;
env_ep[VM_ENV_DATA_INDEX_ENV] = (VALUE)env;
return env;
}
static inline void
VM_FORCE_WRITE(const VALUE *ptr, VALUE v)
{
*((VALUE *)ptr) = v;
}
static inline void
VM_FORCE_WRITE_SPECIAL_CONST(const VALUE *ptr, VALUE special_const_value)
{
VM_ASSERT(RB_SPECIAL_CONST_P(special_const_value));
VM_FORCE_WRITE(ptr, special_const_value);
}
static inline void
VM_STACK_ENV_WRITE(const VALUE *ep, int index, VALUE v)
{
VM_ASSERT(VM_ENV_FLAGS(ep, VM_ENV_FLAG_WB_REQUIRED) == 0);
VM_FORCE_WRITE(&ep[index], v);
}
const VALUE *rb_vm_ep_local_ep(const VALUE *ep);
const VALUE *rb_vm_proc_local_ep(VALUE proc);
void rb_vm_block_ep_update(VALUE obj, const struct rb_block *dst, const VALUE *ep);
void rb_vm_block_copy(VALUE obj, const struct rb_block *dst, const struct rb_block *src);
VALUE rb_vm_frame_block_handler(const rb_control_frame_t *cfp);
#define RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp) ((cfp)+1)
#define RUBY_VM_NEXT_CONTROL_FRAME(cfp) ((cfp)-1)
#define RUBY_VM_VALID_CONTROL_FRAME_P(cfp, ecfp) \
((void *)(ecfp) > (void *)(cfp))
static inline const rb_control_frame_t *
RUBY_VM_END_CONTROL_FRAME(const rb_execution_context_t *ec)
{
return (rb_control_frame_t *)(ec->vm_stack + ec->vm_stack_size);
}
static inline int
RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
return !RUBY_VM_VALID_CONTROL_FRAME_P(cfp, RUBY_VM_END_CONTROL_FRAME(ec));
}
static inline int
VM_BH_ISEQ_BLOCK_P(VALUE block_handler)
{
if ((block_handler & 0x03) == 0x01) {
#if VM_CHECK_MODE > 0
struct rb_captured_block *captured = VM_TAGGED_PTR_REF(block_handler, 0x03);
VM_ASSERT(imemo_type_p(captured->code.val, imemo_iseq));
#endif
return 1;
}
else {
return 0;
}
}
static inline VALUE
VM_BH_FROM_ISEQ_BLOCK(const struct rb_captured_block *captured)
{
VALUE block_handler = VM_TAGGED_PTR_SET(captured, 0x01);
VM_ASSERT(VM_BH_ISEQ_BLOCK_P(block_handler));
return block_handler;
}
static inline const struct rb_captured_block *
VM_BH_TO_ISEQ_BLOCK(VALUE block_handler)
{
struct rb_captured_block *captured = VM_TAGGED_PTR_REF(block_handler, 0x03);
VM_ASSERT(VM_BH_ISEQ_BLOCK_P(block_handler));
return captured;
}
static inline int
VM_BH_IFUNC_P(VALUE block_handler)
{
if ((block_handler & 0x03) == 0x03) {
#if VM_CHECK_MODE > 0
struct rb_captured_block *captured = (void *)(block_handler & ~0x03);
VM_ASSERT(imemo_type_p(captured->code.val, imemo_ifunc));
#endif
return 1;
}
else {
return 0;
}
}
static inline VALUE
VM_BH_FROM_IFUNC_BLOCK(const struct rb_captured_block *captured)
{
VALUE block_handler = VM_TAGGED_PTR_SET(captured, 0x03);
VM_ASSERT(VM_BH_IFUNC_P(block_handler));
return block_handler;
}
static inline const struct rb_captured_block *
VM_BH_TO_IFUNC_BLOCK(VALUE block_handler)
{
struct rb_captured_block *captured = VM_TAGGED_PTR_REF(block_handler, 0x03);
VM_ASSERT(VM_BH_IFUNC_P(block_handler));
return captured;
}
static inline const struct rb_captured_block *
VM_BH_TO_CAPT_BLOCK(VALUE block_handler)
{
struct rb_captured_block *captured = VM_TAGGED_PTR_REF(block_handler, 0x03);
VM_ASSERT(VM_BH_IFUNC_P(block_handler) || VM_BH_ISEQ_BLOCK_P(block_handler));
return captured;
}
static inline enum rb_block_handler_type
vm_block_handler_type(VALUE block_handler)
{
if (VM_BH_ISEQ_BLOCK_P(block_handler)) {
return block_handler_type_iseq;
}
else if (VM_BH_IFUNC_P(block_handler)) {
return block_handler_type_ifunc;
}
else if (SYMBOL_P(block_handler)) {
return block_handler_type_symbol;
}
else {
VM_ASSERT(rb_obj_is_proc(block_handler));
return block_handler_type_proc;
}
}
static inline void
vm_block_handler_verify(MAYBE_UNUSED(VALUE block_handler))
{
VM_ASSERT(block_handler == VM_BLOCK_HANDLER_NONE ||
(vm_block_handler_type(block_handler), 1));
}
static inline enum rb_block_type
vm_block_type(const struct rb_block *block)
{
#if VM_CHECK_MODE > 0
switch (block->type) {
case block_type_iseq:
VM_ASSERT(imemo_type_p(block->as.captured.code.val, imemo_iseq));
break;
case block_type_ifunc:
VM_ASSERT(imemo_type_p(block->as.captured.code.val, imemo_ifunc));
break;
case block_type_symbol:
VM_ASSERT(SYMBOL_P(block->as.symbol));
break;
case block_type_proc:
VM_ASSERT(rb_obj_is_proc(block->as.proc));
break;
}
#endif
return block->type;
}
static inline void
vm_block_type_set(const struct rb_block *block, enum rb_block_type type)
{
struct rb_block *mb = (struct rb_block *)block;
mb->type = type;
}
static inline const struct rb_block *
vm_proc_block(VALUE procval)
{
VM_ASSERT(rb_obj_is_proc(procval));
return &((rb_proc_t *)RTYPEDDATA_DATA(procval))->block;
}
static inline const rb_iseq_t *vm_block_iseq(const struct rb_block *block);
static inline const VALUE *vm_block_ep(const struct rb_block *block);
static inline const rb_iseq_t *
vm_proc_iseq(VALUE procval)
{
return vm_block_iseq(vm_proc_block(procval));
}
static inline const VALUE *
vm_proc_ep(VALUE procval)
{
return vm_block_ep(vm_proc_block(procval));
}
static inline const rb_iseq_t *
vm_block_iseq(const struct rb_block *block)
{
switch (vm_block_type(block)) {
case block_type_iseq: return rb_iseq_check(block->as.captured.code.iseq);
case block_type_proc: return vm_proc_iseq(block->as.proc);
case block_type_ifunc:
case block_type_symbol: return NULL;
}
VM_UNREACHABLE(vm_block_iseq);
return NULL;
}
static inline const VALUE *
vm_block_ep(const struct rb_block *block)
{
switch (vm_block_type(block)) {
case block_type_iseq:
case block_type_ifunc: return block->as.captured.ep;
case block_type_proc: return vm_proc_ep(block->as.proc);
case block_type_symbol: return NULL;
}
VM_UNREACHABLE(vm_block_ep);
return NULL;
}
static inline VALUE
vm_block_self(const struct rb_block *block)
{
switch (vm_block_type(block)) {
case block_type_iseq:
case block_type_ifunc:
return block->as.captured.self;
case block_type_proc:
return vm_block_self(vm_proc_block(block->as.proc));
case block_type_symbol:
return Qundef;
}
VM_UNREACHABLE(vm_block_self);
return Qundef;
}
static inline VALUE
VM_BH_TO_SYMBOL(VALUE block_handler)
{
VM_ASSERT(SYMBOL_P(block_handler));
return block_handler;
}
static inline VALUE
VM_BH_FROM_SYMBOL(VALUE symbol)
{
VM_ASSERT(SYMBOL_P(symbol));
return symbol;
}
static inline VALUE
VM_BH_TO_PROC(VALUE block_handler)
{
VM_ASSERT(rb_obj_is_proc(block_handler));
return block_handler;
}
static inline VALUE
VM_BH_FROM_PROC(VALUE procval)
{
VM_ASSERT(rb_obj_is_proc(procval));
return procval;
}
/* VM related object allocate functions */
VALUE rb_thread_alloc(VALUE klass);
VALUE rb_binding_alloc(VALUE klass);
VALUE rb_proc_alloc(VALUE klass);
VALUE rb_proc_dup(VALUE self);
/* for debug */
extern bool rb_vmdebug_stack_dump_raw(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, FILE *);
extern bool rb_vmdebug_debug_print_pre(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, const VALUE *_pc, FILE *);
extern bool rb_vmdebug_debug_print_post(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, FILE *);
#define SDR() rb_vmdebug_stack_dump_raw(GET_EC(), GET_EC()->cfp, stderr)
#define SDR2(cfp) rb_vmdebug_stack_dump_raw(GET_EC(), (cfp), stderr)
bool rb_vm_bugreport(const void *, FILE *);
typedef void (*ruby_sighandler_t)(int);
RBIMPL_ATTR_FORMAT(RBIMPL_PRINTF_FORMAT, 4, 5)
NORETURN(void rb_bug_for_fatal_signal(ruby_sighandler_t default_sighandler, int sig, const void *, const char *fmt, ...));
/* functions about thread/vm execution */
RUBY_SYMBOL_EXPORT_BEGIN
VALUE rb_iseq_eval(const rb_iseq_t *iseq);
VALUE rb_iseq_eval_main(const rb_iseq_t *iseq);
VALUE rb_iseq_path(const rb_iseq_t *iseq);
VALUE rb_iseq_realpath(const rb_iseq_t *iseq);
RUBY_SYMBOL_EXPORT_END
VALUE rb_iseq_pathobj_new(VALUE path, VALUE realpath);
void rb_iseq_pathobj_set(const rb_iseq_t *iseq, VALUE path, VALUE realpath);
int rb_ec_frame_method_id_and_class(const rb_execution_context_t *ec, ID *idp, ID *called_idp, VALUE *klassp);
void rb_ec_setup_exception(const rb_execution_context_t *ec, VALUE mesg, VALUE cause);
VALUE rb_vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, int argc, const VALUE *argv, int kw_splat, VALUE block_handler);
VALUE rb_vm_make_proc_lambda(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass, int8_t is_lambda);
static inline VALUE
rb_vm_make_proc(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass)
{
return rb_vm_make_proc_lambda(ec, captured, klass, 0);
}
static inline VALUE
rb_vm_make_lambda(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass)
{
return rb_vm_make_proc_lambda(ec, captured, klass, 1);
}
VALUE rb_vm_make_binding(const rb_execution_context_t *ec, const rb_control_frame_t *src_cfp);
VALUE rb_vm_env_local_variables(const rb_env_t *env);
const rb_env_t *rb_vm_env_prev_env(const rb_env_t *env);
const VALUE *rb_binding_add_dynavars(VALUE bindval, rb_binding_t *bind, int dyncount, const ID *dynvars);
void rb_vm_inc_const_missing_count(void);
VALUE rb_vm_call_kw(rb_execution_context_t *ec, VALUE recv, VALUE id, int argc,
const VALUE *argv, const rb_callable_method_entry_t *me, int kw_splat);
void rb_vm_pop_frame_no_int(rb_execution_context_t *ec);
void rb_vm_pop_frame(rb_execution_context_t *ec);
void rb_thread_start_timer_thread(void);
void rb_thread_stop_timer_thread(void);
void rb_thread_reset_timer_thread(void);
void rb_thread_wakeup_timer_thread(int);
static inline void
rb_vm_living_threads_init(rb_vm_t *vm)
{
ccan_list_head_init(&vm->waiting_fds);
ccan_list_head_init(&vm->workqueue);
ccan_list_head_init(&vm->ractor.set);
ccan_list_head_init(&vm->ractor.sched.zombie_threads);
}
typedef int rb_backtrace_iter_func(void *, VALUE, int, VALUE);
rb_control_frame_t *rb_vm_get_ruby_level_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp);
rb_control_frame_t *rb_vm_get_binding_creatable_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp);
VALUE *rb_vm_svar_lep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp);
int rb_vm_get_sourceline(const rb_control_frame_t *);
void rb_vm_stack_to_heap(rb_execution_context_t *ec);
void ruby_thread_init_stack(rb_thread_t *th, void *local_in_parent_frame);
rb_thread_t * ruby_thread_from_native(void);
int ruby_thread_set_native(rb_thread_t *th);
int rb_vm_control_frame_id_and_class(const rb_control_frame_t *cfp, ID *idp, ID *called_idp, VALUE *klassp);
void rb_vm_rewind_cfp(rb_execution_context_t *ec, rb_control_frame_t *cfp);
void rb_vm_env_write(const VALUE *ep, int index, VALUE v);
VALUE rb_vm_bh_to_procval(const rb_execution_context_t *ec, VALUE block_handler);
void rb_vm_register_special_exception_str(enum ruby_special_exceptions sp, VALUE exception_class, VALUE mesg);
#define rb_vm_register_special_exception(sp, e, m) \
rb_vm_register_special_exception_str(sp, e, rb_usascii_str_new_static((m), (long)rb_strlen_lit(m)))
void rb_gc_mark_machine_context(const rb_execution_context_t *ec);
void rb_vm_rewrite_cref(rb_cref_t *node, VALUE old_klass, VALUE new_klass, rb_cref_t **new_cref_ptr);
const rb_callable_method_entry_t *rb_vm_frame_method_entry(const rb_control_frame_t *cfp);
#define sysstack_error GET_VM()->special_exceptions[ruby_error_sysstack]
#define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) do { \
STATIC_ASSERT(sizeof_sp, sizeof(*(sp)) == sizeof(VALUE)); \
STATIC_ASSERT(sizeof_cfp, sizeof(*(cfp)) == sizeof(rb_control_frame_t)); \
const struct rb_control_frame_struct *bound = (void *)&(sp)[(margin)]; \
if (UNLIKELY((cfp) <= &bound[1])) { \
vm_stackoverflow(); \
} \
} while (0)
#define CHECK_VM_STACK_OVERFLOW(cfp, margin) \
CHECK_VM_STACK_OVERFLOW0((cfp), (cfp)->sp, (margin))
VALUE rb_catch_protect(VALUE t, rb_block_call_func *func, VALUE data, enum ruby_tag_type *stateptr);
rb_execution_context_t *rb_vm_main_ractor_ec(rb_vm_t *vm); // ractor.c
/* for thread */
#if RUBY_VM_THREAD_MODEL == 2
RUBY_EXTERN struct rb_ractor_struct *ruby_single_main_ractor; // ractor.c
RUBY_EXTERN rb_vm_t *ruby_current_vm_ptr;
RUBY_EXTERN rb_event_flag_t ruby_vm_event_flags;
RUBY_EXTERN rb_event_flag_t ruby_vm_event_enabled_global_flags;
RUBY_EXTERN unsigned int ruby_vm_event_local_num;
#define GET_VM() rb_current_vm()
#define GET_RACTOR() rb_current_ractor()
#define GET_THREAD() rb_current_thread()
#define GET_EC() rb_current_execution_context(true)
static inline rb_thread_t *
rb_ec_thread_ptr(const rb_execution_context_t *ec)
{
return ec->thread_ptr;
}
static inline rb_ractor_t *
rb_ec_ractor_ptr(const rb_execution_context_t *ec)
{
const rb_thread_t *th = rb_ec_thread_ptr(ec);
if (th) {
VM_ASSERT(th->ractor != NULL);
return th->ractor;
}
else {
return NULL;
}
}
static inline rb_vm_t *
rb_ec_vm_ptr(const rb_execution_context_t *ec)
{
const rb_thread_t *th = rb_ec_thread_ptr(ec);
if (th) {
return th->vm;
}
else {
return NULL;
}
}
static inline rb_execution_context_t *
rb_current_execution_context(bool expect_ec)
{
#ifdef RB_THREAD_LOCAL_SPECIFIER
#ifdef __APPLE__
rb_execution_context_t *ec = rb_current_ec();
#else
rb_execution_context_t *ec = ruby_current_ec;
#endif
/* On the shared objects, `__tls_get_addr()` is used to access the TLS
* and the address of the `ruby_current_ec` can be stored on a function
* frame. However, this address can be mis-used after native thread
* migration of a coroutine.
* 1) Get `ptr =&ruby_current_ec` op NT1 and store it on the frame.
* 2) Context switch and resume it on the NT2.
* 3) `ptr` is used on NT2 but it accesses to the TLS on NT1.
* This assertion checks such misusage.
*
* To avoid accidents, `GET_EC()` should be called once on the frame.
* Note that inlining can produce the problem.
*/
VM_ASSERT(ec == rb_current_ec_noinline());
#else
rb_execution_context_t *ec = native_tls_get(ruby_current_ec_key);
#endif
VM_ASSERT(!expect_ec || ec != NULL);
return ec;
}
static inline rb_thread_t *
rb_current_thread(void)
{
const rb_execution_context_t *ec = GET_EC();
return rb_ec_thread_ptr(ec);
}
static inline rb_ractor_t *
rb_current_ractor_raw(bool expect)
{
if (ruby_single_main_ractor) {
return ruby_single_main_ractor;
}
else {
const rb_execution_context_t *ec = rb_current_execution_context(expect);
return (expect || ec) ? rb_ec_ractor_ptr(ec) : NULL;
}
}
static inline rb_ractor_t *
rb_current_ractor(void)
{
return rb_current_ractor_raw(true);
}
static inline rb_vm_t *
rb_current_vm(void)
{
#if 0 // TODO: reconsider the assertions
VM_ASSERT(ruby_current_vm_ptr == NULL ||
ruby_current_execution_context_ptr == NULL ||
rb_ec_thread_ptr(GET_EC()) == NULL ||
rb_ec_thread_ptr(GET_EC())->status == THREAD_KILLED ||
rb_ec_vm_ptr(GET_EC()) == ruby_current_vm_ptr);
#endif
return ruby_current_vm_ptr;
}
void rb_ec_vm_lock_rec_release(const rb_execution_context_t *ec,
unsigned int recorded_lock_rec,
unsigned int current_lock_rec);
static inline unsigned int
rb_ec_vm_lock_rec(const rb_execution_context_t *ec)
{
rb_vm_t *vm = rb_ec_vm_ptr(ec);
if (vm->ractor.sync.lock_owner != rb_ec_ractor_ptr(ec)) {
return 0;
}
else {
return vm->ractor.sync.lock_rec;
}
}
#else
#error "unsupported thread model"
#endif
enum {
TIMER_INTERRUPT_MASK = 0x01,
PENDING_INTERRUPT_MASK = 0x02,
POSTPONED_JOB_INTERRUPT_MASK = 0x04,
TRAP_INTERRUPT_MASK = 0x08,
TERMINATE_INTERRUPT_MASK = 0x10,
VM_BARRIER_INTERRUPT_MASK = 0x20,
};
#define RUBY_VM_SET_TIMER_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, TIMER_INTERRUPT_MASK)
#define RUBY_VM_SET_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, PENDING_INTERRUPT_MASK)
#define RUBY_VM_SET_POSTPONED_JOB_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, POSTPONED_JOB_INTERRUPT_MASK)
#define RUBY_VM_SET_TRAP_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, TRAP_INTERRUPT_MASK)
#define RUBY_VM_SET_TERMINATE_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, TERMINATE_INTERRUPT_MASK)
#define RUBY_VM_SET_VM_BARRIER_INTERRUPT(ec) ATOMIC_OR((ec)->interrupt_flag, VM_BARRIER_INTERRUPT_MASK)
#define RUBY_VM_INTERRUPTED(ec) ((ec)->interrupt_flag & ~(ec)->interrupt_mask & \
(PENDING_INTERRUPT_MASK|TRAP_INTERRUPT_MASK))
static inline bool
RUBY_VM_INTERRUPTED_ANY(rb_execution_context_t *ec)
{
#if defined(USE_VM_CLOCK) && USE_VM_CLOCK
uint32_t current_clock = rb_ec_vm_ptr(ec)->clock;
if (current_clock != ec->checked_clock) {
ec->checked_clock = current_clock;
RUBY_VM_SET_TIMER_INTERRUPT(ec);
}
#endif
return ec->interrupt_flag & ~(ec)->interrupt_mask;
}
VALUE rb_exc_set_backtrace(VALUE exc, VALUE bt);
int rb_signal_buff_size(void);
int rb_signal_exec(rb_thread_t *th, int sig);
void rb_threadptr_check_signal(rb_thread_t *mth);
void rb_threadptr_signal_raise(rb_thread_t *th, int sig);
void rb_threadptr_signal_exit(rb_thread_t *th);
int rb_threadptr_execute_interrupts(rb_thread_t *, int);
void rb_threadptr_interrupt(rb_thread_t *th);
void rb_threadptr_unlock_all_locking_mutexes(rb_thread_t *th);
void rb_threadptr_pending_interrupt_clear(rb_thread_t *th);
void rb_threadptr_pending_interrupt_enque(rb_thread_t *th, VALUE v);
VALUE rb_ec_get_errinfo(const rb_execution_context_t *ec);
void rb_ec_error_print(rb_execution_context_t * volatile ec, volatile VALUE errinfo);
void rb_execution_context_update(rb_execution_context_t *ec);
void rb_execution_context_mark(const rb_execution_context_t *ec);
void rb_fiber_close(rb_fiber_t *fib);
void Init_native_thread(rb_thread_t *th);
int rb_vm_check_ints_blocking(rb_execution_context_t *ec);
// vm_sync.h
void rb_vm_cond_wait(rb_vm_t *vm, rb_nativethread_cond_t *cond);
void rb_vm_cond_timedwait(rb_vm_t *vm, rb_nativethread_cond_t *cond, unsigned long msec);
#define RUBY_VM_CHECK_INTS(ec) rb_vm_check_ints(ec)
static inline void
rb_vm_check_ints(rb_execution_context_t *ec)
{
#ifdef RUBY_ASSERT_CRITICAL_SECTION
VM_ASSERT(ruby_assert_critical_section_entered == 0);
#endif
VM_ASSERT(ec == GET_EC());
if (UNLIKELY(RUBY_VM_INTERRUPTED_ANY(ec))) {
rb_threadptr_execute_interrupts(rb_ec_thread_ptr(ec), 0);
}
}
/* tracer */
struct rb_trace_arg_struct {
rb_event_flag_t event;
rb_execution_context_t *ec;
const rb_control_frame_t *cfp;
VALUE self;
ID id;
ID called_id;
VALUE klass;
VALUE data;
int klass_solved;
/* calc from cfp */
int lineno;
VALUE path;
};
void rb_hook_list_mark(rb_hook_list_t *hooks);
void rb_hook_list_mark_and_update(rb_hook_list_t *hooks);
void rb_hook_list_free(rb_hook_list_t *hooks);
void rb_hook_list_connect_tracepoint(VALUE target, rb_hook_list_t *list, VALUE tpval, unsigned int target_line);
void rb_hook_list_remove_tracepoint(rb_hook_list_t *list, VALUE tpval);
void rb_exec_event_hooks(struct rb_trace_arg_struct *trace_arg, rb_hook_list_t *hooks, int pop_p);
#define EXEC_EVENT_HOOK_ORIG(ec_, hooks_, flag_, self_, id_, called_id_, klass_, data_, pop_p_) do { \
const rb_event_flag_t flag_arg_ = (flag_); \
rb_hook_list_t *hooks_arg_ = (hooks_); \
if (UNLIKELY((hooks_arg_)->events & (flag_arg_))) { \
/* defer evaluating the other arguments */ \
rb_exec_event_hook_orig(ec_, hooks_arg_, flag_arg_, self_, id_, called_id_, klass_, data_, pop_p_); \
} \
} while (0)
static inline void
rb_exec_event_hook_orig(rb_execution_context_t *ec, rb_hook_list_t *hooks, rb_event_flag_t flag,
VALUE self, ID id, ID called_id, VALUE klass, VALUE data, int pop_p)
{
struct rb_trace_arg_struct trace_arg;
VM_ASSERT((hooks->events & flag) != 0);
trace_arg.event = flag;
trace_arg.ec = ec;
trace_arg.cfp = ec->cfp;
trace_arg.self = self;
trace_arg.id = id;
trace_arg.called_id = called_id;
trace_arg.klass = klass;
trace_arg.data = data;
trace_arg.path = Qundef;
trace_arg.klass_solved = 0;
rb_exec_event_hooks(&trace_arg, hooks, pop_p);
}
struct rb_ractor_pub {
VALUE self;
uint32_t id;
rb_hook_list_t hooks;
};
static inline rb_hook_list_t *
rb_ec_ractor_hooks(const rb_execution_context_t *ec)
{
struct rb_ractor_pub *cr_pub = (struct rb_ractor_pub *)rb_ec_ractor_ptr(ec);
return &cr_pub->hooks;
}
#define EXEC_EVENT_HOOK(ec_, flag_, self_, id_, called_id_, klass_, data_) \
EXEC_EVENT_HOOK_ORIG(ec_, rb_ec_ractor_hooks(ec_), flag_, self_, id_, called_id_, klass_, data_, 0)
#define EXEC_EVENT_HOOK_AND_POP_FRAME(ec_, flag_, self_, id_, called_id_, klass_, data_) \
EXEC_EVENT_HOOK_ORIG(ec_, rb_ec_ractor_hooks(ec_), flag_, self_, id_, called_id_, klass_, data_, 1)
static inline void
rb_exec_event_hook_script_compiled(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE eval_script)
{
EXEC_EVENT_HOOK(ec, RUBY_EVENT_SCRIPT_COMPILED, ec->cfp->self, 0, 0, 0,
NIL_P(eval_script) ? (VALUE)iseq :
rb_ary_new_from_args(2, eval_script, (VALUE)iseq));
}
void rb_vm_trap_exit(rb_vm_t *vm);
void rb_vm_postponed_job_atfork(void); /* vm_trace.c */
void rb_vm_postponed_job_free(void); /* vm_trace.c */
size_t rb_vm_memsize_postponed_job_queue(void); /* vm_trace.c */
void rb_vm_postponed_job_queue_init(rb_vm_t *vm); /* vm_trace.c */
RUBY_SYMBOL_EXPORT_BEGIN
int rb_thread_check_trap_pending(void);
/* #define RUBY_EVENT_RESERVED_FOR_INTERNAL_USE 0x030000 */ /* from vm_core.h */
#define RUBY_EVENT_COVERAGE_LINE 0x010000
#define RUBY_EVENT_COVERAGE_BRANCH 0x020000
extern VALUE rb_get_coverages(void);
extern void rb_set_coverages(VALUE, int, VALUE);
extern void rb_clear_coverages(void);
extern void rb_reset_coverages(void);
extern void rb_resume_coverages(void);
extern void rb_suspend_coverages(void);
void rb_postponed_job_flush(rb_vm_t *vm);
// ractor.c
RUBY_EXTERN VALUE rb_eRactorUnsafeError;
RUBY_EXTERN VALUE rb_eRactorIsolationError;
RUBY_SYMBOL_EXPORT_END
#endif /* RUBY_VM_CORE_H */