ruby/marshal.c

1748 строки
40 KiB
C

/**********************************************************************
marshal.c -
$Author$
created at: Thu Apr 27 16:30:01 JST 1995
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/io.h"
#include "ruby/st.h"
#include "ruby/util.h"
#include "ruby/encoding.h"
#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#define BITSPERSHORT (2*CHAR_BIT)
#define SHORTMASK ((1<<BITSPERSHORT)-1)
#define SHORTDN(x) RSHIFT(x,BITSPERSHORT)
#if SIZEOF_SHORT == SIZEOF_BDIGITS
#define SHORTLEN(x) (x)
#else
static int
shortlen(long len, BDIGIT *ds)
{
BDIGIT num;
int offset = 0;
num = ds[len-1];
while (num) {
num = SHORTDN(num);
offset++;
}
return (len - 1)*sizeof(BDIGIT)/2 + offset;
}
#define SHORTLEN(x) shortlen((x),d)
#endif
#define MARSHAL_MAJOR 4
#define MARSHAL_MINOR 8
#define TYPE_NIL '0'
#define TYPE_TRUE 'T'
#define TYPE_FALSE 'F'
#define TYPE_FIXNUM 'i'
#define TYPE_EXTENDED 'e'
#define TYPE_UCLASS 'C'
#define TYPE_OBJECT 'o'
#define TYPE_DATA 'd'
#define TYPE_USERDEF 'u'
#define TYPE_USRMARSHAL 'U'
#define TYPE_FLOAT 'f'
#define TYPE_BIGNUM 'l'
#define TYPE_STRING '"'
#define TYPE_REGEXP '/'
#define TYPE_ARRAY '['
#define TYPE_HASH '{'
#define TYPE_HASH_DEF '}'
#define TYPE_STRUCT 'S'
#define TYPE_MODULE_OLD 'M'
#define TYPE_CLASS 'c'
#define TYPE_MODULE 'm'
#define TYPE_SYMBOL ':'
#define TYPE_SYMLINK ';'
#define TYPE_IVAR 'I'
#define TYPE_LINK '@'
static ID s_dump, s_load, s_mdump, s_mload;
static ID s_dump_data, s_load_data, s_alloc;
static ID s_getbyte, s_read, s_write, s_binmode;
ID rb_id_encoding(void);
typedef struct {
VALUE newclass;
VALUE oldclass;
VALUE (*dumper)(VALUE);
VALUE (*loader)(VALUE, VALUE);
} marshal_compat_t;
static st_table *compat_allocator_tbl;
static VALUE compat_allocator_tbl_wrapper;
static int
mark_marshal_compat_i(st_data_t key, st_data_t value)
{
marshal_compat_t *p = (marshal_compat_t *)value;
rb_gc_mark(p->newclass);
rb_gc_mark(p->oldclass);
return ST_CONTINUE;
}
static void
mark_marshal_compat_t(void *tbl)
{
if (!tbl) return;
st_foreach(tbl, mark_marshal_compat_i, 0);
}
void
rb_marshal_define_compat(VALUE newclass, VALUE oldclass, VALUE (*dumper)(VALUE), VALUE (*loader)(VALUE, VALUE))
{
marshal_compat_t *compat;
rb_alloc_func_t allocator = rb_get_alloc_func(newclass);
if (!allocator) {
rb_raise(rb_eTypeError, "no allocator");
}
compat = ALLOC(marshal_compat_t);
compat->newclass = Qnil;
compat->oldclass = Qnil;
compat->newclass = newclass;
compat->oldclass = oldclass;
compat->dumper = dumper;
compat->loader = loader;
st_insert(compat_allocator_tbl, (st_data_t)allocator, (st_data_t)compat);
}
struct dump_arg {
VALUE obj;
VALUE str, dest;
st_table *symbols;
st_table *data;
int taint;
int untrust;
st_table *compat_tbl;
VALUE wrapper;
st_table *encodings;
};
struct dump_call_arg {
VALUE obj;
struct dump_arg *arg;
int limit;
};
static void
check_dump_arg(struct dump_arg *arg)
{
if (!DATA_PTR(arg->wrapper)) {
rb_raise(rb_eRuntimeError, "Marshal.dump reentered");
}
}
static void
mark_dump_arg(void *ptr)
{
struct dump_arg *p = ptr;
if (!ptr)
return;
rb_mark_set(p->data);
rb_mark_hash(p->compat_tbl);
}
static VALUE
class2path(VALUE klass)
{
VALUE path = rb_class_path(klass);
char *n = RSTRING_PTR(path);
if (n[0] == '#') {
rb_raise(rb_eTypeError, "can't dump anonymous %s %s",
(TYPE(klass) == T_CLASS ? "class" : "module"),
n);
}
if (rb_path2class(n) != rb_class_real(klass)) {
rb_raise(rb_eTypeError, "%s can't be referred", n);
}
return path;
}
static void w_long(long, struct dump_arg*);
static void
w_nbyte(const char *s, int n, struct dump_arg *arg)
{
VALUE buf = arg->str;
rb_str_buf_cat(buf, s, n);
if (arg->dest && RSTRING_LEN(buf) >= BUFSIZ) {
if (arg->taint) OBJ_TAINT(buf);
if (arg->untrust) OBJ_UNTRUST(buf);
rb_io_write(arg->dest, buf);
rb_str_resize(buf, 0);
}
}
static void
w_byte(char c, struct dump_arg *arg)
{
w_nbyte(&c, 1, arg);
}
static void
w_bytes(const char *s, int n, struct dump_arg *arg)
{
w_long(n, arg);
w_nbyte(s, n, arg);
}
static void
w_short(int x, struct dump_arg *arg)
{
w_byte((char)((x >> 0) & 0xff), arg);
w_byte((char)((x >> 8) & 0xff), arg);
}
static void
w_long(long x, struct dump_arg *arg)
{
char buf[sizeof(long)+1];
int i, len = 0;
#if SIZEOF_LONG > 4
if (!(RSHIFT(x, 31) == 0 || RSHIFT(x, 31) == -1)) {
/* big long does not fit in 4 bytes */
rb_raise(rb_eTypeError, "long too big to dump");
}
#endif
if (x == 0) {
w_byte(0, arg);
return;
}
if (0 < x && x < 123) {
w_byte((char)(x + 5), arg);
return;
}
if (-124 < x && x < 0) {
w_byte((char)((x - 5)&0xff), arg);
return;
}
for (i=1;i<sizeof(long)+1;i++) {
buf[i] = x & 0xff;
x = RSHIFT(x,8);
if (x == 0) {
buf[0] = i;
break;
}
if (x == -1) {
buf[0] = -i;
break;
}
}
len = i;
for (i=0;i<=len;i++) {
w_byte(buf[i], arg);
}
}
#ifdef DBL_MANT_DIG
#define DECIMAL_MANT (53-16) /* from IEEE754 double precision */
#if DBL_MANT_DIG > 32
#define MANT_BITS 32
#elif DBL_MANT_DIG > 24
#define MANT_BITS 24
#elif DBL_MANT_DIG > 16
#define MANT_BITS 16
#else
#define MANT_BITS 8
#endif
static int
save_mantissa(double d, char *buf)
{
int e, i = 0;
unsigned long m;
double n;
d = modf(ldexp(frexp(fabs(d), &e), DECIMAL_MANT), &d);
if (d > 0) {
buf[i++] = 0;
do {
d = modf(ldexp(d, MANT_BITS), &n);
m = (unsigned long)n;
#if MANT_BITS > 24
buf[i++] = m >> 24;
#endif
#if MANT_BITS > 16
buf[i++] = m >> 16;
#endif
#if MANT_BITS > 8
buf[i++] = m >> 8;
#endif
buf[i++] = m;
} while (d > 0);
while (!buf[i - 1]) --i;
}
return i;
}
static double
load_mantissa(double d, const char *buf, int len)
{
if (--len > 0 && !*buf++) { /* binary mantissa mark */
int e, s = d < 0, dig = 0;
unsigned long m;
modf(ldexp(frexp(fabs(d), &e), DECIMAL_MANT), &d);
do {
m = 0;
switch (len) {
default: m = *buf++ & 0xff;
#if MANT_BITS > 24
case 3: m = (m << 8) | (*buf++ & 0xff);
#endif
#if MANT_BITS > 16
case 2: m = (m << 8) | (*buf++ & 0xff);
#endif
#if MANT_BITS > 8
case 1: m = (m << 8) | (*buf++ & 0xff);
#endif
}
dig -= len < MANT_BITS / 8 ? 8 * (unsigned)len : MANT_BITS;
d += ldexp((double)m, dig);
} while ((len -= MANT_BITS / 8) > 0);
d = ldexp(d, e - DECIMAL_MANT);
if (s) d = -d;
}
return d;
}
#else
#define load_mantissa(d, buf, len) (d)
#define save_mantissa(d, buf) 0
#endif
#ifdef DBL_DIG
#define FLOAT_DIG (DBL_DIG+2)
#else
#define FLOAT_DIG 17
#endif
static void
w_float(double d, struct dump_arg *arg)
{
char buf[FLOAT_DIG + (DECIMAL_MANT + 7) / 8 + 10];
if (isinf(d)) {
if (d < 0) strcpy(buf, "-inf");
else strcpy(buf, "inf");
}
else if (isnan(d)) {
strcpy(buf, "nan");
}
else if (d == 0.0) {
if (1.0/d < 0) strcpy(buf, "-0");
else strcpy(buf, "0");
}
else {
int len;
/* xxx: should not use system's sprintf(3) */
snprintf(buf, sizeof(buf), "%.*g", FLOAT_DIG, d);
len = strlen(buf);
w_bytes(buf, len + save_mantissa(d, buf + len), arg);
return;
}
w_bytes(buf, strlen(buf), arg);
}
static void
w_symbol(ID id, struct dump_arg *arg)
{
const char *sym;
st_data_t num;
if (st_lookup(arg->symbols, id, &num)) {
w_byte(TYPE_SYMLINK, arg);
w_long((long)num, arg);
}
else {
sym = rb_id2name(id);
if (!sym) {
rb_raise(rb_eTypeError, "can't dump anonymous ID %ld", id);
}
w_byte(TYPE_SYMBOL, arg);
w_bytes(sym, strlen(sym), arg);
st_add_direct(arg->symbols, id, arg->symbols->num_entries);
}
}
static void
w_unique(const char *s, struct dump_arg *arg)
{
if (s[0] == '#') {
rb_raise(rb_eTypeError, "can't dump anonymous class %s", s);
}
w_symbol(rb_intern(s), arg);
}
static void w_object(VALUE,struct dump_arg*,int);
static int
hash_each(VALUE key, VALUE value, struct dump_call_arg *arg)
{
w_object(key, arg->arg, arg->limit);
w_object(value, arg->arg, arg->limit);
return ST_CONTINUE;
}
static void
w_extended(VALUE klass, struct dump_arg *arg, int check)
{
const char *path;
if (check && FL_TEST(klass, FL_SINGLETON)) {
if (RCLASS_M_TBL(klass)->num_entries ||
(RCLASS_IV_TBL(klass) && RCLASS_IV_TBL(klass)->num_entries > 1)) {
rb_raise(rb_eTypeError, "singleton can't be dumped");
}
klass = RCLASS_SUPER(klass);
}
while (BUILTIN_TYPE(klass) == T_ICLASS) {
path = rb_class2name(RBASIC(klass)->klass);
w_byte(TYPE_EXTENDED, arg);
w_unique(path, arg);
klass = RCLASS_SUPER(klass);
}
}
static void
w_class(char type, VALUE obj, struct dump_arg *arg, int check)
{
volatile VALUE p;
char *path;
st_data_t real_obj;
VALUE klass;
if (st_lookup(arg->compat_tbl, (st_data_t)obj, &real_obj)) {
obj = (VALUE)real_obj;
}
klass = CLASS_OF(obj);
w_extended(klass, arg, check);
w_byte(type, arg);
p = class2path(rb_class_real(klass));
path = RSTRING_PTR(p);
w_unique(path, arg);
}
static void
w_uclass(VALUE obj, VALUE super, struct dump_arg *arg)
{
VALUE klass = CLASS_OF(obj);
w_extended(klass, arg, Qtrue);
klass = rb_class_real(klass);
if (klass != super) {
w_byte(TYPE_UCLASS, arg);
w_unique(RSTRING_PTR(class2path(klass)), arg);
}
}
static int
w_obj_each(ID id, VALUE value, struct dump_call_arg *arg)
{
if (id == rb_id_encoding()) return ST_CONTINUE;
w_symbol(id, arg->arg);
w_object(value, arg->arg, arg->limit);
return ST_CONTINUE;
}
static void
w_encoding(VALUE obj, long num, struct dump_call_arg *arg)
{
int encidx = rb_enc_get_index(obj);
rb_encoding *enc = 0;
st_data_t name;
if (encidx <= 0 || !(enc = rb_enc_from_index(encidx))) {
w_long(num, arg->arg);
return;
}
w_long(num + 1, arg->arg);
w_symbol(rb_id_encoding(), arg->arg);
do {
if (!arg->arg->encodings)
arg->arg->encodings = st_init_strcasetable();
else if (st_lookup(arg->arg->encodings, (st_data_t)rb_enc_name(enc), &name))
break;
name = (st_data_t)rb_str_new2(rb_enc_name(enc));
st_insert(arg->arg->encodings, (st_data_t)rb_enc_name(enc), name);
} while (0);
w_object(name, arg->arg, arg->limit);
}
static void
w_ivar(VALUE obj, st_table *tbl, struct dump_call_arg *arg)
{
long num = tbl ? tbl->num_entries : 0;
w_encoding(obj, num, arg);
if (tbl) {
st_foreach_safe(tbl, w_obj_each, (st_data_t)arg);
}
}
static void
w_objivar(VALUE obj, struct dump_call_arg *arg)
{
VALUE *ptr;
long i, len, num;
len = ROBJECT_NUMIV(obj);
ptr = ROBJECT_IVPTR(obj);
num = 0;
for (i = 0; i < len; i++)
if (ptr[i] != Qundef)
num += 1;
w_encoding(obj, num, arg);
if (num != 0) {
rb_ivar_foreach(obj, w_obj_each, (st_data_t)arg);
}
}
static void
w_object(VALUE obj, struct dump_arg *arg, int limit)
{
struct dump_call_arg c_arg;
st_table *ivtbl = 0;
st_data_t num;
int hasiv = 0;
#define has_ivars(obj, ivtbl) ((ivtbl = rb_generic_ivar_table(obj)) != 0 || \
(!SPECIAL_CONST_P(obj) && !ENCODING_IS_ASCII8BIT(obj)))
if (limit == 0) {
rb_raise(rb_eArgError, "exceed depth limit");
}
limit--;
c_arg.limit = limit;
c_arg.arg = arg;
if (st_lookup(arg->data, obj, &num)) {
w_byte(TYPE_LINK, arg);
w_long((long)num, arg);
return;
}
if ((hasiv = has_ivars(obj, ivtbl)) != 0) {
w_byte(TYPE_IVAR, arg);
}
if (obj == Qnil) {
w_byte(TYPE_NIL, arg);
}
else if (obj == Qtrue) {
w_byte(TYPE_TRUE, arg);
}
else if (obj == Qfalse) {
w_byte(TYPE_FALSE, arg);
}
else if (FIXNUM_P(obj)) {
#if SIZEOF_LONG <= 4
w_byte(TYPE_FIXNUM, arg);
w_long(FIX2INT(obj), arg);
#else
if (RSHIFT((long)obj, 31) == 0 || RSHIFT((long)obj, 31) == -1) {
w_byte(TYPE_FIXNUM, arg);
w_long(FIX2LONG(obj), arg);
}
else {
w_object(rb_int2big(FIX2LONG(obj)), arg, limit);
}
#endif
}
else if (SYMBOL_P(obj)) {
w_symbol(SYM2ID(obj), arg);
}
else {
if (OBJ_TAINTED(obj)) arg->taint = Qtrue;
if (OBJ_UNTRUSTED(obj)) arg->untrust = Qtrue;
if (rb_respond_to(obj, s_mdump)) {
volatile VALUE v;
st_add_direct(arg->data, obj, arg->data->num_entries);
v = rb_funcall(obj, s_mdump, 0, 0);
check_dump_arg(arg);
w_class(TYPE_USRMARSHAL, obj, arg, Qfalse);
w_object(v, arg, limit);
if (hasiv) w_ivar(obj, 0, &c_arg);
return;
}
if (rb_respond_to(obj, s_dump)) {
VALUE v;
st_table *ivtbl2 = 0;
int hasiv2;
v = rb_funcall(obj, s_dump, 1, INT2NUM(limit));
check_dump_arg(arg);
if (TYPE(v) != T_STRING) {
rb_raise(rb_eTypeError, "_dump() must return string");
}
if ((hasiv2 = has_ivars(v, ivtbl2)) != 0 && !hasiv) {
w_byte(TYPE_IVAR, arg);
}
w_class(TYPE_USERDEF, obj, arg, Qfalse);
w_bytes(RSTRING_PTR(v), RSTRING_LEN(v), arg);
if (hasiv2) {
w_ivar(v, ivtbl2, &c_arg);
}
else if (hasiv) {
w_ivar(obj, ivtbl, &c_arg);
}
st_add_direct(arg->data, obj, arg->data->num_entries);
return;
}
st_add_direct(arg->data, obj, arg->data->num_entries);
{
st_data_t compat_data;
rb_alloc_func_t allocator = rb_get_alloc_func(RBASIC(obj)->klass);
if (st_lookup(compat_allocator_tbl,
(st_data_t)allocator,
&compat_data)) {
marshal_compat_t *compat = (marshal_compat_t*)compat_data;
VALUE real_obj = obj;
obj = compat->dumper(real_obj);
st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj);
}
}
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
if (FL_TEST(obj, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "singleton class can't be dumped");
}
w_byte(TYPE_CLASS, arg);
{
volatile VALUE path = class2path(obj);
w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg);
}
break;
case T_MODULE:
w_byte(TYPE_MODULE, arg);
{
VALUE path = class2path(obj);
w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg);
}
break;
case T_FLOAT:
w_byte(TYPE_FLOAT, arg);
w_float(RFLOAT_VALUE(obj), arg);
break;
case T_BIGNUM:
w_byte(TYPE_BIGNUM, arg);
{
char sign = RBIGNUM_SIGN(obj) ? '+' : '-';
long len = RBIGNUM_LEN(obj);
BDIGIT *d = RBIGNUM_DIGITS(obj);
w_byte(sign, arg);
w_long(SHORTLEN(len), arg); /* w_short? */
while (len--) {
#if SIZEOF_BDIGITS > SIZEOF_SHORT
BDIGIT num = *d;
int i;
for (i=0; i<SIZEOF_BDIGITS; i+=SIZEOF_SHORT) {
w_short(num & SHORTMASK, arg);
num = SHORTDN(num);
if (len == 0 && num == 0) break;
}
#else
w_short(*d, arg);
#endif
d++;
}
}
break;
case T_STRING:
w_uclass(obj, rb_cString, arg);
w_byte(TYPE_STRING, arg);
w_bytes(RSTRING_PTR(obj), RSTRING_LEN(obj), arg);
break;
case T_REGEXP:
w_uclass(obj, rb_cRegexp, arg);
w_byte(TYPE_REGEXP, arg);
{
int opts = rb_reg_options(obj);
w_bytes(RREGEXP_SRC_PTR(obj), RREGEXP_SRC_LEN(obj), arg);
w_byte((char)opts, arg);
}
break;
case T_ARRAY:
w_uclass(obj, rb_cArray, arg);
w_byte(TYPE_ARRAY, arg);
{
long i, len = RARRAY_LEN(obj);
w_long(len, arg);
for (i=0; i<RARRAY_LEN(obj); i++) {
w_object(RARRAY_PTR(obj)[i], arg, limit);
if (len != RARRAY_LEN(obj)) {
rb_raise(rb_eRuntimeError, "array modified during dump");
}
}
}
break;
case T_HASH:
w_uclass(obj, rb_cHash, arg);
if (NIL_P(RHASH(obj)->ifnone)) {
w_byte(TYPE_HASH, arg);
}
else if (FL_TEST(obj, FL_USER2)) {
/* FL_USER2 means HASH_PROC_DEFAULT (see hash.c) */
rb_raise(rb_eTypeError, "can't dump hash with default proc");
}
else {
w_byte(TYPE_HASH_DEF, arg);
}
w_long(RHASH_SIZE(obj), arg);
rb_hash_foreach(obj, hash_each, (st_data_t)&c_arg);
if (!NIL_P(RHASH(obj)->ifnone)) {
w_object(RHASH(obj)->ifnone, arg, limit);
}
break;
case T_STRUCT:
w_class(TYPE_STRUCT, obj, arg, Qtrue);
{
long len = RSTRUCT_LEN(obj);
VALUE mem;
long i;
w_long(len, arg);
mem = rb_struct_members(obj);
for (i=0; i<len; i++) {
w_symbol(SYM2ID(RARRAY_PTR(mem)[i]), arg);
w_object(RSTRUCT_PTR(obj)[i], arg, limit);
}
}
break;
case T_OBJECT:
w_class(TYPE_OBJECT, obj, arg, Qtrue);
w_objivar(obj, &c_arg);
break;
case T_DATA:
{
VALUE v;
if (!rb_respond_to(obj, s_dump_data)) {
rb_raise(rb_eTypeError,
"no marshal_dump is defined for class %s",
rb_obj_classname(obj));
}
v = rb_funcall(obj, s_dump_data, 0);
check_dump_arg(arg);
w_class(TYPE_DATA, obj, arg, Qtrue);
w_object(v, arg, limit);
}
break;
default:
rb_raise(rb_eTypeError, "can't dump %s",
rb_obj_classname(obj));
break;
}
}
if (hasiv) {
w_ivar(obj, ivtbl, &c_arg);
}
}
static VALUE
dump(struct dump_call_arg *arg)
{
w_object(arg->obj, arg->arg, arg->limit);
if (arg->arg->dest) {
rb_io_write(arg->arg->dest, arg->arg->str);
rb_str_resize(arg->arg->str, 0);
}
return 0;
}
static VALUE
dump_ensure(struct dump_arg *arg)
{
if (!DATA_PTR(arg->wrapper)) return 0;
st_free_table(arg->symbols);
st_free_table(arg->data);
st_free_table(arg->compat_tbl);
if (arg->encodings) st_free_table(arg->encodings);
DATA_PTR(arg->wrapper) = 0;
arg->wrapper = 0;
if (arg->taint) {
OBJ_TAINT(arg->str);
}
if (arg->untrust) {
OBJ_UNTRUST(arg->str);
}
return 0;
}
/*
* call-seq:
* dump( obj [, anIO] , limit=--1 ) => anIO
*
* Serializes obj and all descendent objects. If anIO is
* specified, the serialized data will be written to it, otherwise the
* data will be returned as a String. If limit is specified, the
* traversal of subobjects will be limited to that depth. If limit is
* negative, no checking of depth will be performed.
*
* class Klass
* def initialize(str)
* @str = str
* end
* def sayHello
* @str
* end
* end
*
* (produces no output)
*
* o = Klass.new("hello\n")
* data = Marshal.dump(o)
* obj = Marshal.load(data)
* obj.sayHello #=> "hello\n"
*/
static VALUE
marshal_dump(int argc, VALUE *argv)
{
VALUE obj, port, a1, a2;
int limit = -1;
struct dump_arg arg;
struct dump_call_arg c_arg;
port = Qnil;
rb_scan_args(argc, argv, "12", &obj, &a1, &a2);
if (argc == 3) {
if (!NIL_P(a2)) limit = NUM2INT(a2);
if (NIL_P(a1)) goto type_error;
port = a1;
}
else if (argc == 2) {
if (FIXNUM_P(a1)) limit = FIX2INT(a1);
else if (NIL_P(a1)) goto type_error;
else port = a1;
}
arg.dest = 0;
if (!NIL_P(port)) {
if (!rb_respond_to(port, s_write)) {
type_error:
rb_raise(rb_eTypeError, "instance of IO needed");
}
arg.str = rb_str_buf_new(0);
arg.dest = port;
if (rb_respond_to(port, s_binmode)) {
rb_funcall2(port, s_binmode, 0, 0);
}
}
else {
port = rb_str_buf_new(0);
arg.str = port;
}
arg.symbols = st_init_numtable();
arg.data = st_init_numtable();
arg.taint = Qfalse;
arg.untrust = Qfalse;
arg.compat_tbl = st_init_numtable();
arg.wrapper = Data_Wrap_Struct(rb_cData, mark_dump_arg, 0, &arg);
arg.encodings = 0;
c_arg.obj = obj;
c_arg.arg = &arg;
c_arg.limit = limit;
w_byte(MARSHAL_MAJOR, &arg);
w_byte(MARSHAL_MINOR, &arg);
rb_ensure(dump, (VALUE)&c_arg, dump_ensure, (VALUE)&arg);
return port;
}
struct load_arg {
VALUE src;
long offset;
st_table *symbols;
st_table *data;
VALUE proc;
int taint;
int untrust;
st_table *compat_tbl;
VALUE wrapper;
};
static void
check_load_arg(struct load_arg *arg)
{
if (!DATA_PTR(arg->wrapper)) {
rb_raise(rb_eRuntimeError, "Marshal.load reentered");
}
}
static void
mark_load_arg(void *ptr)
{
struct load_arg *p = ptr;
if (!ptr)
return;
rb_mark_tbl(p->data);
rb_mark_hash(p->compat_tbl);
}
static VALUE r_entry(VALUE v, struct load_arg *arg);
static VALUE r_object(struct load_arg *arg);
static VALUE path2class(const char *path);
static int
r_byte(struct load_arg *arg)
{
int c;
if (TYPE(arg->src) == T_STRING) {
if (RSTRING_LEN(arg->src) > arg->offset) {
c = (unsigned char)RSTRING_PTR(arg->src)[arg->offset++];
}
else {
rb_raise(rb_eArgError, "marshal data too short");
}
}
else {
VALUE src = arg->src;
VALUE v = rb_funcall2(src, s_getbyte, 0, 0);
check_load_arg(arg);
if (NIL_P(v)) rb_eof_error();
c = (unsigned char)NUM2CHR(v);
}
return c;
}
static void
long_toobig(int size)
{
rb_raise(rb_eTypeError, "long too big for this architecture (size "
STRINGIZE(SIZEOF_LONG)", given %d)", size);
}
#undef SIGN_EXTEND_CHAR
#if __STDC__
# define SIGN_EXTEND_CHAR(c) ((signed char)(c))
#else /* not __STDC__ */
/* As in Harbison and Steele. */
# define SIGN_EXTEND_CHAR(c) ((((unsigned char)(c)) ^ 128) - 128)
#endif
static long
r_long(struct load_arg *arg)
{
register long x;
int c = SIGN_EXTEND_CHAR(r_byte(arg));
long i;
if (c == 0) return 0;
if (c > 0) {
if (4 < c && c < 128) {
return c - 5;
}
if (c > sizeof(long)) long_toobig(c);
x = 0;
for (i=0;i<c;i++) {
x |= (long)r_byte(arg) << (8*i);
}
}
else {
if (-129 < c && c < -4) {
return c + 5;
}
c = -c;
if (c > sizeof(long)) long_toobig(c);
x = -1;
for (i=0;i<c;i++) {
x &= ~((long)0xff << (8*i));
x |= (long)r_byte(arg) << (8*i);
}
}
return x;
}
#define r_bytes(arg) r_bytes0(r_long(arg), (arg))
static VALUE
r_bytes0(long len, struct load_arg *arg)
{
VALUE str;
if (len == 0) return rb_str_new(0, 0);
if (TYPE(arg->src) == T_STRING) {
if (RSTRING_LEN(arg->src) - arg->offset >= len) {
str = rb_str_new(RSTRING_PTR(arg->src)+arg->offset, len);
arg->offset += len;
}
else {
too_short:
rb_raise(rb_eArgError, "marshal data too short");
}
}
else {
VALUE src = arg->src;
VALUE n = LONG2NUM(len);
str = rb_funcall2(src, s_read, 1, &n);
check_load_arg(arg);
if (NIL_P(str)) goto too_short;
StringValue(str);
if (RSTRING_LEN(str) != len) goto too_short;
if (OBJ_TAINTED(str)) arg->taint = Qtrue;
if (OBJ_UNTRUSTED(str)) arg->untrust = Qtrue;
}
return str;
}
static ID
r_symlink(struct load_arg *arg)
{
ID id;
long num = r_long(arg);
if (st_lookup(arg->symbols, num, &id)) {
return id;
}
rb_raise(rb_eArgError, "bad symbol");
}
static ID
r_symreal(struct load_arg *arg)
{
volatile VALUE s = r_bytes(arg);
ID id = rb_intern(RSTRING_PTR(s));
st_insert(arg->symbols, arg->symbols->num_entries, id);
return id;
}
static ID
r_symbol(struct load_arg *arg)
{
int type;
switch ((type = r_byte(arg))) {
case TYPE_SYMBOL:
return r_symreal(arg);
case TYPE_SYMLINK:
return r_symlink(arg);
default:
rb_raise(rb_eArgError, "dump format error(0x%x)", type);
break;
}
}
static const char*
r_unique(struct load_arg *arg)
{
return rb_id2name(r_symbol(arg));
}
static VALUE
r_string(struct load_arg *arg)
{
return r_bytes(arg);
}
static VALUE
r_entry(VALUE v, struct load_arg *arg)
{
st_data_t real_obj = (VALUE)Qundef;
if (st_lookup(arg->compat_tbl, v, &real_obj)) {
st_insert(arg->data, arg->data->num_entries, (st_data_t)real_obj);
}
else {
st_insert(arg->data, arg->data->num_entries, (st_data_t)v);
}
if (arg->taint) {
OBJ_TAINT(v);
if ((VALUE)real_obj != Qundef)
OBJ_TAINT((VALUE)real_obj);
}
if (arg->untrust) {
OBJ_UNTRUST(v);
if ((VALUE)real_obj != Qundef)
OBJ_UNTRUST((VALUE)real_obj);
}
return v;
}
static VALUE
r_leave(VALUE v, struct load_arg *arg)
{
st_data_t data;
if (st_lookup(arg->compat_tbl, v, &data)) {
VALUE real_obj = (VALUE)data;
rb_alloc_func_t allocator = rb_get_alloc_func(CLASS_OF(real_obj));
st_data_t key = v;
if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) {
marshal_compat_t *compat = (marshal_compat_t*)data;
compat->loader(real_obj, v);
}
st_delete(arg->compat_tbl, &key, 0);
v = real_obj;
}
if (arg->proc) {
v = rb_funcall(arg->proc, rb_intern("call"), 1, v);
check_load_arg(arg);
}
return v;
}
static void
r_ivar(VALUE obj, struct load_arg *arg)
{
long len;
len = r_long(arg);
if (len > 0) {
while (len--) {
ID id = r_symbol(arg);
VALUE val = r_object(arg);
if (id == rb_id_encoding()) {
int idx = rb_enc_find_index(StringValueCStr(val));
if (idx > 0) rb_enc_associate_index(obj, idx);
}
else {
rb_ivar_set(obj, id, val);
}
}
}
}
static VALUE
path2class(const char *path)
{
VALUE v = rb_path2class(path);
if (TYPE(v) != T_CLASS) {
rb_raise(rb_eArgError, "%s does not refer class", path);
}
return v;
}
static VALUE
path2module(const char *path)
{
VALUE v = rb_path2class(path);
if (TYPE(v) != T_MODULE) {
rb_raise(rb_eArgError, "%s does not refer module", path);
}
return v;
}
static VALUE
obj_alloc_by_path(const char *path, struct load_arg *arg)
{
VALUE klass;
st_data_t data;
rb_alloc_func_t allocator;
klass = path2class(path);
allocator = rb_get_alloc_func(klass);
if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) {
marshal_compat_t *compat = (marshal_compat_t*)data;
VALUE real_obj = rb_obj_alloc(klass);
VALUE obj = rb_obj_alloc(compat->oldclass);
st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj);
return obj;
}
return rb_obj_alloc(klass);
}
static VALUE
r_object0(struct load_arg *arg, int *ivp, VALUE extmod)
{
VALUE v = Qnil;
int type = r_byte(arg);
long id;
st_data_t link;
switch (type) {
case TYPE_LINK:
id = r_long(arg);
if (!st_lookup(arg->data, (st_data_t)id, &link)) {
rb_raise(rb_eArgError, "dump format error (unlinked)");
}
v = (VALUE)link;
if (arg->proc) {
v = rb_funcall(arg->proc, rb_intern("call"), 1, v);
check_load_arg(arg);
}
break;
case TYPE_IVAR:
{
int ivar = Qtrue;
v = r_object0(arg, &ivar, extmod);
if (ivar) r_ivar(v, arg);
}
break;
case TYPE_EXTENDED:
{
VALUE m = path2module(r_unique(arg));
if (NIL_P(extmod)) extmod = rb_ary_new2(0);
rb_ary_push(extmod, m);
v = r_object0(arg, 0, extmod);
while (RARRAY_LEN(extmod) > 0) {
m = rb_ary_pop(extmod);
rb_extend_object(v, m);
}
}
break;
case TYPE_UCLASS:
{
VALUE c = path2class(r_unique(arg));
if (FL_TEST(c, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "singleton can't be loaded");
}
v = r_object0(arg, 0, extmod);
if (rb_special_const_p(v) || TYPE(v) == T_OBJECT || TYPE(v) == T_CLASS) {
format_error:
rb_raise(rb_eArgError, "dump format error (user class)");
}
if (TYPE(v) == T_MODULE || !RTEST(rb_class_inherited_p(c, RBASIC(v)->klass))) {
VALUE tmp = rb_obj_alloc(c);
if (TYPE(v) != TYPE(tmp)) goto format_error;
}
RBASIC(v)->klass = c;
}
break;
case TYPE_NIL:
v = Qnil;
v = r_leave(v, arg);
break;
case TYPE_TRUE:
v = Qtrue;
v = r_leave(v, arg);
break;
case TYPE_FALSE:
v = Qfalse;
v = r_leave(v, arg);
break;
case TYPE_FIXNUM:
{
long i = r_long(arg);
v = LONG2FIX(i);
}
v = r_leave(v, arg);
break;
case TYPE_FLOAT:
{
double d, t = 0.0;
VALUE str = r_bytes(arg);
const char *ptr = RSTRING_PTR(str);
if (strcmp(ptr, "nan") == 0) {
d = t / t;
}
else if (strcmp(ptr, "inf") == 0) {
d = 1.0 / t;
}
else if (strcmp(ptr, "-inf") == 0) {
d = -1.0 / t;
}
else {
char *e;
d = strtod(ptr, &e);
d = load_mantissa(d, e, RSTRING_LEN(str) - (e - ptr));
}
v = DOUBLE2NUM(d);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_BIGNUM:
{
long len;
BDIGIT *digits;
volatile VALUE data;
NEWOBJ(big, struct RBignum);
OBJSETUP(big, rb_cBignum, T_BIGNUM);
RBIGNUM_SET_SIGN(big, (r_byte(arg) == '+'));
len = r_long(arg);
data = r_bytes0(len * 2, arg);
#if SIZEOF_BDIGITS == SIZEOF_SHORT
rb_big_resize((VALUE)big, len);
#else
rb_big_resize((VALUE)big, (len + 1) * 2 / sizeof(BDIGIT));
#endif
digits = RBIGNUM_DIGITS(big);
MEMCPY(digits, RSTRING_PTR(data), char, len * 2);
#if SIZEOF_BDIGITS > SIZEOF_SHORT
MEMZERO((char *)digits + len * 2, char,
RBIGNUM_LEN(big) * sizeof(BDIGIT) - len * 2);
#endif
len = RBIGNUM_LEN(big);
while (len > 0) {
unsigned char *p = (unsigned char *)digits;
BDIGIT num = 0;
#if SIZEOF_BDIGITS > SIZEOF_SHORT
int shift = 0;
int i;
for (i=0; i<SIZEOF_BDIGITS; i++) {
num |= (int)p[i] << shift;
shift += 8;
}
#else
num = p[0] | (p[1] << 8);
#endif
*digits++ = num;
len--;
}
v = rb_big_norm((VALUE)big);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_STRING:
v = r_entry(r_string(arg), arg);
v = r_leave(v, arg);
break;
case TYPE_REGEXP:
{
volatile VALUE str = r_bytes(arg);
int options = r_byte(arg);
v = r_entry(rb_reg_new_str(str, options), arg);
v = r_leave(v, arg);
}
break;
case TYPE_ARRAY:
{
volatile long len = r_long(arg); /* gcc 2.7.2.3 -O2 bug?? */
v = rb_ary_new2(len);
v = r_entry(v, arg);
while (len--) {
rb_ary_push(v, r_object(arg));
}
v = r_leave(v, arg);
}
break;
case TYPE_HASH:
case TYPE_HASH_DEF:
{
long len = r_long(arg);
v = rb_hash_new();
v = r_entry(v, arg);
while (len--) {
VALUE key = r_object(arg);
VALUE value = r_object(arg);
rb_hash_aset(v, key, value);
}
if (type == TYPE_HASH_DEF) {
RHASH(v)->ifnone = r_object(arg);
}
v = r_leave(v, arg);
}
break;
case TYPE_STRUCT:
{
VALUE klass, mem;
VALUE values;
volatile long i; /* gcc 2.7.2.3 -O2 bug?? */
long len;
ID slot;
klass = path2class(r_unique(arg));
len = r_long(arg);
v = rb_obj_alloc(klass);
if (TYPE(v) != T_STRUCT) {
rb_raise(rb_eTypeError, "class %s not a struct", rb_class2name(klass));
}
mem = rb_struct_s_members(klass);
if (RARRAY_LEN(mem) != len) {
rb_raise(rb_eTypeError, "struct %s not compatible (struct size differs)",
rb_class2name(klass));
}
v = r_entry(v, arg);
values = rb_ary_new2(len);
for (i=0; i<len; i++) {
slot = r_symbol(arg);
if (RARRAY_PTR(mem)[i] != ID2SYM(slot)) {
rb_raise(rb_eTypeError, "struct %s not compatible (:%s for :%s)",
rb_class2name(klass),
rb_id2name(slot),
rb_id2name(SYM2ID(RARRAY_PTR(mem)[i])));
}
rb_ary_push(values, r_object(arg));
}
rb_struct_initialize(v, values);
v = r_leave(v, arg);
}
break;
case TYPE_USERDEF:
{
VALUE klass = path2class(r_unique(arg));
VALUE data;
if (!rb_respond_to(klass, s_load)) {
rb_raise(rb_eTypeError, "class %s needs to have method `_load'",
rb_class2name(klass));
}
data = r_string(arg);
if (ivp) {
r_ivar(data, arg);
*ivp = Qfalse;
}
v = rb_funcall(klass, s_load, 1, data);
check_load_arg(arg);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_USRMARSHAL:
{
VALUE klass = path2class(r_unique(arg));
VALUE data;
v = rb_obj_alloc(klass);
if (!NIL_P(extmod)) {
while (RARRAY_LEN(extmod) > 0) {
VALUE m = rb_ary_pop(extmod);
rb_extend_object(v, m);
}
}
if (!rb_respond_to(v, s_mload)) {
rb_raise(rb_eTypeError, "instance of %s needs to have method `marshal_load'",
rb_class2name(klass));
}
v = r_entry(v, arg);
data = r_object(arg);
rb_funcall(v, s_mload, 1, data);
check_load_arg(arg);
v = r_leave(v, arg);
}
break;
case TYPE_OBJECT:
{
v = obj_alloc_by_path(r_unique(arg), arg);
if (TYPE(v) != T_OBJECT) {
rb_raise(rb_eArgError, "dump format error");
}
v = r_entry(v, arg);
r_ivar(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_DATA:
{
VALUE klass = path2class(r_unique(arg));
if (rb_respond_to(klass, s_alloc)) {
static int warn = Qtrue;
if (warn) {
rb_warn("define `allocate' instead of `_alloc'");
warn = Qfalse;
}
v = rb_funcall(klass, s_alloc, 0);
check_load_arg(arg);
}
else {
v = rb_obj_alloc(klass);
}
if (TYPE(v) != T_DATA) {
rb_raise(rb_eArgError, "dump format error");
}
v = r_entry(v, arg);
if (!rb_respond_to(v, s_load_data)) {
rb_raise(rb_eTypeError,
"class %s needs to have instance method `_load_data'",
rb_class2name(klass));
}
rb_funcall(v, s_load_data, 1, r_object0(arg, 0, extmod));
check_load_arg(arg);
v = r_leave(v, arg);
}
break;
case TYPE_MODULE_OLD:
{
volatile VALUE str = r_bytes(arg);
v = rb_path2class(RSTRING_PTR(str));
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_CLASS:
{
volatile VALUE str = r_bytes(arg);
v = path2class(RSTRING_PTR(str));
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_MODULE:
{
volatile VALUE str = r_bytes(arg);
v = path2module(RSTRING_PTR(str));
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_SYMBOL:
v = ID2SYM(r_symreal(arg));
v = r_leave(v, arg);
break;
case TYPE_SYMLINK:
v = ID2SYM(r_symlink(arg));
break;
default:
rb_raise(rb_eArgError, "dump format error(0x%x)", type);
break;
}
return v;
}
static VALUE
r_object(struct load_arg *arg)
{
return r_object0(arg, 0, Qnil);
}
static VALUE
load(struct load_arg *arg)
{
return r_object(arg);
}
static VALUE
load_ensure(struct load_arg *arg)
{
if (!DATA_PTR(arg->wrapper)) return 0;
st_free_table(arg->symbols);
st_free_table(arg->data);
st_free_table(arg->compat_tbl);
DATA_PTR(arg->wrapper) = 0;
arg->wrapper = 0;
return 0;
}
/*
* call-seq:
* load( source [, proc] ) => obj
* restore( source [, proc] ) => obj
*
* Returns the result of converting the serialized data in source into a
* Ruby object (possibly with associated subordinate objects). source
* may be either an instance of IO or an object that responds to
* to_str. If proc is specified, it will be passed each object as it
* is deserialized.
*/
static VALUE
marshal_load(int argc, VALUE *argv)
{
VALUE port, proc;
int major, minor;
VALUE v;
struct load_arg arg;
rb_scan_args(argc, argv, "11", &port, &proc);
v = rb_check_string_type(port);
if (!NIL_P(v)) {
arg.taint = OBJ_TAINTED(port); /* original taintedness */
port = v;
}
else if (rb_respond_to(port, s_getbyte) && rb_respond_to(port, s_read)) {
if (rb_respond_to(port, s_binmode)) {
rb_funcall2(port, s_binmode, 0, 0);
}
arg.taint = Qtrue;
}
else {
rb_raise(rb_eTypeError, "instance of IO needed");
}
arg.untrust = OBJ_UNTRUSTED(port);
arg.src = port;
arg.offset = 0;
arg.symbols = st_init_numtable();
arg.data = st_init_numtable();
arg.compat_tbl = st_init_numtable();
arg.proc = 0;
arg.wrapper = Data_Wrap_Struct(rb_cData, mark_load_arg, 0, &arg);
major = r_byte(&arg);
minor = r_byte(&arg);
if (major != MARSHAL_MAJOR || minor > MARSHAL_MINOR) {
rb_raise(rb_eTypeError, "incompatible marshal file format (can't be read)\n\
\tformat version %d.%d required; %d.%d given",
MARSHAL_MAJOR, MARSHAL_MINOR, major, minor);
}
if (RTEST(ruby_verbose) && minor != MARSHAL_MINOR) {
rb_warn("incompatible marshal file format (can be read)\n\
\tformat version %d.%d required; %d.%d given",
MARSHAL_MAJOR, MARSHAL_MINOR, major, minor);
}
if (!NIL_P(proc)) arg.proc = proc;
v = rb_ensure(load, (VALUE)&arg, load_ensure, (VALUE)&arg);
return v;
}
/*
* The marshaling library converts collections of Ruby objects into a
* byte stream, allowing them to be stored outside the currently
* active script. This data may subsequently be read and the original
* objects reconstituted.
* Marshaled data has major and minor version numbers stored along
* with the object information. In normal use, marshaling can only
* load data written with the same major version number and an equal
* or lower minor version number. If Ruby's ``verbose'' flag is set
* (normally using -d, -v, -w, or --verbose) the major and minor
* numbers must match exactly. Marshal versioning is independent of
* Ruby's version numbers. You can extract the version by reading the
* first two bytes of marshaled data.
*
* str = Marshal.dump("thing")
* RUBY_VERSION #=> "1.9.0"
* str[0].ord #=> 4
* str[1].ord #=> 8
*
* Some objects cannot be dumped: if the objects to be dumped include
* bindings, procedure or method objects, instances of class IO, or
* singleton objects, a TypeError will be raised.
* If your class has special serialization needs (for example, if you
* want to serialize in some specific format), or if it contains
* objects that would otherwise not be serializable, you can implement
* your own serialization strategy by defining two methods, _dump and
* _load:
* The instance method _dump should return a String object containing
* all the information necessary to reconstitute objects of this class
* and all referenced objects up to a maximum depth given as an integer
* parameter (a value of -1 implies that you should disable depth checking).
* The class method _load should take a String and return an object of this class.
*/
void
Init_marshal(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
VALUE rb_mMarshal = rb_define_module("Marshal");
s_dump = rb_intern("_dump");
s_load = rb_intern("_load");
s_mdump = rb_intern("marshal_dump");
s_mload = rb_intern("marshal_load");
s_dump_data = rb_intern("_dump_data");
s_load_data = rb_intern("_load_data");
s_alloc = rb_intern("_alloc");
s_getbyte = rb_intern("getbyte");
s_read = rb_intern("read");
s_write = rb_intern("write");
s_binmode = rb_intern("binmode");
rb_define_module_function(rb_mMarshal, "dump", marshal_dump, -1);
rb_define_module_function(rb_mMarshal, "load", marshal_load, -1);
rb_define_module_function(rb_mMarshal, "restore", marshal_load, -1);
rb_define_const(rb_mMarshal, "MAJOR_VERSION", INT2FIX(MARSHAL_MAJOR));
rb_define_const(rb_mMarshal, "MINOR_VERSION", INT2FIX(MARSHAL_MINOR));
compat_allocator_tbl = st_init_numtable();
rb_gc_register_address(&compat_allocator_tbl_wrapper);
compat_allocator_tbl_wrapper =
Data_Wrap_Struct(rb_cData, mark_marshal_compat_t, 0, compat_allocator_tbl);
}
VALUE
rb_marshal_dump(VALUE obj, VALUE port)
{
int argc = 1;
VALUE argv[2];
argv[0] = obj;
argv[1] = port;
if (!NIL_P(port)) argc = 2;
return marshal_dump(argc, argv);
}
VALUE
rb_marshal_load(VALUE port)
{
return marshal_load(1, &port);
}