зеркало из https://github.com/github/ruby.git
2472 строки
52 KiB
C
2472 строки
52 KiB
C
/*
|
|
rational.c: Coded by Tadayoshi Funaba 2008-2012
|
|
|
|
This implementation is based on Keiju Ishitsuka's Rational library
|
|
which is written in ruby.
|
|
*/
|
|
|
|
#include "ruby.h"
|
|
#include "internal.h"
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#ifdef HAVE_IEEEFP_H
|
|
#include <ieeefp.h>
|
|
#endif
|
|
|
|
#define NDEBUG
|
|
#include <assert.h>
|
|
|
|
#define ZERO INT2FIX(0)
|
|
#define ONE INT2FIX(1)
|
|
#define TWO INT2FIX(2)
|
|
|
|
VALUE rb_cRational;
|
|
|
|
static ID id_abs, id_cmp, id_convert, id_eqeq_p, id_expt, id_fdiv,
|
|
id_floor, id_idiv, id_inspect, id_integer_p, id_negate, id_to_f,
|
|
id_to_i, id_to_s, id_truncate, id_i_num, id_i_den;
|
|
|
|
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
|
|
|
|
#define binop(n,op) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(x, (op), 1, y);\
|
|
}
|
|
|
|
#define fun1(n) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x)\
|
|
{\
|
|
return rb_funcall(x, id_##n, 0);\
|
|
}
|
|
|
|
#define fun2(n) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(x, id_##n, 1, y);\
|
|
}
|
|
|
|
inline static VALUE
|
|
f_add(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y) && FIX2LONG(y) == 0)
|
|
return x;
|
|
else if (FIXNUM_P(x) && FIX2LONG(x) == 0)
|
|
return y;
|
|
return rb_funcall(x, '+', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_cmp(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y)) {
|
|
long c = FIX2LONG(x) - FIX2LONG(y);
|
|
if (c > 0)
|
|
c = 1;
|
|
else if (c < 0)
|
|
c = -1;
|
|
return INT2FIX(c);
|
|
}
|
|
return rb_funcall(x, id_cmp, 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_div(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y) && FIX2LONG(y) == 1)
|
|
return x;
|
|
return rb_funcall(x, '/', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_gt_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return f_boolcast(FIX2LONG(x) > FIX2LONG(y));
|
|
return rb_funcall(x, '>', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_lt_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return f_boolcast(FIX2LONG(x) < FIX2LONG(y));
|
|
return rb_funcall(x, '<', 1, y);
|
|
}
|
|
|
|
binop(mod, '%')
|
|
|
|
inline static VALUE
|
|
f_mul(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y)) {
|
|
long iy = FIX2LONG(y);
|
|
if (iy == 0) {
|
|
if (FIXNUM_P(x) || RB_TYPE_P(x, T_BIGNUM))
|
|
return ZERO;
|
|
}
|
|
else if (iy == 1)
|
|
return x;
|
|
}
|
|
else if (FIXNUM_P(x)) {
|
|
long ix = FIX2LONG(x);
|
|
if (ix == 0) {
|
|
if (FIXNUM_P(y) || RB_TYPE_P(y, T_BIGNUM))
|
|
return ZERO;
|
|
}
|
|
else if (ix == 1)
|
|
return y;
|
|
}
|
|
return rb_funcall(x, '*', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_sub(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y) && FIX2LONG(y) == 0)
|
|
return x;
|
|
return rb_funcall(x, '-', 1, y);
|
|
}
|
|
|
|
fun1(abs)
|
|
fun1(floor)
|
|
fun1(inspect)
|
|
fun1(integer_p)
|
|
fun1(negate)
|
|
|
|
inline static VALUE
|
|
f_to_i(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_STRING))
|
|
return rb_str_to_inum(x, 10, 0);
|
|
return rb_funcall(x, id_to_i, 0);
|
|
}
|
|
inline static VALUE
|
|
f_to_f(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_STRING))
|
|
return DBL2NUM(rb_str_to_dbl(x, 0));
|
|
return rb_funcall(x, id_to_f, 0);
|
|
}
|
|
|
|
fun1(to_s)
|
|
fun1(truncate)
|
|
|
|
inline static VALUE
|
|
f_eqeq_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
|
|
return rb_funcall(x, id_eqeq_p, 1, y);
|
|
}
|
|
|
|
fun2(expt)
|
|
fun2(fdiv)
|
|
fun2(idiv)
|
|
|
|
#define f_expt10(x) f_expt(INT2FIX(10), x)
|
|
|
|
inline static VALUE
|
|
f_negative_p(VALUE x)
|
|
{
|
|
if (FIXNUM_P(x))
|
|
return f_boolcast(FIX2LONG(x) < 0);
|
|
return rb_funcall(x, '<', 1, ZERO);
|
|
}
|
|
|
|
#define f_positive_p(x) (!f_negative_p(x))
|
|
|
|
inline static VALUE
|
|
f_zero_p(VALUE x)
|
|
{
|
|
switch (TYPE(x)) {
|
|
case T_FIXNUM:
|
|
return f_boolcast(FIX2LONG(x) == 0);
|
|
case T_BIGNUM:
|
|
return Qfalse;
|
|
case T_RATIONAL:
|
|
{
|
|
VALUE num = RRATIONAL(x)->num;
|
|
|
|
return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 0);
|
|
}
|
|
}
|
|
return rb_funcall(x, id_eqeq_p, 1, ZERO);
|
|
}
|
|
|
|
#define f_nonzero_p(x) (!f_zero_p(x))
|
|
|
|
inline static VALUE
|
|
f_one_p(VALUE x)
|
|
{
|
|
switch (TYPE(x)) {
|
|
case T_FIXNUM:
|
|
return f_boolcast(FIX2LONG(x) == 1);
|
|
case T_BIGNUM:
|
|
return Qfalse;
|
|
case T_RATIONAL:
|
|
{
|
|
VALUE num = RRATIONAL(x)->num;
|
|
VALUE den = RRATIONAL(x)->den;
|
|
|
|
return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 1 &&
|
|
FIXNUM_P(den) && FIX2LONG(den) == 1);
|
|
}
|
|
}
|
|
return rb_funcall(x, id_eqeq_p, 1, ONE);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_kind_of_p(VALUE x, VALUE c)
|
|
{
|
|
return rb_obj_is_kind_of(x, c);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_numeric_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cNumeric);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_integer_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cInteger);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_float_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cFloat);
|
|
}
|
|
|
|
inline static VALUE
|
|
k_rational_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cRational);
|
|
}
|
|
|
|
#define k_exact_p(x) (!k_float_p(x))
|
|
#define k_inexact_p(x) k_float_p(x)
|
|
|
|
#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
|
|
#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
|
|
|
|
#ifndef NDEBUG
|
|
#define f_gcd f_gcd_orig
|
|
#endif
|
|
|
|
inline static long
|
|
i_gcd(long x, long y)
|
|
{
|
|
if (x < 0)
|
|
x = -x;
|
|
if (y < 0)
|
|
y = -y;
|
|
|
|
if (x == 0)
|
|
return y;
|
|
if (y == 0)
|
|
return x;
|
|
|
|
while (x > 0) {
|
|
long t = x;
|
|
x = y % x;
|
|
y = t;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
inline static VALUE
|
|
f_gcd(VALUE x, VALUE y)
|
|
{
|
|
VALUE z;
|
|
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
|
|
|
|
if (f_negative_p(x))
|
|
x = f_negate(x);
|
|
if (f_negative_p(y))
|
|
y = f_negate(y);
|
|
|
|
if (f_zero_p(x))
|
|
return y;
|
|
if (f_zero_p(y))
|
|
return x;
|
|
|
|
for (;;) {
|
|
if (FIXNUM_P(x)) {
|
|
if (FIX2LONG(x) == 0)
|
|
return y;
|
|
if (FIXNUM_P(y))
|
|
return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
|
|
}
|
|
z = x;
|
|
x = f_mod(y, x);
|
|
y = z;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#undef f_gcd
|
|
|
|
inline static VALUE
|
|
f_gcd(VALUE x, VALUE y)
|
|
{
|
|
VALUE r = f_gcd_orig(x, y);
|
|
if (f_nonzero_p(r)) {
|
|
assert(f_zero_p(f_mod(x, r)));
|
|
assert(f_zero_p(f_mod(y, r)));
|
|
}
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_lcm(VALUE x, VALUE y)
|
|
{
|
|
if (f_zero_p(x) || f_zero_p(y))
|
|
return ZERO;
|
|
return f_abs(f_mul(f_div(x, f_gcd(x, y)), y));
|
|
}
|
|
|
|
#define get_dat1(x) \
|
|
struct RRational *dat;\
|
|
dat = ((struct RRational *)(x))
|
|
|
|
#define get_dat2(x,y) \
|
|
struct RRational *adat, *bdat;\
|
|
adat = ((struct RRational *)(x));\
|
|
bdat = ((struct RRational *)(y))
|
|
|
|
inline static VALUE
|
|
nurat_s_new_internal(VALUE klass, VALUE num, VALUE den)
|
|
{
|
|
NEWOBJ_OF(obj, struct RRational, klass, T_RATIONAL);
|
|
|
|
obj->num = num;
|
|
obj->den = den;
|
|
|
|
return (VALUE)obj;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_s_alloc(VALUE klass)
|
|
{
|
|
return nurat_s_new_internal(klass, ZERO, ONE);
|
|
}
|
|
|
|
#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
|
|
|
|
#if 0
|
|
static VALUE
|
|
nurat_s_new_bang(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE num, den;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &num, &den)) {
|
|
case 1:
|
|
if (!k_integer_p(num))
|
|
num = f_to_i(num);
|
|
den = ONE;
|
|
break;
|
|
default:
|
|
if (!k_integer_p(num))
|
|
num = f_to_i(num);
|
|
if (!k_integer_p(den))
|
|
den = f_to_i(den);
|
|
|
|
switch (FIX2INT(f_cmp(den, ZERO))) {
|
|
case -1:
|
|
num = f_negate(num);
|
|
den = f_negate(den);
|
|
break;
|
|
case 0:
|
|
rb_raise_zerodiv();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return nurat_s_new_internal(klass, num, den);
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_rational_new_bang1(VALUE klass, VALUE x)
|
|
{
|
|
return nurat_s_new_internal(klass, x, ONE);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new_bang2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(f_positive_p(y));
|
|
assert(f_nonzero_p(y));
|
|
return nurat_s_new_internal(klass, x, y);
|
|
}
|
|
|
|
#ifdef CANONICALIZATION_FOR_MATHN
|
|
#define CANON
|
|
#endif
|
|
|
|
#ifdef CANON
|
|
static int canonicalization = 0;
|
|
|
|
RUBY_FUNC_EXPORTED void
|
|
nurat_canonicalization(int f)
|
|
{
|
|
canonicalization = f;
|
|
}
|
|
#endif
|
|
|
|
inline static void
|
|
nurat_int_check(VALUE num)
|
|
{
|
|
switch (TYPE(num)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
break;
|
|
default:
|
|
if (!k_numeric_p(num) || !f_integer_p(num))
|
|
rb_raise(rb_eTypeError, "not an integer");
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
nurat_int_value(VALUE num)
|
|
{
|
|
nurat_int_check(num);
|
|
if (!k_integer_p(num))
|
|
num = f_to_i(num);
|
|
return num;
|
|
}
|
|
|
|
inline static VALUE
|
|
nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den)
|
|
{
|
|
VALUE gcd;
|
|
|
|
switch (FIX2INT(f_cmp(den, ZERO))) {
|
|
case -1:
|
|
num = f_negate(num);
|
|
den = f_negate(den);
|
|
break;
|
|
case 0:
|
|
rb_raise_zerodiv();
|
|
break;
|
|
}
|
|
|
|
gcd = f_gcd(num, den);
|
|
num = f_idiv(num, gcd);
|
|
den = f_idiv(den, gcd);
|
|
|
|
#ifdef CANON
|
|
if (f_one_p(den) && canonicalization)
|
|
return num;
|
|
#endif
|
|
return nurat_s_new_internal(klass, num, den);
|
|
}
|
|
|
|
inline static VALUE
|
|
nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den)
|
|
{
|
|
switch (FIX2INT(f_cmp(den, ZERO))) {
|
|
case -1:
|
|
num = f_negate(num);
|
|
den = f_negate(den);
|
|
break;
|
|
case 0:
|
|
rb_raise_zerodiv();
|
|
break;
|
|
}
|
|
|
|
#ifdef CANON
|
|
if (f_one_p(den) && canonicalization)
|
|
return num;
|
|
#endif
|
|
return nurat_s_new_internal(klass, num, den);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_s_new(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE num, den;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &num, &den)) {
|
|
case 1:
|
|
num = nurat_int_value(num);
|
|
den = ONE;
|
|
break;
|
|
default:
|
|
num = nurat_int_value(num);
|
|
den = nurat_int_value(den);
|
|
break;
|
|
}
|
|
|
|
return nurat_s_canonicalize_internal(klass, num, den);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new1(VALUE klass, VALUE x)
|
|
{
|
|
assert(!k_rational_p(x));
|
|
return nurat_s_canonicalize_internal(klass, x, ONE);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_rational_p(x));
|
|
assert(!k_rational_p(y));
|
|
return nurat_s_canonicalize_internal(klass, x, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new_no_reduce1(VALUE klass, VALUE x)
|
|
{
|
|
assert(!k_rational_p(x));
|
|
return nurat_s_canonicalize_internal_no_reduce(klass, x, ONE);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_rational_p(x));
|
|
assert(!k_rational_p(y));
|
|
return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Rational(x[, y]) -> numeric
|
|
*
|
|
* Returns x/y;
|
|
*
|
|
* Rational(1, 2) #=> (1/2)
|
|
* Rational('1/2') #=> (1/2)
|
|
*/
|
|
static VALUE
|
|
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
return rb_funcall2(rb_cRational, id_convert, argc, argv);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.numerator -> integer
|
|
*
|
|
* Returns the numerator.
|
|
*
|
|
* Rational(7).numerator #=> 7
|
|
* Rational(7, 1).numerator #=> 7
|
|
* Rational(9, -4).numerator #=> -9
|
|
* Rational(-2, -10).numerator #=> 1
|
|
*/
|
|
static VALUE
|
|
nurat_numerator(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->num;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.denominator -> integer
|
|
*
|
|
* Returns the denominator (always positive).
|
|
*
|
|
* Rational(7).denominator #=> 1
|
|
* Rational(7, 1).denominator #=> 1
|
|
* Rational(9, -4).denominator #=> 4
|
|
* Rational(-2, -10).denominator #=> 5
|
|
* rat.numerator.gcd(rat.denominator) #=> 1
|
|
*/
|
|
static VALUE
|
|
nurat_denominator(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->den;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#define f_imul f_imul_orig
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_imul(long a, long b)
|
|
{
|
|
VALUE r;
|
|
volatile long c;
|
|
|
|
if (a == 0 || b == 0)
|
|
return ZERO;
|
|
else if (a == 1)
|
|
return LONG2NUM(b);
|
|
else if (b == 1)
|
|
return LONG2NUM(a);
|
|
|
|
c = a * b;
|
|
r = LONG2NUM(c);
|
|
if (NUM2LONG(r) != c || (c / a) != b)
|
|
r = rb_big_mul(rb_int2big(a), rb_int2big(b));
|
|
return r;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#undef f_imul
|
|
|
|
inline static VALUE
|
|
f_imul(long x, long y)
|
|
{
|
|
VALUE r = f_imul_orig(x, y);
|
|
assert(f_eqeq_p(r, f_mul(LONG2NUM(x), LONG2NUM(y))));
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
|
|
{
|
|
VALUE num, den;
|
|
|
|
if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
|
|
FIXNUM_P(bnum) && FIXNUM_P(bden)) {
|
|
long an = FIX2LONG(anum);
|
|
long ad = FIX2LONG(aden);
|
|
long bn = FIX2LONG(bnum);
|
|
long bd = FIX2LONG(bden);
|
|
long ig = i_gcd(ad, bd);
|
|
|
|
VALUE g = LONG2NUM(ig);
|
|
VALUE a = f_imul(an, bd / ig);
|
|
VALUE b = f_imul(bn, ad / ig);
|
|
VALUE c;
|
|
|
|
if (k == '+')
|
|
c = f_add(a, b);
|
|
else
|
|
c = f_sub(a, b);
|
|
|
|
b = f_idiv(aden, g);
|
|
g = f_gcd(c, g);
|
|
num = f_idiv(c, g);
|
|
a = f_idiv(bden, g);
|
|
den = f_mul(a, b);
|
|
}
|
|
else {
|
|
VALUE g = f_gcd(aden, bden);
|
|
VALUE a = f_mul(anum, f_idiv(bden, g));
|
|
VALUE b = f_mul(bnum, f_idiv(aden, g));
|
|
VALUE c;
|
|
|
|
if (k == '+')
|
|
c = f_add(a, b);
|
|
else
|
|
c = f_sub(a, b);
|
|
|
|
b = f_idiv(aden, g);
|
|
g = f_gcd(c, g);
|
|
num = f_idiv(c, g);
|
|
a = f_idiv(bden, g);
|
|
den = f_mul(a, b);
|
|
}
|
|
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat + numeric -> numeric
|
|
*
|
|
* Performs addition.
|
|
*
|
|
* Rational(2, 3) + Rational(2, 3) #=> (4/3)
|
|
* Rational(900) + Rational(1) #=> (900/1)
|
|
* Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
|
|
* Rational(9, 8) + 4 #=> (41/8)
|
|
* Rational(20, 9) + 9.8 #=> 12.022222222222222
|
|
*/
|
|
static VALUE
|
|
nurat_add(VALUE self, VALUE other)
|
|
{
|
|
switch (TYPE(other)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_addsub(self,
|
|
dat->num, dat->den,
|
|
other, ONE, '+');
|
|
}
|
|
case T_FLOAT:
|
|
return f_add(f_to_f(self), other);
|
|
case T_RATIONAL:
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
return f_addsub(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '+');
|
|
}
|
|
default:
|
|
return rb_num_coerce_bin(self, other, '+');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat - numeric -> numeric
|
|
*
|
|
* Performs subtraction.
|
|
*
|
|
* Rational(2, 3) - Rational(2, 3) #=> (0/1)
|
|
* Rational(900) - Rational(1) #=> (899/1)
|
|
* Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
|
|
* Rational(9, 8) - 4 #=> (23/8)
|
|
* Rational(20, 9) - 9.8 #=> -7.577777777777778
|
|
*/
|
|
static VALUE
|
|
nurat_sub(VALUE self, VALUE other)
|
|
{
|
|
switch (TYPE(other)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_addsub(self,
|
|
dat->num, dat->den,
|
|
other, ONE, '-');
|
|
}
|
|
case T_FLOAT:
|
|
return f_sub(f_to_f(self), other);
|
|
case T_RATIONAL:
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
return f_addsub(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '-');
|
|
}
|
|
default:
|
|
return rb_num_coerce_bin(self, other, '-');
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
|
|
{
|
|
VALUE num, den;
|
|
|
|
if (k == '/') {
|
|
VALUE t;
|
|
|
|
if (f_negative_p(bnum)) {
|
|
anum = f_negate(anum);
|
|
bnum = f_negate(bnum);
|
|
}
|
|
t = bnum;
|
|
bnum = bden;
|
|
bden = t;
|
|
}
|
|
|
|
if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
|
|
FIXNUM_P(bnum) && FIXNUM_P(bden)) {
|
|
long an = FIX2LONG(anum);
|
|
long ad = FIX2LONG(aden);
|
|
long bn = FIX2LONG(bnum);
|
|
long bd = FIX2LONG(bden);
|
|
long g1 = i_gcd(an, bd);
|
|
long g2 = i_gcd(ad, bn);
|
|
|
|
num = f_imul(an / g1, bn / g2);
|
|
den = f_imul(ad / g2, bd / g1);
|
|
}
|
|
else {
|
|
VALUE g1 = f_gcd(anum, bden);
|
|
VALUE g2 = f_gcd(aden, bnum);
|
|
|
|
num = f_mul(f_idiv(anum, g1), f_idiv(bnum, g2));
|
|
den = f_mul(f_idiv(aden, g2), f_idiv(bden, g1));
|
|
}
|
|
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat * numeric -> numeric
|
|
*
|
|
* Performs multiplication.
|
|
*
|
|
* Rational(2, 3) * Rational(2, 3) #=> (4/9)
|
|
* Rational(900) * Rational(1) #=> (900/1)
|
|
* Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
|
|
* Rational(9, 8) * 4 #=> (9/2)
|
|
* Rational(20, 9) * 9.8 #=> 21.77777777777778
|
|
*/
|
|
static VALUE
|
|
nurat_mul(VALUE self, VALUE other)
|
|
{
|
|
switch (TYPE(other)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_muldiv(self,
|
|
dat->num, dat->den,
|
|
other, ONE, '*');
|
|
}
|
|
case T_FLOAT:
|
|
return f_mul(f_to_f(self), other);
|
|
case T_RATIONAL:
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
return f_muldiv(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '*');
|
|
}
|
|
default:
|
|
return rb_num_coerce_bin(self, other, '*');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat / numeric -> numeric
|
|
* rat.quo(numeric) -> numeric
|
|
*
|
|
* Performs division.
|
|
*
|
|
* Rational(2, 3) / Rational(2, 3) #=> (1/1)
|
|
* Rational(900) / Rational(1) #=> (900/1)
|
|
* Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
|
|
* Rational(9, 8) / 4 #=> (9/32)
|
|
* Rational(20, 9) / 9.8 #=> 0.22675736961451246
|
|
*/
|
|
static VALUE
|
|
nurat_div(VALUE self, VALUE other)
|
|
{
|
|
switch (TYPE(other)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
if (f_zero_p(other))
|
|
rb_raise_zerodiv();
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_muldiv(self,
|
|
dat->num, dat->den,
|
|
other, ONE, '/');
|
|
}
|
|
case T_FLOAT:
|
|
{
|
|
double x = RFLOAT_VALUE(other), den;
|
|
get_dat1(self);
|
|
|
|
if (isnan(x)) return DBL2NUM(NAN);
|
|
if (isinf(x)) return INT2FIX(0);
|
|
if (x != 0.0 && modf(x, &den) == 0.0) {
|
|
return rb_rational_raw2(dat->num, f_mul(rb_dbl2big(den), dat->den));
|
|
}
|
|
}
|
|
return rb_funcall(f_to_f(self), '/', 1, other);
|
|
case T_RATIONAL:
|
|
if (f_zero_p(other))
|
|
rb_raise_zerodiv();
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
if (f_one_p(self))
|
|
return f_rational_new_no_reduce2(CLASS_OF(self),
|
|
bdat->den, bdat->num);
|
|
|
|
return f_muldiv(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '/');
|
|
}
|
|
default:
|
|
return rb_num_coerce_bin(self, other, '/');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.fdiv(numeric) -> float
|
|
*
|
|
* Performs division and returns the value as a float.
|
|
*
|
|
* Rational(2, 3).fdiv(1) #=> 0.6666666666666666
|
|
* Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
|
|
* Rational(2).fdiv(3) #=> 0.6666666666666666
|
|
*/
|
|
static VALUE
|
|
nurat_fdiv(VALUE self, VALUE other)
|
|
{
|
|
if (f_zero_p(other))
|
|
return f_div(self, f_to_f(other));
|
|
return f_to_f(f_div(self, other));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat ** numeric -> numeric
|
|
*
|
|
* Performs exponentiation.
|
|
*
|
|
* Rational(2) ** Rational(3) #=> (8/1)
|
|
* Rational(10) ** -2 #=> (1/100)
|
|
* Rational(10) ** -2.0 #=> 0.01
|
|
* Rational(-4) ** Rational(1,2) #=> (1.2246063538223773e-16+2.0i)
|
|
* Rational(1, 2) ** 0 #=> (1/1)
|
|
* Rational(1, 2) ** 0.0 #=> 1.0
|
|
*/
|
|
static VALUE
|
|
nurat_expt(VALUE self, VALUE other)
|
|
{
|
|
if (k_numeric_p(other) && k_exact_zero_p(other))
|
|
return f_rational_new_bang1(CLASS_OF(self), ONE);
|
|
|
|
if (k_rational_p(other)) {
|
|
get_dat1(other);
|
|
|
|
if (f_one_p(dat->den))
|
|
other = dat->num; /* c14n */
|
|
}
|
|
|
|
switch (TYPE(other)) {
|
|
case T_FIXNUM:
|
|
{
|
|
VALUE num, den;
|
|
|
|
get_dat1(self);
|
|
|
|
switch (FIX2INT(f_cmp(other, ZERO))) {
|
|
case 1:
|
|
num = f_expt(dat->num, other);
|
|
den = f_expt(dat->den, other);
|
|
break;
|
|
case -1:
|
|
num = f_expt(dat->den, f_negate(other));
|
|
den = f_expt(dat->num, f_negate(other));
|
|
break;
|
|
default:
|
|
num = ONE;
|
|
den = ONE;
|
|
break;
|
|
}
|
|
return f_rational_new2(CLASS_OF(self), num, den);
|
|
}
|
|
case T_BIGNUM:
|
|
rb_warn("in a**b, b may be too big");
|
|
/* fall through */
|
|
case T_FLOAT:
|
|
case T_RATIONAL:
|
|
return f_expt(f_to_f(self), other);
|
|
default:
|
|
return rb_num_coerce_bin(self, other, id_expt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat <=> numeric -> -1, 0, +1 or nil
|
|
*
|
|
* Performs comparison and returns -1, 0, or +1.
|
|
*
|
|
* Rational(2, 3) <=> Rational(2, 3) #=> 0
|
|
* Rational(5) <=> 5 #=> 0
|
|
* Rational(2,3) <=> Rational(1,3) #=> 1
|
|
* Rational(1,3) <=> 1 #=> -1
|
|
* Rational(1,3) <=> 0.3 #=> 1
|
|
*/
|
|
static VALUE
|
|
nurat_cmp(VALUE self, VALUE other)
|
|
{
|
|
switch (TYPE(other)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (FIXNUM_P(dat->den) && FIX2LONG(dat->den) == 1)
|
|
return f_cmp(dat->num, other); /* c14n */
|
|
return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other));
|
|
}
|
|
case T_FLOAT:
|
|
return f_cmp(f_to_f(self), other);
|
|
case T_RATIONAL:
|
|
{
|
|
VALUE num1, num2;
|
|
|
|
get_dat2(self, other);
|
|
|
|
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
|
|
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
|
|
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
|
|
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
|
|
}
|
|
else {
|
|
num1 = f_mul(adat->num, bdat->den);
|
|
num2 = f_mul(bdat->num, adat->den);
|
|
}
|
|
return f_cmp(f_sub(num1, num2), ZERO);
|
|
}
|
|
default:
|
|
return rb_num_coerce_cmp(self, other, id_cmp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat == object -> true or false
|
|
*
|
|
* Returns true if rat equals object numerically.
|
|
*
|
|
* Rational(2, 3) == Rational(2, 3) #=> true
|
|
* Rational(5) == 5 #=> true
|
|
* Rational(0) == 0.0 #=> true
|
|
* Rational('1/3') == 0.33 #=> false
|
|
* Rational('1/2') == '1/2' #=> false
|
|
*/
|
|
static VALUE
|
|
nurat_eqeq_p(VALUE self, VALUE other)
|
|
{
|
|
switch (TYPE(other)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (f_zero_p(dat->num) && f_zero_p(other))
|
|
return Qtrue;
|
|
|
|
if (!FIXNUM_P(dat->den))
|
|
return Qfalse;
|
|
if (FIX2LONG(dat->den) != 1)
|
|
return Qfalse;
|
|
if (f_eqeq_p(dat->num, other))
|
|
return Qtrue;
|
|
return Qfalse;
|
|
}
|
|
case T_FLOAT:
|
|
return f_eqeq_p(f_to_f(self), other);
|
|
case T_RATIONAL:
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
if (f_zero_p(adat->num) && f_zero_p(bdat->num))
|
|
return Qtrue;
|
|
|
|
return f_boolcast(f_eqeq_p(adat->num, bdat->num) &&
|
|
f_eqeq_p(adat->den, bdat->den));
|
|
}
|
|
default:
|
|
return f_eqeq_p(other, self);
|
|
}
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_coerce(VALUE self, VALUE other)
|
|
{
|
|
switch (TYPE(other)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
|
|
case T_FLOAT:
|
|
return rb_assoc_new(other, f_to_f(self));
|
|
case T_RATIONAL:
|
|
return rb_assoc_new(other, self);
|
|
case T_COMPLEX:
|
|
if (k_exact_zero_p(RCOMPLEX(other)->imag))
|
|
return rb_assoc_new(f_rational_new_bang1
|
|
(CLASS_OF(self), RCOMPLEX(other)->real), self);
|
|
else
|
|
return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
|
|
}
|
|
|
|
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
|
|
rb_obj_classname(other), rb_obj_classname(self));
|
|
return Qnil;
|
|
}
|
|
|
|
#if 0
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_idiv(VALUE self, VALUE other)
|
|
{
|
|
return f_idiv(self, other);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_quot(VALUE self, VALUE other)
|
|
{
|
|
return f_truncate(f_div(self, other));
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_quotrem(VALUE self, VALUE other)
|
|
{
|
|
VALUE val = f_truncate(f_div(self, other));
|
|
return rb_assoc_new(val, f_sub(self, f_mul(other, val)));
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_true(VALUE self)
|
|
{
|
|
return Qtrue;
|
|
}
|
|
#endif
|
|
|
|
static VALUE
|
|
nurat_floor(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_idiv(dat->num, dat->den);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_ceil(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_negate(f_idiv(f_negate(dat->num), dat->den));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_i -> integer
|
|
*
|
|
* Returns the truncated value as an integer.
|
|
*
|
|
* Equivalent to
|
|
* rat.truncate.
|
|
*
|
|
* Rational(2, 3).to_i #=> 0
|
|
* Rational(3).to_i #=> 3
|
|
* Rational(300.6).to_i #=> 300
|
|
* Rational(98,71).to_i #=> 1
|
|
* Rational(-30,2).to_i #=> -15
|
|
*/
|
|
static VALUE
|
|
nurat_truncate(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
if (f_negative_p(dat->num))
|
|
return f_negate(f_idiv(f_negate(dat->num), dat->den));
|
|
return f_idiv(dat->num, dat->den);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_round(VALUE self)
|
|
{
|
|
VALUE num, den, neg;
|
|
|
|
get_dat1(self);
|
|
|
|
num = dat->num;
|
|
den = dat->den;
|
|
neg = f_negative_p(num);
|
|
|
|
if (neg)
|
|
num = f_negate(num);
|
|
|
|
num = f_add(f_mul(num, TWO), den);
|
|
den = f_mul(den, TWO);
|
|
num = f_idiv(num, den);
|
|
|
|
if (neg)
|
|
num = f_negate(num);
|
|
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
f_round_common(int argc, VALUE *argv, VALUE self, VALUE (*func)(VALUE))
|
|
{
|
|
VALUE n, b, s;
|
|
|
|
if (argc == 0)
|
|
return (*func)(self);
|
|
|
|
rb_scan_args(argc, argv, "01", &n);
|
|
|
|
if (!k_integer_p(n))
|
|
rb_raise(rb_eTypeError, "not an integer");
|
|
|
|
b = f_expt10(n);
|
|
s = f_mul(self, b);
|
|
|
|
s = (*func)(s);
|
|
|
|
s = f_div(f_rational_new_bang1(CLASS_OF(self), s), b);
|
|
|
|
if (f_lt_p(n, ONE))
|
|
s = f_to_i(s);
|
|
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.floor -> integer
|
|
* rat.floor(precision=0) -> rational
|
|
*
|
|
* Returns the truncated value (toward negative infinity).
|
|
*
|
|
* Rational(3).floor #=> 3
|
|
* Rational(2, 3).floor #=> 0
|
|
* Rational(-3, 2).floor #=> -1
|
|
*
|
|
* decimal - 1 2 3 . 4 5 6
|
|
* ^ ^ ^ ^ ^ ^
|
|
* precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* '%f' % Rational('-123.456').floor(+1) #=> "-123.500000"
|
|
* '%f' % Rational('-123.456').floor(-1) #=> "-130.000000"
|
|
*/
|
|
static VALUE
|
|
nurat_floor_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_floor);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.ceil -> integer
|
|
* rat.ceil(precision=0) -> rational
|
|
*
|
|
* Returns the truncated value (toward positive infinity).
|
|
*
|
|
* Rational(3).ceil #=> 3
|
|
* Rational(2, 3).ceil #=> 1
|
|
* Rational(-3, 2).ceil #=> -1
|
|
*
|
|
* decimal - 1 2 3 . 4 5 6
|
|
* ^ ^ ^ ^ ^ ^
|
|
* precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* '%f' % Rational('-123.456').ceil(+1) #=> "-123.400000"
|
|
* '%f' % Rational('-123.456').ceil(-1) #=> "-120.000000"
|
|
*/
|
|
static VALUE
|
|
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_ceil);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.truncate -> integer
|
|
* rat.truncate(precision=0) -> rational
|
|
*
|
|
* Returns the truncated value (toward zero).
|
|
*
|
|
* Rational(3).truncate #=> 3
|
|
* Rational(2, 3).truncate #=> 0
|
|
* Rational(-3, 2).truncate #=> -1
|
|
*
|
|
* decimal - 1 2 3 . 4 5 6
|
|
* ^ ^ ^ ^ ^ ^
|
|
* precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* '%f' % Rational('-123.456').truncate(+1) #=> "-123.400000"
|
|
* '%f' % Rational('-123.456').truncate(-1) #=> "-120.000000"
|
|
*/
|
|
static VALUE
|
|
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_truncate);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.round -> integer
|
|
* rat.round(precision=0) -> rational
|
|
*
|
|
* Returns the truncated value (toward the nearest integer;
|
|
* 0.5 => 1; -0.5 => -1).
|
|
*
|
|
* Rational(3).round #=> 3
|
|
* Rational(2, 3).round #=> 1
|
|
* Rational(-3, 2).round #=> -2
|
|
*
|
|
* decimal - 1 2 3 . 4 5 6
|
|
* ^ ^ ^ ^ ^ ^
|
|
* precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* '%f' % Rational('-123.456').round(+1) #=> "-123.500000"
|
|
* '%f' % Rational('-123.456').round(-1) #=> "-120.000000"
|
|
*/
|
|
static VALUE
|
|
nurat_round_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_round);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_f -> float
|
|
*
|
|
* Return the value as a float.
|
|
*
|
|
* Rational(2).to_f #=> 2.0
|
|
* Rational(9, 4).to_f #=> 2.25
|
|
* Rational(-3, 4).to_f #=> -0.75
|
|
* Rational(20, 3).to_f #=> 6.666666666666667
|
|
*/
|
|
static VALUE
|
|
nurat_to_f(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_fdiv(dat->num, dat->den);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_r -> self
|
|
*
|
|
* Returns self.
|
|
*
|
|
* Rational(2).to_r #=> (2/1)
|
|
* Rational(-8, 6).to_r #=> (-4/3)
|
|
*/
|
|
static VALUE
|
|
nurat_to_r(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
#define id_ceil rb_intern("ceil")
|
|
#define f_ceil(x) rb_funcall((x), id_ceil, 0)
|
|
|
|
#define id_quo rb_intern("quo")
|
|
#define f_quo(x,y) rb_funcall((x), id_quo, 1, (y))
|
|
|
|
#define f_reciprocal(x) f_quo(ONE, (x))
|
|
|
|
/*
|
|
The algorithm here is the method described in CLISP. Bruno Haible has
|
|
graciously given permission to use this algorithm. He says, "You can use
|
|
it, if you present the following explanation of the algorithm."
|
|
|
|
Algorithm (recursively presented):
|
|
If x is a rational number, return x.
|
|
If x = 0.0, return 0.
|
|
If x < 0.0, return (- (rationalize (- x))).
|
|
If x > 0.0:
|
|
Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
|
|
exponent, sign).
|
|
If m = 0 or e >= 0: return x = m*2^e.
|
|
Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
|
|
with smallest possible numerator and denominator.
|
|
Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
|
|
But in this case the result will be x itself anyway, regardless of
|
|
the choice of a. Therefore we can simply ignore this case.
|
|
Note 2: At first, we need to consider the closed interval [a,b].
|
|
but since a and b have the denominator 2^(|e|+1) whereas x itself
|
|
has a denominator <= 2^|e|, we can restrict the search to the open
|
|
interval (a,b).
|
|
So, for given a and b (0 < a < b) we are searching a rational number
|
|
y with a <= y <= b.
|
|
Recursive algorithm fraction_between(a,b):
|
|
c := (ceiling a)
|
|
if c < b
|
|
then return c ; because a <= c < b, c integer
|
|
else
|
|
; a is not integer (otherwise we would have had c = a < b)
|
|
k := c-1 ; k = floor(a), k < a < b <= k+1
|
|
return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
|
|
; note 1 <= 1/(b-k) < 1/(a-k)
|
|
|
|
You can see that we are actually computing a continued fraction expansion.
|
|
|
|
Algorithm (iterative):
|
|
If x is rational, return x.
|
|
Call (integer-decode-float x). It returns a m,e,s (mantissa,
|
|
exponent, sign).
|
|
If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
|
|
Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
|
|
(positive and already in lowest terms because the denominator is a
|
|
power of two and the numerator is odd).
|
|
Start a continued fraction expansion
|
|
p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
|
|
Loop
|
|
c := (ceiling a)
|
|
if c >= b
|
|
then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
|
|
goto Loop
|
|
finally partial_quotient(c).
|
|
Here partial_quotient(c) denotes the iteration
|
|
i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
|
|
At the end, return s * (p[i]/q[i]).
|
|
This rational number is already in lowest terms because
|
|
p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
|
|
*/
|
|
|
|
static void
|
|
nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
|
|
{
|
|
VALUE c, k, t, p0, p1, p2, q0, q1, q2;
|
|
|
|
p0 = ZERO;
|
|
p1 = ONE;
|
|
q0 = ONE;
|
|
q1 = ZERO;
|
|
|
|
while (1) {
|
|
c = f_ceil(a);
|
|
if (f_lt_p(c, b))
|
|
break;
|
|
k = f_sub(c, ONE);
|
|
p2 = f_add(f_mul(k, p1), p0);
|
|
q2 = f_add(f_mul(k, q1), q0);
|
|
t = f_reciprocal(f_sub(b, k));
|
|
b = f_reciprocal(f_sub(a, k));
|
|
a = t;
|
|
p0 = p1;
|
|
q0 = q1;
|
|
p1 = p2;
|
|
q1 = q2;
|
|
}
|
|
*p = f_add(f_mul(c, p1), p0);
|
|
*q = f_add(f_mul(c, q1), q0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.rationalize -> self
|
|
* rat.rationalize(eps) -> rational
|
|
*
|
|
* Returns a simpler approximation of the value if the optional
|
|
* argument eps is given (rat-|eps| <= result <= rat+|eps|), self
|
|
* otherwise.
|
|
*
|
|
* r = Rational(5033165, 16777216)
|
|
* r.rationalize #=> (5033165/16777216)
|
|
* r.rationalize(Rational('0.01')) #=> (3/10)
|
|
* r.rationalize(Rational('0.1')) #=> (1/3)
|
|
*/
|
|
static VALUE
|
|
nurat_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE e, a, b, p, q;
|
|
|
|
if (argc == 0)
|
|
return self;
|
|
|
|
if (f_negative_p(self))
|
|
return f_negate(nurat_rationalize(argc, argv, f_abs(self)));
|
|
|
|
rb_scan_args(argc, argv, "01", &e);
|
|
e = f_abs(e);
|
|
a = f_sub(self, e);
|
|
b = f_add(self, e);
|
|
|
|
if (f_eqeq_p(a, b))
|
|
return self;
|
|
|
|
nurat_rationalize_internal(a, b, &p, &q);
|
|
return f_rational_new2(CLASS_OF(self), p, q);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_hash(VALUE self)
|
|
{
|
|
st_index_t v, h[2];
|
|
VALUE n;
|
|
|
|
get_dat1(self);
|
|
n = rb_hash(dat->num);
|
|
h[0] = NUM2LONG(n);
|
|
n = rb_hash(dat->den);
|
|
h[1] = NUM2LONG(n);
|
|
v = rb_memhash(h, sizeof(h));
|
|
return LONG2FIX(v);
|
|
}
|
|
|
|
static VALUE
|
|
f_format(VALUE self, VALUE (*func)(VALUE))
|
|
{
|
|
VALUE s;
|
|
get_dat1(self);
|
|
|
|
s = (*func)(dat->num);
|
|
rb_str_cat2(s, "/");
|
|
rb_str_concat(s, (*func)(dat->den));
|
|
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_s -> string
|
|
*
|
|
* Returns the value as a string.
|
|
*
|
|
* Rational(2).to_s #=> "2/1"
|
|
* Rational(-8, 6).to_s #=> "-4/3"
|
|
* Rational('1/2').to_s #=> "1/2"
|
|
*/
|
|
static VALUE
|
|
nurat_to_s(VALUE self)
|
|
{
|
|
return f_format(self, f_to_s);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.inspect -> string
|
|
*
|
|
* Returns the value as a string for inspection.
|
|
*
|
|
* Rational(2).inspect #=> "(2/1)"
|
|
* Rational(-8, 6).inspect #=> "(-4/3)"
|
|
* Rational('1/2').inspect #=> "(1/2)"
|
|
*/
|
|
static VALUE
|
|
nurat_inspect(VALUE self)
|
|
{
|
|
VALUE s;
|
|
|
|
s = rb_usascii_str_new2("(");
|
|
rb_str_concat(s, f_format(self, f_inspect));
|
|
rb_str_cat2(s, ")");
|
|
|
|
return s;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_dumper(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_loader(VALUE self, VALUE a)
|
|
{
|
|
get_dat1(self);
|
|
|
|
dat->num = rb_ivar_get(a, id_i_num);
|
|
dat->den = rb_ivar_get(a, id_i_den);
|
|
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_marshal_dump(VALUE self)
|
|
{
|
|
VALUE a;
|
|
get_dat1(self);
|
|
|
|
a = rb_assoc_new(dat->num, dat->den);
|
|
return a;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_marshal_load(VALUE self, VALUE a)
|
|
{
|
|
rb_check_frozen(self);
|
|
rb_check_trusted(self);
|
|
|
|
Check_Type(a, T_ARRAY);
|
|
if (RARRAY_LEN(a) != 2)
|
|
rb_raise(rb_eArgError, "marshaled rational must have an array whose length is 2 but %ld", RARRAY_LEN(a));
|
|
if (f_zero_p(RARRAY_PTR(a)[1]))
|
|
rb_raise_zerodiv();
|
|
|
|
rb_ivar_set(self, id_i_num, RARRAY_PTR(a)[0]);
|
|
rb_ivar_set(self, id_i_den, RARRAY_PTR(a)[1]);
|
|
|
|
return self;
|
|
}
|
|
|
|
/* --- */
|
|
|
|
VALUE
|
|
rb_rational_reciprocal(VALUE x)
|
|
{
|
|
get_dat1(x);
|
|
return f_rational_new_no_reduce2(CLASS_OF(x), dat->den, dat->num);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.gcd(int2) -> integer
|
|
*
|
|
* Returns the greatest common divisor (always positive). 0.gcd(x)
|
|
* and x.gcd(0) return abs(x).
|
|
*
|
|
* 2.gcd(2) #=> 2
|
|
* 3.gcd(-7) #=> 1
|
|
* ((1<<31)-1).gcd((1<<61)-1) #=> 1
|
|
*/
|
|
VALUE
|
|
rb_gcd(VALUE self, VALUE other)
|
|
{
|
|
other = nurat_int_value(other);
|
|
return f_gcd(self, other);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.lcm(int2) -> integer
|
|
*
|
|
* Returns the least common multiple (always positive). 0.lcm(x) and
|
|
* x.lcm(0) return zero.
|
|
*
|
|
* 2.lcm(2) #=> 2
|
|
* 3.lcm(-7) #=> 21
|
|
* ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
|
|
*/
|
|
VALUE
|
|
rb_lcm(VALUE self, VALUE other)
|
|
{
|
|
other = nurat_int_value(other);
|
|
return f_lcm(self, other);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.gcdlcm(int2) -> array
|
|
*
|
|
* Returns an array; [int.gcd(int2), int.lcm(int2)].
|
|
*
|
|
* 2.gcdlcm(2) #=> [2, 2]
|
|
* 3.gcdlcm(-7) #=> [1, 21]
|
|
* ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
|
|
*/
|
|
VALUE
|
|
rb_gcdlcm(VALUE self, VALUE other)
|
|
{
|
|
other = nurat_int_value(other);
|
|
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_raw(VALUE x, VALUE y)
|
|
{
|
|
return nurat_s_new_internal(rb_cRational, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_new(VALUE x, VALUE y)
|
|
{
|
|
return nurat_s_canonicalize_internal(rb_cRational, x, y);
|
|
}
|
|
|
|
static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass);
|
|
|
|
VALUE
|
|
rb_Rational(VALUE x, VALUE y)
|
|
{
|
|
VALUE a[2];
|
|
a[0] = x;
|
|
a[1] = y;
|
|
return nurat_s_convert(2, a, rb_cRational);
|
|
}
|
|
|
|
#define id_numerator rb_intern("numerator")
|
|
#define f_numerator(x) rb_funcall((x), id_numerator, 0)
|
|
|
|
#define id_denominator rb_intern("denominator")
|
|
#define f_denominator(x) rb_funcall((x), id_denominator, 0)
|
|
|
|
#define id_to_r rb_intern("to_r")
|
|
#define f_to_r(x) rb_funcall((x), id_to_r, 0)
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.numerator -> integer
|
|
*
|
|
* Returns the numerator.
|
|
*/
|
|
static VALUE
|
|
numeric_numerator(VALUE self)
|
|
{
|
|
return f_numerator(f_to_r(self));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.denominator -> integer
|
|
*
|
|
* Returns the denominator (always positive).
|
|
*/
|
|
static VALUE
|
|
numeric_denominator(VALUE self)
|
|
{
|
|
return f_denominator(f_to_r(self));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.numerator -> self
|
|
*
|
|
* Returns self.
|
|
*/
|
|
static VALUE
|
|
integer_numerator(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.denominator -> 1
|
|
*
|
|
* Returns 1.
|
|
*/
|
|
static VALUE
|
|
integer_denominator(VALUE self)
|
|
{
|
|
return INT2FIX(1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flo.numerator -> integer
|
|
*
|
|
* Returns the numerator. The result is machine dependent.
|
|
*
|
|
* n = 0.3.numerator #=> 5404319552844595
|
|
* d = 0.3.denominator #=> 18014398509481984
|
|
* n.fdiv(d) #=> 0.3
|
|
*/
|
|
static VALUE
|
|
float_numerator(VALUE self)
|
|
{
|
|
double d = RFLOAT_VALUE(self);
|
|
if (isinf(d) || isnan(d))
|
|
return self;
|
|
return rb_call_super(0, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flo.denominator -> integer
|
|
*
|
|
* Returns the denominator (always positive). The result is machine
|
|
* dependent.
|
|
*
|
|
* See numerator.
|
|
*/
|
|
static VALUE
|
|
float_denominator(VALUE self)
|
|
{
|
|
double d = RFLOAT_VALUE(self);
|
|
if (isinf(d) || isnan(d))
|
|
return INT2FIX(1);
|
|
return rb_call_super(0, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* nil.to_r -> (0/1)
|
|
*
|
|
* Returns zero as a rational.
|
|
*/
|
|
static VALUE
|
|
nilclass_to_r(VALUE self)
|
|
{
|
|
return rb_rational_new1(INT2FIX(0));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* nil.rationalize([eps]) -> (0/1)
|
|
*
|
|
* Returns zero as a rational. The optional argument eps is always
|
|
* ignored.
|
|
*/
|
|
static VALUE
|
|
nilclass_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_scan_args(argc, argv, "01", NULL);
|
|
return nilclass_to_r(self);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.to_r -> rational
|
|
*
|
|
* Returns the value as a rational.
|
|
*
|
|
* 1.to_r #=> (1/1)
|
|
* (1<<64).to_r #=> (18446744073709551616/1)
|
|
*/
|
|
static VALUE
|
|
integer_to_r(VALUE self)
|
|
{
|
|
return rb_rational_new1(self);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.rationalize([eps]) -> rational
|
|
*
|
|
* Returns the value as a rational. The optional argument eps is
|
|
* always ignored.
|
|
*/
|
|
static VALUE
|
|
integer_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_scan_args(argc, argv, "01", NULL);
|
|
return integer_to_r(self);
|
|
}
|
|
|
|
static void
|
|
float_decode_internal(VALUE self, VALUE *rf, VALUE *rn)
|
|
{
|
|
double f;
|
|
int n;
|
|
|
|
f = frexp(RFLOAT_VALUE(self), &n);
|
|
f = ldexp(f, DBL_MANT_DIG);
|
|
n -= DBL_MANT_DIG;
|
|
*rf = rb_dbl2big(f);
|
|
*rn = INT2FIX(n);
|
|
}
|
|
|
|
#if 0
|
|
static VALUE
|
|
float_decode(VALUE self)
|
|
{
|
|
VALUE f, n;
|
|
|
|
float_decode_internal(self, &f, &n);
|
|
return rb_assoc_new(f, n);
|
|
}
|
|
#endif
|
|
|
|
#define id_lshift rb_intern("<<")
|
|
#define f_lshift(x,n) rb_funcall((x), id_lshift, 1, (n))
|
|
|
|
/*
|
|
* call-seq:
|
|
* flt.to_r -> rational
|
|
*
|
|
* Returns the value as a rational.
|
|
*
|
|
* NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is
|
|
* equivalent to '3/10'.to_r, but the former isn't so.
|
|
*
|
|
* 2.0.to_r #=> (2/1)
|
|
* 2.5.to_r #=> (5/2)
|
|
* -0.75.to_r #=> (-3/4)
|
|
* 0.0.to_r #=> (0/1)
|
|
*
|
|
* See rationalize.
|
|
*/
|
|
static VALUE
|
|
float_to_r(VALUE self)
|
|
{
|
|
VALUE f, n;
|
|
|
|
float_decode_internal(self, &f, &n);
|
|
#if FLT_RADIX == 2
|
|
{
|
|
long ln = FIX2LONG(n);
|
|
|
|
if (ln == 0)
|
|
return f_to_r(f);
|
|
if (ln > 0)
|
|
return f_to_r(f_lshift(f, n));
|
|
ln = -ln;
|
|
return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
|
|
}
|
|
#else
|
|
return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flt.rationalize([eps]) -> rational
|
|
*
|
|
* Returns a simpler approximation of the value (flt-|eps| <= result
|
|
* <= flt+|eps|). if the optional eps is not given, it will be chosen
|
|
* automatically.
|
|
*
|
|
* 0.3.rationalize #=> (3/10)
|
|
* 1.333.rationalize #=> (1333/1000)
|
|
* 1.333.rationalize(0.01) #=> (4/3)
|
|
*
|
|
* See to_r.
|
|
*/
|
|
static VALUE
|
|
float_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE e, a, b, p, q;
|
|
|
|
if (f_negative_p(self))
|
|
return f_negate(float_rationalize(argc, argv, f_abs(self)));
|
|
|
|
rb_scan_args(argc, argv, "01", &e);
|
|
|
|
if (argc != 0) {
|
|
e = f_abs(e);
|
|
a = f_sub(self, e);
|
|
b = f_add(self, e);
|
|
}
|
|
else {
|
|
VALUE f, n;
|
|
|
|
float_decode_internal(self, &f, &n);
|
|
if (f_zero_p(f) || f_positive_p(n))
|
|
return rb_rational_new1(f_lshift(f, n));
|
|
|
|
#if FLT_RADIX == 2
|
|
a = rb_rational_new2(f_sub(f_mul(TWO, f), ONE),
|
|
f_lshift(ONE, f_sub(ONE, n)));
|
|
b = rb_rational_new2(f_add(f_mul(TWO, f), ONE),
|
|
f_lshift(ONE, f_sub(ONE, n)));
|
|
#else
|
|
a = rb_rational_new2(f_sub(f_mul(INT2FIX(FLT_RADIX), f),
|
|
INT2FIX(FLT_RADIX - 1)),
|
|
f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
|
|
b = rb_rational_new2(f_add(f_mul(INT2FIX(FLT_RADIX), f),
|
|
INT2FIX(FLT_RADIX - 1)),
|
|
f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
|
|
#endif
|
|
}
|
|
|
|
if (f_eqeq_p(a, b))
|
|
return f_to_r(self);
|
|
|
|
nurat_rationalize_internal(a, b, &p, &q);
|
|
return rb_rational_new2(p, q);
|
|
}
|
|
|
|
#include <ctype.h>
|
|
|
|
inline static int
|
|
issign(int c)
|
|
{
|
|
return (c == '-' || c == '+');
|
|
}
|
|
|
|
static int
|
|
read_sign(const char **s)
|
|
{
|
|
int sign = '?';
|
|
|
|
if (issign(**s)) {
|
|
sign = **s;
|
|
(*s)++;
|
|
}
|
|
return sign;
|
|
}
|
|
|
|
inline static int
|
|
isdecimal(int c)
|
|
{
|
|
return isdigit((unsigned char)c);
|
|
}
|
|
|
|
static int
|
|
read_digits(const char **s, int strict,
|
|
VALUE *num, int *count)
|
|
{
|
|
char *b, *bb;
|
|
int us = 1, ret = 1;
|
|
|
|
if (!isdecimal(**s)) {
|
|
*num = ZERO;
|
|
return 0;
|
|
}
|
|
|
|
bb = b = ALLOCA_N(char, strlen(*s) + 1);
|
|
|
|
while (isdecimal(**s) || **s == '_') {
|
|
if (**s == '_') {
|
|
if (strict) {
|
|
if (us) {
|
|
ret = 0;
|
|
goto conv;
|
|
}
|
|
}
|
|
us = 1;
|
|
}
|
|
else {
|
|
if (count)
|
|
(*count)++;
|
|
*b++ = **s;
|
|
us = 0;
|
|
}
|
|
(*s)++;
|
|
}
|
|
if (us)
|
|
do {
|
|
(*s)--;
|
|
} while (**s == '_');
|
|
conv:
|
|
*b = '\0';
|
|
*num = rb_cstr_to_inum(bb, 10, 0);
|
|
return ret;
|
|
}
|
|
|
|
inline static int
|
|
islettere(int c)
|
|
{
|
|
return (c == 'e' || c == 'E');
|
|
}
|
|
|
|
static int
|
|
read_num(const char **s, int numsign, int strict,
|
|
VALUE *num)
|
|
{
|
|
VALUE ip, fp, exp;
|
|
|
|
*num = rb_rational_new2(ZERO, ONE);
|
|
exp = Qnil;
|
|
|
|
if (**s != '.') {
|
|
if (!read_digits(s, strict, &ip, NULL))
|
|
return 0;
|
|
*num = rb_rational_new2(ip, ONE);
|
|
}
|
|
|
|
if (**s == '.') {
|
|
int count = 0;
|
|
|
|
(*s)++;
|
|
if (!read_digits(s, strict, &fp, &count))
|
|
return 0;
|
|
{
|
|
VALUE l = f_expt10(INT2NUM(count));
|
|
*num = f_mul(*num, l);
|
|
*num = f_add(*num, fp);
|
|
*num = f_div(*num, l);
|
|
}
|
|
}
|
|
|
|
if (islettere(**s)) {
|
|
int expsign;
|
|
|
|
(*s)++;
|
|
expsign = read_sign(s);
|
|
if (!read_digits(s, strict, &exp, NULL))
|
|
return 0;
|
|
if (expsign == '-')
|
|
exp = f_negate(exp);
|
|
}
|
|
|
|
if (numsign == '-')
|
|
*num = f_negate(*num);
|
|
if (!NIL_P(exp)) {
|
|
VALUE l = f_expt10(exp);
|
|
*num = f_mul(*num, l);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
inline static int
|
|
read_den(const char **s, int strict,
|
|
VALUE *num)
|
|
{
|
|
if (!read_digits(s, strict, num, NULL))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
read_rat_nos(const char **s, int sign, int strict,
|
|
VALUE *num)
|
|
{
|
|
VALUE den;
|
|
|
|
if (!read_num(s, sign, strict, num))
|
|
return 0;
|
|
if (**s == '/') {
|
|
(*s)++;
|
|
if (!read_den(s, strict, &den))
|
|
return 0;
|
|
if (!(FIXNUM_P(den) && FIX2LONG(den) == 1))
|
|
*num = f_div(*num, den);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
read_rat(const char **s, int strict,
|
|
VALUE *num)
|
|
{
|
|
int sign;
|
|
|
|
sign = read_sign(s);
|
|
if (!read_rat_nos(s, sign, strict, num))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
inline static void
|
|
skip_ws(const char **s)
|
|
{
|
|
while (isspace((unsigned char)**s))
|
|
(*s)++;
|
|
}
|
|
|
|
static int
|
|
parse_rat(const char *s, int strict,
|
|
VALUE *num)
|
|
{
|
|
skip_ws(&s);
|
|
if (!read_rat(&s, strict, num))
|
|
return 0;
|
|
skip_ws(&s);
|
|
|
|
if (strict)
|
|
if (*s != '\0')
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static VALUE
|
|
string_to_r_strict(VALUE self)
|
|
{
|
|
char *s;
|
|
VALUE num;
|
|
|
|
rb_must_asciicompat(self);
|
|
|
|
s = RSTRING_PTR(self);
|
|
|
|
if (!s || memchr(s, '\0', RSTRING_LEN(self)))
|
|
rb_raise(rb_eArgError, "string contains null byte");
|
|
|
|
if (s && s[RSTRING_LEN(self)]) {
|
|
rb_str_modify(self);
|
|
s = RSTRING_PTR(self);
|
|
s[RSTRING_LEN(self)] = '\0';
|
|
}
|
|
|
|
if (!s)
|
|
s = (char *)"";
|
|
|
|
if (!parse_rat(s, 1, &num)) {
|
|
VALUE ins = f_inspect(self);
|
|
rb_raise(rb_eArgError, "invalid value for convert(): %s",
|
|
StringValuePtr(ins));
|
|
}
|
|
|
|
if (RB_TYPE_P(num, T_FLOAT))
|
|
rb_raise(rb_eFloatDomainError, "Infinity");
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* str.to_r -> rational
|
|
*
|
|
* Returns a rational which denotes the string form. The parser
|
|
* ignores leading whitespaces and trailing garbage. Any digit
|
|
* sequences can be separated by an underscore. Returns zero for null
|
|
* or garbage string.
|
|
*
|
|
* NOTE: '0.3'.to_r isn't the same as 0.3.to_r. The former is
|
|
* equivalent to '3/10'.to_r, but the latter isn't so.
|
|
*
|
|
* ' 2 '.to_r #=> (2/1)
|
|
* '300/2'.to_r #=> (150/1)
|
|
* '-9.2'.to_r #=> (-46/5)
|
|
* '-9.2e2'.to_r #=> (-920/1)
|
|
* '1_234_567'.to_r #=> (1234567/1)
|
|
* '21 june 09'.to_r #=> (21/1)
|
|
* '21/06/09'.to_r #=> (7/2)
|
|
* 'bwv 1079'.to_r #=> (0/1)
|
|
*/
|
|
static VALUE
|
|
string_to_r(VALUE self)
|
|
{
|
|
char *s;
|
|
VALUE num;
|
|
|
|
rb_must_asciicompat(self);
|
|
|
|
s = RSTRING_PTR(self);
|
|
|
|
if (s && s[RSTRING_LEN(self)]) {
|
|
rb_str_modify(self);
|
|
s = RSTRING_PTR(self);
|
|
s[RSTRING_LEN(self)] = '\0';
|
|
}
|
|
|
|
if (!s)
|
|
s = (char *)"";
|
|
|
|
(void)parse_rat(s, 0, &num);
|
|
|
|
if (RB_TYPE_P(num, T_FLOAT))
|
|
rb_raise(rb_eFloatDomainError, "Infinity");
|
|
return num;
|
|
}
|
|
|
|
VALUE
|
|
rb_cstr_to_rat(const char *s, int strict) /* for complex's internal */
|
|
{
|
|
VALUE num;
|
|
|
|
(void)parse_rat(s, strict, &num);
|
|
|
|
if (RB_TYPE_P(num, T_FLOAT))
|
|
rb_raise(rb_eFloatDomainError, "Infinity");
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_s_convert(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE a1, a2, backref;
|
|
|
|
rb_scan_args(argc, argv, "11", &a1, &a2);
|
|
|
|
if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
|
|
rb_raise(rb_eTypeError, "can't convert nil into Rational");
|
|
|
|
switch (TYPE(a1)) {
|
|
case T_COMPLEX:
|
|
if (k_exact_zero_p(RCOMPLEX(a1)->imag))
|
|
a1 = RCOMPLEX(a1)->real;
|
|
}
|
|
|
|
switch (TYPE(a2)) {
|
|
case T_COMPLEX:
|
|
if (k_exact_zero_p(RCOMPLEX(a2)->imag))
|
|
a2 = RCOMPLEX(a2)->real;
|
|
}
|
|
|
|
backref = rb_backref_get();
|
|
rb_match_busy(backref);
|
|
|
|
switch (TYPE(a1)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
break;
|
|
case T_FLOAT:
|
|
a1 = f_to_r(a1);
|
|
break;
|
|
case T_STRING:
|
|
a1 = string_to_r_strict(a1);
|
|
break;
|
|
}
|
|
|
|
switch (TYPE(a2)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
break;
|
|
case T_FLOAT:
|
|
a2 = f_to_r(a2);
|
|
break;
|
|
case T_STRING:
|
|
a2 = string_to_r_strict(a2);
|
|
break;
|
|
}
|
|
|
|
rb_backref_set(backref);
|
|
|
|
switch (TYPE(a1)) {
|
|
case T_RATIONAL:
|
|
if (argc == 1 || (k_exact_one_p(a2)))
|
|
return a1;
|
|
}
|
|
|
|
if (argc == 1) {
|
|
if (!(k_numeric_p(a1) && k_integer_p(a1)))
|
|
return rb_convert_type(a1, T_RATIONAL, "Rational", "to_r");
|
|
}
|
|
else {
|
|
if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
|
|
(!f_integer_p(a1) || !f_integer_p(a2)))
|
|
return f_div(a1, a2);
|
|
}
|
|
|
|
{
|
|
VALUE argv2[2];
|
|
argv2[0] = a1;
|
|
argv2[1] = a2;
|
|
return nurat_s_new(argc, argv2, klass);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A rational number can be represented as a paired integer number;
|
|
* a/b (b>0). Where a is numerator and b is denominator. Integer a
|
|
* equals rational a/1 mathematically.
|
|
*
|
|
* In ruby, you can create rational object with Rational, to_r or
|
|
* rationalize method. The return values will be irreducible.
|
|
*
|
|
* Rational(1) #=> (1/1)
|
|
* Rational(2, 3) #=> (2/3)
|
|
* Rational(4, -6) #=> (-2/3)
|
|
* 3.to_r #=> (3/1)
|
|
*
|
|
* You can also create rational object from floating-point numbers or
|
|
* strings.
|
|
*
|
|
* Rational(0.3) #=> (5404319552844595/18014398509481984)
|
|
* Rational('0.3') #=> (3/10)
|
|
* Rational('2/3') #=> (2/3)
|
|
*
|
|
* 0.3.to_r #=> (5404319552844595/18014398509481984)
|
|
* '0.3'.to_r #=> (3/10)
|
|
* '2/3'.to_r #=> (2/3)
|
|
* 0.3.rationalize #=> (3/10)
|
|
*
|
|
* A rational object is an exact number, which helps you to write
|
|
* program without any rounding errors.
|
|
*
|
|
* 10.times.inject(0){|t,| t + 0.1} #=> 0.9999999999999999
|
|
* 10.times.inject(0){|t,| t + Rational('0.1')} #=> (1/1)
|
|
*
|
|
* However, when an expression has inexact factor (numerical value or
|
|
* operation), will produce an inexact result.
|
|
*
|
|
* Rational(10) / 3 #=> (10/3)
|
|
* Rational(10) / 3.0 #=> 3.3333333333333335
|
|
*
|
|
* Rational(-8) ** Rational(1, 3)
|
|
* #=> (1.0000000000000002+1.7320508075688772i)
|
|
*/
|
|
void
|
|
Init_Rational(void)
|
|
{
|
|
VALUE compat;
|
|
#undef rb_intern
|
|
#define rb_intern(str) rb_intern_const(str)
|
|
|
|
assert(fprintf(stderr, "assert() is now active\n"));
|
|
|
|
id_abs = rb_intern("abs");
|
|
id_cmp = rb_intern("<=>");
|
|
id_convert = rb_intern("convert");
|
|
id_eqeq_p = rb_intern("==");
|
|
id_expt = rb_intern("**");
|
|
id_fdiv = rb_intern("fdiv");
|
|
id_floor = rb_intern("floor");
|
|
id_idiv = rb_intern("div");
|
|
id_inspect = rb_intern("inspect");
|
|
id_integer_p = rb_intern("integer?");
|
|
id_negate = rb_intern("-@");
|
|
id_to_f = rb_intern("to_f");
|
|
id_to_i = rb_intern("to_i");
|
|
id_to_s = rb_intern("to_s");
|
|
id_truncate = rb_intern("truncate");
|
|
id_i_num = rb_intern("@numerator");
|
|
id_i_den = rb_intern("@denominator");
|
|
|
|
rb_cRational = rb_define_class("Rational", rb_cNumeric);
|
|
|
|
rb_define_alloc_func(rb_cRational, nurat_s_alloc);
|
|
rb_undef_method(CLASS_OF(rb_cRational), "allocate");
|
|
|
|
#if 0
|
|
rb_define_private_method(CLASS_OF(rb_cRational), "new!", nurat_s_new_bang, -1);
|
|
rb_define_private_method(CLASS_OF(rb_cRational), "new", nurat_s_new, -1);
|
|
#else
|
|
rb_undef_method(CLASS_OF(rb_cRational), "new");
|
|
#endif
|
|
|
|
rb_define_global_function("Rational", nurat_f_rational, -1);
|
|
|
|
rb_define_method(rb_cRational, "numerator", nurat_numerator, 0);
|
|
rb_define_method(rb_cRational, "denominator", nurat_denominator, 0);
|
|
|
|
rb_define_method(rb_cRational, "+", nurat_add, 1);
|
|
rb_define_method(rb_cRational, "-", nurat_sub, 1);
|
|
rb_define_method(rb_cRational, "*", nurat_mul, 1);
|
|
rb_define_method(rb_cRational, "/", nurat_div, 1);
|
|
rb_define_method(rb_cRational, "quo", nurat_div, 1);
|
|
rb_define_method(rb_cRational, "fdiv", nurat_fdiv, 1);
|
|
rb_define_method(rb_cRational, "**", nurat_expt, 1);
|
|
|
|
rb_define_method(rb_cRational, "<=>", nurat_cmp, 1);
|
|
rb_define_method(rb_cRational, "==", nurat_eqeq_p, 1);
|
|
rb_define_method(rb_cRational, "coerce", nurat_coerce, 1);
|
|
|
|
#if 0 /* NUBY */
|
|
rb_define_method(rb_cRational, "//", nurat_idiv, 1);
|
|
#endif
|
|
|
|
#if 0
|
|
rb_define_method(rb_cRational, "quot", nurat_quot, 1);
|
|
rb_define_method(rb_cRational, "quotrem", nurat_quotrem, 1);
|
|
#endif
|
|
|
|
#if 0
|
|
rb_define_method(rb_cRational, "rational?", nurat_true, 0);
|
|
rb_define_method(rb_cRational, "exact?", nurat_true, 0);
|
|
#endif
|
|
|
|
rb_define_method(rb_cRational, "floor", nurat_floor_n, -1);
|
|
rb_define_method(rb_cRational, "ceil", nurat_ceil_n, -1);
|
|
rb_define_method(rb_cRational, "truncate", nurat_truncate_n, -1);
|
|
rb_define_method(rb_cRational, "round", nurat_round_n, -1);
|
|
|
|
rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
|
|
rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
|
|
rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
|
|
rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1);
|
|
|
|
rb_define_method(rb_cRational, "hash", nurat_hash, 0);
|
|
|
|
rb_define_method(rb_cRational, "to_s", nurat_to_s, 0);
|
|
rb_define_method(rb_cRational, "inspect", nurat_inspect, 0);
|
|
|
|
rb_define_method(rb_cRational, "marshal_dump", nurat_marshal_dump, 0);
|
|
compat = rb_define_class_under(rb_cRational, "compatible", rb_cObject);
|
|
rb_define_method(compat, "marshal_load", nurat_marshal_load, 1);
|
|
rb_marshal_define_compat(rb_cRational, compat, nurat_dumper, nurat_loader);
|
|
|
|
/* --- */
|
|
|
|
rb_define_method(rb_cInteger, "gcd", rb_gcd, 1);
|
|
rb_define_method(rb_cInteger, "lcm", rb_lcm, 1);
|
|
rb_define_method(rb_cInteger, "gcdlcm", rb_gcdlcm, 1);
|
|
|
|
rb_define_method(rb_cNumeric, "numerator", numeric_numerator, 0);
|
|
rb_define_method(rb_cNumeric, "denominator", numeric_denominator, 0);
|
|
|
|
rb_define_method(rb_cInteger, "numerator", integer_numerator, 0);
|
|
rb_define_method(rb_cInteger, "denominator", integer_denominator, 0);
|
|
|
|
rb_define_method(rb_cFloat, "numerator", float_numerator, 0);
|
|
rb_define_method(rb_cFloat, "denominator", float_denominator, 0);
|
|
|
|
rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
|
|
rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1);
|
|
rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
|
|
rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1);
|
|
rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
|
|
rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1);
|
|
|
|
rb_define_method(rb_cString, "to_r", string_to_r, 0);
|
|
|
|
rb_define_private_method(CLASS_OF(rb_cRational), "convert", nurat_s_convert, -1);
|
|
}
|
|
|
|
/*
|
|
Local variables:
|
|
c-file-style: "ruby"
|
|
End:
|
|
*/
|