зеркало из https://github.com/github/ruby.git
2846 строки
65 KiB
C
2846 строки
65 KiB
C
/*
|
|
rational.c: Coded by Tadayoshi Funaba 2008-2012
|
|
|
|
This implementation is based on Keiju Ishitsuka's Rational library
|
|
which is written in ruby.
|
|
*/
|
|
|
|
#include "ruby/internal/config.h"
|
|
|
|
#include <ctype.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
|
|
#ifdef HAVE_IEEEFP_H
|
|
#include <ieeefp.h>
|
|
#endif
|
|
|
|
#if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H)
|
|
#define USE_GMP
|
|
#include <gmp.h>
|
|
#endif
|
|
|
|
#include "id.h"
|
|
#include "internal.h"
|
|
#include "internal/array.h"
|
|
#include "internal/complex.h"
|
|
#include "internal/gc.h"
|
|
#include "internal/numeric.h"
|
|
#include "internal/object.h"
|
|
#include "internal/rational.h"
|
|
#include "ruby_assert.h"
|
|
|
|
#define ZERO INT2FIX(0)
|
|
#define ONE INT2FIX(1)
|
|
#define TWO INT2FIX(2)
|
|
|
|
#define GMP_GCD_DIGITS 1
|
|
|
|
#define INT_ZERO_P(x) (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x))
|
|
|
|
VALUE rb_cRational;
|
|
|
|
static ID id_abs, id_integer_p,
|
|
id_i_num, id_i_den;
|
|
|
|
#define id_idiv idDiv
|
|
#define id_to_i idTo_i
|
|
|
|
#define f_inspect rb_inspect
|
|
#define f_to_s rb_obj_as_string
|
|
|
|
static VALUE nurat_to_f(VALUE self);
|
|
static VALUE float_to_r(VALUE self);
|
|
|
|
inline static VALUE
|
|
f_add(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_ZERO_P(y))
|
|
return x;
|
|
if (FIXNUM_ZERO_P(x))
|
|
return y;
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_plus(x, y);
|
|
return rb_funcall(x, '+', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_div(VALUE x, VALUE y)
|
|
{
|
|
if (y == ONE)
|
|
return x;
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_div(x, y);
|
|
return rb_funcall(x, '/', 1, y);
|
|
}
|
|
|
|
inline static int
|
|
f_lt_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return (SIGNED_VALUE)x < (SIGNED_VALUE)y;
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
VALUE r = rb_int_cmp(x, y);
|
|
if (!NIL_P(r)) return rb_int_negative_p(r);
|
|
}
|
|
return RTEST(rb_funcall(x, '<', 1, y));
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* f_mod is used only in f_gcd defined when NDEBUG is not defined */
|
|
inline static VALUE
|
|
f_mod(VALUE x, VALUE y)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_modulo(x, y);
|
|
return rb_funcall(x, '%', 1, y);
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_mul(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_ZERO_P(y) && RB_INTEGER_TYPE_P(x))
|
|
return ZERO;
|
|
if (y == ONE) return x;
|
|
if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y))
|
|
return ZERO;
|
|
if (x == ONE) return y;
|
|
else if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_mul(x, y);
|
|
return rb_funcall(x, '*', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_sub(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y) && FIXNUM_ZERO_P(y))
|
|
return x;
|
|
return rb_funcall(x, '-', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_abs(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_abs(x);
|
|
return rb_funcall(x, id_abs, 0);
|
|
}
|
|
|
|
|
|
inline static VALUE
|
|
f_integer_p(VALUE x)
|
|
{
|
|
return RB_INTEGER_TYPE_P(x);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_to_i(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_STRING))
|
|
return rb_str_to_inum(x, 10, 0);
|
|
return rb_funcall(x, id_to_i, 0);
|
|
}
|
|
|
|
inline static int
|
|
f_eqeq_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return x == y;
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return RTEST(rb_int_equal(x, y));
|
|
return (int)rb_equal(x, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_idiv(VALUE x, VALUE y)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_idiv(x, y);
|
|
return rb_funcall(x, id_idiv, 1, y);
|
|
}
|
|
|
|
#define f_expt10(x) rb_int_pow(INT2FIX(10), x)
|
|
|
|
inline static int
|
|
f_zero_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return FIXNUM_ZERO_P(x);
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
VALUE num = RRATIONAL(x)->num;
|
|
|
|
return FIXNUM_ZERO_P(num);
|
|
}
|
|
return (int)rb_equal(x, ZERO);
|
|
}
|
|
|
|
#define f_nonzero_p(x) (!f_zero_p(x))
|
|
|
|
inline static int
|
|
f_one_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return x == LONG2FIX(1);
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
VALUE num = RRATIONAL(x)->num;
|
|
VALUE den = RRATIONAL(x)->den;
|
|
|
|
return num == LONG2FIX(1) && den == LONG2FIX(1);
|
|
}
|
|
return (int)rb_equal(x, ONE);
|
|
}
|
|
|
|
inline static int
|
|
f_minus_one_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return x == LONG2FIX(-1);
|
|
}
|
|
else if (RB_TYPE_P(x, T_BIGNUM)) {
|
|
return Qfalse;
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
VALUE num = RRATIONAL(x)->num;
|
|
VALUE den = RRATIONAL(x)->den;
|
|
|
|
return num == LONG2FIX(-1) && den == LONG2FIX(1);
|
|
}
|
|
return (int)rb_equal(x, INT2FIX(-1));
|
|
}
|
|
|
|
inline static int
|
|
f_kind_of_p(VALUE x, VALUE c)
|
|
{
|
|
return (int)rb_obj_is_kind_of(x, c);
|
|
}
|
|
|
|
inline static int
|
|
k_numeric_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cNumeric);
|
|
}
|
|
|
|
inline static int
|
|
k_integer_p(VALUE x)
|
|
{
|
|
return RB_INTEGER_TYPE_P(x);
|
|
}
|
|
|
|
inline static int
|
|
k_float_p(VALUE x)
|
|
{
|
|
return RB_FLOAT_TYPE_P(x);
|
|
}
|
|
|
|
inline static int
|
|
k_rational_p(VALUE x)
|
|
{
|
|
return RB_TYPE_P(x, T_RATIONAL);
|
|
}
|
|
|
|
#define k_exact_p(x) (!k_float_p(x))
|
|
#define k_inexact_p(x) k_float_p(x)
|
|
|
|
#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
|
|
#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
|
|
|
|
#ifdef USE_GMP
|
|
VALUE
|
|
rb_gcd_gmp(VALUE x, VALUE y)
|
|
{
|
|
const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
|
|
mpz_t mx, my, mz;
|
|
size_t count;
|
|
VALUE z;
|
|
long zn;
|
|
|
|
mpz_init(mx);
|
|
mpz_init(my);
|
|
mpz_init(mz);
|
|
mpz_import(mx, BIGNUM_LEN(x), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(x));
|
|
mpz_import(my, BIGNUM_LEN(y), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(y));
|
|
|
|
mpz_gcd(mz, mx, my);
|
|
|
|
mpz_clear(mx);
|
|
mpz_clear(my);
|
|
|
|
zn = (mpz_sizeinbase(mz, 16) + SIZEOF_BDIGIT*2 - 1) / (SIZEOF_BDIGIT*2);
|
|
z = rb_big_new(zn, 1);
|
|
mpz_export(BIGNUM_DIGITS(z), &count, -1, sizeof(BDIGIT), 0, nails, mz);
|
|
|
|
mpz_clear(mz);
|
|
|
|
return rb_big_norm(z);
|
|
}
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
#define f_gcd f_gcd_orig
|
|
#endif
|
|
|
|
inline static long
|
|
i_gcd(long x, long y)
|
|
{
|
|
unsigned long u, v, t;
|
|
int shift;
|
|
|
|
if (x < 0)
|
|
x = -x;
|
|
if (y < 0)
|
|
y = -y;
|
|
|
|
if (x == 0)
|
|
return y;
|
|
if (y == 0)
|
|
return x;
|
|
|
|
u = (unsigned long)x;
|
|
v = (unsigned long)y;
|
|
for (shift = 0; ((u | v) & 1) == 0; ++shift) {
|
|
u >>= 1;
|
|
v >>= 1;
|
|
}
|
|
|
|
while ((u & 1) == 0)
|
|
u >>= 1;
|
|
|
|
do {
|
|
while ((v & 1) == 0)
|
|
v >>= 1;
|
|
|
|
if (u > v) {
|
|
t = v;
|
|
v = u;
|
|
u = t;
|
|
}
|
|
v = v - u;
|
|
} while (v != 0);
|
|
|
|
return (long)(u << shift);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_gcd_normal(VALUE x, VALUE y)
|
|
{
|
|
VALUE z;
|
|
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
|
|
|
|
if (INT_NEGATIVE_P(x))
|
|
x = rb_int_uminus(x);
|
|
if (INT_NEGATIVE_P(y))
|
|
y = rb_int_uminus(y);
|
|
|
|
if (INT_ZERO_P(x))
|
|
return y;
|
|
if (INT_ZERO_P(y))
|
|
return x;
|
|
|
|
for (;;) {
|
|
if (FIXNUM_P(x)) {
|
|
if (FIXNUM_ZERO_P(x))
|
|
return y;
|
|
if (FIXNUM_P(y))
|
|
return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
|
|
}
|
|
z = x;
|
|
x = rb_int_modulo(y, x);
|
|
y = z;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
VALUE
|
|
rb_gcd_normal(VALUE x, VALUE y)
|
|
{
|
|
return f_gcd_normal(x, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_gcd(VALUE x, VALUE y)
|
|
{
|
|
#ifdef USE_GMP
|
|
if (RB_TYPE_P(x, T_BIGNUM) && RB_TYPE_P(y, T_BIGNUM)) {
|
|
size_t xn = BIGNUM_LEN(x);
|
|
size_t yn = BIGNUM_LEN(y);
|
|
if (GMP_GCD_DIGITS <= xn || GMP_GCD_DIGITS <= yn)
|
|
return rb_gcd_gmp(x, y);
|
|
}
|
|
#endif
|
|
return f_gcd_normal(x, y);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#undef f_gcd
|
|
|
|
inline static VALUE
|
|
f_gcd(VALUE x, VALUE y)
|
|
{
|
|
VALUE r = f_gcd_orig(x, y);
|
|
if (f_nonzero_p(r)) {
|
|
assert(f_zero_p(f_mod(x, r)));
|
|
assert(f_zero_p(f_mod(y, r)));
|
|
}
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_lcm(VALUE x, VALUE y)
|
|
{
|
|
if (INT_ZERO_P(x) || INT_ZERO_P(y))
|
|
return ZERO;
|
|
return f_abs(f_mul(f_div(x, f_gcd(x, y)), y));
|
|
}
|
|
|
|
#define get_dat1(x) \
|
|
struct RRational *dat = RRATIONAL(x)
|
|
|
|
#define get_dat2(x,y) \
|
|
struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y)
|
|
|
|
inline static VALUE
|
|
nurat_s_new_internal(VALUE klass, VALUE num, VALUE den)
|
|
{
|
|
NEWOBJ_OF(obj, struct RRational, klass, T_RATIONAL | (RGENGC_WB_PROTECTED_RATIONAL ? FL_WB_PROTECTED : 0));
|
|
|
|
RATIONAL_SET_NUM((VALUE)obj, num);
|
|
RATIONAL_SET_DEN((VALUE)obj, den);
|
|
OBJ_FREEZE_RAW((VALUE)obj);
|
|
|
|
return (VALUE)obj;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_s_alloc(VALUE klass)
|
|
{
|
|
return nurat_s_new_internal(klass, ZERO, ONE);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new_bang1(VALUE klass, VALUE x)
|
|
{
|
|
return nurat_s_new_internal(klass, x, ONE);
|
|
}
|
|
|
|
inline static void
|
|
nurat_int_check(VALUE num)
|
|
{
|
|
if (!RB_INTEGER_TYPE_P(num)) {
|
|
if (!k_numeric_p(num) || !f_integer_p(num))
|
|
rb_raise(rb_eTypeError, "not an integer");
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
nurat_int_value(VALUE num)
|
|
{
|
|
nurat_int_check(num);
|
|
if (!k_integer_p(num))
|
|
num = f_to_i(num);
|
|
return num;
|
|
}
|
|
|
|
static void
|
|
nurat_canonicalize(VALUE *num, VALUE *den)
|
|
{
|
|
assert(num); assert(RB_INTEGER_TYPE_P(*num));
|
|
assert(den); assert(RB_INTEGER_TYPE_P(*den));
|
|
if (INT_NEGATIVE_P(*den)) {
|
|
*num = rb_int_uminus(*num);
|
|
*den = rb_int_uminus(*den);
|
|
}
|
|
else if (INT_ZERO_P(*den)) {
|
|
rb_num_zerodiv();
|
|
}
|
|
}
|
|
|
|
static void
|
|
nurat_reduce(VALUE *x, VALUE *y)
|
|
{
|
|
VALUE gcd;
|
|
if (*x == ONE || *y == ONE) return;
|
|
gcd = f_gcd(*x, *y);
|
|
*x = f_idiv(*x, gcd);
|
|
*y = f_idiv(*y, gcd);
|
|
}
|
|
|
|
inline static VALUE
|
|
nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den)
|
|
{
|
|
nurat_canonicalize(&num, &den);
|
|
nurat_reduce(&num, &den);
|
|
|
|
return nurat_s_new_internal(klass, num, den);
|
|
}
|
|
|
|
inline static VALUE
|
|
nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den)
|
|
{
|
|
nurat_canonicalize(&num, &den);
|
|
|
|
return nurat_s_new_internal(klass, num, den);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_rational_p(x));
|
|
assert(!k_rational_p(y));
|
|
return nurat_s_canonicalize_internal(klass, x, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_rational_p(x));
|
|
assert(!k_rational_p(y));
|
|
return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
|
|
}
|
|
|
|
static VALUE nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise);
|
|
static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass);
|
|
|
|
/*
|
|
* call-seq:
|
|
* Rational(x, y, exception: true) -> rational or nil
|
|
* Rational(arg, exception: true) -> rational or nil
|
|
*
|
|
* Returns +x/y+ or +arg+ as a Rational.
|
|
*
|
|
* Rational(2, 3) #=> (2/3)
|
|
* Rational(5) #=> (5/1)
|
|
* Rational(0.5) #=> (1/2)
|
|
* Rational(0.3) #=> (5404319552844595/18014398509481984)
|
|
*
|
|
* Rational("2/3") #=> (2/3)
|
|
* Rational("0.3") #=> (3/10)
|
|
*
|
|
* Rational("10 cents") #=> ArgumentError
|
|
* Rational(nil) #=> TypeError
|
|
* Rational(1, nil) #=> TypeError
|
|
*
|
|
* Rational("10 cents", exception: false) #=> nil
|
|
*
|
|
* Syntax of the string form:
|
|
*
|
|
* string form = extra spaces , rational , extra spaces ;
|
|
* rational = [ sign ] , unsigned rational ;
|
|
* unsigned rational = numerator | numerator , "/" , denominator ;
|
|
* numerator = integer part | fractional part | integer part , fractional part ;
|
|
* denominator = digits ;
|
|
* integer part = digits ;
|
|
* fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
|
|
* sign = "-" | "+" ;
|
|
* digits = digit , { digit | "_" , digit } ;
|
|
* digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
|
|
* extra spaces = ? \s* ? ;
|
|
*
|
|
* See also String#to_r.
|
|
*/
|
|
static VALUE
|
|
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE a1, a2, opts = Qnil;
|
|
int raise = TRUE;
|
|
|
|
if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) {
|
|
a2 = Qundef;
|
|
}
|
|
if (!NIL_P(opts)) {
|
|
raise = rb_opts_exception_p(opts, raise);
|
|
}
|
|
return nurat_convert(rb_cRational, a1, a2, raise);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.numerator -> integer
|
|
*
|
|
* Returns the numerator.
|
|
*
|
|
* Rational(7).numerator #=> 7
|
|
* Rational(7, 1).numerator #=> 7
|
|
* Rational(9, -4).numerator #=> -9
|
|
* Rational(-2, -10).numerator #=> 1
|
|
*/
|
|
static VALUE
|
|
nurat_numerator(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->num;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.denominator -> integer
|
|
*
|
|
* Returns the denominator (always positive).
|
|
*
|
|
* Rational(7).denominator #=> 1
|
|
* Rational(7, 1).denominator #=> 1
|
|
* Rational(9, -4).denominator #=> 4
|
|
* Rational(-2, -10).denominator #=> 5
|
|
*/
|
|
static VALUE
|
|
nurat_denominator(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->den;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* -rat -> rational
|
|
*
|
|
* Negates +rat+.
|
|
*/
|
|
VALUE
|
|
rb_rational_uminus(VALUE self)
|
|
{
|
|
const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0);
|
|
get_dat1(self);
|
|
(void)unused;
|
|
return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#define f_imul f_imul_orig
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_imul(long a, long b)
|
|
{
|
|
VALUE r;
|
|
|
|
if (a == 0 || b == 0)
|
|
return ZERO;
|
|
else if (a == 1)
|
|
return LONG2NUM(b);
|
|
else if (b == 1)
|
|
return LONG2NUM(a);
|
|
|
|
if (MUL_OVERFLOW_LONG_P(a, b))
|
|
r = rb_big_mul(rb_int2big(a), rb_int2big(b));
|
|
else
|
|
r = LONG2NUM(a * b);
|
|
return r;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#undef f_imul
|
|
|
|
inline static VALUE
|
|
f_imul(long x, long y)
|
|
{
|
|
VALUE r = f_imul_orig(x, y);
|
|
assert(f_eqeq_p(r, f_mul(LONG2NUM(x), LONG2NUM(y))));
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
|
|
{
|
|
VALUE num, den;
|
|
|
|
if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
|
|
FIXNUM_P(bnum) && FIXNUM_P(bden)) {
|
|
long an = FIX2LONG(anum);
|
|
long ad = FIX2LONG(aden);
|
|
long bn = FIX2LONG(bnum);
|
|
long bd = FIX2LONG(bden);
|
|
long ig = i_gcd(ad, bd);
|
|
|
|
VALUE g = LONG2NUM(ig);
|
|
VALUE a = f_imul(an, bd / ig);
|
|
VALUE b = f_imul(bn, ad / ig);
|
|
VALUE c;
|
|
|
|
if (k == '+')
|
|
c = rb_int_plus(a, b);
|
|
else
|
|
c = rb_int_minus(a, b);
|
|
|
|
b = rb_int_idiv(aden, g);
|
|
g = f_gcd(c, g);
|
|
num = rb_int_idiv(c, g);
|
|
a = rb_int_idiv(bden, g);
|
|
den = rb_int_mul(a, b);
|
|
}
|
|
else if (RB_INTEGER_TYPE_P(anum) && RB_INTEGER_TYPE_P(aden) &&
|
|
RB_INTEGER_TYPE_P(bnum) && RB_INTEGER_TYPE_P(bden)) {
|
|
VALUE g = f_gcd(aden, bden);
|
|
VALUE a = rb_int_mul(anum, rb_int_idiv(bden, g));
|
|
VALUE b = rb_int_mul(bnum, rb_int_idiv(aden, g));
|
|
VALUE c;
|
|
|
|
if (k == '+')
|
|
c = rb_int_plus(a, b);
|
|
else
|
|
c = rb_int_minus(a, b);
|
|
|
|
b = rb_int_idiv(aden, g);
|
|
g = f_gcd(c, g);
|
|
num = rb_int_idiv(c, g);
|
|
a = rb_int_idiv(bden, g);
|
|
den = rb_int_mul(a, b);
|
|
}
|
|
else {
|
|
double a = NUM2DBL(anum) / NUM2DBL(aden);
|
|
double b = NUM2DBL(bnum) / NUM2DBL(bden);
|
|
double c = k == '+' ? a + b : a - b;
|
|
return DBL2NUM(c);
|
|
}
|
|
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
|
|
}
|
|
|
|
static double nurat_to_double(VALUE self);
|
|
/*
|
|
* call-seq:
|
|
* rat + numeric -> numeric
|
|
*
|
|
* Performs addition.
|
|
*
|
|
* Rational(2, 3) + Rational(2, 3) #=> (4/3)
|
|
* Rational(900) + Rational(1) #=> (901/1)
|
|
* Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
|
|
* Rational(9, 8) + 4 #=> (41/8)
|
|
* Rational(20, 9) + 9.8 #=> 12.022222222222222
|
|
*/
|
|
VALUE
|
|
rb_rational_plus(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_rational_new_no_reduce2(CLASS_OF(self),
|
|
rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
|
|
dat->den);
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
return f_addsub(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '+');
|
|
}
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, '+');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat - numeric -> numeric
|
|
*
|
|
* Performs subtraction.
|
|
*
|
|
* Rational(2, 3) - Rational(2, 3) #=> (0/1)
|
|
* Rational(900) - Rational(1) #=> (899/1)
|
|
* Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
|
|
* Rational(9, 8) - 4 #=> (-23/8)
|
|
* Rational(20, 9) - 9.8 #=> -7.577777777777778
|
|
*/
|
|
VALUE
|
|
rb_rational_minus(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_rational_new_no_reduce2(CLASS_OF(self),
|
|
rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
|
|
dat->den);
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
return f_addsub(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '-');
|
|
}
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, '-');
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
|
|
{
|
|
VALUE num, den;
|
|
|
|
assert(RB_TYPE_P(self, T_RATIONAL));
|
|
|
|
/* Integer#** can return Rational with Float right now */
|
|
if (RB_FLOAT_TYPE_P(anum) || RB_FLOAT_TYPE_P(aden) ||
|
|
RB_FLOAT_TYPE_P(bnum) || RB_FLOAT_TYPE_P(bden)) {
|
|
double an = NUM2DBL(anum), ad = NUM2DBL(aden);
|
|
double bn = NUM2DBL(bnum), bd = NUM2DBL(bden);
|
|
double x = (an * bn) / (ad * bd);
|
|
return DBL2NUM(x);
|
|
}
|
|
|
|
assert(RB_INTEGER_TYPE_P(anum));
|
|
assert(RB_INTEGER_TYPE_P(aden));
|
|
assert(RB_INTEGER_TYPE_P(bnum));
|
|
assert(RB_INTEGER_TYPE_P(bden));
|
|
|
|
if (k == '/') {
|
|
VALUE t;
|
|
|
|
if (INT_NEGATIVE_P(bnum)) {
|
|
anum = rb_int_uminus(anum);
|
|
bnum = rb_int_uminus(bnum);
|
|
}
|
|
t = bnum;
|
|
bnum = bden;
|
|
bden = t;
|
|
}
|
|
|
|
if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
|
|
FIXNUM_P(bnum) && FIXNUM_P(bden)) {
|
|
long an = FIX2LONG(anum);
|
|
long ad = FIX2LONG(aden);
|
|
long bn = FIX2LONG(bnum);
|
|
long bd = FIX2LONG(bden);
|
|
long g1 = i_gcd(an, bd);
|
|
long g2 = i_gcd(ad, bn);
|
|
|
|
num = f_imul(an / g1, bn / g2);
|
|
den = f_imul(ad / g2, bd / g1);
|
|
}
|
|
else {
|
|
VALUE g1 = f_gcd(anum, bden);
|
|
VALUE g2 = f_gcd(aden, bnum);
|
|
|
|
num = rb_int_mul(rb_int_idiv(anum, g1), rb_int_idiv(bnum, g2));
|
|
den = rb_int_mul(rb_int_idiv(aden, g2), rb_int_idiv(bden, g1));
|
|
}
|
|
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat * numeric -> numeric
|
|
*
|
|
* Performs multiplication.
|
|
*
|
|
* Rational(2, 3) * Rational(2, 3) #=> (4/9)
|
|
* Rational(900) * Rational(1) #=> (900/1)
|
|
* Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
|
|
* Rational(9, 8) * 4 #=> (9/2)
|
|
* Rational(20, 9) * 9.8 #=> 21.77777777777778
|
|
*/
|
|
VALUE
|
|
rb_rational_mul(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_muldiv(self,
|
|
dat->num, dat->den,
|
|
other, ONE, '*');
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
return f_muldiv(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '*');
|
|
}
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, '*');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat / numeric -> numeric
|
|
* rat.quo(numeric) -> numeric
|
|
*
|
|
* Performs division.
|
|
*
|
|
* Rational(2, 3) / Rational(2, 3) #=> (1/1)
|
|
* Rational(900) / Rational(1) #=> (900/1)
|
|
* Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
|
|
* Rational(9, 8) / 4 #=> (9/32)
|
|
* Rational(20, 9) / 9.8 #=> 0.22675736961451246
|
|
*/
|
|
VALUE
|
|
rb_rational_div(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
if (f_zero_p(other))
|
|
rb_num_zerodiv();
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_muldiv(self,
|
|
dat->num, dat->den,
|
|
other, ONE, '/');
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
VALUE v = nurat_to_f(self);
|
|
return rb_flo_div_flo(v, other);
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
if (f_zero_p(other))
|
|
rb_num_zerodiv();
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
if (f_one_p(self))
|
|
return f_rational_new_no_reduce2(CLASS_OF(self),
|
|
bdat->den, bdat->num);
|
|
|
|
return f_muldiv(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '/');
|
|
}
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, '/');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.fdiv(numeric) -> float
|
|
*
|
|
* Performs division and returns the value as a Float.
|
|
*
|
|
* Rational(2, 3).fdiv(1) #=> 0.6666666666666666
|
|
* Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
|
|
* Rational(2).fdiv(3) #=> 0.6666666666666666
|
|
*/
|
|
static VALUE
|
|
nurat_fdiv(VALUE self, VALUE other)
|
|
{
|
|
VALUE div;
|
|
if (f_zero_p(other))
|
|
return rb_rational_div(self, rb_float_new(0.0));
|
|
if (FIXNUM_P(other) && other == LONG2FIX(1))
|
|
return nurat_to_f(self);
|
|
div = rb_rational_div(self, other);
|
|
if (RB_TYPE_P(div, T_RATIONAL))
|
|
return nurat_to_f(div);
|
|
if (RB_FLOAT_TYPE_P(div))
|
|
return div;
|
|
return rb_funcall(div, idTo_f, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat ** numeric -> numeric
|
|
*
|
|
* Performs exponentiation.
|
|
*
|
|
* Rational(2) ** Rational(3) #=> (8/1)
|
|
* Rational(10) ** -2 #=> (1/100)
|
|
* Rational(10) ** -2.0 #=> 0.01
|
|
* Rational(-4) ** Rational(1, 2) #=> (0.0+2.0i)
|
|
* Rational(1, 2) ** 0 #=> (1/1)
|
|
* Rational(1, 2) ** 0.0 #=> 1.0
|
|
*/
|
|
VALUE
|
|
rb_rational_pow(VALUE self, VALUE other)
|
|
{
|
|
if (k_numeric_p(other) && k_exact_zero_p(other))
|
|
return f_rational_new_bang1(CLASS_OF(self), ONE);
|
|
|
|
if (k_rational_p(other)) {
|
|
get_dat1(other);
|
|
|
|
if (f_one_p(dat->den))
|
|
other = dat->num; /* c14n */
|
|
}
|
|
|
|
/* Deal with special cases of 0**n and 1**n */
|
|
if (k_numeric_p(other) && k_exact_p(other)) {
|
|
get_dat1(self);
|
|
if (f_one_p(dat->den)) {
|
|
if (f_one_p(dat->num)) {
|
|
return f_rational_new_bang1(CLASS_OF(self), ONE);
|
|
}
|
|
else if (f_minus_one_p(dat->num) && RB_INTEGER_TYPE_P(other)) {
|
|
return f_rational_new_bang1(CLASS_OF(self), INT2FIX(rb_int_odd_p(other) ? -1 : 1));
|
|
}
|
|
else if (INT_ZERO_P(dat->num)) {
|
|
if (rb_num_negative_p(other)) {
|
|
rb_num_zerodiv();
|
|
}
|
|
else {
|
|
return f_rational_new_bang1(CLASS_OF(self), ZERO);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* General case */
|
|
if (FIXNUM_P(other)) {
|
|
{
|
|
VALUE num, den;
|
|
|
|
get_dat1(self);
|
|
|
|
if (INT_POSITIVE_P(other)) {
|
|
num = rb_int_pow(dat->num, other);
|
|
den = rb_int_pow(dat->den, other);
|
|
}
|
|
else if (INT_NEGATIVE_P(other)) {
|
|
num = rb_int_pow(dat->den, rb_int_uminus(other));
|
|
den = rb_int_pow(dat->num, rb_int_uminus(other));
|
|
}
|
|
else {
|
|
num = ONE;
|
|
den = ONE;
|
|
}
|
|
if (RB_FLOAT_TYPE_P(num)) { /* infinity due to overflow */
|
|
if (RB_FLOAT_TYPE_P(den))
|
|
return DBL2NUM(nan(""));
|
|
return num;
|
|
}
|
|
if (RB_FLOAT_TYPE_P(den)) { /* infinity due to overflow */
|
|
num = ZERO;
|
|
den = ONE;
|
|
}
|
|
return f_rational_new2(CLASS_OF(self), num, den);
|
|
}
|
|
}
|
|
else if (RB_TYPE_P(other, T_BIGNUM)) {
|
|
rb_warn("in a**b, b may be too big");
|
|
return rb_float_pow(nurat_to_f(self), other);
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other) || RB_TYPE_P(other, T_RATIONAL)) {
|
|
return rb_float_pow(nurat_to_f(self), other);
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, idPow);
|
|
}
|
|
}
|
|
#define nurat_expt rb_rational_pow
|
|
|
|
/*
|
|
* call-seq:
|
|
* rational <=> numeric -> -1, 0, +1, or nil
|
|
*
|
|
* Returns -1, 0, or +1 depending on whether +rational+ is
|
|
* less than, equal to, or greater than +numeric+.
|
|
*
|
|
* +nil+ is returned if the two values are incomparable.
|
|
*
|
|
* Rational(2, 3) <=> Rational(2, 3) #=> 0
|
|
* Rational(5) <=> 5 #=> 0
|
|
* Rational(2, 3) <=> Rational(1, 3) #=> 1
|
|
* Rational(1, 3) <=> 1 #=> -1
|
|
* Rational(1, 3) <=> 0.3 #=> 1
|
|
*
|
|
* Rational(1, 3) <=> "0.3" #=> nil
|
|
*/
|
|
VALUE
|
|
rb_rational_cmp(VALUE self, VALUE other)
|
|
{
|
|
switch (TYPE(other)) {
|
|
case T_FIXNUM:
|
|
case T_BIGNUM:
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (dat->den == LONG2FIX(1))
|
|
return rb_int_cmp(dat->num, other); /* c14n */
|
|
other = f_rational_new_bang1(CLASS_OF(self), other);
|
|
/* FALLTHROUGH */
|
|
}
|
|
|
|
case T_RATIONAL:
|
|
{
|
|
VALUE num1, num2;
|
|
|
|
get_dat2(self, other);
|
|
|
|
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
|
|
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
|
|
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
|
|
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
|
|
}
|
|
else {
|
|
num1 = rb_int_mul(adat->num, bdat->den);
|
|
num2 = rb_int_mul(bdat->num, adat->den);
|
|
}
|
|
return rb_int_cmp(rb_int_minus(num1, num2), ZERO);
|
|
}
|
|
|
|
case T_FLOAT:
|
|
return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other));
|
|
|
|
default:
|
|
return rb_num_coerce_cmp(self, other, idCmp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat == object -> true or false
|
|
*
|
|
* Returns +true+ if +rat+ equals +object+ numerically.
|
|
*
|
|
* Rational(2, 3) == Rational(2, 3) #=> true
|
|
* Rational(5) == 5 #=> true
|
|
* Rational(0) == 0.0 #=> true
|
|
* Rational('1/3') == 0.33 #=> false
|
|
* Rational('1/2') == '1/2' #=> false
|
|
*/
|
|
static VALUE
|
|
nurat_eqeq_p(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
get_dat1(self);
|
|
|
|
if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) {
|
|
if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
|
|
return Qtrue;
|
|
|
|
if (!FIXNUM_P(dat->den))
|
|
return Qfalse;
|
|
if (FIX2LONG(dat->den) != 1)
|
|
return Qfalse;
|
|
return rb_int_equal(dat->num, other);
|
|
}
|
|
else {
|
|
const double d = nurat_to_double(self);
|
|
return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other))));
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
const double d = nurat_to_double(self);
|
|
return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other))));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
|
|
return Qtrue;
|
|
|
|
return RBOOL(rb_int_equal(adat->num, bdat->num) &&
|
|
rb_int_equal(adat->den, bdat->den));
|
|
}
|
|
}
|
|
else {
|
|
return rb_equal(other, self);
|
|
}
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_coerce(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
return rb_assoc_new(other, nurat_to_f(self));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
return rb_assoc_new(other, self);
|
|
}
|
|
else if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
if (!k_exact_zero_p(RCOMPLEX(other)->imag))
|
|
return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
|
|
other = RCOMPLEX(other)->real;
|
|
if (RB_FLOAT_TYPE_P(other)) {
|
|
other = float_to_r(other);
|
|
RBASIC_SET_CLASS(other, CLASS_OF(self));
|
|
}
|
|
else {
|
|
other = f_rational_new_bang1(CLASS_OF(self), other);
|
|
}
|
|
return rb_assoc_new(other, self);
|
|
}
|
|
|
|
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
|
|
rb_obj_classname(other), rb_obj_classname(self));
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.positive? -> true or false
|
|
*
|
|
* Returns +true+ if +rat+ is greater than 0.
|
|
*/
|
|
static VALUE
|
|
nurat_positive_p(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return RBOOL(INT_POSITIVE_P(dat->num));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.negative? -> true or false
|
|
*
|
|
* Returns +true+ if +rat+ is less than 0.
|
|
*/
|
|
static VALUE
|
|
nurat_negative_p(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return RBOOL(INT_NEGATIVE_P(dat->num));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.abs -> rational
|
|
* rat.magnitude -> rational
|
|
*
|
|
* Returns the absolute value of +rat+.
|
|
*
|
|
* (1/2r).abs #=> (1/2)
|
|
* (-1/2r).abs #=> (1/2)
|
|
*
|
|
* Rational#magnitude is an alias for Rational#abs.
|
|
*/
|
|
|
|
VALUE
|
|
rb_rational_abs(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
if (INT_NEGATIVE_P(dat->num)) {
|
|
VALUE num = rb_int_abs(dat->num);
|
|
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_floor(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_int_idiv(dat->num, dat->den);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_ceil(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_i -> integer
|
|
*
|
|
* Returns the truncated value as an integer.
|
|
*
|
|
* Equivalent to Rational#truncate.
|
|
*
|
|
* Rational(2, 3).to_i #=> 0
|
|
* Rational(3).to_i #=> 3
|
|
* Rational(300.6).to_i #=> 300
|
|
* Rational(98, 71).to_i #=> 1
|
|
* Rational(-31, 2).to_i #=> -15
|
|
*/
|
|
static VALUE
|
|
nurat_truncate(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
if (INT_NEGATIVE_P(dat->num))
|
|
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
|
|
return rb_int_idiv(dat->num, dat->den);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_round_half_up(VALUE self)
|
|
{
|
|
VALUE num, den, neg;
|
|
|
|
get_dat1(self);
|
|
|
|
num = dat->num;
|
|
den = dat->den;
|
|
neg = INT_NEGATIVE_P(num);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
num = rb_int_plus(rb_int_mul(num, TWO), den);
|
|
den = rb_int_mul(den, TWO);
|
|
num = rb_int_idiv(num, den);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_round_half_down(VALUE self)
|
|
{
|
|
VALUE num, den, neg;
|
|
|
|
get_dat1(self);
|
|
|
|
num = dat->num;
|
|
den = dat->den;
|
|
neg = INT_NEGATIVE_P(num);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
num = rb_int_plus(rb_int_mul(num, TWO), den);
|
|
num = rb_int_minus(num, ONE);
|
|
den = rb_int_mul(den, TWO);
|
|
num = rb_int_idiv(num, den);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_round_half_even(VALUE self)
|
|
{
|
|
VALUE num, den, neg, qr;
|
|
|
|
get_dat1(self);
|
|
|
|
num = dat->num;
|
|
den = dat->den;
|
|
neg = INT_NEGATIVE_P(num);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
num = rb_int_plus(rb_int_mul(num, TWO), den);
|
|
den = rb_int_mul(den, TWO);
|
|
qr = rb_int_divmod(num, den);
|
|
num = RARRAY_AREF(qr, 0);
|
|
if (INT_ZERO_P(RARRAY_AREF(qr, 1)))
|
|
num = rb_int_and(num, LONG2FIX(((int)~1)));
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
f_round_common(int argc, VALUE *argv, VALUE self, VALUE (*func)(VALUE))
|
|
{
|
|
VALUE n, b, s;
|
|
|
|
if (rb_check_arity(argc, 0, 1) == 0)
|
|
return (*func)(self);
|
|
|
|
n = argv[0];
|
|
|
|
if (!k_integer_p(n))
|
|
rb_raise(rb_eTypeError, "not an integer");
|
|
|
|
b = f_expt10(n);
|
|
s = rb_rational_mul(self, b);
|
|
|
|
if (k_float_p(s)) {
|
|
if (INT_NEGATIVE_P(n))
|
|
return ZERO;
|
|
return self;
|
|
}
|
|
|
|
if (!k_rational_p(s)) {
|
|
s = f_rational_new_bang1(CLASS_OF(self), s);
|
|
}
|
|
|
|
s = (*func)(s);
|
|
|
|
s = rb_rational_div(f_rational_new_bang1(CLASS_OF(self), s), b);
|
|
|
|
if (RB_TYPE_P(s, T_RATIONAL) && FIX2INT(rb_int_cmp(n, ONE)) < 0)
|
|
s = nurat_truncate(s);
|
|
|
|
return s;
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_floor(VALUE self, int ndigits)
|
|
{
|
|
if (ndigits == 0) {
|
|
return nurat_floor(self);
|
|
}
|
|
else {
|
|
VALUE n = INT2NUM(ndigits);
|
|
return f_round_common(1, &n, self, nurat_floor);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.floor([ndigits]) -> integer or rational
|
|
*
|
|
* Returns the largest number less than or equal to +rat+ with
|
|
* a precision of +ndigits+ decimal digits (default: 0).
|
|
*
|
|
* When the precision is negative, the returned value is an integer
|
|
* with at least <code>ndigits.abs</code> trailing zeros.
|
|
*
|
|
* Returns a rational when +ndigits+ is positive,
|
|
* otherwise returns an integer.
|
|
*
|
|
* Rational(3).floor #=> 3
|
|
* Rational(2, 3).floor #=> 0
|
|
* Rational(-3, 2).floor #=> -2
|
|
*
|
|
* # decimal - 1 2 3 . 4 5 6
|
|
* # ^ ^ ^ ^ ^ ^
|
|
* # precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* Rational('-123.456').floor(+1).to_f #=> -123.5
|
|
* Rational('-123.456').floor(-1) #=> -130
|
|
*/
|
|
static VALUE
|
|
nurat_floor_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_floor);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.ceil([ndigits]) -> integer or rational
|
|
*
|
|
* Returns the smallest number greater than or equal to +rat+ with
|
|
* a precision of +ndigits+ decimal digits (default: 0).
|
|
*
|
|
* When the precision is negative, the returned value is an integer
|
|
* with at least <code>ndigits.abs</code> trailing zeros.
|
|
*
|
|
* Returns a rational when +ndigits+ is positive,
|
|
* otherwise returns an integer.
|
|
*
|
|
* Rational(3).ceil #=> 3
|
|
* Rational(2, 3).ceil #=> 1
|
|
* Rational(-3, 2).ceil #=> -1
|
|
*
|
|
* # decimal - 1 2 3 . 4 5 6
|
|
* # ^ ^ ^ ^ ^ ^
|
|
* # precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* Rational('-123.456').ceil(+1).to_f #=> -123.4
|
|
* Rational('-123.456').ceil(-1) #=> -120
|
|
*/
|
|
static VALUE
|
|
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_ceil);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.truncate([ndigits]) -> integer or rational
|
|
*
|
|
* Returns +rat+ truncated (toward zero) to
|
|
* a precision of +ndigits+ decimal digits (default: 0).
|
|
*
|
|
* When the precision is negative, the returned value is an integer
|
|
* with at least <code>ndigits.abs</code> trailing zeros.
|
|
*
|
|
* Returns a rational when +ndigits+ is positive,
|
|
* otherwise returns an integer.
|
|
*
|
|
* Rational(3).truncate #=> 3
|
|
* Rational(2, 3).truncate #=> 0
|
|
* Rational(-3, 2).truncate #=> -1
|
|
*
|
|
* # decimal - 1 2 3 . 4 5 6
|
|
* # ^ ^ ^ ^ ^ ^
|
|
* # precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* Rational('-123.456').truncate(+1).to_f #=> -123.4
|
|
* Rational('-123.456').truncate(-1) #=> -120
|
|
*/
|
|
static VALUE
|
|
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_truncate);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.round([ndigits] [, half: mode]) -> integer or rational
|
|
*
|
|
* Returns +rat+ rounded to the nearest value with
|
|
* a precision of +ndigits+ decimal digits (default: 0).
|
|
*
|
|
* When the precision is negative, the returned value is an integer
|
|
* with at least <code>ndigits.abs</code> trailing zeros.
|
|
*
|
|
* Returns a rational when +ndigits+ is positive,
|
|
* otherwise returns an integer.
|
|
*
|
|
* Rational(3).round #=> 3
|
|
* Rational(2, 3).round #=> 1
|
|
* Rational(-3, 2).round #=> -2
|
|
*
|
|
* # decimal - 1 2 3 . 4 5 6
|
|
* # ^ ^ ^ ^ ^ ^
|
|
* # precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* Rational('-123.456').round(+1).to_f #=> -123.5
|
|
* Rational('-123.456').round(-1) #=> -120
|
|
*
|
|
* The optional +half+ keyword argument is available
|
|
* similar to Float#round.
|
|
*
|
|
* Rational(25, 100).round(1, half: :up) #=> (3/10)
|
|
* Rational(25, 100).round(1, half: :down) #=> (1/5)
|
|
* Rational(25, 100).round(1, half: :even) #=> (1/5)
|
|
* Rational(35, 100).round(1, half: :up) #=> (2/5)
|
|
* Rational(35, 100).round(1, half: :down) #=> (3/10)
|
|
* Rational(35, 100).round(1, half: :even) #=> (2/5)
|
|
* Rational(-25, 100).round(1, half: :up) #=> (-3/10)
|
|
* Rational(-25, 100).round(1, half: :down) #=> (-1/5)
|
|
* Rational(-25, 100).round(1, half: :even) #=> (-1/5)
|
|
*/
|
|
static VALUE
|
|
nurat_round_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE opt;
|
|
enum ruby_num_rounding_mode mode = (
|
|
argc = rb_scan_args(argc, argv, "*:", NULL, &opt),
|
|
rb_num_get_rounding_option(opt));
|
|
VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round);
|
|
return f_round_common(argc, argv, self, round_func);
|
|
}
|
|
|
|
VALUE
|
|
rb_flo_round_by_rational(int argc, VALUE *argv, VALUE num)
|
|
{
|
|
return nurat_to_f(nurat_round_n(argc, argv, float_to_r(num)));
|
|
}
|
|
|
|
static double
|
|
nurat_to_double(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
if (!RB_INTEGER_TYPE_P(dat->num) || !RB_INTEGER_TYPE_P(dat->den)) {
|
|
return NUM2DBL(dat->num) / NUM2DBL(dat->den);
|
|
}
|
|
return rb_int_fdiv_double(dat->num, dat->den);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_f -> float
|
|
*
|
|
* Returns the value as a Float.
|
|
*
|
|
* Rational(2).to_f #=> 2.0
|
|
* Rational(9, 4).to_f #=> 2.25
|
|
* Rational(-3, 4).to_f #=> -0.75
|
|
* Rational(20, 3).to_f #=> 6.666666666666667
|
|
*/
|
|
static VALUE
|
|
nurat_to_f(VALUE self)
|
|
{
|
|
return DBL2NUM(nurat_to_double(self));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_r -> self
|
|
*
|
|
* Returns self.
|
|
*
|
|
* Rational(2).to_r #=> (2/1)
|
|
* Rational(-8, 6).to_r #=> (-4/3)
|
|
*/
|
|
static VALUE
|
|
nurat_to_r(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
#define id_ceil rb_intern("ceil")
|
|
static VALUE
|
|
f_ceil(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return x;
|
|
if (RB_FLOAT_TYPE_P(x))
|
|
return rb_float_ceil(x, 0);
|
|
|
|
return rb_funcall(x, id_ceil, 0);
|
|
}
|
|
|
|
#define id_quo idQuo
|
|
static VALUE
|
|
f_quo(VALUE x, VALUE y)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_div(x, y);
|
|
if (RB_FLOAT_TYPE_P(x))
|
|
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
|
|
|
|
return rb_funcallv(x, id_quo, 1, &y);
|
|
}
|
|
|
|
#define f_reciprocal(x) f_quo(ONE, (x))
|
|
|
|
/*
|
|
The algorithm here is the method described in CLISP. Bruno Haible has
|
|
graciously given permission to use this algorithm. He says, "You can use
|
|
it, if you present the following explanation of the algorithm."
|
|
|
|
Algorithm (recursively presented):
|
|
If x is a rational number, return x.
|
|
If x = 0.0, return 0.
|
|
If x < 0.0, return (- (rationalize (- x))).
|
|
If x > 0.0:
|
|
Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
|
|
exponent, sign).
|
|
If m = 0 or e >= 0: return x = m*2^e.
|
|
Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
|
|
with smallest possible numerator and denominator.
|
|
Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
|
|
But in this case the result will be x itself anyway, regardless of
|
|
the choice of a. Therefore we can simply ignore this case.
|
|
Note 2: At first, we need to consider the closed interval [a,b].
|
|
but since a and b have the denominator 2^(|e|+1) whereas x itself
|
|
has a denominator <= 2^|e|, we can restrict the search to the open
|
|
interval (a,b).
|
|
So, for given a and b (0 < a < b) we are searching a rational number
|
|
y with a <= y <= b.
|
|
Recursive algorithm fraction_between(a,b):
|
|
c := (ceiling a)
|
|
if c < b
|
|
then return c ; because a <= c < b, c integer
|
|
else
|
|
; a is not integer (otherwise we would have had c = a < b)
|
|
k := c-1 ; k = floor(a), k < a < b <= k+1
|
|
return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
|
|
; note 1 <= 1/(b-k) < 1/(a-k)
|
|
|
|
You can see that we are actually computing a continued fraction expansion.
|
|
|
|
Algorithm (iterative):
|
|
If x is rational, return x.
|
|
Call (integer-decode-float x). It returns a m,e,s (mantissa,
|
|
exponent, sign).
|
|
If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
|
|
Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
|
|
(positive and already in lowest terms because the denominator is a
|
|
power of two and the numerator is odd).
|
|
Start a continued fraction expansion
|
|
p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
|
|
Loop
|
|
c := (ceiling a)
|
|
if c >= b
|
|
then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
|
|
goto Loop
|
|
finally partial_quotient(c).
|
|
Here partial_quotient(c) denotes the iteration
|
|
i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
|
|
At the end, return s * (p[i]/q[i]).
|
|
This rational number is already in lowest terms because
|
|
p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
|
|
*/
|
|
|
|
static void
|
|
nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
|
|
{
|
|
VALUE c, k, t, p0, p1, p2, q0, q1, q2;
|
|
|
|
p0 = ZERO;
|
|
p1 = ONE;
|
|
q0 = ONE;
|
|
q1 = ZERO;
|
|
|
|
while (1) {
|
|
c = f_ceil(a);
|
|
if (f_lt_p(c, b))
|
|
break;
|
|
k = f_sub(c, ONE);
|
|
p2 = f_add(f_mul(k, p1), p0);
|
|
q2 = f_add(f_mul(k, q1), q0);
|
|
t = f_reciprocal(f_sub(b, k));
|
|
b = f_reciprocal(f_sub(a, k));
|
|
a = t;
|
|
p0 = p1;
|
|
q0 = q1;
|
|
p1 = p2;
|
|
q1 = q2;
|
|
}
|
|
*p = f_add(f_mul(c, p1), p0);
|
|
*q = f_add(f_mul(c, q1), q0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.rationalize -> self
|
|
* rat.rationalize(eps) -> rational
|
|
*
|
|
* Returns a simpler approximation of the value if the optional
|
|
* argument +eps+ is given (rat-|eps| <= result <= rat+|eps|),
|
|
* self otherwise.
|
|
*
|
|
* r = Rational(5033165, 16777216)
|
|
* r.rationalize #=> (5033165/16777216)
|
|
* r.rationalize(Rational('0.01')) #=> (3/10)
|
|
* r.rationalize(Rational('0.1')) #=> (1/3)
|
|
*/
|
|
static VALUE
|
|
nurat_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE e, a, b, p, q;
|
|
VALUE rat = self;
|
|
get_dat1(self);
|
|
|
|
if (rb_check_arity(argc, 0, 1) == 0)
|
|
return self;
|
|
|
|
e = f_abs(argv[0]);
|
|
|
|
if (INT_NEGATIVE_P(dat->num)) {
|
|
rat = f_rational_new2(RBASIC_CLASS(self), rb_int_uminus(dat->num), dat->den);
|
|
}
|
|
|
|
a = FIXNUM_ZERO_P(e) ? rat : rb_rational_minus(rat, e);
|
|
b = FIXNUM_ZERO_P(e) ? rat : rb_rational_plus(rat, e);
|
|
|
|
if (f_eqeq_p(a, b))
|
|
return self;
|
|
|
|
nurat_rationalize_internal(a, b, &p, &q);
|
|
if (rat != self) {
|
|
RATIONAL_SET_NUM(rat, rb_int_uminus(p));
|
|
RATIONAL_SET_DEN(rat, q);
|
|
return rat;
|
|
}
|
|
return f_rational_new2(CLASS_OF(self), p, q);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
st_index_t
|
|
rb_rational_hash(VALUE self)
|
|
{
|
|
st_index_t v, h[2];
|
|
VALUE n;
|
|
|
|
get_dat1(self);
|
|
n = rb_hash(dat->num);
|
|
h[0] = NUM2LONG(n);
|
|
n = rb_hash(dat->den);
|
|
h[1] = NUM2LONG(n);
|
|
v = rb_memhash(h, sizeof(h));
|
|
return v;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_hash(VALUE self)
|
|
{
|
|
return ST2FIX(rb_rational_hash(self));
|
|
}
|
|
|
|
|
|
static VALUE
|
|
f_format(VALUE self, VALUE (*func)(VALUE))
|
|
{
|
|
VALUE s;
|
|
get_dat1(self);
|
|
|
|
s = (*func)(dat->num);
|
|
rb_str_cat2(s, "/");
|
|
rb_str_concat(s, (*func)(dat->den));
|
|
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_s -> string
|
|
*
|
|
* Returns the value as a string.
|
|
*
|
|
* Rational(2).to_s #=> "2/1"
|
|
* Rational(-8, 6).to_s #=> "-4/3"
|
|
* Rational('1/2').to_s #=> "1/2"
|
|
*/
|
|
static VALUE
|
|
nurat_to_s(VALUE self)
|
|
{
|
|
return f_format(self, f_to_s);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.inspect -> string
|
|
*
|
|
* Returns the value as a string for inspection.
|
|
*
|
|
* Rational(2).inspect #=> "(2/1)"
|
|
* Rational(-8, 6).inspect #=> "(-4/3)"
|
|
* Rational('1/2').inspect #=> "(1/2)"
|
|
*/
|
|
static VALUE
|
|
nurat_inspect(VALUE self)
|
|
{
|
|
VALUE s;
|
|
|
|
s = rb_usascii_str_new2("(");
|
|
rb_str_concat(s, f_format(self, f_inspect));
|
|
rb_str_cat2(s, ")");
|
|
|
|
return s;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_dumper(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_loader(VALUE self, VALUE a)
|
|
{
|
|
VALUE num, den;
|
|
|
|
get_dat1(self);
|
|
num = rb_ivar_get(a, id_i_num);
|
|
den = rb_ivar_get(a, id_i_den);
|
|
nurat_int_check(num);
|
|
nurat_int_check(den);
|
|
nurat_canonicalize(&num, &den);
|
|
RATIONAL_SET_NUM((VALUE)dat, num);
|
|
RATIONAL_SET_DEN((VALUE)dat, den);
|
|
OBJ_FREEZE_RAW(self);
|
|
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_marshal_dump(VALUE self)
|
|
{
|
|
VALUE a;
|
|
get_dat1(self);
|
|
|
|
a = rb_assoc_new(dat->num, dat->den);
|
|
rb_copy_generic_ivar(a, self);
|
|
return a;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_marshal_load(VALUE self, VALUE a)
|
|
{
|
|
VALUE num, den;
|
|
|
|
rb_check_frozen(self);
|
|
|
|
Check_Type(a, T_ARRAY);
|
|
if (RARRAY_LEN(a) != 2)
|
|
rb_raise(rb_eArgError, "marshaled rational must have an array whose length is 2 but %ld", RARRAY_LEN(a));
|
|
|
|
num = RARRAY_AREF(a, 0);
|
|
den = RARRAY_AREF(a, 1);
|
|
nurat_int_check(num);
|
|
nurat_int_check(den);
|
|
nurat_canonicalize(&num, &den);
|
|
rb_ivar_set(self, id_i_num, num);
|
|
rb_ivar_set(self, id_i_den, den);
|
|
|
|
return self;
|
|
}
|
|
|
|
/* --- */
|
|
|
|
VALUE
|
|
rb_rational_reciprocal(VALUE x)
|
|
{
|
|
get_dat1(x);
|
|
return nurat_convert(CLASS_OF(x), dat->den, dat->num, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.gcd(other_int) -> integer
|
|
*
|
|
* Returns the greatest common divisor of the two integers.
|
|
* The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
|
|
*
|
|
* 36.gcd(60) #=> 12
|
|
* 2.gcd(2) #=> 2
|
|
* 3.gcd(-7) #=> 1
|
|
* ((1<<31)-1).gcd((1<<61)-1) #=> 1
|
|
*/
|
|
VALUE
|
|
rb_gcd(VALUE self, VALUE other)
|
|
{
|
|
other = nurat_int_value(other);
|
|
return f_gcd(self, other);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.lcm(other_int) -> integer
|
|
*
|
|
* Returns the least common multiple of the two integers.
|
|
* The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
|
|
*
|
|
* 36.lcm(60) #=> 180
|
|
* 2.lcm(2) #=> 2
|
|
* 3.lcm(-7) #=> 21
|
|
* ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
|
|
*/
|
|
VALUE
|
|
rb_lcm(VALUE self, VALUE other)
|
|
{
|
|
other = nurat_int_value(other);
|
|
return f_lcm(self, other);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.gcdlcm(other_int) -> array
|
|
*
|
|
* Returns an array with the greatest common divisor and
|
|
* the least common multiple of the two integers, [gcd, lcm].
|
|
*
|
|
* 36.gcdlcm(60) #=> [12, 180]
|
|
* 2.gcdlcm(2) #=> [2, 2]
|
|
* 3.gcdlcm(-7) #=> [1, 21]
|
|
* ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
|
|
*/
|
|
VALUE
|
|
rb_gcdlcm(VALUE self, VALUE other)
|
|
{
|
|
other = nurat_int_value(other);
|
|
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_raw(VALUE x, VALUE y)
|
|
{
|
|
if (! RB_INTEGER_TYPE_P(x))
|
|
x = rb_to_int(x);
|
|
if (! RB_INTEGER_TYPE_P(y))
|
|
y = rb_to_int(y);
|
|
if (INT_NEGATIVE_P(y)) {
|
|
x = rb_int_uminus(x);
|
|
y = rb_int_uminus(y);
|
|
}
|
|
return nurat_s_new_internal(rb_cRational, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_new(VALUE x, VALUE y)
|
|
{
|
|
return nurat_s_canonicalize_internal(rb_cRational, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_Rational(VALUE x, VALUE y)
|
|
{
|
|
VALUE a[2];
|
|
a[0] = x;
|
|
a[1] = y;
|
|
return nurat_s_convert(2, a, rb_cRational);
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_num(VALUE rat)
|
|
{
|
|
return nurat_numerator(rat);
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_den(VALUE rat)
|
|
{
|
|
return nurat_denominator(rat);
|
|
}
|
|
|
|
#define id_numerator rb_intern("numerator")
|
|
#define f_numerator(x) rb_funcall((x), id_numerator, 0)
|
|
|
|
#define id_denominator rb_intern("denominator")
|
|
#define f_denominator(x) rb_funcall((x), id_denominator, 0)
|
|
|
|
#define id_to_r idTo_r
|
|
#define f_to_r(x) rb_funcall((x), id_to_r, 0)
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.numerator -> integer
|
|
*
|
|
* Returns the numerator.
|
|
*/
|
|
static VALUE
|
|
numeric_numerator(VALUE self)
|
|
{
|
|
return f_numerator(f_to_r(self));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.denominator -> integer
|
|
*
|
|
* Returns the denominator (always positive).
|
|
*/
|
|
static VALUE
|
|
numeric_denominator(VALUE self)
|
|
{
|
|
return f_denominator(f_to_r(self));
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.quo(int_or_rat) -> rat
|
|
* num.quo(flo) -> flo
|
|
*
|
|
* Returns the most exact division (rational for integers, float for floats).
|
|
*/
|
|
|
|
VALUE
|
|
rb_numeric_quo(VALUE x, VALUE y)
|
|
{
|
|
if (RB_TYPE_P(x, T_COMPLEX)) {
|
|
return rb_complex_div(x, y);
|
|
}
|
|
|
|
if (RB_FLOAT_TYPE_P(y)) {
|
|
return rb_funcallv(x, idFdiv, 1, &y);
|
|
}
|
|
|
|
x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
|
|
return rb_rational_div(x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_canonicalize(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
get_dat1(x);
|
|
if (f_one_p(dat->den)) return dat->num;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.numerator -> self
|
|
*
|
|
* Returns self.
|
|
*/
|
|
static VALUE
|
|
integer_numerator(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.denominator -> 1
|
|
*
|
|
* Returns 1.
|
|
*/
|
|
static VALUE
|
|
integer_denominator(VALUE self)
|
|
{
|
|
return INT2FIX(1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flo.numerator -> integer
|
|
*
|
|
* Returns the numerator. The result is machine dependent.
|
|
*
|
|
* n = 0.3.numerator #=> 5404319552844595
|
|
* d = 0.3.denominator #=> 18014398509481984
|
|
* n.fdiv(d) #=> 0.3
|
|
*
|
|
* See also Float#denominator.
|
|
*/
|
|
VALUE
|
|
rb_float_numerator(VALUE self)
|
|
{
|
|
double d = RFLOAT_VALUE(self);
|
|
VALUE r;
|
|
if (isinf(d) || isnan(d))
|
|
return self;
|
|
r = float_to_r(self);
|
|
return nurat_numerator(r);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flo.denominator -> integer
|
|
*
|
|
* Returns the denominator (always positive). The result is machine
|
|
* dependent.
|
|
*
|
|
* See also Float#numerator.
|
|
*/
|
|
VALUE
|
|
rb_float_denominator(VALUE self)
|
|
{
|
|
double d = RFLOAT_VALUE(self);
|
|
VALUE r;
|
|
if (isinf(d) || isnan(d))
|
|
return INT2FIX(1);
|
|
r = float_to_r(self);
|
|
return nurat_denominator(r);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* nil.to_r -> (0/1)
|
|
*
|
|
* Returns zero as a rational.
|
|
*/
|
|
static VALUE
|
|
nilclass_to_r(VALUE self)
|
|
{
|
|
return rb_rational_new1(INT2FIX(0));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* nil.rationalize([eps]) -> (0/1)
|
|
*
|
|
* Returns zero as a rational. The optional argument +eps+ is always
|
|
* ignored.
|
|
*/
|
|
static VALUE
|
|
nilclass_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_check_arity(argc, 0, 1);
|
|
return nilclass_to_r(self);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.to_r -> rational
|
|
*
|
|
* Returns the value as a rational.
|
|
*
|
|
* 1.to_r #=> (1/1)
|
|
* (1<<64).to_r #=> (18446744073709551616/1)
|
|
*/
|
|
static VALUE
|
|
integer_to_r(VALUE self)
|
|
{
|
|
return rb_rational_new1(self);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.rationalize([eps]) -> rational
|
|
*
|
|
* Returns the value as a rational. The optional argument +eps+ is
|
|
* always ignored.
|
|
*/
|
|
static VALUE
|
|
integer_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_check_arity(argc, 0, 1);
|
|
return integer_to_r(self);
|
|
}
|
|
|
|
static void
|
|
float_decode_internal(VALUE self, VALUE *rf, int *n)
|
|
{
|
|
double f;
|
|
|
|
f = frexp(RFLOAT_VALUE(self), n);
|
|
f = ldexp(f, DBL_MANT_DIG);
|
|
*n -= DBL_MANT_DIG;
|
|
*rf = rb_dbl2big(f);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flt.to_r -> rational
|
|
*
|
|
* Returns the value as a rational.
|
|
*
|
|
* 2.0.to_r #=> (2/1)
|
|
* 2.5.to_r #=> (5/2)
|
|
* -0.75.to_r #=> (-3/4)
|
|
* 0.0.to_r #=> (0/1)
|
|
* 0.3.to_r #=> (5404319552844595/18014398509481984)
|
|
*
|
|
* NOTE: 0.3.to_r isn't the same as "0.3".to_r. The latter is
|
|
* equivalent to "3/10".to_r, but the former isn't so.
|
|
*
|
|
* 0.3.to_r == 3/10r #=> false
|
|
* "0.3".to_r == 3/10r #=> true
|
|
*
|
|
* See also Float#rationalize.
|
|
*/
|
|
static VALUE
|
|
float_to_r(VALUE self)
|
|
{
|
|
VALUE f;
|
|
int n;
|
|
|
|
float_decode_internal(self, &f, &n);
|
|
#if FLT_RADIX == 2
|
|
if (n == 0)
|
|
return rb_rational_new1(f);
|
|
if (n > 0)
|
|
return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
|
|
n = -n;
|
|
return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n)));
|
|
#else
|
|
f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
|
|
if (RB_TYPE_P(f, T_RATIONAL))
|
|
return f;
|
|
return rb_rational_new1(f);
|
|
#endif
|
|
}
|
|
|
|
VALUE
|
|
rb_flt_rationalize_with_prec(VALUE flt, VALUE prec)
|
|
{
|
|
VALUE e, a, b, p, q;
|
|
|
|
e = f_abs(prec);
|
|
a = f_sub(flt, e);
|
|
b = f_add(flt, e);
|
|
|
|
if (f_eqeq_p(a, b))
|
|
return float_to_r(flt);
|
|
|
|
nurat_rationalize_internal(a, b, &p, &q);
|
|
return rb_rational_new2(p, q);
|
|
}
|
|
|
|
VALUE
|
|
rb_flt_rationalize(VALUE flt)
|
|
{
|
|
VALUE a, b, f, p, q, den;
|
|
int n;
|
|
|
|
float_decode_internal(flt, &f, &n);
|
|
if (INT_ZERO_P(f) || n >= 0)
|
|
return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
|
|
|
|
{
|
|
VALUE radix_times_f;
|
|
|
|
radix_times_f = rb_int_mul(INT2FIX(FLT_RADIX), f);
|
|
#if FLT_RADIX == 2 && 0
|
|
den = rb_int_lshift(ONE, INT2FIX(1-n));
|
|
#else
|
|
den = rb_int_positive_pow(FLT_RADIX, 1-n);
|
|
#endif
|
|
|
|
a = rb_int_minus(radix_times_f, INT2FIX(FLT_RADIX - 1));
|
|
b = rb_int_plus(radix_times_f, INT2FIX(FLT_RADIX - 1));
|
|
}
|
|
|
|
if (f_eqeq_p(a, b))
|
|
return float_to_r(flt);
|
|
|
|
a = rb_rational_new2(a, den);
|
|
b = rb_rational_new2(b, den);
|
|
nurat_rationalize_internal(a, b, &p, &q);
|
|
return rb_rational_new2(p, q);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flt.rationalize([eps]) -> rational
|
|
*
|
|
* Returns a simpler approximation of the value (flt-|eps| <= result
|
|
* <= flt+|eps|). If the optional argument +eps+ is not given,
|
|
* it will be chosen automatically.
|
|
*
|
|
* 0.3.rationalize #=> (3/10)
|
|
* 1.333.rationalize #=> (1333/1000)
|
|
* 1.333.rationalize(0.01) #=> (4/3)
|
|
*
|
|
* See also Float#to_r.
|
|
*/
|
|
static VALUE
|
|
float_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
double d = RFLOAT_VALUE(self);
|
|
VALUE rat;
|
|
int neg = d < 0.0;
|
|
if (neg) self = DBL2NUM(-d);
|
|
|
|
if (rb_check_arity(argc, 0, 1)) {
|
|
rat = rb_flt_rationalize_with_prec(self, argv[0]);
|
|
}
|
|
else {
|
|
rat = rb_flt_rationalize(self);
|
|
}
|
|
if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num));
|
|
return rat;
|
|
}
|
|
|
|
inline static int
|
|
issign(int c)
|
|
{
|
|
return (c == '-' || c == '+');
|
|
}
|
|
|
|
static int
|
|
read_sign(const char **s, const char *const e)
|
|
{
|
|
int sign = '?';
|
|
|
|
if (*s < e && issign(**s)) {
|
|
sign = **s;
|
|
(*s)++;
|
|
}
|
|
return sign;
|
|
}
|
|
|
|
inline static int
|
|
islettere(int c)
|
|
{
|
|
return (c == 'e' || c == 'E');
|
|
}
|
|
|
|
static VALUE
|
|
negate_num(VALUE num)
|
|
{
|
|
if (FIXNUM_P(num)) {
|
|
return rb_int_uminus(num);
|
|
}
|
|
else {
|
|
BIGNUM_NEGATE(num);
|
|
return rb_big_norm(num);
|
|
}
|
|
}
|
|
|
|
static int
|
|
read_num(const char **s, const char *const end, VALUE *num, VALUE *nexp)
|
|
{
|
|
VALUE fp = ONE, exp, fn = ZERO, n = ZERO;
|
|
int expsign = 0, ok = 0;
|
|
char *e;
|
|
|
|
*nexp = ZERO;
|
|
*num = ZERO;
|
|
if (*s < end && **s != '.') {
|
|
n = rb_int_parse_cstr(*s, end-*s, &e, NULL,
|
|
10, RB_INT_PARSE_UNDERSCORE);
|
|
if (NIL_P(n))
|
|
return 0;
|
|
*s = e;
|
|
*num = n;
|
|
ok = 1;
|
|
}
|
|
|
|
if (*s < end && **s == '.') {
|
|
size_t count = 0;
|
|
|
|
(*s)++;
|
|
fp = rb_int_parse_cstr(*s, end-*s, &e, &count,
|
|
10, RB_INT_PARSE_UNDERSCORE);
|
|
if (NIL_P(fp))
|
|
return 1;
|
|
*s = e;
|
|
{
|
|
VALUE l = f_expt10(*nexp = SIZET2NUM(count));
|
|
n = n == ZERO ? fp : rb_int_plus(rb_int_mul(*num, l), fp);
|
|
*num = n;
|
|
fn = SIZET2NUM(count);
|
|
}
|
|
ok = 1;
|
|
}
|
|
|
|
if (ok && *s + 1 < end && islettere(**s)) {
|
|
(*s)++;
|
|
expsign = read_sign(s, end);
|
|
exp = rb_int_parse_cstr(*s, end-*s, &e, NULL,
|
|
10, RB_INT_PARSE_UNDERSCORE);
|
|
if (NIL_P(exp))
|
|
return 1;
|
|
*s = e;
|
|
if (exp != ZERO) {
|
|
if (expsign == '-') {
|
|
if (fn != ZERO) exp = rb_int_plus(exp, fn);
|
|
}
|
|
else {
|
|
if (fn != ZERO) exp = rb_int_minus(exp, fn);
|
|
exp = negate_num(exp);
|
|
}
|
|
*nexp = exp;
|
|
}
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
inline static const char *
|
|
skip_ws(const char *s, const char *e)
|
|
{
|
|
while (s < e && isspace((unsigned char)*s))
|
|
++s;
|
|
return s;
|
|
}
|
|
|
|
static VALUE
|
|
parse_rat(const char *s, const char *const e, int strict, int raise)
|
|
{
|
|
int sign;
|
|
VALUE num, den, nexp, dexp;
|
|
|
|
s = skip_ws(s, e);
|
|
sign = read_sign(&s, e);
|
|
|
|
if (!read_num(&s, e, &num, &nexp)) {
|
|
if (strict) return Qnil;
|
|
return nurat_s_alloc(rb_cRational);
|
|
}
|
|
den = ONE;
|
|
if (s < e && *s == '/') {
|
|
s++;
|
|
if (!read_num(&s, e, &den, &dexp)) {
|
|
if (strict) return Qnil;
|
|
den = ONE;
|
|
}
|
|
else if (den == ZERO) {
|
|
if (!raise) return Qnil;
|
|
rb_num_zerodiv();
|
|
}
|
|
else if (strict && skip_ws(s, e) != e) {
|
|
return Qnil;
|
|
}
|
|
else {
|
|
nexp = rb_int_minus(nexp, dexp);
|
|
nurat_reduce(&num, &den);
|
|
}
|
|
}
|
|
else if (strict && skip_ws(s, e) != e) {
|
|
return Qnil;
|
|
}
|
|
|
|
if (nexp != ZERO) {
|
|
if (INT_NEGATIVE_P(nexp)) {
|
|
VALUE mul;
|
|
if (FIXNUM_P(nexp)) {
|
|
mul = f_expt10(LONG2NUM(-FIX2LONG(nexp)));
|
|
if (! RB_FLOAT_TYPE_P(mul)) {
|
|
num = rb_int_mul(num, mul);
|
|
goto reduce;
|
|
}
|
|
}
|
|
return sign == '-' ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
|
|
}
|
|
else {
|
|
VALUE div;
|
|
if (FIXNUM_P(nexp)) {
|
|
div = f_expt10(nexp);
|
|
if (! RB_FLOAT_TYPE_P(div)) {
|
|
den = rb_int_mul(den, div);
|
|
goto reduce;
|
|
}
|
|
}
|
|
return sign == '-' ? DBL2NUM(-0.0) : DBL2NUM(+0.0);
|
|
}
|
|
reduce:
|
|
nurat_reduce(&num, &den);
|
|
}
|
|
|
|
if (sign == '-') {
|
|
num = negate_num(num);
|
|
}
|
|
|
|
return rb_rational_raw(num, den);
|
|
}
|
|
|
|
static VALUE
|
|
string_to_r_strict(VALUE self, int raise)
|
|
{
|
|
VALUE num;
|
|
|
|
rb_must_asciicompat(self);
|
|
|
|
num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 1, raise);
|
|
if (NIL_P(num)) {
|
|
if (!raise) return Qnil;
|
|
rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
|
|
self);
|
|
}
|
|
|
|
if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num)) {
|
|
if (!raise) return Qnil;
|
|
rb_raise(rb_eFloatDomainError, "Infinity");
|
|
}
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* str.to_r -> rational
|
|
*
|
|
* Returns the result of interpreting leading characters in +str+
|
|
* as a rational. Leading whitespace and extraneous characters
|
|
* past the end of a valid number are ignored.
|
|
* Digit sequences can be separated by an underscore.
|
|
* If there is not a valid number at the start of +str+,
|
|
* zero is returned. This method never raises an exception.
|
|
*
|
|
* ' 2 '.to_r #=> (2/1)
|
|
* '300/2'.to_r #=> (150/1)
|
|
* '-9.2'.to_r #=> (-46/5)
|
|
* '-9.2e2'.to_r #=> (-920/1)
|
|
* '1_234_567'.to_r #=> (1234567/1)
|
|
* '21 June 09'.to_r #=> (21/1)
|
|
* '21/06/09'.to_r #=> (7/2)
|
|
* 'BWV 1079'.to_r #=> (0/1)
|
|
*
|
|
* NOTE: "0.3".to_r isn't the same as 0.3.to_r. The former is
|
|
* equivalent to "3/10".to_r, but the latter isn't so.
|
|
*
|
|
* "0.3".to_r == 3/10r #=> true
|
|
* 0.3.to_r == 3/10r #=> false
|
|
*
|
|
* See also Kernel#Rational.
|
|
*/
|
|
static VALUE
|
|
string_to_r(VALUE self)
|
|
{
|
|
VALUE num;
|
|
|
|
rb_must_asciicompat(self);
|
|
|
|
num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 0, TRUE);
|
|
|
|
if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num))
|
|
rb_raise(rb_eFloatDomainError, "Infinity");
|
|
return num;
|
|
}
|
|
|
|
VALUE
|
|
rb_cstr_to_rat(const char *s, int strict) /* for complex's internal */
|
|
{
|
|
VALUE num;
|
|
|
|
num = parse_rat(s, s + strlen(s), strict, TRUE);
|
|
|
|
if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num))
|
|
rb_raise(rb_eFloatDomainError, "Infinity");
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
to_rational(VALUE val)
|
|
{
|
|
return rb_convert_type_with_id(val, T_RATIONAL, "Rational", idTo_r);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise)
|
|
{
|
|
VALUE a1 = numv, a2 = denv;
|
|
int state;
|
|
|
|
assert(a1 != Qundef);
|
|
|
|
if (NIL_P(a1) || NIL_P(a2)) {
|
|
if (!raise) return Qnil;
|
|
rb_raise(rb_eTypeError, "can't convert nil into Rational");
|
|
}
|
|
|
|
if (RB_TYPE_P(a1, T_COMPLEX)) {
|
|
if (k_exact_zero_p(RCOMPLEX(a1)->imag))
|
|
a1 = RCOMPLEX(a1)->real;
|
|
}
|
|
|
|
if (RB_TYPE_P(a2, T_COMPLEX)) {
|
|
if (k_exact_zero_p(RCOMPLEX(a2)->imag))
|
|
a2 = RCOMPLEX(a2)->real;
|
|
}
|
|
|
|
if (RB_INTEGER_TYPE_P(a1)) {
|
|
// nothing to do
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(a1)) {
|
|
a1 = float_to_r(a1);
|
|
}
|
|
else if (RB_TYPE_P(a1, T_RATIONAL)) {
|
|
// nothing to do
|
|
}
|
|
else if (RB_TYPE_P(a1, T_STRING)) {
|
|
a1 = string_to_r_strict(a1, raise);
|
|
if (!raise && NIL_P(a1)) return Qnil;
|
|
}
|
|
else if (!rb_respond_to(a1, idTo_r)) {
|
|
VALUE tmp = rb_protect(rb_check_to_int, a1, NULL);
|
|
rb_set_errinfo(Qnil);
|
|
if (!NIL_P(tmp)) {
|
|
a1 = tmp;
|
|
}
|
|
}
|
|
|
|
if (RB_INTEGER_TYPE_P(a2)) {
|
|
// nothing to do
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(a2)) {
|
|
a2 = float_to_r(a2);
|
|
}
|
|
else if (RB_TYPE_P(a2, T_RATIONAL)) {
|
|
// nothing to do
|
|
}
|
|
else if (RB_TYPE_P(a2, T_STRING)) {
|
|
a2 = string_to_r_strict(a2, raise);
|
|
if (!raise && NIL_P(a2)) return Qnil;
|
|
}
|
|
else if (a2 != Qundef && !rb_respond_to(a2, idTo_r)) {
|
|
VALUE tmp = rb_protect(rb_check_to_int, a2, NULL);
|
|
rb_set_errinfo(Qnil);
|
|
if (!NIL_P(tmp)) {
|
|
a2 = tmp;
|
|
}
|
|
}
|
|
|
|
if (RB_TYPE_P(a1, T_RATIONAL)) {
|
|
if (a2 == Qundef || (k_exact_one_p(a2)))
|
|
return a1;
|
|
}
|
|
|
|
if (a2 == Qundef) {
|
|
if (!RB_INTEGER_TYPE_P(a1)) {
|
|
if (!raise) {
|
|
VALUE result = rb_protect(to_rational, a1, NULL);
|
|
rb_set_errinfo(Qnil);
|
|
return result;
|
|
}
|
|
return to_rational(a1);
|
|
}
|
|
}
|
|
else {
|
|
if (!k_numeric_p(a1)) {
|
|
if (!raise) {
|
|
a1 = rb_protect(to_rational, a1, &state);
|
|
if (state) {
|
|
rb_set_errinfo(Qnil);
|
|
return Qnil;
|
|
}
|
|
}
|
|
else {
|
|
a1 = rb_check_convert_type_with_id(a1, T_RATIONAL, "Rational", idTo_r);
|
|
}
|
|
}
|
|
if (!k_numeric_p(a2)) {
|
|
if (!raise) {
|
|
a2 = rb_protect(to_rational, a2, &state);
|
|
if (state) {
|
|
rb_set_errinfo(Qnil);
|
|
return Qnil;
|
|
}
|
|
}
|
|
else {
|
|
a2 = rb_check_convert_type_with_id(a2, T_RATIONAL, "Rational", idTo_r);
|
|
}
|
|
}
|
|
if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
|
|
(!f_integer_p(a1) || !f_integer_p(a2))) {
|
|
VALUE tmp = rb_protect(to_rational, a1, &state);
|
|
if (!state) {
|
|
a1 = tmp;
|
|
}
|
|
else {
|
|
rb_set_errinfo(Qnil);
|
|
}
|
|
return f_div(a1, a2);
|
|
}
|
|
}
|
|
|
|
a1 = nurat_int_value(a1);
|
|
|
|
if (a2 == Qundef) {
|
|
a2 = ONE;
|
|
}
|
|
else if (!k_integer_p(a2) && !raise) {
|
|
return Qnil;
|
|
}
|
|
else {
|
|
a2 = nurat_int_value(a2);
|
|
}
|
|
|
|
|
|
return nurat_s_canonicalize_internal(klass, a1, a2);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_s_convert(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE a1, a2;
|
|
|
|
if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) {
|
|
a2 = Qundef;
|
|
}
|
|
|
|
return nurat_convert(klass, a1, a2, TRUE);
|
|
}
|
|
|
|
/*
|
|
* A rational number can be represented as a pair of integer numbers:
|
|
* a/b (b>0), where a is the numerator and b is the denominator.
|
|
* Integer a equals rational a/1 mathematically.
|
|
*
|
|
* In Ruby, you can create rational objects with the Kernel#Rational,
|
|
* to_r, or rationalize methods or by suffixing +r+ to a literal.
|
|
* The return values will be irreducible fractions.
|
|
*
|
|
* Rational(1) #=> (1/1)
|
|
* Rational(2, 3) #=> (2/3)
|
|
* Rational(4, -6) #=> (-2/3)
|
|
* 3.to_r #=> (3/1)
|
|
* 2/3r #=> (2/3)
|
|
*
|
|
* You can also create rational objects from floating-point numbers or
|
|
* strings.
|
|
*
|
|
* Rational(0.3) #=> (5404319552844595/18014398509481984)
|
|
* Rational('0.3') #=> (3/10)
|
|
* Rational('2/3') #=> (2/3)
|
|
*
|
|
* 0.3.to_r #=> (5404319552844595/18014398509481984)
|
|
* '0.3'.to_r #=> (3/10)
|
|
* '2/3'.to_r #=> (2/3)
|
|
* 0.3.rationalize #=> (3/10)
|
|
*
|
|
* A rational object is an exact number, which helps you to write
|
|
* programs without any rounding errors.
|
|
*
|
|
* 10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999
|
|
* 10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1)
|
|
*
|
|
* However, when an expression includes an inexact component (numerical value
|
|
* or operation), it will produce an inexact result.
|
|
*
|
|
* Rational(10) / 3 #=> (10/3)
|
|
* Rational(10) / 3.0 #=> 3.3333333333333335
|
|
*
|
|
* Rational(-8) ** Rational(1, 3)
|
|
* #=> (1.0000000000000002+1.7320508075688772i)
|
|
*/
|
|
void
|
|
Init_Rational(void)
|
|
{
|
|
VALUE compat;
|
|
id_abs = rb_intern_const("abs");
|
|
id_integer_p = rb_intern_const("integer?");
|
|
id_i_num = rb_intern_const("@numerator");
|
|
id_i_den = rb_intern_const("@denominator");
|
|
|
|
rb_cRational = rb_define_class("Rational", rb_cNumeric);
|
|
|
|
rb_define_alloc_func(rb_cRational, nurat_s_alloc);
|
|
rb_undef_method(CLASS_OF(rb_cRational), "allocate");
|
|
|
|
rb_undef_method(CLASS_OF(rb_cRational), "new");
|
|
|
|
rb_define_global_function("Rational", nurat_f_rational, -1);
|
|
|
|
rb_define_method(rb_cRational, "numerator", nurat_numerator, 0);
|
|
rb_define_method(rb_cRational, "denominator", nurat_denominator, 0);
|
|
|
|
rb_define_method(rb_cRational, "-@", rb_rational_uminus, 0);
|
|
rb_define_method(rb_cRational, "+", rb_rational_plus, 1);
|
|
rb_define_method(rb_cRational, "-", rb_rational_minus, 1);
|
|
rb_define_method(rb_cRational, "*", rb_rational_mul, 1);
|
|
rb_define_method(rb_cRational, "/", rb_rational_div, 1);
|
|
rb_define_method(rb_cRational, "quo", rb_rational_div, 1);
|
|
rb_define_method(rb_cRational, "fdiv", nurat_fdiv, 1);
|
|
rb_define_method(rb_cRational, "**", nurat_expt, 1);
|
|
|
|
rb_define_method(rb_cRational, "<=>", rb_rational_cmp, 1);
|
|
rb_define_method(rb_cRational, "==", nurat_eqeq_p, 1);
|
|
rb_define_method(rb_cRational, "coerce", nurat_coerce, 1);
|
|
|
|
rb_define_method(rb_cRational, "positive?", nurat_positive_p, 0);
|
|
rb_define_method(rb_cRational, "negative?", nurat_negative_p, 0);
|
|
rb_define_method(rb_cRational, "abs", rb_rational_abs, 0);
|
|
rb_define_method(rb_cRational, "magnitude", rb_rational_abs, 0);
|
|
|
|
rb_define_method(rb_cRational, "floor", nurat_floor_n, -1);
|
|
rb_define_method(rb_cRational, "ceil", nurat_ceil_n, -1);
|
|
rb_define_method(rb_cRational, "truncate", nurat_truncate_n, -1);
|
|
rb_define_method(rb_cRational, "round", nurat_round_n, -1);
|
|
|
|
rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
|
|
rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
|
|
rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
|
|
rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1);
|
|
|
|
rb_define_method(rb_cRational, "hash", nurat_hash, 0);
|
|
|
|
rb_define_method(rb_cRational, "to_s", nurat_to_s, 0);
|
|
rb_define_method(rb_cRational, "inspect", nurat_inspect, 0);
|
|
|
|
rb_define_private_method(rb_cRational, "marshal_dump", nurat_marshal_dump, 0);
|
|
/* :nodoc: */
|
|
compat = rb_define_class_under(rb_cRational, "compatible", rb_cObject);
|
|
rb_define_private_method(compat, "marshal_load", nurat_marshal_load, 1);
|
|
rb_marshal_define_compat(rb_cRational, compat, nurat_dumper, nurat_loader);
|
|
|
|
/* --- */
|
|
|
|
rb_define_method(rb_cInteger, "gcd", rb_gcd, 1);
|
|
rb_define_method(rb_cInteger, "lcm", rb_lcm, 1);
|
|
rb_define_method(rb_cInteger, "gcdlcm", rb_gcdlcm, 1);
|
|
|
|
rb_define_method(rb_cNumeric, "numerator", numeric_numerator, 0);
|
|
rb_define_method(rb_cNumeric, "denominator", numeric_denominator, 0);
|
|
rb_define_method(rb_cNumeric, "quo", rb_numeric_quo, 1);
|
|
|
|
rb_define_method(rb_cInteger, "numerator", integer_numerator, 0);
|
|
rb_define_method(rb_cInteger, "denominator", integer_denominator, 0);
|
|
|
|
rb_define_method(rb_cFloat, "numerator", rb_float_numerator, 0);
|
|
rb_define_method(rb_cFloat, "denominator", rb_float_denominator, 0);
|
|
|
|
rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
|
|
rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1);
|
|
rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
|
|
rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1);
|
|
rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
|
|
rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1);
|
|
|
|
rb_define_method(rb_cString, "to_r", string_to_r, 0);
|
|
|
|
rb_define_private_method(CLASS_OF(rb_cRational), "convert", nurat_s_convert, -1);
|
|
|
|
rb_provide("rational.so"); /* for backward compatibility */
|
|
}
|